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challenge in wildlife conservation is to prevent or minimise 
the loss of genetic diversity to enable the long-term persis-
tence of threatened species (Weeks et al. 2011; Keller et al. 
2012).

Reintroductions and translocations are important conser-
vation tools used to increase the effective population size, 
maintain genetic diversity (Hedrick and Fredrickson 2010; 
Heber et al. 2013), reduce inter-population differentiation 
(Thavornkanlapachai et al. 2019) and improve the geo-
graphic range of endangered species (Armstrong and Sed-
don 2008). Translocations that simulate the immigration of 
genetically divergent individuals (Tallmon et al. 2004) have 
successfully improved the demographic performance of 
populations of wildlife species such as adders (Vipera berus, 
Madsen et al. 1999), Florida panthers (Puma concolor coryi, 
Johnson et al. 2010), and bighorn sheep (Ovis Canadensis, 
Poirier et al. 2019). However, despite its potential benefits, 
mixing highly differentiated populations that lack local 
adaptations may render translocations counterproductive, as 

      Introduction

Compared to their historical counterparts, many wildlife 
populations remaining today are small and isolated with lim-
ited gene flow. These populations may exhibit an increased 
population differentiation and reduced genetic diversity as 
a function of genetic drift and/or inbreeding (Lacy 1987; 
Primack 2002). Negative genetic impacts are intensified in 
fenced populations, as mechanisms that evolved to reduce 
inbreeding, such as dispersal, are inhibited. Thus, a key 
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Abstract
Globally, wildlife populations are becoming increasingly small and isolated. Both processes contribute to an elevated risk 
of extinction, notably due to genetic factors related to inbreeding depression and a loss of adaptive potential. Wildlife 
translocation is a valuable conservation tool to reintroduce species to previously occupied areas, or augment existing 
populations with genetically divergent animals, thereby improving the viability of endangered populations. However, 
understanding the genetic implications of mixing gene pools is key to avoid the risk of outbreeding depression, and to 
maximise translocation effectiveness. In this study we used mitochondrial and microsatellite DNA collected from 110 
black rhinoceroses (Diceros bicornis minor) in Kruger National Park, South Africa, to determine levels of genetic diver-
sity, inbreeding and relatedness. We compared this diversity with the two source populations (KwaZulu-Natal, South 
Africa and Zambezi River, Zimbabwe) using data from previously published studies, and assessed changes in the relative 
contribution of source lineages since their reintroduction in the 1970s. Our results show that Kruger’s black rhinoceroses 
are genetically more diverse than those from KwaZulu-Natal, with levels closer to those from the Zambezi Valley. Fur-
thermore, our findings indicate a relative increase in the Zimbabwean lineage since reintroduction, suggesting a possible 
selective advantage. From a conservation perspective, our results demonstrate the benefits of mixing multiple source popu-
lations to restore gene flow, improve genetic diversity and thereby help protect small, isolated populations from extinction.
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it may lead to reduced survival or fitness in the offspring 
(outbreeding depression; Templeton 1986; Edmands 2007; 
Frankham 2015; Ralls et al. 2018).

The black rhinoceros (Diceros bicornis) epitomises the 
threats facing many endangered species. The south-central 
black rhinoceros (D. b. minor) historically occurred from 
Tanzania, through Zambia, Zimbabwe and Mozambique to 
the north-eastern parts of South Africa (Emslie and Adcock 
2016). However, wide-scale poaching and unregulated 
trophy hunting reduced the south-central black rhinoceros 
in southern Africa to two remnant populations, one in the 
KwaZulu-Natal region of South Africa, and the other in 
the Zambezi Valley and Sebungwe regions along the Zam-
bezi River in Zimbabwe (Cumming et al. 1990; Emslie and 
Brooks 1999; Emslie 2012). The drastic reduction in popu-
lation size and geographic isolation resulted in extremely 
low genetic diversity within the KwaZulu-Natal black 
rhinoceroses, with only a single mitochondrial DNA hap-
lotype remaining (Anderson-Lederer et al. 2012; Kotzé et 
al. 2014); historically, South Africa harboured at least six 
haplotypes (Moodley et al. 2017). The Zambezi River black 
rhinoceros population retained substantially more genetic 
variation - possibly because of a milder bottleneck event – 
with six mitochondrial DNA haplotypes identified thus far 
(Kotzé et al. 2014). Black rhinoceroses remain vulnerable 
due to relentless poaching for their horns (Amin et al. 2006; 
Ferreira et al. 2015, 2017; Knight 2017) and range expan-
sion continues to be a conservation priority in South Africa 
(SANParks 2002; WWF-South Africa 2020).

Black rhinoceroses were declared extinct in the Kru-
ger National Park, South Africa (24°0’41"S, 31°29’7"E; 
Kruger), in the 1930s after decades of hunting eradicated 
the population (SANParks 2002). A new population was 
founded during the 1970 and 1980  s with reintroductions 
from both the KwaZulu-Natal and Zambezi River source 
populations (Hall-Martin and Knight 1994; Ferreira et al. 
2011). This founder population provides a unique opportu-
nity to explore the outcome of mixing two source popula-
tion gene pools. In this study, we used genetic data from 110 
black rhinoceroses to (i) quantify the genetic variation and 
relatedness and (ii) evaluate any changes in the proportion 
of source population ancestry present in the founded Kru-
ger population. Finally, we compared the genetic diversity 
between the Kruger black rhinoceroses with published esti-
mates of both source populations. Describing the diversity 
and lineage composition of the Kruger black rhinoceroses 
allowed us to evaluate the impact of this population admix-
ture and provide information necessary for optimising the 
recovery and growth of this subspecies throughout its range.

Methods

Study area and population history

The Kruger National Park (Kruger) is situated on the east-
ern side of Limpopo and Mpumalanga provinces of South 
Africa and covers an area of 19,485km2 (Ferreira et al. 
2011), extending 360 km from North to South and 90 km 
from East to West at its widest part (Fig. 1; Foxcroft et al. 
2008). Between 1971 and 1989 a total of 81 black rhinoc-
eroses were reintroduced into southern Kruger (SANParks 
2002). These black rhinoceroses originated from the Zam-
bezi River, Zimbabwe (n = 14) and KwaZulu-Natal, South 
Africa (n = 67). In 2009, the population was estimated at 627 
black rhinoceroses living in southern Kruger (Ferreira et al. 
2011), making it the largest south-central black rhinoceros 
population in Africa. However, by 2019 the population had 
declined to 268 (95% CI: 191–342) (Ferreira et al. 2020) 
predominantly due to poaching (Ferreira et al. 2018). With 
the possible exception of a few individuals, the remaining 
black rhinoceroses in Kruger are found south of the Olifants 
River.

Samples and genetic data

Blood samples (n = 110; female = 60, male = 50) were col-
lected from black rhinoceroses in southern Kruger (Fig. 1) 
from 2014–2019 during various management interventions, 
performed in accordance with South African National Parks 
(SANParks) Wildlife Capture Standard Operating Proce-
dures. Sex, date and location were recorded at the time of cap-
ture. DNA was extracted using DNeasy Blood & Tissue Kits 
(Qiagen, Valencia, CA, USA), following the manufacturer’s 
instructions. A fragment of the mitochondrial DNA con-
trol region was sequenced by ZooOmics™ (Inqaba Biotec, 
Pretoria) using primers mt15996L (5’-TCCACCATCAG-
CACCCAAAGC-3’; Campbell et al. 1995) and mt16502H 
(5’-TTTGATGGCCCTGAAGTAAGAACCA-3’; Moro 
et al. 1998). Individuals were genotyped by ZooOmics™ 
using the standard rhinoceros forensic panel in South Africa 
(Harper et al. 2013) comprised of 23 microsatellite markers 
(Supplementary Table S1).

Genetic analysis

i.	 Quality control

Control region sequences were edited in Mega v 10.0.5 
(Kumar et al. 2018) after visually inspecting individual 
chromatograms using Chromas v 2.6.6 (Technelysium Pty 
Ltd, Australia). The sequences were aligned using Clustal 
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W (Larkin et al. 2007) as implemented in Mega. Pub-
lished control region mtDNA sequences of south-central 
black rhinoceros from the Zambezi River (Zambezi Val-
ley and Sebungwe region), Zimbabwe and KwaZulu-Natal 
(South Africa) source populations were included in a com-
bined dataset (GenBank accession numbers AF187825-
AF187831, Brown & Houlden 2000; JN593089 (n = 64); 
Anderson-Lederer et al. 2012; KM095529-KM095627, 
Kotzé et al. 2014; KY472322-KY472346, Moodley et al. 
2017).

Genotype profiles were checked for genotyping errors, 
allele dropout and null alleles using MICRO-CHECKER 

2.2.3 (van Oosterhout et al. 2004). Null allele frequencies 
were estimated using FREENA (Chapuis and Estoup 2007). 
Frequencies of null alleles may cause moderate (> 0.08; 
Chapuis and Estoup 2007) to significant (> 0.20; Dakin 
and Avise 2004) bias in F-statistics, and thus loci with null 
alleles with a frequency greater than 0.08 were removed 
from further analysis. Genepop v 4.7.2 (Raymond and 
Rousset 1995) was used to test for deviations from Hardy–
Weinberg equilibrium (HWE) for each locus and genotypic 
linkage disequilibrium (LD) between loci. All probability 
tests were based on Markov Chain Monte Carlo (MCMC) 
default parameters. Sequential Bonferroni correction was 

Fig. 1  (a) Map showing the sampling area (red box) within the Kruger National Park (green polygon); (b) Kruger National Park’s location and total 
extent within South Africa; (c) photograph of a black rhinoceros taken during the 2019 census (photo credit: SANParks, C. Dreyer)
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number and type of microsatellite loci used between studies, 
a comparison of relative nuclear diversities was conducted 
between source and founder populations from published 
studies.

Results

Quality control

No evidence of genotyping errors or allelic dropout was 
found. Signatures of null alleles were detected at seven 
loci, namely SR74, IR12, SRS262, 7 C, BlRh1B, DB44 and 
DB66; loci with null allele frequencies greater than 0.08 
(SR74, IR12, SRS262, 7  C and BlRh1B) were removed 
from subsequent analysis. ZF1 (Zinc Finger locus; Peppin 
et al. 2010) was used to confirm individual sex. Seven of 
the total of 254 combinations of paired loci were in link-
age disequilibrium after applying a Bonferroni correction 
(P < 0.0001). Loci IR12 and SR74 were removed as they 
appeared to be sex-linked. Locus 12 F (originally isolated 
from white rhinoceros) and locus BlRh37D were removed 
from further analysis. Loci 7B and 32 A, both originally 
isolated from white rhinoceros, were monomorphic in this 
study and were also removed. Finally, individuals with more 
than 30% missing data (n = 1) were removed from further 
analysis.

Diversity, relatedness and inbreeding

The final mtDNA dataset contained 103 sequences of 469 bp 
in length. Four haplotypes were identified. These haplotypes 
were characterised by five polymorphic sites, all contain-
ing transition nucleotide substitutions (G↔A and/or C↔T). 
Haplotype diversity (h) and nucleotide diversity (π) were 
0.48 (± 0.05 SD) and 0.29 (± 0.20 SD), respectively. The 
final microsatellite data set comprised 109 animals. All 13 
microsatellite loci retained for analyses were polymorphic, 
with two to 14 alleles each (Table 1). The effective number 
of alleles (Ae) ranged from 1.3 to 5.03 (mean = 2.26 ± 0.25 
SE) alleles per locus. Expected heterozygosity (He) var-
ied greatly among loci, ranging from 0.23 (SR281) to 0.80 
(DB66) and averaged 0.51 across all loci. Population level 
FIS was 0.04 (95% CI -0.01- 0.07) (Table 1). Mean pairwise 
relatedness (r) was − 0.03.

Source and founder population comparison

The combined Kruger, Zambezi River and KwaZulu-Natal 
mtDNA control region dataset comprised 296 sequences of 
363 bp after alignment. A total of seven mtDNA haplotypes 
were found across the three populations, containing seven 

applied to determine significance thresholds for HWE and 
LD to account for multiple comparisons.

ii.	 Diversity

Genetic diversity within the mtDNA control region 
sequences was assessed by calculating nucleotide diver-
sity (π), haplotype diversity (h) and the number of unique 
haplotypes present. These diversity metrics were calculated 
in DnaSP v 6 (Rozas et al. 2017). Microsatellite diversity 
was inferred from the range and number of alleles per locus 
(Na), observed heterozygosity (Ho) and expected heterozy-
gosity (He; Nei 1978). The effective number of alleles per 
locus (Ae), i.e., the number of alleles one would expect in a 
population with the same heterozygosity but with an equal 
distribution of allele frequencies (Crow and Maruyama 
1971), was also calculated. All calculations were performed 
in GenAlEx 6.5 (Peakall and Smouse 2012).

iii.	 Relatedness and inbreeding

Average pairwise relatedness (r) for the population was 
calculated using the package ‘related’ (Pew et al. 2015) 
in R version 3.6.1 (R Core Team 2019). The estimator of 
relatedness chosen for this analysis was based on a simu-
lation analysis comparing different estimators using the 
‘compareestimators’ function. Given similar performance, 
the Wang (2002) estimator (having the highest correlation 
between observed and expected values) was chosen for 
further analysis. Pairwise relatedness was calculated using 
the ‘coancestry’ function. Wright’s inbreeding coefficient 
(FIS) was calculated using GENETIX 4.05.2 (Belkhir et al. 
2004). Confidence intervals for inbreeding coefficient val-
ues for each locus and over all loci in each population were 
obtained by bootstrapping 1000 times.

Source and founder population comparison

The combined mtDNA sequence dataset was used to com-
pare the nucleotide (π) and haplotype (h) diversity between 
source (Zambezi River and KwaZulu-Natal) and founder 
(Kruger) populations. The genetic structure among source 
and founder haplotypes in the combined dataset was visual-
ised by constructing a median-joining network (Bandelt et 
al. 1999) in PopART (Leigh and Bryant 2015). Finally, the 
relative maternal lineage contributions of the source popu-
lations were determined and compared to the initial ratio 
of Zambezi River and KwaZulu-Natal founder females 
obtained from historic records (SANParks, unpublished 
data).

Although a direct comparison of microsatellite diver-
sity between population is not possible due to the different 
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reports of nuclear diversity of D. b. minor in Kwa-Zulu 
Natal (Ho = 0.38; He = 0.44; Karsten et al. 2011; Table 2).

The ratio of female black rhinoceros founders introduced 
into Kruger from 1971 to 1989 from the two source popula-
tions was 5: 1 (KZN: ZIM). The lineage ratio found in the 
current Kruger population was 2.41: 1 (KZN: ZIM), indicat-
ing approximately a two-fold increase in the proportion of 
Zimbabwean ancestry since reintroduction (Fig. 4).

Discussion

The Kruger black rhinoceros population offered a unique 
opportunity to evaluate the outcome of mixing the two 
remnant south-central black rhinoceros source populations. 
Using mtDNA and microsatellite markers, we found that 
mixing gene pools substantially enhanced both the mito-
chondrial and nuclear diversity of the founded Kruger popu-
lation relative to the source D. b. minor population in South 

polymorphic sites (Table 2). The nucleotide and haplotype 
diversities calculated in the Kruger population was approxi-
mately mid-way between those of the two source popula-
tions (Table  2). The relationship between haplotypes can 
be seen in Fig. 2. The Kruger population shared two haplo-
types (H1 and H5) with the Zambezi River population; these 
two haplotypes together represented 28.15% of the Kruger 
black rhinoceros in this study. The extant KwaZulu-Natal 
population is represented by only a single haplotype (H2), 
and this haplotype was shared with 67.96% of the Kruger 
population. Haplotype 3 (H3) was unique to Kruger, two 
mutational steps from both H2 and H5 (Fig. 2). Haplotypes 
4, 6 & 7 were unique to the Zambezi River population. The 
current haplotype distribution among the three populations 
is illustrated in Fig. 3.

In this study, the level of nuclear variation revealed 
in Kruger black rhinoceroses (Ho = 0.50; He = 0.51) was 
similar to that reported for the Zambezi population (Ho = 
0.54; He = 0.52; Kotzé et al. 2014) and high relative to prior 

Table 1  Genetic diversity of the Kruger black rhinoceros population across 13 microsatellite loci (n = 109)
Locus Na Ae Ho He uHe FIS (95% CI)
DB23 3 2.01 0.54 0.50 0.50 -0.07 (-0.26-0.13)
DB1 2 1.99 0.44 0.50 0.50 0.11 (-0.09-0.29)
DB52 5 2.08 0.51 0.52 0.52 0.02 (-0.15- 0.17)
32 A 5 1.88 0.41 0.47 0.47 0.12 (-0.02- 0.24)
SR281 2 1.30 0.25 0.23 0.23 -0.07 (-0.18-0.09)
IR22 2 1.98 0.47 0.50 0.50 0.05 (-0.15- 0.22)
BIRh1C 5 2.16 0.56 0.54 0.54 -0.04 (-0.14- 0.08)
SR63 4 2.53 0.59 0.60 0.61 0.04 (-0.11- 0.17)
DB44 6 1.71 0.35 0.41 0.42 0.16 (-0.03- 0.33)
BR6 8 2.66 0.68 0.62 0.63 -0.09 (-0.18-0.00)
DB66 14 5.04 0.73 0.80 0.81 0.10 (-0.01- 0.19)
SR268 5 2.30 0.53 0.57 0.57 0.06 (-0.09- 0.19)
IR10 3 1.71 0.41 0.41 0.42 0.02 (-0.12- 0.17)
Mean 4.92 2.26 0.50 0.51 0.52 0.04 (-0.01- 0.07)
SE 0.90 0.25 0.04 0.04 0.04
Na number of alleles, Ae number of effective alleles, Ho observed heterozygosity, He expected heterozygosity, uHe unbiased expected heterozy-
gosity, FIS inbreeding coefficient

Fig. 2  Median-joining haplotype network among 
296 mtDNA sequences from three D. b. minor 
populations. The circle sizes are proportionate to 
the numbers of individuals representing each hap-
lotype. Colours represent black rhinoceros popula-
tions. Hatch marks represent the number of muta-
tion steps between haplotypes. The label above or 
below the circles represent the haplotype number 
(H1 – H7). n = number of samples. Numbers in 
brackets indicate numbers of individuals from the 
colour-coded population within that haplotype
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such populations, and consequently may negatively impact 
their viability. For example, the small, reintroduced popula-
tion of black rhinoceroses in Addo Elephant National Park, 
South Africa has comparatively low genetic diversity and 
high relatedness relative to their source populations, result-
ing in low fitness, manifesting as low population growth 
rate and reduced male survival (le Roex et al. 2018).

Our results are consistent with several other studies across 
taxa that have reported improved genetic diversity, and ulti-
mately genetic rescue, in bottlenecked populations through 
translocation, including Australia’s mountain pygmy pos-
sum (Burramys parvus; Weeks et al. 2017), adders (Vipera 
berus; Madsen et al. 1999), Scandinavian wolves (Canis 
lupis; Åkesson et al. 2016) and New Zealand’s South Island 

Africa. Together with the low levels of relatedness and no 
evidence of non-random mating, our results confirm that the 
Kruger black rhinoceros population is a diverse, outbred, 
panmictic population. This study provides a baseline for 
informing black rhinoceros metapopulation management 
strategies and indicates that Kruger black rhinoceroses 
would be ideal candidates for translocation and reintro-
duction efforts aimed at improving diversity in other D. b. 
minor black rhinoceros populations.

Maintaining adequate levels of genetic diversity is essen-
tial for ensuring both the short-term health and long-term 
survival of isolated populations of endangered species. 
Small population numbers, genetic drift and/or inbreeding 
may all contribute to a substantial loss in genetic diversity of 

Table 2  Mitochondrial and Nuclear genetic diversity among black rhinoceros populations in Zimbabwe, Kwa-Zulu Natal and Kruger National 
Park

Mitochondrial DNA Diversity Nuclear DNA Diversity
Population N #H #P HD 

(SD)
π (%) Published N Ho He Pub-

lished
Zambezi River, Zimbabwe 104 6 7 0.77 0.70 Kotzé et al. 

2014
236 0.54 0.52 Kotzé et 

al. 2014
KwaZulu-Natal, South Africa 65 1 1 0* 0* Anderson-

Lederer et 
al. 2012

77 0.38 0.44 Karsten 
et al. 
2011

Kruger National Park, South Africa 103 4 5 0.48 
(± 0.05)

0.29 
(± 0.20)

This study 109 0.50 0.51 This 
study

N = number of individuals sampled; #H = number of haplotypes; #P = number of polymorphic; h = haplotype diversity; π = nucleotide diversity; 
* no variation; Ho = observed heterozygosity; He = expected heterozygosity

Fig. 4  The proportion of Zambezi Valley (ZIM) and KwaZulu-Natal (KZN) animals in the (a) founder, and (b) current Kruger populations

 

Fig. 3  Current mtDNA control region haplotype distribution in 
the Zambezi River, Zimbabwe (ZIM), KwaZulu-Natal (KZN) and 
Kruger National Park (KNP) source populations. n = sample size. 
H1–H7 = haplotype number
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(Templeton 1986). Although this is an exceptional case and 
outbreeding depression is relatively uncommon, (Frankham 
et al. 2011; Ralls et al. 2018), it remains a significant con-
cern among conservation managers of critically endangered 
species.

Outbreeding depression from mixing KwaZulu-Natal 
and Zambezi River black rhinoceroses is unlikely when 
considering primary risk factors, such as chromosomal dif-
ferences, lack of gene flow for more than 500 years, and 
substantial environmental differences between populations 
(Frankham et al. 2011). The Zambezi River and KwaZulu-
Natal black rhinoceros populations were historically con-
nected (Kotzé et al. 2014) and a healthy population of 
translocated KwaZulu-Natal black rhinoceros in Malilan-
gwe, Zimbabwe suggests that the different environment 
between populations is unlikely to contribute to outbreed-
ing depression. Furthermore, the increase in Zimbabwean 
lineage proportion seen in the extant Kruger population 
(relative to the ratio of founder females) contradicts any 
potential loss of local adaptation; if anything, selection over 
the generations may have favoured the more diverse Zam-
bezi River black rhinoceros. Further research, however, is 
required to test whether a selective advantage or stochastic 
events are responsible for the lineage proportion increase 
seen in this study.

In conclusion, this study indicates that the admixture of 
black rhinoceroses from different gene pools substantially 
enhanced both the nuclear and mitochondrial diversity of 
the founded Kruger population relative to the source D. b. 
minor population in South Africa. In the absence of threat 
alleviation, metapopulation management strategies (such as 
population supplementation through translocation) aimed 
at increasing the range and securing the genetic health of 
black rhinoceros are critical. The improved genetic diversity 
found in the Kruger population is encouraging for the long-
term survival of this subspecies as a managed metapopu-
lation within South Africa, possibly improving its adaptive 
potential to respond to environmental change. Given the 
encouraging levels of diversity observed, this also makes the 
Kruger black rhinoceros population an ideal source candi-
date for founding new populations or improving the genetic 
variation (and thus reducing extinction risk) for genetically 
depauperate D. b. minor populations in South Africa.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s10592-
022-01486-y.
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robins (Petrioica australis; Heber et al. 2013). Similarly, 
Poirier et al. (2019) reported that outbreeding with a few 
translocated individuals significantly increased the low 
genetic diversity observed in a post-bottleneck population 
of bighorn sheep (Ovis canadensis). Following this recov-
ery in genetic diversity, first-generation (F1) admixed lamb 
survival rates improved and population size consequently 
increased, i.e. genetic restoration resulted in genetic and 
evolutionary rescue.

The reconstructed mtDNA haplotype network in this 
study demonstrates that the Zimbabwean mitochondrial lin-
eages are well established in the Kruger black rhinoceros 
population. Genetic analyses of museum specimens identi-
fied at least four mtDNA haplotypes historically found in 
South African black rhinoceroses (Moodley et al. 2017). 
Thus our results suggest that mixing the two source popula-
tions has restored a comparable level of mtDNA diversity 
to South African black rhinoceroses. The single haplotype 
(H2) found in all KwaZulu-Natal black rhinoceros (Ander-
son-Lederer et al. 2012; Kotzé et al. 2014) was the most 
common haplotype present in the Kruger population 
(67.96%). We also found two Zambezi River haplotypes 
(H1 and H5) within the Kruger population; the remain-
ing Kruger haplotype (H3) was reported in a single cap-
tive Zimbabwean black rhinoceros (Fernando et al. 2006), 
confirming its origin within the Zimbabwean population, 
as well as its presence within the translocated individuals. 
Thus at least two (or three, if including H3) of the six known 
Zimbabwean haplotypes (33–50%) have been restored in 
the Kruger black rhinoceros population. It is also possible 
that with more extensive sampling, additional Zimbabwean 
haplotypes would be detected. Future studies that directly 
compare the nuclear contributions of the two source popula-
tions within the current Kruger population would also pro-
vide further insight into this genetic admixture.

While mixing individuals from different source popula-
tions may increase genetic diversity and reduce the likeli-
hood of inbreeding depression, it may increase the risk of 
outbreeding depression (Edmands 2007). For example, if 
source populations are under unique environmental pres-
sures (e.g., different climates or habitats), local adaptations 
may arise, especially in long-isolated populations. Thus, 
outbreeding with genetically diverse individuals is counter-
productive if the hybrid offspring face lowered fitness due to 
the loss of locally adapted genetic variants (Edmands 1999). 
A classic case of outbreeding depression occurred when two 
subspecies populations of Alpine ibex (Capra ibex) were 
translocated from the Sinai Peninsula and Turkey into the 
European Alps. Unfortunately, the introduced Ibex bred ear-
lier in the season than their European counterparts, result-
ing in hybrid offspring born in midwinter, reducing survival 
and ultimately leading to the hybridised herd’s extinction 
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