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1 School of Archaeology & Anthropology, Australian National University, Canberra, Australian Capital Territory, Australia, 2 Centre for Conservation and Research,

Rajagiriya, Sri Lanka, 3 Department of Zoology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic

Abstract

Background: The two forms of white rhinoceros; northern and southern, have had contrasting conservation histories. The
Northern form, once fairly numerous is now critically endangered, while the southern form has recovered from a few
individuals to a population of a few thousand. Since their last taxonomic assessment over three decades ago, new material
and analytical techniques have become available, necessitating a review of available information and re-assessment of the
taxonomy.

Results: Dental morphology and cranial anatomy clearly diagnosed the southern and northern forms. The differentiation
was well supported by dental metrics, cranial growth and craniometry, and corresponded with differences in post-cranial
skeleton, external measurements and external features. No distinctive differences were found in the limited descriptions of
their behavior and ecology. Fossil history indicated the antiquity of the genus, dating back at least to early Pliocene and
evolution into a number of diagnosable forms. The fossil skulls examined fell outside the two extant forms in the
craniometric analysis. Genetic divergence between the two forms was consistent across both nuclear and mitochondrial
genomes, and indicated a separation of over a million years.

Conclusions: On re-assessing the taxonomy of the two forms we find them to be morphologically and genetically distinct,
warranting the recognition of the taxa formerly designated as subspecies; Ceratotherium simum simum the southern form
and Ceratotherium simum cottoni the northern form, as two distinct species Ceratotherium simum and Ceratotherium cottoni
respectively. The recognition of the northern form as a distinct species has profound implications for its conservation.
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Introduction

As much a cause for celebration the conservation success of the

Southern white rhino is, equally shocking and dire is the fate of the

Northern white rhino. After recovering from a handful of survivors

at the turn of the 20th century, the Southern form escaped

relatively unscathed from the large-scale African rhino poaching

epidemic of the 1980s. In contrast, the once tolerably numerous

Northern form has been reduced to a tiny remnant (less than 20) in

the Garamba National Park, Democratic Republic of Congo, and

a similar number in two zoos. Teetering on the brink of extinction,

its in-situ and ex-situ survival hang by a thread. Urgent and

concerted effort is required to stave off its extinction. The

taxonomic status of the Northern form is central to determining its

conservation importance and will be a critical driver of efforts to

save it.

In the thirty years since the last taxonomic revision of the White

Rhinoceros, genus Ceratotherium [1], new material and analytical

tools have become available, necessitating a reassessment of the

taxon. The metrical data of Groves [1], and some collected

subsequently, can be re-analysed using sophisticated statistical

packages that have become more readily available. Detailed

information and measurements have been published on a

remarkable Early Pleistocene skull KNM-ER 328C [2]; this had

earlier been reported briefly by Hooijer [3]. Further material and

analysis has been published by Guérin [4–7]. The external

phenotypic differences between Northern and Southern forms of

White Rhino tentatively raised by Groves [8] have been extended

and supplemented by Hillman-Smith and colleagues [9,10]. The

reality of these distinctions needs to be examined.

Genetics has become an important criterion in establishing

taxonomic identity. The chromosomes of northern and southern

white rhinos apparently do not differ consistently; the typical

diploid number is 82, but a northern male had 2n = 81

(heterozygous for a Robertsonian translocation) as did his two

female offspring [11]. Merenlender et al. [12] found electropho-

retic variation on 25 allozyme loci between northern and southern

white rhinos to be unexpectedly low: Nei’s distance was 0.005,

compared with a distance of 0.32 between Ceratotherium and Diceros.

Estimates of heterozygosity were low for all rhino taxa examined

in their study and less than 0.1% of loci were polymorphic in any

of the three taxa. Stratil et al. [13] studied some of the same
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individuals of northern white rhinos and found much greater

protein polymorphism, which they attributed to the use of more

sophisticated and sensitive methods. George et al. [14] found a

fixed difference in serum esterase between the two white rhino

taxa – ES3 being present in all southern white rhinos (n = 23), but

in none of the northern (n = 7). George et al. [15], using restriction

enzyme analysis of mtDNA on a single individual of each white

rhino subspecies, found 4% difference, compared to about 7%

between white and black rhinos. A subsequent study by some of

the same authors, with a higher sample of individuals and

additional restriction enzymes, estimated the mtDNA divergence

between the two white rhinos at 1.4%, and the inter-generic

divergence at 4.5% [14]. Morales and Melnick [16], based on

restriction enzyme analysis of a 1.6 kb mitochondrial ribosomal

gene segment, found 0.3% sequence divergence between the white

rhinos, and 1.8–2.1% between white and black rhinos. Thus,

previous genetic analyses have provided conflicting results on the

divergence between the two white rhino taxa.

Here we report on a reassessment of the taxonomic status of the

white rhinos based on new material and reanalysis of existing data,

and review ancillary information on the taxa.

Results

Dentition
In all skulls of Ceratotherium simum simum examined, the protoloph

on the molars and the posterior premolar, sweeps backward from

about one third of its length, so that it runs more distally than

lingually for the remaining two thirds. In all C. s. cottoni, about one

half or more of the protoloph is distolingual in direction.

In the southern form, the ectoloph on the third molar is

produced back more behind the metaloph, to form a larger

metastyle.

Dental Metrics
Measurements of mean crown heights taken by CPG in skulls of

southern white rhinos varied in both M1 and M2 from 45 to 72

(n = 4 for both teeth), and in northern skulls the range was 35–52

(n = 10 M1, n = 7 M2).

Cranial Anatomy
The palate ends approximately level with the junction of the

second and third molars in the southern form, and halfway along

the second molar in the northern.

The incisive foramen ends level with about three quarters of the

way along the second premolar in the southern form, and level

with the anterior edge of, or one quarter of the way along, the

second premolar in the northern.

Cranial Growth
Figure 1 depicts skull growth in males; Figure 2 in females. Basal

skull length appears not to increase after stage 3 in males of cottoni

(Figure 1a); there are no stage 3 skulls of females for cottoni, but

certainly there is no difference between stages 4 and 5 (Figure 2a).

There appears, on the other hand, to be some marginal increase in

growth after stage 3 in both sexes of simum (Figures 1a, 2a). By

contrast, in occipitonasal length, males of stage 3 are by no means

full-sized in either taxon (Figure 1b), nor is one of the two available

females of simum (Figure 2b).

Nasal breadth (Figures 1c, 2c) continues to grow noticeably

between stages 3 and 4. In stage 3, the nasal boss of simum is

narrower than that of cottoni, but the difference has disappeared by

maturity. Even by stage 3, the male already has a wider nasal boss

than the female, and the single stage 2 skull of male cottoni has

wider nasals than the two corresponding stage females.

The depth of the dorsal concavity appears not to change with

age in cottoni or in males of simum (Figures 1d, 2d), but the limited

evidence suggests that the depth may decrease somewhat between

stages 3 and 5 in simum females (Figure 2d).

Because there is no evidence for any difference between stages 4

and 5 in nasal boss breadth, these two stages have been combined

in Figure 3. In the two living taxa, the values for the two sexes of

cottoni just overlap, while those for simum (smaller sample) do not.

This character can therefore be used with nearly complete

confidence to allocate skulls whose sex is unknown. Nasal breadth

measurements are available for the North African Arambourg

skull and for the skull from Ileret. If these are comparable to

modern white rhinos, the Arambourg skull will be a female, the

Ileret skull probably a male.

Cranial Metrics
Univariate comparisons between fully grown samples of living

white rhinos are shown in Figure 4, and comparisons with fossil

specimens in Figure 5.

Figure 4a shows the depth of the dorsal concavity in adults and

4b, maxillary toothrow length.

Figure 5 continues the comparisons between the two living taxa,

and extends them to those individual fossil specimens which are

complete enough to take the measurements concerned. Figure 5a

shows the basal lengths of living and fossil white rhinos and

Figure 5b occipitonasal lengths. Occipital breadth is shown in

Figure 5c and Occipital height in Figure 5d. Figures 5e and 5f;

depict depth of dorsal concavity and maxillary toothrow length,

respectively. Figure 6 represents bivariate scatterplots for some of

the skull measurements: occipitonasal length relative to basal

length, occipital height relative to occipital crest breadth, and

dorsal concavity relative to occipitonasal length. Insepction of

actual skulls demonstrates that the difference in the depth of the

dorsal concavity is easily detected visually.

Figure 7 is a scatterplot of the first two Functions of a

Discriminant Analysis using 7 cranial variables: Occipitonasal

length, Basal length, Zygomatic breadth, Occipital breadth,

Occipital height, Nasal breadth and Dorsal concavity depth. Four

groups were entered: southern males and females, and northern

males and females; the Arambourg and Ileret fossils were entered

as unknowns, meaning that they will be allocated to a position in

the dispersion calculated on the basis of the four groups, but do not

have a chance to extend the dispersion on their own account.

Postcranial Skeleton
The crural index (tibia expressed as a percentage of femur

length) measured 71–72% in three southern and 73–75% in three

Northern rhino specimens.

External Measurements
The heights of two Southern males at Zoo Usti nad Labem,

Czech Republic, measured 168 and 165 cm; a female, 157 cm. All

three were born in Umfolosi, 1966–1970. The height of a

Northern female at Dvur Kralove (Najin) was 157 cm. Spine

length of a Northern female (Najin) was 269 cm, of a male (Suni)

was 271 cm; and that of a hybrid 6 Southern female (Nasi) was

269 cm.

Genetics
The number of bps used for analysis from each fragment is

given in Table 1. Analyzed segments showed consistent divergence

Northern White Rhinoceros
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between the two forms. No nucleotide polymorphisms were

observed within C. s. simum or black rhino subspecies D. b. minor

and D. b. michaeli in the analyzed mitochondrial 12S and NADH

segments, or in the nuclear Amelogenin segment. The mitochon-

drial D-loop segment showed polymorphism within the two black

rhino subspecies but not within C. s. simum. Divergences observed

between the taxa in respect of each analysed segment are given in

Table 1.

Discussion

We found differences that were diagnostic of the two taxa in

practically all characters examined.

Dentition
The two forms of white rhino showed distinctive dental

morphology. The protoloph on all molars and the posterior pre-

molar in the southern form was oriented parallel to the toothrow

in the distal two thirds, whereas it was diagonal for one half or

more in the northern form. Additionally, the ectoloph on the third

molar was produced back more behind the metaloph, forming a

larger metastyle in the southern form. Therefore, dental

morphology clearly distinguishes simum from cottoni.

Dental Metrics
Guérin [5] suggested that the teeth are larger in southern white

rhinos, especially (in the upper toothrow) P4, M1 and M2.

The index of hypsodonty is defined as:

Crown height x 100

Crown length

Guérin [5] gave hypsodonty values for two specimens of P4 in

white rhinos as 188.68 and 201.96, contrasting with black rhinos

at 134.65 and 142.20. For M3 he gave 136.76 in a white rhino,

compared to 121.15 and 102.36 in two black rhinos. His white

rhino indices would correspond to crown heights in the white

rhinos of about 85 mm for M3, and 95 and 101 mm for P4. These

compare well with the figures for M1 given by Hillman-Smith

et al. [9] for southern whites of 88 at the time of eruption, rising to

97 at the time of the eruption of M2, and falling again thereafter as

wear proceeds.

As remarked by Hillman-Smith et al. [9], true crown heights are

difficult to measure on teeth still in place in the jaw, and crown

height above the alveolar line is much easier to measure (if less

anatomically exact), although because of continuing eruption the

height remains constant for longer. Mean crown heights taken in

this fashion on M1 remain at about 43–47 mm until quite an

advanced stage of wear [9: Table IV]. Measurements taken by us

indicate greater crown height in M1 and M2 in simum compared to

cottoni, consistent with the presence of lower-crowned cheekteeth in

northern white rhinos. The cheekteeth are thus lower-crowned as

well as being somewhat smaller (see above).

Figure 1. Skull growth in males: a, basal length; b, occipitona-
sal length; c, nasal boss breadth; d, depth of dorsal concavity.
Age stages are as follows: Stage 2, first molar in process or erupting; 3,
second molar in process of erupting, second and third premolars in
process of replacement; 4, second molar in wear; fourth premolar in
process of replacement; 5, third molar in process of eruption; 6, third
molar in occlusion.
doi:10.1371/journal.pone.0009703.g001

Northern White Rhinoceros
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Cranial Anatomy
Differences in the morphology of the palate and the location of

the incisive foramina showed diagnostic differences between the

two forms. The palate was longer and the incisive foramen located

more posteriorly in the southern form, than in the northern.

Cranial Growth
A number of variations in cranial growth between the two forms

were noted. The differences in the basal length and occipitonasal

lengths of different stage skulls suggested the elongation of the

occipital crest after stage 3 in both forms, but the differential

growth of the occipital crest was greater in the northern form due

to the earlier cessation of basal growth in cottoni. Although some

differences in nasal breadth, suggesting a similar pattern to

occipitonasal growth, were noted, the small sample sizes precluded

identifying any fixed variation between the two forms.

Cranial Metrics
The most striking sexual dimorphism, in a character nearly

independent of body size, was shown by the width of the nasal

boss. The difference between the sexes in this character was

evident in both forms with the width usually being greater in

males. This sexual dimorphism was accentuated in the case of the

southern form with no overlap of measurements between the

sexes.

Heller [17] concluded that northern and southern white rhinos

differed by the depth of the dorsal concavity and by the length of

the toothrow, and Groves [1] concurred. Our findings show that

there is a striking difference between the two taxa: the depth is

much greater in southern white rhinos, and the dorsal outline of

the skull is very flat in northern. There is no overlap in males, but a

slight overlap in females. In females the dorsal concavity appears

to become slightly flatter with age, but not in males. Thus, Heller’s

claim of differences in dorsal concavity is borne out by our

findings. Heller’s [17] finding is vindicated for the maxillary

toothrow as well (see above), although in this case there are

overlaps in both sexes. There is no difference between the sexes in

cottoni (the mean for females is somewhat larger than that for males,

although within the quartile range), but females of the southern

form do have a shorter toothrow than males.

Guérin [5: pp. 171–172] found that the skulls of the southern

form were very slightly larger but the orbitotemporal fossa was

longer, and, according to the text (p.171) that the occiput is wider

in the northern, but his Table 42 (p.172) shows this to be the

opposite (Guérin’s measurement 16). Guérin also found the

mandible of the southern white rhino was larger, with a longer

symphysis; and the corpus and condyle higher. We can test the

claim of a size difference and of a difference in the occipital crest,

but we did not take any measurements of the mandible.

In comparing basal lengths, we found little or no difference

between the two living taxa, but the basal lengths of the fossils

from Ileret and Olduvai Bed IV were much greater than any living

representative, and that of the Arambourg skull, which we

suggested was female, was greater than any living female. The

broad outlines were similar for Occipitonasal length, but with

differences. The first difference was that one specimen from South

Africa was considerably longer in occipitonasal length than any

other, that is to say, it had an occipital crest that is posteriorly

extended. The second difference was that the occipitonasal lengths

Figure 2. Skull growth in females: a, basal length; b,
occipitonasal length; c, nasal boss breadth; d, depth of dorsal
concavity. Age stages as in Figure 1.
doi:10.1371/journal.pone.0009703.g002

Northern White Rhinoceros
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of the Arambourg and Ileret skulls were not longer than modern

females and males respectively, implying that the occiput was less

posteriorly extended than in modern white rhinos.

We found that the occipital breadth was strongly sexually

dimorphic, second only to nasal breadth, but in contrast to nasal

breadth, the dimorphism in cottoni was greater. Between the

northern and southern forms, occipital breadth measurements of

males overlapped considerably, but those of females only very

slightly, northern being much smaller than southern. So in this

sense Guérin’s findings are vindicated. All of the fossils that could

be measured had an extremely broad occiput (if their sexes were

correctly interpreted: see results). Thus it is clear that sexual

dimorphism existed in the early Pleistocene, the Ileret skull having a

broader occiput than modern males, the Arambourg skull broader

than modern females. The occiput of the Olduvai Bed II specimen

could be measured, and it was very broad like the Ileret specimen.

Occipital height was likewise highly sexually dimorphic, in this

case more in the southern form than in the northern. In

Figure 3. Nasal boss breadth.
doi:10.1371/journal.pone.0009703.g003

Figure 4. Univariate comparisons of living samples, stages 5–6: a, depth of dorsal concavity; b, maxillary toothrow length.
doi:10.1371/journal.pone.0009703.g004

Northern White Rhinoceros
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Figure 5. Univariate comparisons of living and fossil samples; a, basal length; b, occipitonasal length; c, occipital crest breadth; d,
occipital height; e, depth of dorsal concavity; f, maxillary toothrow length.
doi:10.1371/journal.pone.0009703.g005

Northern White Rhinoceros
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comparing the two forms, male southern skulls were almost

absolutely larger in this measurement than male northern skulls.

The measurement of the Arambourg skull was less than in any

living specimen, while that of the Ileret skull was within the range

of modern females; this supports the conclusion from occipitonasal

length, that the occiput is less posteriorly extended (i.e. the

occipital crest is shorter) in the fossil than in living specimens. The

Olduvai Bed II specimen is somewhat larger in this measurement

than the Ileret skull; the Kibish specimen is larger still, within the

range of male southern skulls.

Figure 6. Bivariate plot: a, occipitonasal length relative to basal length; b, occipital height relative to occipital crest breadth; c,
dorsal concavity relative to occipitonasal length.
doi:10.1371/journal.pone.0009703.g006

Figure 7. Discriminant analysis using 7 variables. Ungrouped fossil specimens, with their DF values, are: Ileret (3.12, 2.28), with simum males;
Arambourg (2.59, 22.81), with simum females. DF1 accounts for 68.4% of total variance, DF2 for 31.1%.
doi:10.1371/journal.pone.0009703.g007

Northern White Rhinoceros
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Of the two features used by Heller [17] to distinguish the two

modern taxa, Arambourg and Ileret both have a relatively deep

dorsal concavity like modern southern skulls (Figure 5e); the

toothrow of the Arambourg skull is (assuming it is a female) longer

than would be expected for a modern southern specimen, while

that of the Garusi specimen is as long as would be expected were it

a male of the same population (Figure 5f; the toothrow length of

the Ileret skull is unavailable).

In bivariate analysis of skull measurements, some of the

characters clearly separated the two extant taxa while others did

not. The positioning of the fossil specimens was variable. In the

occipitonasal length against basal length, there was as expected no

difference between the two modern forms. The Olduvai Bed IV

specimen, though it was very much bigger than any modern

specimen, was modern in its proportions, the Arambourg skull was

on the edge of modern proportions, while the Ileret skull was

outside the modern range.

Occipital breadth to height comparisons confirmed the shorter

occipital crest of the Arambourg and Ileret skulls, but the Olduvai

Bed II specimen was within the modern range. When dorsal

concavity depth was plotted against occipitonasal length (see

above), the difference between the two modern taxa was striking,

and there was no overlap although they come close; the

Arambourg and Ileret skulls came just within the southern range.

In the discriminant function analysis using seven variables

(Figure 7), the first Function (horizontal), which accounted for

68.4% of the total variance, was heavily weighted positively on

dorsal concavity depth and, less heavily, on occipital breadth and

occipitonasal length, and fairly strongly weighted negatively on

nasal breadth and less strongly on occipital height (Table 2). The

second Function, which accounted for 31.1%, was fairly heavily

weighted positively on occipital nasal length and occipital breadth,

less heavily on nasal breadth, and weakly negatively weighted on

zygomatic breadth. Southern and Northern groupings separated

completely in the discriminant function analysis, but the sexes

within each group overlapped somewhat. The Arambourg skull

fell within the dispersion of southern females, the Ileret skull within

the southern males. All skulls were closer to the centroids of their

own geographic groupings, which was also true of the leave-one-

out cross- validations (Table 3). While a few males within each

geographic sample could be misidentified as females, and vice

versa, there was no misallocation of northern as southern or vice

versa.

Postcranial Skeleton
Guérin [5] found that the metapodials are a little bigger in

simum, but his data show that in effect it is the medial ones that are

slightly longer, the laterals being somewhat shorter. Of several

measurements taken by CPG on postcranial bones, a difference

appears only in the crural index, suggesting slightly longer limbs in

cottoni.

External Measurements
Hillman-Smith et al. [9] reported that full body size and sexual

maturity in females are achieved at 6–8 years, but in males not

until 10–15 years. They reported that adult males of southern

white rhinos weigh 2000–2400 kg, and a subadult male, with the

last molar not fully erupted, was already 2130 kg, and adult

females weigh 1500–1700 kg. On the other hand, at 10–10K

years two northern males weighed only 1400 and 1600 kg and, at

about the same age (9–10K years), four northern females weighed

1400–1500 kg. Spine length (occiput to base of tail) was 259–

284 cm in male and 248–273 cm in female southern white rhinos,

and 266 cm in a northern adult (10-year-old) male and 245–

262 cm in four northern females. To these may be added our

measurements of 271 and 269 cm in a male and a female

respectively, of the Northern form, just slightly larger than in

Hillman-Smith et al.’s sample (the male, Suni, was also measured

by Hillman Smith et al. [9], but when only three years of age).

Shoulder height in two southern males Hillman-Smith et al.’s

sample was 174–178 cm, and in two 10-year old northerns, 151–

152 cm (virtually the same as in four 9–14-year-old females, 150–

154 cm). Northern white rhinos, these authors remarked, ‘appear

to be shorter and smaller’. Our own shoulder height data

(Southern male 168 cm, females 157 and 165 cm; Northern

female 157 cm) are comparable, though again, most of them are

on the large side.

Other measurements of southern white rhinos exist. Kirby [18]

gave the measurements of a male and a female, stated to be ‘large’,

as 179 and 177 cm respectively. Hitchins (personal communica-

tion in [9]) gave two males as 178 and 174 cm.

Table 2. Standardized Canonical Discriminant Function
Coefficients for Figure 7.

DF 1 DF 2

Occipitonasal length 0.311 0.562

Basal length 0.052 20.010

Zygomatic breadth 0.041 20.214

Occipital breadth 0.476 0.580

Occipital height 20.269 0.099

Nasal breadth 20.747 0.259

Dorsal concavity depth 1.083 0.072

doi:10.1371/journal.pone.0009703.t002

Table 1. Observed Sequence Divergence (Uncorrected p) in the Analyzed Fragments.

Fragment Within subspecies Between subspecies Inter-generic Subsp. divergence as % inter-generic

C. s.
simum

D. b.
michaeli

D. b.
minor

simum vs
cottoni

michaeli
vs minor

Ceratotherium
vs Diceros

C.
simum

D.
bicornis

Ratio
C.s./D.b.

Amel X 0.0 0.0 0.0 0.2 0.1 0.8–0.9 23.5 11.7 2.01

12S 0.0 0.0 0.0 0.8 0.5 4.0–4.6 18.6 11.6 1.60

ND 0.0 0.0 0.0 1.3 0.7 8.0–8.5 15.8 8.5 1.86

D-loop 0.0 0.8 0.8 7.6 3.5–4.6 14.4–17.1 48.3 25.7 1.88

doi:10.1371/journal.pone.0009703.t001

Northern White Rhinoceros
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Perhaps the largest series of body measurements in the literature

for both forms is that of Heller [17]. (The figures are given in feet

and inches, and have been recalculated as centimeters here). The

height of a northern male is given as 166 cm, and of five southern

males, of which four were mounted skins and one a mounted

skeleton, is 148–188 cm; of the four mounted skins, the smallest,

from the Leiden Museum, has no associated skull or skeleton so

that its maturity cannot be guaranteed (and its proportions seem

peculiar compared to the others), and the next smallest is

175.3 cm. The height of a northern female is given as 160 cm;

that of a southern female is 155.6 cm. Heller’s length measure-

ments are head-and-body, so not comparable to those of Hillman-

Smith et al. [9].

Putting all these figures together, we get following body

measurements:

Height [cm]

N Southern males 165–188 (n = 11), southern females 155.6–185

(n = 8)

N Northern males 151–165.7 (n = 3), northern females 150–160

(n = 6)

Length [cm]

N Southern males 259–284 (n = 10), southern females 248–273

(n = 4)

N Northern males 266–271 (n = 2), northern females 245–269

(n = 6)

Meagre as they are, these figures tend to substantiate the

observation of Hillman-Smith et al. [9] that northern white rhinos

are smaller – very markedly in the case of males, only slightly in

the case of females. The spine length data are even more meagre,

but appear to corroborate the height data. The weight

discrepancies, however, are even greater for males than those for

females about equivalent height.

It is possible to calculate height:length ratios from Heller [17].

For his northern sample, measured in the field, the range is 40.5–

51.1% (n = 6); these are mostly immature, but the solitary value for

an adult female falls squarely in the middle of the range. For an

adult male, measured on a skeleton, we calculate 56.5%. For his

southern sample, three males measured on mounted skins vary

from 46.8–53.4%, one measured on a skeleton is 56.5%, and a

female measured on a skeleton is 53.7%; the peculiar male,

mentioned above, is only 41.9% (this specimen is of uncertain

history and provenance; Jentink, [19], records only that it was

brought to the Netherlands, date unstated, on the ship ‘Mauritius’

and presented by the Minister of Internal Affairs in 1879).

We attempted to measure height/body length proportions from

photographs, but these are rather subjective. Impressionistically,

and in agreement with Groves [1], we do tend to agree with

Hillman-Smith [10] that northern white rhinos seem to stand

higher in the leg than southern, which seem longer-bodied.

Other External Features
On the basis of published photographs [20–27], and of

observations and photographs by CPG of northern white rhinos

in London, Antwerp, Dvur Kralove (also by JR) and San Diego,

and of southern white rhinos in many institutions, there appear to

be a number of consistent external differences between the two

(See Figures 8, 9). Mostly, they concern the degree of skin folding

and wrinkling, which deepens with age, and tends to be more

marked in females than in males.

Costal grooving: no white rhino has the deep grooves, which

correspond externally to the spaces between the ribs, which tend to

Table 3. Classification Results for Figure 7.

Analaysis Predicted Group Membership Total

simum m simum f cottoni m cottoni f

Original Count simum m 7 1 0 0 8

simum f 0 5 0 0 5

cottoni m 0 0 17 1 18

cottoni f 0 0 1 13 14

Ungrouped cases 1 1 0 0 2

% simum m 87.5 12.5 0 0 100.0

simum f 0 100.0 0 0 100.0

cottoni m 0 0 94.4 5.6 100.0

cottoni f 0 0 7.1 92.9 100.0

Ungrouped cases 50.0 50.0 0 0 100.0

Cross-validated Count simum m 6 2 0 0 8

simum f 3 2 0 0 5

cottoni m 0 0 16 2 18

cottoni f 0 0 3 11 14

% simum m 75.0 25.0 0 0 100.0

simum f 60.0 40.0 0 0 100.0

cottoni m 0 0 88.9 11.1 100.0

cottoni f 0 0 21.4 78.6 100.0

93.3% of original grouped cases correctly classified.
77.8% of cross-validated grouped cases correctly classified.
doi:10.1371/journal.pone.0009703.t003
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characterise most black rhinos (Diceros bicornis). Some grooving

nonetheless occurs in southern white rhinos, weak but becoming

more accentuated with age, especially posteriorly, beginning about

2–3 ribs in front of the stifle fold. There is on the contrary little

trace of costal grooving in northern white rhinos.

Fold over base of foreleg: if the animal is standing square, this

fold always tends to be complete in southern white rhinos, but in

northern it is usually less complete, not extending back to the

elbow. This difference is not absolute.

Fold behind elbow: this is deep, fading upward toward the

dorsal line, in southern white rhinos, but is hardly expressed in

most northern ones.

Wrinkling around eye: southern white rhinos have deep circular

wrinkles around the eye, but these are weak at the most in

northern.

The dorsal profile is straighter in northern white rhinos, more

concave behind the shoulder in southern.

The difference in the dorsal profile of the skull is readily

appreciable on living animals.

Cave & Allbrook [28] could find no evidence of body hair in a

subadult northern white rhino, whereas in southern white rhinos

hairs were detectable by touch according to Alexander & Player

[29]. The keepers at Dvur Kralove and Usti and Labem are of the

opinion that this probably was a difference, although in southern

whites they may become undetectable under insistent abrasion;

and JR found no hairs on the flanks in three northern individuals

(Saut [wild-born, died 2006], Najin and Suni [captive-born, still

living]). CPG could detect no trace of body hairs by running a

hand over the flanks of a docile northern white at San Diego

Wildlife Park; hair was clearly detected by JR on the flanks of

hybrid female Nasi, who died in 2007 in Dvur Kralove. This

individual was bred under the same captive conditions as Saut,

Najin and Suni and was older than Najin and Suni (if anything,

hair would be expected to fall out, or at least abrade, with age).

Note that hair is always to be found on the tail, muzzle at the base

of the nasal horn, and ear rims, and (few, sparse) on the belly,

throat, distal parts of both limbs, and apex of hump of both whites.

The keepers at Dvur Kralove Zoo are of the opinion that

Northern white rhinos possess more shaggy ears and tail [30].

Several of the Northern white rhinos in Dvur Kralove Zoo are

heavily shaggy on the ear rims (but some are not). We tend to

consider these characters, based on observation of the many

individuals of white and black rhinos in captivity, and wild as too

variable for being diagnostic.

Fig. 8 depicts a male and female Southern White rhino; Fig. 9, a

male and female Northern White rhino, but from zoos in the

Czech republic. The horns have grown abnormally as a

consequence of years of captivity.

The Living Taxa: Behaviour and Ecology
Spassov [31] argued that the nuchal hump of the white

rhinoceros serves the same function as the double horn: to

enhance lateral visual display. The second horn duplicates the

display function of the first horn, and the nuchal hump, which

becomes apparent only in the head-up posture of lateral display,

gives the impression of increased body size. One may take this

further. In Diceros bicornis, the back is concave, leaving the withers

and the croup as high points, whereas in Ceratotherium, both high

points are duplicated, the withers by the nuchal hump, and the

croup by the presacral eminence. The stimulus effect of the display

is thereby increased.

The (former) distribution of the southern white rhino corre-

sponded mostly to the Bushveldt Zone [32]. Northern white rhinos

were said to live in open Combretum forest and nearby plains.

According to Schomber [33], population densities in Umfolosi are

notably higher than elsewhere in the range, and southern

populations always seem to have existed at higher density than

northern.

The social organisation of the southern white rhino was

described in detail by Owen-Smith [18]. There are two types of

mature males: territorial (or alpha) males, and non-territorial (or

Figure 8. Ceratotherium simum. Left, Dan, male aged 40 years. Right,
Zamba, female aged 37 years. Both, Usti nad Labem. Photos, Jan
Robovsky.
doi:10.1371/journal.pone.0009703.g008

Figure 9. Ceratotherium cottoni. Left, Suni, male aged 27 years. Right,
Nabire, female aged 24 years. Both, Dvur Kralove. Photos, Jan Robovsky.
doi:10.1371/journal.pone.0009703.g009
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beta) males who do not reproduce and whose presence in an alpha

male’s territory is tolerated. Rachlow et al. [34] found that

territorial males are on average older than non-territorial males,

and though the same linear size (as measured by body length), are

markedly larger in chest girth and neck girth. Only territorial

males scent-mark by spray-urination and by scattering their faeces,

kick with the hind legs before and after defecation, and beat the

horns against bushes. They have much higher testosterone levels,

and they consort much more with females of high reproductive

value (non-pregnant females without calves less than 10 months

old).

In a very small population of northern whites introduced to

Murchison Falls National Park, van Gyseghem [27] recorded the

same dominance behaviours displayed by the sole adult male:

spray-urination, hindleg kicking, horn beating and displays

towards subadult males. The home ranges of all the individuals

of white rhinos in Murchison Falls National Park were found to be

5 to 10 times larger than those found in the southern subspecies in

Hluhluwe Game Reserve [27].

At the ‘‘African rhino workshop, Cincinnati, October 1987’’ a

discussion took place on possible behavioural/ecological differ-

ences between Northern and Southern white rhinos. It was

reported that N. Owen-Smith noted that Southern white rhinos

feed on short, nutritious grasses; given that the Northern white

rhinos live in a wetter habitat, with long fibrous grasses, their

feeding ecology could well differ, and K. Hillman-Smith

concurred, but no research in Garamba had been conducted;

her own casual observation indicated that Northern white rhinos

‘‘may eat more dicotyledons, and they have to survive in tall

grasses such as Hyparrhenia and Loudetia in the wet season, and in

burnt areas during the dry season. The social behaviour appears

similar to that of the southern rhinos although ranges are about 10

times larger; which may be due to the very low population density

in Garamba’’ [35].

The basic reproductive parameters (gestation, first oestrus, first

copulation, mean oestrous cycle, receptivity), sperm morphology

and social behaviour of Northern whites in captivity is similar or

identical to Southern whites [36–39].

Policht et al. [40] confirmed that the repertoire of white rhino

calls is much larger than that reported in other rhino species and

also found an apparent similarity (large overlap) between acoustic

parameters of homologous calls recorded in both forms of white

rhinos.

Mikulica [36] observed a threat gesture involving swinging the

head in Southern whites (in three individuals out of five), but not in

Northern whites (six individuals). The behaviour was not noted by

Backhaus [41] in Northern whites in the wild, but was detected in

the captive population of Northern whites by Kuneš & Bičı́k [42]

and Cinkova [43], but the latter did not observe it in Southern

whites. This emphasises that rare behaviours may not be detected

even with long observation periods (I. Cinkova, pers. comm.,

observed this behaviour only twice in 323 h of observation).

The single known hybrid between Northern and Southern white

rhinos was Nasi, born 1977, and euthanasied in 2007 because of

cancer and accompanying severe pain. Nasi’s health seemed poor

considering her age; we are unsure whether to attach any

significance to this, but five older individuals (pure-bred Northern)

are still living, born in 1972, 1973 and 1974).

The diploid chromosome number appears polymorphic in

Northern white rhinos, as noted above [11]. Sudan (Studbook no.

372) had a diploid number of 81, and this character was inherited

by his two female offspring, Nabire (No. 0789) and Najin (0943).

In conclusion, the reported behavioural and ecological obser-

vations on the Northern and Southern whites do not provide a

clear taxonomic distinction between the two forms. Importantly,

nor do they contradict such a distinction.

Fossil white rhinos
Commonly, it has been assumed that, of the two African genera

of rhinoceros, Diceros, with its browsing adaptations, is the more

primitive, and can be traced back nearly unchanged to the Early

Pliocene, for example at Laetoli, while the grazing Ceratotherium

went through several evolutionary stages from the Early and

Middle Pliocene C. praecox via the Late Pliocene/Early Pleistocene

C. simum germanoafricanum to the modern white rhino [3–7].

Geraads [44] argued that it is in fact Diceros that has more derived

skull shape, considering that the depth of the dorsal concavity

increases during growth and the angle between the plane of the

palate and the nuchal plane decreases in early ontogeny: the skull,

in other words, becomes less like Ceratotherium with age. He

transferred C. praecox to Diceros, and referred all the early stages of

white rhinoceros to a species Ceratotherium mauritanicum, described

from the Middle Pleistocene of North Africa (and surviving in

North Africa until the Late Pleistocene, though replaced by C.

simum in East Africa in the Early Pleistocene). The presumed stem

species, from the Late Miocene of Greece and Iran, generally

known as Diceros neumayri, he transferred to Ceratotherium, finding

that though it was intermediate in cranial morphology, there were

some respects (elongate antorbital portion of skull; occiput narrow

base compared to crest) in which it more resembled modern

Ceratotherium, and was a mixed feeder. He placed the separation of

the two modern lineages ‘‘soon after the Miocene-Pliocene

boundary’’: Diceros evolved towards a browsing specialization,

with smaller size, more transverse lophs on cheekteeth, more

concave dorsal profile, while Ceratotherium became larger, with

more inclined lophs and flatter dorsal profile. Kingston & Harrison

[45], on the basis of stable isotope analysis of the teeth, attributed a

mixed diet to rhinoceros from Laetoli (Middle Pliocene), which

they referred to provisionally as Ceratotherium praecox (note that their

reference to ‘‘modern Laetoli specimens’’ [45: pp. 288, 289] is an

inadvertent error: the four modern specimens analysed for the

paper — 1 from the Sudan, 1 from W. Madi in Uganda, 1 from

Garamba in Zaire, and 1 from the Laikipia Plateau in Kenya —

were inadvertently added to the sample of modern specimens of

other large herbivores from Laetoli [John Kingston, personal

communication to CPG]).

Ceratotherium mauritanicum, according to Geraads [44], differed

from modern white rhinos by the weak postorbital constriction

and wide nuchal crest, as well as the slender metapodials. He

referred fossils from Kanapoi, Hadar, Dikika, Koobi Fora (below

the KBS Tuff) and Rawi to it, but specimens throughout the

Olduvai sequence were referred to C. simum (of which germanoa-

fricanum was considered to be a synonym). Groves [1] had found

that the type skull of C. mauritanicum and the skull from Koobi Fora

were both wide postorbitally, and the Rawi skull fragment, like the

Koobi Fora skull, had very broad occipital crests (that of the C.

mauritanicum type skull is crushed in this region); skulls from

Olduvai (both Bed II and Bed IV) resembled modern white rhinos

in both these respects, but had extremely long toothrows, by which

they differed from any modern white rhino.

Genetics
The observed genetic divergences across taxa were consistent

with the different evolutionary rates of the analyzed fragments. As

expected, the nuclear fragment showed much lower levels of

divergence due to the lower evolutionary rate of nuclear coding

regions relative to mtDNA. Different evolutionary rates of the

mitochondrial segments, especially the faster evolution of the D-
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loop, may explain the discrepancies in divergence observed by

restriction digestion analysis of mtDNA in previous studies.

Saturation consequent to its high evolutionary rate makes the D-

loop unsuitable for analysis at the level of genera. The

mitochondrial 12s, ND and the nuclear Amelogenin X fragments

provide more meaningful generic comparisons.

The relative divergence of the presumed subspecies of white

rhino was approximately twice (1.8460.17) that between the black

rhino subspecies, and was remarkably constant across all four

fragments analysed. Assuming similar rates of divergence between

the taxa, this argues for a longer separation of the white rhino taxa

than the two black rhino taxa analyzed.

The divergence between the white rhino taxa as a percentage of

the inter-generic divergence observed in previous studies were: for

allozymes 1.6% [12], and for mtDNA 57% [15], 31% [14] and

15.4% [16]. With an observed divergence of 15.8% and 18.6%,

for the ND and 12S fragments respectively, our results correspond

well with that of Morales and Melnick [16]. Allozymatic analysis is

generally not sensitive enough for assessing divergence at the level

of subspecies. The higher rates observed by George et al. [14,15]

probably reflect a larger representation of the D-loop due to the

particular restriction enzymes used. The divergence of 23.5%

observed by us in respect of the Amelogenin fragment strongly

supports the divergences observed in the 12S and ND segments.

Due to the very low evolutionary rate of nuclear DNA, the

estimate is based on only 1 and 2 mutations between the black

rhino and white rhino taxa respectively, hence has lower resolving

power than the mtDNA. Thus, we suggest 15–20% of the inter-

generic divergence as a justifiable estimate of the divergence

between the two white rhino taxa. The observed patterns of

divergence and consistency of divergence ratios between taxa

across analysed segments, justify the use of the estimated inter-

generic divergence in assessing the divergence time of white rhino

subspecies.

The Ceratotherium and Diceros divergence is dated to about 7

million years from the fossil record (Hooijer [3], although only the

Miocene-Pliocene boundary according to Geraads [44]). The

divergences observed by us in relation to the fossil evidence suggest

a slower molecular clock in rhinos than in smaller mammals. Slow

molecular clocks have been observed in elephants [46] and marine

mammals [47] and maybe explained by the effects of longer

generation time, increased body mass and lower metabolic rate on

evolutionary rate [48]. Calibrating a molecular clock on the fossil

evidence, the observed genetic divergence between the two white

rhino taxa suggests their separation for at least 1–1.4 million years

if Hooijer’s [49] date for the separation of the two genera is

correct, and 0.75–1 million years if Geraads’ [44] date is more

correct.

The living taxa: taxonomy
Northern and southern white rhinos have, without exception,

been distinguished as subspecies within a single species, Ceratother-

ium simum. The northern form is universally distinguished as simply

a subspecies, Ceratotherium simum cottoni (Lydekker, 1908), leaving the

southern form as the nominotypical subspecies, C. s. simum

(Burchell, 1821). We have, however, found that the two differ

absolutely in numerous respects: the skull is readily distinguished

(Figure 10), the dentition is somewhat different (Figure 11), they

can be differentiated externally apparently without error, there is

evidently a fixed difference in a serum enzyme and they are clearly

distinguishable genetically in analysis of both mitochondrial and

nuclear genomes. Under the Phylogenetic Species Concept (the

only objective concept applicable to allopatric forms), we have no

option but to consider them specifically distinct. While short

separation times may characterise species pairs that are perfectly

distinct by criteria of diagnosability and even reproductive

isolation, a long time since separation does considerably strengthen

other evidence for species status. Genetic analysis clearly indicates

a separation time of over a million years between the two taxa,

justifying their recognition as separate species: Ceratotherium simum

(Burchell, 1821) and Ceratotherium cottoni (Lydekker, 1908).

Conclusion
The northern white rhino is today on the verge of extinction. Its

taxonomic distinctiveness argues strongly for its conservation, as its

demise will mean the permanent loss of a unique taxon that is

irreplaceable. The admirable success of the conservation histories

of the Southern white rhino and the Indian rhino, both of which

were brought back from the brink of extinction by successful

conservation efforts, does, however, hold out hope that the

northern white may yet be saved for posterity. With less than 20

individuals in the wild, the population cannot absorb any more

poaching. It is very likely that any cause of increased mortality, of

which poaching is the most threatening, and most easily addressed,

will push them over the edge. Therefore, absolute protection from

poaching is a must for the in-situ conservation of the species.

The highly successful management of white rhinos under semi-

captive and captive conditions in Southern Africa indicates the

importance of ex-situ conservation. Unlike in the case of the Javan

rhino, where no captive population exists, and of the Sumatran

rhino where captive breeding has only recently been achieved, and

that only by a single female, the presence of a healthy if small

captive population and their long history of successful manage-

ment makes the ex-situ conservation of the northern white much

more likely to be successful. For successful in-situ and ex-situ

conservation of the northern white rhino, the lynch pin will be the

availability of funding. In an age where billions of dollars are

poured into saving companies going bankrupt and trillions into

wars of arguable provenance, can we not spare a fraction of that to

save a unique and charismatic megavertebrate and begin to

address our disastrous impact on planet earth.

Figure 10. Skulls of adult males of Ceratotherium simum (above)
and C. cottoni (below). Upper photo from Heller (1914, plate 17, fig. 3),
lower photo by E. Trumler of skull in Zoologische Staatssammlung, Munich.
doi:10.1371/journal.pone.0009703.g010
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Methods

Morphometrics
CPG studied and measured skulls in the following collections

(the abbreviations used here are in brackets following the names of

the institutions): Natural History Museum, London (BM); Royal

College of Surgeons, London (RCS); Powell Cotton Museum,

Birchington (PC); Landesmuseum für Naturkunde, Karlsruhe

(LNK); Zoologisches Institut, Hamburg (ZIH); Museum Royale de

l’Afrique Centrale, Tervuren (MRAC); Naturalis, Leiden (RML);

Naturhistoriska Riksmuseet, Stockholm (NRS); Muséum National

d’Histoire Naturelle, Paris (NMP); American Museum of Natural

History (AMNH); Smithsonian Institution (USNM).

The total number of skulls was 56 in all, the adult totals being as

follows: Southern males 8, females 5; Northern males 18, females 14.

Fossil specimens are as follows (one specimen in each case):

Tighenif (Ternifine), Algeria, latest Early Pleistocene or base of

Middle Pleistocene, previously described by Arambourg [50];

measurements of a skull from Ileret (Koobi Fora Formation), Lake

Turkana, Kenya, base of Early Pleistocene, taken from Harris [2];

Garusi, Tanzania, Middle Pliocene; Olduvai Bed II, Tanzania,

Early Pleistocene; Olduvai Bed IV, Tanzania, early Middle

Pleistocene; Kibish Formation (Omo River), Ethiopia, late Middle

Pleistocene. Of these, only the first two (the Arambourg and Ileret

skulls) are nearly complete; the others are fragmentary.

The following measurements were taken on each skull:

Occipitonasal Length, Basal Length, Zygomatic Breadth, Occipital

Breadth (occipital crest), Occipital Height (opisthion to opistho-

cranion), Nasal Breadth (nasal boss), Toothrow Length (P2 to M3),

Depth of Dorsal Concavity (greatest distance from dorsal contour

of cranium to a rod resting on nasal boss and occipital crest).

We entered measurements of skulls and teeth of white rhinos

into a file in SPSS, version 12.0.1, and a made series of univariate

and bivariate plots, and ran a series of discriminant analyses.

Dental eruption stages follow a previous study [1].

JR studied hair distribution and took some body measurements

on three adults of Southern whites (one male, two females), two

immobilized adults of Northern whites (one male, one female), one

Figure 11. Maxillary toothrows of adult male Ceratotherium simum (left) and C. cottoni (second from left), and adult female C.simum
(centre) and C.cottoni (second from right and right), from Heller (1913, plates 21:4, 21:2, 22:4, 21:1 and 22:3, respectively).
doi:10.1371/journal.pone.0009703.g011

Table 4. Taxa and Origin of the Samples Used For Genetic Analysis.

Taxon Country of origin Locality of origin Sample ID

Ceratotherium simum simum South Africa Kruger National Park None (wild)

Ceratotherium simum cottoni Zaire Garamba National Park San Diego Zoo NX# 28818

Diceros bicornis michaeli #1 Kenya Solio Game Reserve, Naro-Moro None (wild)

Diceros bicornis michaeli #2 Kenya Captive born Studbook No. 360

Diceros bicornis minor #1 South Africa NA None (wild)

Diceros bicornis minor #2 Zimbabwe Zambezi Valley None (wild)

Diceros bicornis minor #3 Zimbabwe Zambezi Valley None (wild)

doi:10.1371/journal.pone.0009703.t004
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dead male Northern white (not measured) and one euthanized

hybrid female. Some standard measurements [9] were not always

available (e.g. for time limitation in immobilized individuals) and

sometimes they were difficult to obtain accurately (especially if the

individuals were lying down). This was carried out in accord with

the laws and ethical guidelines (No. 2045/2004-1020) established

in the Czech Republic. Body measurements were approved by

representatives of the Dvur Kralove ZOO (owner of the animals).

The immobilization of measured individuals was carried out by

representatives of the Dvur Kralove ZOO (with veterinary

assistance) during the course of attempted artificial inseminations

in collaboration with representatives of the Leibniz Institute for

ZOO and Wildlife Research (Berlin). The procedure was

noninvasive and did not involve any increased stress to the rhinos

or increase in duration of the immobilisation.

Genetics
Samples for genetic analysis consisted of blood or tissue. Except

for those downloaded from GenBank, these were taken during the

course of routine veterinary analysis by approved veterinary

authorities of San Diego zoo; in no case did their extraction

involve any increased stress to the rhinos or increase in duration of

the immobilisation. Details of samples are given in Table 4. DNA

extraction followed a phenol/chloroform extraction and QIAGEN

column purification protocol. Primers and conditions for PCR

amplification of 12S and D-loop mitochondrial fragments followed

Fernando et al. [51]. The 12S primers amplified a 937 bp

fragment of the mitochondrial 12S ribosomal RNA gene and the

D-loop primers a 413 bp fragment incorporating 21 bp from the

39 end of tRNA-Pro and 392 bp of the adjacent D-loop. Primers

RH-ND-F, 59-AAC AGT ACA ATT GAC TTC CAA 39 and

RH-ND-R, 59 CCK GCG TTT AGT CGT TCT GTT 39 for

amplifying a mitochondrial NADH gene fragment were based on

Indian rhino (Accession No. X97336) and white rhino (Accession

No. NC001808) mtDNA sequences from GenBank. They

amplified an approximately 1.2 kb fragment including part of

tRNA-Glycine, NADH dehydrogenase subunit 3, tRNA-Arginine,

NADH dehydrogenase subunit 4L and part of NADH dehydro-

genase subunit 4. Primers Amel-3, 59-GCA CCC TGG TTA

TAT CAA CTT-39 and Amel-6 59-GGG TTC GTA ACC ATA

GGA AG-39 for amplification of the nuclear amelogenin

(AMELX) gene were designed based on sequences from human,

porcine and rat amelogenin (AMELX) genes. They amplified an

approximately 1,685 bp fragment.

Amplifications were conducted in ABI 9700 PCR thermocyclers,

using 1 ml DNA extract, 18 ml PCR buffer dNTP mix, 0.5 ml 10 mM

each primer, 0.1 ml Taq DNA polymerase, and 14.8 ml water.

Amplifications were preceded by a 93uC step of 3 minutes. Samples

were amplified for 40 cycles by denaturing at 93uC, annealing at

50uC and 66uC respectively for ND and Amelogenin primer pairs

respectively, and extension at 72uC; each segment lasting one minute.

Amplifications were followed by an extension step of 72uC for 15

minutes. Amplification products were sequenced in forward and

reverse directions with the PCR primers and internal sequencing

primers (ND-440, 59-TTA CCA TAG CAC TAA TCC-39; ND-310,

59-CCA ATA GKA TCA GCA CGC CTA C-39; ND-830, 59-GTY

ATR ATC TCC AAC ACT TAC-39; and ND-920, 59-CAC TAA

CAT GAC TAT CAA-39 for the ND fragment; AMEL328F 59-CAT

GAA ATA TAG ACT CGC TAA-59, AMEL604F 59-GCT CCT

GCT CTT CTT TG-39, AMEL1108F 59-AAC AAT ATT TTG

AAG TGT GGG-39, and AMEL1116R 59-TTA TAA TAC CCA

CAC TTC AAA-39for the Amelogenin X fragment). Sequences were

edited, trimming ends with ambiguous peaks, and aligned with the

program SEQUENCHER. Uncorrected p distance matrices were

generated using the program PAUP* [52]. Sequences were deposited

on GenBank (Table 5).
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4. Guérin C (1979) Chalicotheriidae et Rhinocerotidae (Mammalia, Perissodactyla)
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