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Abstract
A Gram-negative strain, anaerobic, non-motile, non-spore-forming, rod-shaped bacterial strain named as NGMCC 1.200684 T 
was isolated from the fresh feces of rhinoceros in Beijing Zoo. Based on 16S rRNA gene sequences, phylogenetic analysis 
indicated that strain NGMCC 1.200684 T belonged to the genus Bacteroides and was most strongly related to the type strain 
of Bacteroides uniformis ATCC 8492 T (96.88%). The G + C content of the genomic DNA was determined to be 46.62%. 
Between strains NGMCC 1.200684 T and B. uniformis ATCC 8492 T, the average nucleotide identity (ANI) and digital 
DNA–DNA hybridization (dDDH) were 93.89 and 67.60%, respectively. Strain NGMCC 1.200684 T can produce acid from 
fermentation of several substrates, including glucose, mannitol, lactose, saccharose, maltose, salicin, xylose, cellobiose, 
mannose, raffinose, sorbitol, trehalose, D˗galactose, and maltotriose. The major cellular fatty acids (> 10%) were identified as 
anteiso˗C15:0, iso˗C15:0, iso˗C14:0, and iso˗C17:0 3˗OH. The polar lipid profiles of strain NGMCC 1.200684 T were determined 
to contain diphosphatidyl glycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, and two 
unknown amino-phospholipids. Based on phenotypic, phylogenetic, and chemotaxonomic characteristics, a novel species 
of the genus Bacteroides, Bacteroides rhinocerotis sp. nov. is proposed. The type strain is NGMCC 1.200684 T (= CGMCC 
1.18013 T = JCM 35702 T).
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Introduction

Bacteroides are anaerobic and mostly found in the gastro-
intestinal tract of animals and humans, besides Firmicutes, 
as well as control the gut microflora of mammals (Smith 

et al. 2006; Ley et al. 2008; Thomas et al. 2011). In addi-
tion to human fecal samples (Kim et al. 2022; Sun et al. 
2022), a large number of novel Bacteroides species isolated 
from animals have been described recently. These include 
those found in the cecum of wild-derived house mice (Fokt 
et al. 2022; Clavel et al. 2010), the gut of a subterranean 
termite (Reticulitermes speratus) (Sakamoto and Ohkuma 
2013), caecum of chicken (Irisawa et al. 2016; Saputra et al. 
2015), a methanogenic reactor treating waste from cattle 
farms (Nishiyama et al. 2009; Ueki et al. 2008, 2011), and 
chinchilla feces (Kitahara et al. 2011). Bacteroides spp. play 
diverse functions role as gut commensals, inducing both 
health-promoting and disease-promoting effects (e.g., Bac-
teroides fragilis) (Wexler 2007; Wang et al. 2021; Tan et al. 
2019). In addition, Bacteroides species have an excellent 
ability to utilize the nutrients at hand. Bacteroid fermenta-
tion of carbohydrates produces a pool of volatile fatty acids, 
which are then reabsorbed through the large intestine and 
used as an energy source by the host, meeting a substantial 
amount of the host's daily energy needs (Hooper et al. 2002). 
As well, Bacteroides species have a tremendous capacity to 
use a wide range of dietary polysaccharides. Many dietary 
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plant polysaccharides that are normally indigestible can be 
broken down by Bacteroides (e.g., amylose, amylopectin, 
and pullulan). Other organisms in the intestine do not have 
a series of sugar-utilizing enzymes owned by Bacteroides. 
But they can benefit from the presence of Bacteroides using 
sugars (generated by the glycosylhydrolases) (Sonnenburg 
et al. 2004). The wild animal intestinal microbiome, in par-
ticular, was recognized as an undisclosed environment with 
great bacterial diversity, and each animal can develop its 
own microbiota signature (Endo et al. 2010; Tsuchida and 
Ushida 2015). Nevertheless, there hasn’t been much research 
done on rhinoceros’ fresh feces. Only three new species have 
been isolated from rhinoceros’ feces in the last 20 years that 
do not belong to the genus Bacteroides (Chen et al. 2017; Li 
et al. 2015, 2016). At the time of writing on 10th, December 
2022, the genus Bacteroides comprised 106 species with 
validly published names (https://​lpsn.​dsmz.​de/​genus/​bacte​
roides). We obtained three representative strains in this 
study investigating the microbial composition of rhinoc-
eros’ feces, NGMCC 1.200682, NGMCC 1.200684 T, and 
NGMCC 1.200685. Strains NGMCC 1.200682 and NGMCC 
1.200685 separately showed 99.71% and 99.71% 16S rRNA 
gene similarity to Bacteroides stercoris ATCC 43183 T and 
Bacteroides fragilis NCTC 9343 T, thus were considered new 
isolates of them. Strain NGMCC 1.200684 T was considered 
to belong to a potential novel species within the genus Bac-
teriodes. In this paper, we describe its taxonomic position 
from a polyphasic perspective.

Materials and methods

Isolation and growth conditions

The strain NGMCC 1.200684 T was isolated from rhinoc-
eros’ feces. The feces samples were collected, immediately 
placed in anaerobic PBS solution containing 1% cysteine, 
and transferred into an anaerobic glove box (Shanghai 
Longyue Co., Ltd) that was 90% N2, 5% H2, and 5% CO2. 
Pipetting was used to disperse the suspended feces, which 
were then filtered through 70 μm and 40 µm cell sieves. 
Following that, the filtrate was serially diluted up to 10˗7, 
and 100 μl of each of the last four dilutions was respectively 
plated on modified Gifu anaerobic broth (mGAM; HB8518, 
Hopebio) agar plates and YCFA agar plates. As described 
above, plates were incubated for 3 days at 37 ℃ in an anaero-
bic glove box. Strain NGMCC 1.200684 T was isolated from 
an mGAM agar plate of 10˗4 series diluted fecal samples, 
which were heat-treated. Single colonies were picked and 
grown on modified GAM agar plates. This procedure was 
repeated until pure cultures were obtained and stored at 
− 80 °C in mGAM broth supplemented with 20% glycerol 
(w/v). Reference strains Bacteroides fluxus DSM 22534 T, 

Bacteroides rodentium DSM 26882 T, and B. uniformis DSM 
6597 T were obtained from DSMZ, and maintained under the 
same conditions.

Morphological, physiological, and biochemical 
characterization

For the purposes of phenotypic, chemotaxonomic, and phy-
logenetic characterization, the strain NGMCC 1.200684 T 
was grown on mGAM agar or in liquid medium at 37 °C 
and anaerobic cultivation 3 days, unless otherwise stated. 
Gram staining was carried out using a Gram staining kit 
(G1060, Solarbio), and optical microscopy (CX-31, Olym-
pus) was used to evaluate the results. Cellular morphology 
and the presence of spores were examined by scanning 
electron microscopy (Merlin compact, ZEISS). Growth was 
examined in environments that were aerobic, anaerobic, and 
microaerophilic, which were produced using a bio-incuba-
tor, AnaeroPackTM˗Anaero, and MicroAeroTM˗MicroAero 
(Mitsubishi Gas Chemical Co, Inc.). Cell motility was per-
formed depending on the development of turbidity in an 
anaerobic tube containing mGAM semisolid medium (Titt-
sler and Sandholzer 1936). The activities of catalase and 
oxidase were investigated with 3% (v/v) hydrogen peroxide 
solution and oxidase test strips (M153, LAND BRIDGE), 
respectively. According to the manufacturer's instructions, 
physiological and biochemical tests were conducted using 
the VITEK 2 ANC card of anaerobic bacteria identification 
test (bioMérieux), API ZYM Kit (bioMérieux), and API 
20A systems (bioMérieux). Other phenotypic traits, includ-
ing temperature, pH for growth, and salt tolerance, were 
evaluated using the methods previously described (Sun et al. 
2022; Yu et al. 2019). Cellular polar lipids were extracted 
with chloroform–methanol filtration and identified by two-
dimensional TLC (Minnikin and Abdolrahimzadeh 1974). 
The processes of saponification, methylation, extraction, and 
measurement of cellular fatty acids followed those previ-
ously reported (Sakamoto et al. 2002). Using the Microbial 
Identification System (MIDI) (Sasser 1990), the fatty acid 
composition of strain NGMCC 1.200684 T was examined as 
per Sasser's (1990) instructions.

Phylogenetic and genome sequencing analyses

The 16S rRNA gene of strain NGMCC 1.200684 T was 
amplified using universal primers: 27F (5ʹ˗AGA​GTT​TGA​
TCC​TGG​CTC​A˗3ʹ), 1492R (5ʹ˗GGT​TAC​CTT​GTT​ACG​
ACT​T˗3ʹ). PCR products were sequenced using a BigDye™ 
Terminator v3.1 Cycle Sequencing Kit (Applied Bio-
systems) and an ABI PRISM 3730 XL Genetic Analyzer 
(Applied Biosystems). The closest recognized relatives of 
the novel isolates were identified and downloaded by com-
paring the 16S rRNA gene sequence (1412 bp) of strain 
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NGMCC 1.200684 T to those available in the EzBioCloud 
database (www.​ezbio​cloud.​net). The isolate sequences 
were aligned with 16S rRNA gene sequences obtained from 
EzBioCloud using the multiple sequence alignment program 
Clustal_X software (version 2.0) (Thompson et al. 1997). 
The trimmed alignment was converted to mega format for 
phylogenetic analyses. Phylogenetic consensus trees were 
constructed using the neighbor-joining (NJ), maximum-like-
lihood (ML), and maximum-parsimony (MP) methods with 
MEGA_X (Kumar et al. 2018; Felsenstein 1981) and evalu-
ated using 1000 bootstrap replicates (Saitou and Nei 1987; 
Kluge and Farris 1969). Evolutionary distance was obtained 
by the two-parameter method of Kimura (Kimura 1980). 
The genomic DNA from pure cultures of strain NGMCC 
1.200684 T was extracted using the TIANamp Bacteria DNA 
Kit (DP302, Tiangen) following the manufacturer's instruc-
tions. The Illumina PE150 platform was used to sequence 
the genome. Using the algorithm outlined by Yoon et al. 
(Yoon et al. 2017), the OrthoANI determined the average 
nucleotide identity (ANI) values using EzBioCloud (www.​
ezbio​cloud.​net/​tools/​ani). Version 3.0 of the Genome-to-
Genome Distance Calculator (GGDC) (http://​ggdc.​dsmz.​
de/​ggdc.​php) was used to determine the digital DNA˗DNA 
hybridization (dDDH) values (Auch et al. 2010; Meier-
Kolthoff et al. 2013). The phylo-genomic tree is constructed 
using a concatenated alignment of 120 conserved bacterial 
single-copy genes with GTDB-Tk v. 1.5.1(Parks et al. 2018; 
Chaumeil et al. 2020).

Results and discussion

Morphological, physiological, and biochemical 
characteristics

Strain NGMCC 1.200684 T were anaerobic, Gram-stain-
negative, non-spore-forming, non-motile, and rod-shaped 
(0.5–1 µm width and vary in length, mostly 1.5–7.5 µm) 
(Supplementary Fig. S1). The novel strain was consistent 
with the estimated 0.5–1.5 μm wide and 1.5–11 μm long 
cell sizes of members of the genus Bacteroides (Shah and 
Collins 1989). Colonies on mGAM agar plates were 1–3 mm 
in diameter, translucent, whitish, circular, convex, and neat 
edges after 3 days of cultivation. Growth occurred at tem-
peratures ranging from 25 to 45 °C, with 37 °C being the 
optimum. The pH range for growth was from pH 5.0 to 7.0 
(optimum, pH 7.0). Isolate grew at 0–2.0 NaCl% (w/v), with 
the optimum at 0.5–1 NaCl% (w/v). Isolate was anaerobic 
according to an oxygen tolerance test. Anaerobic and micro-
aerophilic growth was seen; however, after two days of expo-
sure to air at 37 °C, no colonies developed on the plates. 
Table 1 compares the strain NGMCC 1.200684 T physio-
logical and biochemical characteristics to those of the type 

strains of strongly related Bacteroides species. Supplemen-
tary Table S1 lists the results from the three API systems. As 
determined by the API 20A test, strain NGMCC 1.200684 T 
can ferment a variety of substrates to produce acid, but not 
arabinose, glycerol, melezitose, and L-rhamnose. These 
substrates include glucose, mannitol, lactose, saccharose, 
maltose, salicin, xylose, cellobiose, mannose, raffinose, 
sorbitol, and trehalose. Gelatin is not hydrolyzed, whereas 
esculin is. Indole is generated rather than urease. The inca-
pacity of strain NGMCC 1.200684 T to ferment L-arabinose 
allows it to be distinguished from the other three type strains. 
Following the API ZYM test, the results were positive for 
α- and β-galactosidase, alkaline phosphatase, esterase (C4), 
chymotrypsin, acid phosphatases, Naphthol-AS-BI-phos-
phohydrolase, β-glucosidase, N-Acety-β-glucosaminidase, 
α-fucosidase, but negative for lipoidase (C14), leucine 
arylamidase, valine arylamidase, cystine arylamidase, 
trypsin, β˗glucuronidase, α˗glucosidase, and α-mannosidase. 
The result for lipid esterase (C8) is weakly. Strain NGMCC 
1.200684 T was different from other type strains in the chy-
motrypsin, α-glucosidase. According to the API VITEK 2 
ANC card test, strain NGMCC 1.200684 T was positive for 
alanine–phenylalanine–proline arylamidase, 5˗Bromo˗4˗C
hloro˗3˗indole˗β˗D˗glucoside, β˗D˗Fucosidase, 5˗Bromo˗
4˗Chloro˗3˗hydroxyindole˗b˗N˗acetylglucosamine, 5˗Bro
mo˗4˗Chloro˗3˗Indole˗β˗D˗glucuronide, α˗L˗arabinoside, 
β˗Galactopyranosyl glucosidase indole phenol, 
α˗Arabinosidase, 5˗Bromo˗4˗chloro˗3˗indole˗α˗D˗galacto
pyranoside, α˗L˗fucosidase, Phosphatase, the fermentative 
production of acids from D˗galactose, maltotriose, and nega-
tive for ELLMAN, Phenylalanine arylaminase, L˗Proline 
arylaminase, L˗Pyrrolidone arylaminase, Tyrosine arylam-
idase, Arbutin, N˗Acetyl˗D˗glucosamine, β˗mannosidase, 
Arginine, Pyruvate, 5˗Bromo˗4˗Chloro˗3˗Indolyl˗α˗D˗M
annopyranoside, phenylphosphonate, D˗Ribose2. Strain 
NGMCC 1.200684 T differed from the three others in acid 
production from N˗Acetyl˗D˗glucosamine and arbutin. To 
sum up, the physiological characteristics of strain NGMCC 
1.200684 T enabled it to distinguish it from recognized Bac-
teroides species.

Phylogenetic and genomic analyses

The 16S rRNA gene sequences of strain NGMCC 1.200684 T 
(1412 bp) were determined. The 16S rRNA gene sequences 
of strain NGMCC 1.200684 T and related type species of the 
genus Bacteroides were aligned, and a phylogenetic tree was 
constructed using Parabacteroides distasonis ATCC 8503 T 
as an outgroup (Fig. 1). According to the findings of phylo-
genetic analyses based on 16S rRNA gene sequences using 
the NJ, ML, and MP techniques, strain NGMCC 1.200684 T 
and the closely related species formed a separate branch 
within the genus Bacteroides. The phylogenetic analysis and 

http://www.ezbiocloud.net
http://www.ezbiocloud.net/tools/ani
http://www.ezbiocloud.net/tools/ani
http://ggdc.dsmz.de/ggdc.php
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EzBioCloud database searches indicated that the type strains 
of B. uniformis ATCC 8492 T, B. rodentium JCM 16496 T, 
and B. fluxus YIT 12057 T had similar sequences to NGMCC 
1.200684 T, with approximate similarity values of 96.88%, 
95.56%, and 93.45%, respectively. A phylo-genomic tree 
based on whole genomes was reconstructed (Fig. 2). The 
result showed that NGMCC 1.200684 T was clustered with 
the type strains of B. uniformis ATCC 8492 T in the same 
clade, and they have a high bootstrap value (98%). The aver-
age nucleotide identity (ANI) and the digital DNA–DNA 
hybridization (dDDH) results showed that B. uniformis 
ATCC 8492 T was the closest strain, with values of 93.89% 
and 67.60%, which were lower than the classification limits 

of 95% and 70% of international standards (Wayne 1988) 
(Table 2). We concluded that strain NGMCC 1.200684 T 
represented a novel species within the genus Bacteroides.

The TIANamp Bacteria DNA Kit was used to extract 
genomic DNA from cells cultured in the mGAM broth 
(DP302, Tiangen). The genome was sequenced by the 
Illumina PE150 platform. The size of the strain NGMCC 
1.200684 T genome was 4.88 Mb. 76 high-quality scaf-
folds were produced from 1,126 Mb of clean readings after 
de novo assembly. The isolate’s DNA G + C content was 
46.62%, which was within the range (40–48%) previously 
described for the genus Bacteroides (Shah 1992). In the draft 
genome, the genome carried 62 ncRNA genes, including 

Table 1   Different characteristics 
of strain NGMCC 1.200684 T 
and related type strains of 
species of the genus Bacteroides 

Strains: 1, NGMCC 1.200684 T; 2, B. fluxus DSM 22534 T; 3, B. rodentium DSM 26882 T; 4, B. uniformis 
DSM 6597 T (data from Kitahara et al. 2011). Data were obtained in this study unless indicated
 + Positive, ˗ negative, w weakly, v variable, ND no data available

Characteristics 1 2 3 4

API ZYM results
 Chymotrypsin  +  − − ND
 Acid phosphatases  +   +   +  ND
 β-glucuronidase −  +  − −
 α-glucosidase −  +   +   + 
 α-fucosidase  +   +  −  + 

API 20A results
 Indole production  +   +  −  + 
 D-mannitol  +   +  − −
 Glycerol −  +  − −
 D-sorbitol  +   +  − −
 L-rhamnose −  +  − −
 D-trehalose  +   +  − −

VITEK2 ANC card
 D-galactose  +   +   +  ND
 Leucine arylamidase −  +  − −
 ELLMAN − −  +  ND
 L-Pyrrolidone arylaminase − − − ND
 Tyrosine arylamidase − w − −
 Alanine–phenylalanine–proline arylamidase  +   +   +  ND
 Arbutin −  +   +  ND
 N-Acetyl-D-glucosamine −  +   +   + 
 5-Bromo-4-chloro-3-indole-β-D-glucoside  +  −  +  ND
 5-Bromo-4-chloro-3-indole-β-D-glucuronide  +   +  − ND
 α-Arabinosidase  +  −  +   + 
 5-Bromo-4-chloro-3-indole-α-D-galactopyranoside  +  −  +  ND
 β-mannosidase − w − ND
 β-D-Fucosidase  +  w  +  ND
 5-Bromo-4-chloro-3-hydroxyindole-b-N-acetylglucosamine  +  −  +  ND
 L-arabinose − v  +   + 
 D-ribose2 −  +  − ND
 Phenylphosphonate − −  +  ND
 α-L-arabinoside  +  −  +  ND
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Fig. 1   Phylogenetic and 
phylo-genomic trees of strain 
NGMCC 1.200684 T and 
closely related type strains 
within the genus Bacteroides. 
Maximum likelihood phyloge-
netic tree based on 16S rRNA 
gene sequences showing the 
phylogenetic position of strains 
NGMCC 1.200684 T. Bootstrap 
values (> 50%) based on 1000 
replicates for the maximum-
likelihood method are shown 
at branch nodes. Bar, 0.01 
substitutions per site. GenBank 
accession numbers are given in 
parentheses. Asterisks denote 
nodes that were also recovered 
using the maximum-parsimony 
and neighbor-joining methods

Fig. 2   Genome phylo-genomic 
tree showing the position of 
strain NGMCC 1.200684 T. 
Bootstrap values are indicated 
at branch points based on 
1000 iterations. Parabacte-
roides distasonis ATCC 8503 T 
(EU136681) was used as an 
outgroup. Bar, 0.05 substitu-
tions per nucleotide position
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3 rRNA genes, 59 tRNA genes and 0 sRNA genes. Strain 
NGMCC 1.200684 T sequenced genomes were subjected to 
coding gene prediction using GeneMarkS (Version 4.17) 
software, and 4,212 coding sequences (CDS) were predicted. 
Bacteroides were the top two most closely related species 
in the top 20 of the predicted strain NGMCC 1.200684 T 
genome based on species annotated with genes in the Non-
Redundant Protein Database (NR) database. For assessment 
of the function of predicted coding genes, the NCBI˗NR, 
Swiss˗Prot, KEGG, COG, GO, Pfam, PHI, VFDB, CARD, 
and CAZy databases were used. Analysis of gene functions 
with KEGG resulted in an allocation of the majority of 
the genes to carbohydrate metabolism (205 genes), amino 
acid metabolism (132 genes), metabolism of cofactors and 
vitamins (111 genes), energy metabolism (91 genes), and 
nucleotide metabolism (67 genes) (Supplementary Fig. S2). 
Further genome mining revealed strain NGMCC 1.200684 T 
genome sequence encodes the starch utilization system 
(Sus), which is made up of susABCDEFG genes and can 
degrade various oligosaccharides into monosaccharides or 
disaccharides by periplasmic glycan-degrading enzymes 
like susA and susB. The sus system was also found in Kim 
et al.’s study (Kim et al. 2022) (Supplementary Table S2).

Chemotaxonomic characteristics

In 1980, Shah and Collins evaluated the cellular fatty acid 
profiles of Bacteroides species and reassessed their genus 
taxonomy in 1983, and revealed the majority of cellular 
fatty acids were straight-chain, anteiso- and iso-methyl 
branched-chain fatty acids (Shah and Collins 1980, 
1983). Table 3 lists detailed results of the cellular fatty 
acid study of strain NGMCC 1.200684 T and its phyloge-
netically adjacent neighbors. In this work, the isolate's 
major cellular fatty acids were anteiso˗C15:0 (29.87%), 
iso˗C15:0 (17.86%), iso˗C14:0 (15.41%), and iso˗C17:0 3˗OH 
(10.43%) (Table 3). All strains, including the reference 
species, contain the primary components iso-C15:0 and 
anteiso˗C15:0. While, C18:1 ω9c was not observed in strain 
NGMCC 1.200684 T, but present in the reference species 
(Table 3). It was proven that these contents differed some-
what between each other, yet followed a pattern that was 
comparable to those of other Bacteroides species. The 
polar lipids’ profile of strain NGMCC 1.200684 T was 

determined to contain diphosphatidyl glycerol (DPG), 
phosphatidylglycerol (PG), phosphatidylethanolamine 
(PE), three unidentified phospholipids (PL1–3), and two 
unidentified amino-phospholipids (APL1–2) (Fig. 3).

Table 2   Average nucleotide 
identity and levels of DNA–
DNA hybridization among the 
strain NGMCC 1.200684 T and 
related strains

Query genome Reference genome ANI (%) dDDH (%)

NGMCC 1.200684 B. uniformis ATCC 8492 T (AAYH02000049) 93.89 67.60
NGMCC 1.200684 B. fluxus YIT 12057 T (AB490802) 79.84 22.90
NGMCC 1.200684 B. cuits Marseille-P4118T (OEST01000016) 77.86 22.80

Table 3   Cellular fatty acid compositions of strains NGMCC 
1.200684 T and three related Bacteroides species

Strains: 1, NGMCC 1.200684 T; 2, Bacteroides fluxus DSM 22534 T; 
3, Bacteroides rodentium DSM 26882  T (data from Kitahara et  al. 
2011); 4, Bacteroides uniformis DSM 6597  T (data from Kitahara 
et al. 2011). Values ≥ 1% are shown
*Summed features represent groups of two or three fatty acids that 
cannot be separated by the Microbial Identification System. Summed 
feature 3 consisted of iso-C15:0 ALDE and/or an unknown fatty acid 
ECL 13.570. Summed feature 9 consisted of iso-C16:0 3-OH and/or an 
unknown fatty acid ECL 17.157. Summed feature 10 consisted of one 
or more of iso-C18:1ω11c/9t/6t and an unknown fatty acid ECL 17.834

Fatty acid 1 2 3 4

Saturated straight chain
 C14:0 1.42 – – –
 C15:0 – – – 2.4
 C16:0 5.25 – 12.9 7.5
 C18:0 1.41 – – –

Unsaturated straight chain
 C18:1 ω9c 14.0 13.5 10.3
 C18:2 ω6,9c 1.7 1.4

Hydroxy
 C15:0 3-OH – – – –
 C16:0 3-OH 3.51 – 12.7 7.0
 C17:0 3-OH – – – 1.3
 iso-C17:0 3-OH 10.43 – 19.4 20.0
 anteiso-C17:0 3-OH – – 2.7 3.0

Saturated branched chain
 iso-C13:0 5.46 – – –
 iso-C14:0 15.41 – – –
 iso-C15:0 17.86 9.3 9.9 10.9
 anteiso-C13:0 2.35 – – –
 anteiso-C15:0 29.87 28.8 27.3 35.8
 anteiso-C17:0 – – – 1.0

Summed features*

 3 – – – –
 9 – – – –
 10 – – – –
 11 – 27.8 – –



Archives of Microbiology (2023) 205:169	

1 3

Page 7 of 9  169

Taxonomic conclusion

On the basis of phenotypic, chemotaxonomic, genotypic 
and phylogenetic studies, we propose that strain NGMCC 
1.200684 T be classified as representing a novel species 
of the genus Bacteroides, for which the name Bacteroides 
rhinocerotis sp. nov. is proposed.

Description of Bacteroides rhinocerotis sp. nov.

Bacteroides rhinocerotis (‘rhinocerotis’ is. L. gen. n. rhinoc-
erotis of rhinoceros, referring to the isolation source of type 
strain NGMCC 1.200684 T).

Anaerobic, Gram-negative, non-spore-forming, non-
motile, and rod-shaped, 0.5–1 µm width and variable in 
length, mostly 1.5–7.5 µm. After cultivation on mGAM 
medium at 37 °C for 3 days, colonies are translucent, whit-
ish, circular, convex, and neat edges and 1–3 mm in diam-
eter, grow at 20–45 °C (optimum 37 °C), at pH 5.0–7.0 
(optimum, 7.0) and tolerate up to 2% (w/v) NaCl (optimum, 
0.5–1%), oxidase-, catalase-, and urease-negative and pro-
duction of indole positive, hydrolyzes aesculin, but not 
gelatin, produces acid from glucose, mannitol, lactose, sac-
charose, maltose, salicin, xylose, cellobiose, mannose, raf-
finose, sorbitol, trehalose, D˗galactose, and maltotriose, but 
not from arabinose, glycerol, melezitose, and L˗rhamnose. 

Fig. 3   Polar lipids’ profile of strain NGMCC 1.200684 T. The differ-
ent pictures of staining agent to show all polar lipids as A, molybdo-
phosphoric acid, B, ninhydrin, C, α-naphthol and D, molybdenum 

blue, respectively. DPG diphosphatidyl glycerol, PG phosphatidylg-
lycerol; PE, phosphatidylethanolamine, PL1-3 unidentified phospho-
lipids, APL1-2 unidentified amino-phospholipids
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The major fatty acids are anteiso˗C15:0 (29.87%), iso˗C15:0 
(17.86%), iso˗C14:0 (15.41%), and iso˗C17:0 3˗OH (10.43%). 
The polar lipids’ profile was determined to contain diphos-
phatidyl glycerol (DPG), phosphatidylglycerol (PG), phos-
phatidylethanolamine (PE), three unidentified phospho-
lipids (PL1–3), and two unidentified amino-phospholipids 
(APL1–2). The DNA G + C content of the type strain is 
46.62%.

The type strain, NGMCC 1.200684  T (= CGMCC 
1.18013 T = JCM 35702 T), was isolated from rhinoceros’ 
feces. The DDBJ/ENA/GenBank accession numbers for the 
16S rRNA gene and genome sequences of the type strain are 
OP931997 and JAPDHT000000000, respectively.
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