
This is an Accepted Manuscript of a book chapter published by Routledge/CRC 

Press on 19 November 2021, available online at: 

https://www.routledge.com/Mathematical-Models-and-Environmental-Change-

Case-Studies-in-Long-Term/Crookes/p/book/9781032163055 

or  

https://www.amazon.com/Mathematical-Models-Environmental-Change- 

Sustainability/dp/1032163054  

 

 

Suggested citation:  

Crookes, D.J. 2022. Co-evolutionary models and rhino management. In: 

“Mathematical Models and Environmental Change: Case studies in Long Term 

Management.” (p.45-63). Routledge: Abingdon. 

https://doi.org/10.4324/9781003247982 

  

https://www.routledge.com/Mathematical-Models-and-Environmental-Change-Case-Studies-in-Long-Term/Crookes/p/book/9781032163055
https://www.routledge.com/Mathematical-Models-and-Environmental-Change-Case-Studies-in-Long-Term/Crookes/p/book/9781032163055
https://www.amazon.com/Mathematical-Models-Environmental-Change-%20Sustainability/dp/1032163054
https://www.amazon.com/Mathematical-Models-Environmental-Change-%20Sustainability/dp/1032163054


5. Co-evolutionary models and rhino management 

Douglas Crookes 

https://orcid.org/0000-0001-9357-5396 

 

Abstract 

This chapter: 

- Provides an example of how different co-evolutionary models provide different long 

term forecasts of the behaviour of systems 

- Provides a comparison between least squares estimation technique and the numerical 

methods of MCMC 

- Demonstrates the capabilities of these models to provide accurate long term 

(strategic) forecasts of natural resource phenomena (provided the correct model 

specification is selected) 

- Highlights how different model specifications can provide insights into the behaviour 

of economic agents  

- It uses a case study for rhinos, for which a long term dataset is available for both 

population abundance, as well as poaching effort 

 

5.1. Introduction 

Forecasting the future state of an entity is an important part of decision-making. For example, 

business managers need to forecast demand for their products, so that they can make 

informed decision on production. Economists forecast economic variables such as inflation, 

growth, in order to determine what macroeconomic policies are applicable. Environmental 

managers wish to know the future state of a biological population, in order to determine the 

extinction risk of a species. In all of these cases, forecasting can help inform decision-makers 

on how best to manage the resources available to them. 

 

Sherden (1998) estimated that the forecasting industry, broadly defined, was worth US$200 

billion, but these figures are dated. The weather services forecasting market (in other words, 

the sector that sells weather forecasting services) is expected to grow from $1.5 billion in 

2020 to $2.3 billion in 2025, an annual growth rate of 9.3% (MarketsandMarkets™, 2020).  

https://orcid.org/0000-0001-9357-5396


The fact that forecasting is a growth industry is highlighted by the consumer trends 

forecasting industry, which has grown from almost nothing to be worth GBP36 million in 2011 

(The Telegraph, 2011), but this excludes the value of stock and market forecasts which are 

also likely to be sizeable. Based on these data, we can reasonably assume that the forecasting 

industry is worth at least $1550 billion in today’s (2021) prices. The forecasting industry is 

indeed big business. 

 

Why is this important? Because forecasting is crucial to the survival of many entities. It is 

crucial to the survival of businesses. For example, weather forecasting is vital for the 

agriculture sector, the fishing industry, the energy sector, and other industries dependent on 

the weather. It is crucial for consumers. For example, forecasting consumer trends help 

companies to deliver the right products at the right time (WGSN, 2021). It is crucial for the 

financial sector. For example, market forecasts are essential for making investment decisions, 

which could affect private individuals as well as pension funds, corporate investors, and 

governments. It is safe to assume that all sectors of the economy are reliant on some form of 

forecasting. 

 

But not only is forecasting critical to the survival of markets and the economy, the survival of 

species is critically dependent on accurate forecasts of population trends. For example, the 

IUCN Red List uses historical population trends as one of the assessments of threat to a 

biological population. But, historical trends are not necessarily indicators of future biological 

populations. There is a need for models that provide accurate long term forecasts.  

 

Lotka-Volterra (LV) models are utilized for a wide range of forecasting business, financial and 

microeconomic phenomena, including stock markets (Lee et al. 2005), competition between 

firms (Marasco et al. 2016), sales (Hung et al. 2017), revenue growth in the retail sector (Hung 

et al. 2014). The model has immense potential for modelling intersectoral dynamics where 

the resource from one sector is used as an input in another sector. For example, Crookes and 

Blignaut (2016) model the dynamics of vehicle manufacturing using steel as an input (the 

prey). In many cases, the LV model performs the same, or better, than other comparable 

models (such as the bass model, neural networks, see e.g. Hung et al. 2014, Crookes and 

Blignaut 2016). These models are also used to forecast macroeconomic phenomena. For 



example, Wu and Liu (2013) develop an LV model to forecast Gross Domestic product (GDP) 

and Foreign Direct Investment (FDI).  

 

At the same time, although these models have been used to model aquaculture (Cacho 1997; 

Ponce-Marbán et al. 2006), Land use change (Castro et al. 2018; Paul et al. 2019), and the 

management of weeds (Jones et al. 2006; Grimsrud et al. 2008; McDermott et al. 2013), and 

many other applications, these types of models are underutilized tools for forecasting 

biological populations that are subject to exploitation, which is surprising given that these 

models largely emerged from the fisheries literature. A reason for these methods being less 

frequently used for forecasting bio-economic phenomena are that the biological growth 

parameters (intrinsic growth rate, carrying capacity of the population, or maximum 

population size) that are required for these models are frequently unknown in natural 

systems. The system dynamics modelling tool provides a means by which this limitation may 

be overcome. The unknown biological parameters may be estimated from trend data in 

biological populations, and effort data (if available). The system dynamics modelling software 

also provides a means for estimating these unknown parameters, and also validating these 

models. These two techniques (namely LV models coupled with the system dynamics (SD) 

modelling platform) provides an improved means of forecasting bio-economic phenomena. 

 

This chapter provides an application of the coupled LV/SD technique for forecasting bio-

economic phenomena. Rhino management is an important case study. Rhino poaching in 

South Africa has escalated enormously in the past 10 years, leading to concerns over the 

possible survival of rhino populations. A predator-prey simulation model was developed in 

2015 (Crookes 2017) based on data collected up until 2012. Using estimates of population 

abundance subsequent to 2012 (up until 2019), it is possible to test the forecast accuracy of 

the model, particularly as it relates to rhino abundance, over the ensuing seven years.  

 

The chapter is laid out as follows. First, compare the forecast of the Schaefer model with two 

other harvest functions, namely the Cobb-Douglas harvest function and the Baranov harvest 

function. These LV models are then compared with a least squares specification of the 

Schaefer logistic model. After that, the best model is then selected to forecast rhino 



abundance from 2012 to 2020 and compared with historical data on population and poaching 

data over that period. 

 

5.2. The model 

The equations of this LV model are based on Crookes’ (2017) model of rhino population 

dynamics. The form of LV model is as follows: 

 

𝑑𝑥

𝑑𝑡
= 𝐹(𝑥) − 𝑚ℎ                                                                                                                                    (1) 

𝑑𝐸

𝑑𝑡
= 𝑛(𝑝ℎ − 𝑐𝐸)                                                                                                                                  (2) 

 

Where x is the prey species (in this case the rhino population) and E is the poaching effort 

(the predator).  F(x) is the rhino growth function, p is the price of rhino horn, and c is the cost 

per unit capital, and h is the harvest function, assumed to follow the Cobb-Douglas production 

relationship: 

ℎ𝑡 = 𝑎𝑞𝐸𝑡
𝛼𝑥𝑡

𝛽
                                                                                                                                          (3) 

 

Where α and β are elasticities of substitution, q is the catchability coefficient which relates 

effort and stocks to harvests and a is a scaling parameter. If a=α=β=1, then the well-known 

Schaefer production function is obtained. In this example, if rhino populations are abundant, 

profits are positive and since open access prevails, poachers (E) enter the game reserve as 

long as ph exceeds cE, but as this occurs rhino populations decline, and h therefore declines, 

so that poachers exits the game reserve.  With poachers exiting the game reserve, rhino 

populations recover, resulting in a dynamic system. 

 

The basic model (Equations 1 and 2) also includes a number of other parameters such as the 

probability a poacher is detected and the magnitude of the penalty (Equation 4). F(x) follows 

the Pella and Tomlinson (1969) specification (see Equation 5) with density dependent term, 

and the Schaefer production function is assumed. In the present study we extend this analysis 

and model three harvest specifications in total: 1] the [original] Schaefer (S) function; 2] a 



Cobb-Douglas (CD) function (Equation 9), and 3] a Baranov (BV) function (Equation 12) 

discussed above.  

 

Poaching effort (Et) evolves according to: 

𝐸𝑡+1 = 𝐸𝑡 + 𝑛′ (ℎ𝑡
∗ −

𝑐

𝑝
𝐸𝑡 − 𝑏𝐸𝑡

𝑓 + 𝑝

𝑝
)                                                                                         (4) 

Where n’ is an adjustment coefficient, c and p is the cost of poaching and value of rhino horn 

sold, and f is the fine and b the probability of detection and conviction.  

 

Rhino populations (xt) evolve according to: 

𝑥𝑡+1 = 𝑥𝑡 + 𝑟𝑥𝑡 −
𝑟𝑥𝑡

𝑧+1

𝑘𝑧
− 𝑚ℎ𝑡

∗                                                                                                        (5) 

Where r is the intrinsic growth rate, z is a Fowler density dependent term, k is the carrying 

capacity and m is the mortality coefficient. The values of the parameters are given in Crookes 

(2017). The harvest coefficient ℎ𝑡
∗varies depending on whether the Schaefer model, the Cobb-

Douglas or the Baranov catch equation is used. More particulars are given in the next section 

when the estimation methodology is discussed. 

 

5.3. Least squares estimation of production function 

The first step is to estimate the values for a, α and β using the Cobb-Douglas production 

function (Equation 3). Historical estimates for rhino abundance, effort and harvests from 1990 

to 2013 were employed for this purpose.  

 

The OLS estimation gave the following results (Table 5.1): 

 

Table 5.1: regression results for Cobb-Douglas specification 

 Coefficient T stat Statistic/data Sig 

‘aq’ 0.9944 -1.47984  n.s 

α 0.002169 5.497837  *** 

β -0.00016 -0.10389  n.s 

Model F   34.49 *** 

Adj R2   0.744  



n   24  

Notes: *** Significant at least at the 1 percent level; n.s= not significant 

 

Given that aq and β are not significantly different from zero, we conclude that the least 

squares estimation of the production function results in a trivial solution such that a harvest 

function is not needed for the model. We model this for our forecast model (CD, a=0), 

however, we also model an alternative specification where a=1 in order to test the 

importance of the harvest function. Based on the results of the OLS estimation, the Cobb-

Douglas harvest function is either: 

 

ℎ𝑡 = 𝑞𝐸𝑡
𝛼              𝑜𝑟              ℎ𝑡 = 0                                                                                                      (6) 

 

For the Baranov model (see equations 7 below), the abovementioned Cobb-Douglas 

production function is also utilised for Ft in, following Liu and Heino (2014). The rest of the 

parameter values for the model are reported in Crookes (2017). The models were constructed 

in Vensim which allows for simultaneous feedback between the parameters in the model. 

 

5.4. Historical data replication 

The model simulations from the LVs model are evaluated in two ways. Firstly, they are 

compared with a traditional econometric model of the Schaefer logistic model, and secondly 

they are compared with criteria proposed by Li et al (2017). These evaluation steps are given 

in more detail here. 

 

5.4.1. Cobb-Douglas catch equation 

The Cobb Douglas catch equation used in the model is given in Equation 6. 

 

5.4.2. Schaefer production function 

The Schaefer production function is a special case of the Cobb-Douglas catch equation, where 

α=β=1. 

 



5.4.3. Baranov catch equation 

Although the Cobb-Douglas production function is the most common in the open access 

literature, there are other important harvesting functions in the fisheries literature. One 

example is the Baranov catch equation. The harvest at the end of the season is: 

 

ℎ𝑏 =
𝐹

𝐹 + 𝑀
(1 − 𝑒−(𝐹+𝑀)𝑇)�̅�0                                                                                                         (7) 

 

Where �̅�0 is the initial population abundance and F and M are the fishing and natural mortality 

rates, respectively, and T is usually 1 (Liu and Heino 2014). Liu and Heino (2014) assume a 

Cobb-Douglas production function for F of the form: 

𝐹𝑡 = 𝑎ℎ𝑡 = 𝑎𝑞𝐸𝑡𝑥𝑡
𝛽

                                                                                                                             (8) 

Where a is a scaling parameter and β captures the potential of a non-linear response of 

harvests to changes in abundance. Catch hb therefore becomes: 

ℎ𝑡
𝑏 =

𝐹𝑡

𝐹𝑡 + 𝑀
(1 − 𝑒−(𝐹𝑡+𝑀))�̅�0                                                                                                           (9) 

 

5.4.4. Schaefer logistic model 

Following Pella and Tomlinson (1969), the logistic growth model may be written in the form: 

𝑧𝑡+1 = (1 + 𝑟)𝑧𝑡 −
𝑟

𝑞𝑘
𝑧𝑡

2 − 𝑞ℎ𝑡 + 𝑢𝑡                                                                                             (10) 

Where ut is an error term and zt is the catch per unit effort (CPUE). Under certain conditions 

this function may be estimated using Ordinary Least Squares (OLS) (Zhang and Smith, 2011). 

The model assumes a Schaefer production function. More advanced estimation methods 

have been proposed. For example, Zhang and Smith (2011) propose a “CPUE like” estimator 

using a Cobb-Douglas production function, which is then estimated using maximum likelihood 

methods. In this case, however, we are interested in the output of the Schaefer model in 

order to compare with our original model. 

 

5.5. Adaptive expectations 

The preceding discussion assumes that, as far as stocks are concerned, poachers are myopic, 

in other words that they only utilise current period information about abundance in order to 



determine their harvesting behaviour. Harvests under the adaptive expectations hypothesis 

are formulated based on expectations of future stock size.  

𝐻𝑡 = 𝐴 + 𝛽�̂�𝑡+1 + 𝑢𝑡                                                                                                                          (11) 

 

Stocks adjust based on the following: 

�̂�𝑡+1 − 𝛿𝑋𝑡 = 𝑋𝑡−1 − 𝛿𝑋𝑡−1                                                                                                             (12) 

 

Where δ is an adjustment coefficient relating actual change to desired change.  Substituting 

�̂�𝑡+1 into Ht and rearranging gives an equation that is estimable, however estimating such an 

equation is problematic due to the presence of contemporaneous correlation between the 

lagged endogenous variable and the error term. A solution is to use the method of 

instrumental variables (IV) regression, however, a suitable instrument is needed. One method 

proposed by Liviatan involves using lagged values of an exogenous variable. From these values 

it is possible to compute long term values for α and β (see Gujarati 2003) and it is then possible 

to determine the value of scale variable a.   

 

5.6. Implications for poaching behaviour 

Two broad categories of harvesting behaviour are considered (Table 5.2): Firstly, harvesting 

decisions that are myopic versus those based on expectations of future prey abundance, and 

secondly, harvesting decisions that are based only on prey abundance versus those based on 

prey abundance and changes in poaching profitability.  The myopic model simulates 

harvesting decisions based on constant effort focussed on prey abundance (model 1) as well 

as a variable effort based on profitability (model 2), while the adaptive expectations model 

(model 3) simulates the effect of harvesting decisions based on a variable effort and poaching 

decisions based on changes in profitability. 

 

Table 5.2: Harvesting decisions modelled 

  Constant Effort Variable Effort 

 Harvesting decisions … … based on changes in 

stocks 

… based on changes in 

stocks and profitability  



Myopic … based only on current 

stocks 

Model 1 Model 2 

Adaptive 

expectations 

… based on 

expectations of future 

stocks 

- Model 3 

 

5.7. Mean Absolute Percentage Error (MAPE) 

The second stage of assessing the replication of the model with the historical data is 

conducted by comparing the LV and econometric model with data from 2010 to 2015 by 

calculating the Mean Absolute Percentage Error (MAPE). Although there are problems with 

using this measure to assess forecast accuracy (Tayman and Swanson 1999), it is still the most 

commonly used measure (Mentzer & Kahn, 1995; Armstrong 2001). This measure is 

calculated as follows: 

𝑀𝐴𝑃𝐸

=
1

𝑛
∑ |

�̂�𝑡 − 𝑥𝑡

�̂�𝑡
| 𝑥 100

𝑛

𝑡=1

                                                                                                          (13) 

Where �̂�𝑡 is the actual data on rhino abundance in time t, and xt is the simulated rhino 

abundance; n is the number of observations. The criteria for assessing the forecast accuracy 

based on the MAPE is given in Table 5.3. 

 

Table 5.3: Forecast accuracy of the model based on MAPE 

MAPE Forecast accuracy 

0-10% Highly accurate 

10-20% Good 

20-50% Reasonable 

50-100% Poor 

Source: Li et al. 2017 

 

5.8. Forecast accuracy 

The forecast accuracy of the model is then assessed through a visual plot of the ‘best’ model 

with the historical data, as well as comparing with other estimates in the literature.  



 

In the next section, the results of the replication of the historical data and the forecast 

accuracy of the models are discussed, with reference to the econometric model, a visual plot 

and the MAPE measure. 

 

5.9. Validation 

Chapter 3 highlights the different ways in which an LV model may be validated. Here we 

validate the model by comparing it with the historical data. Three methods are employed. 

Firstly, we compare the model with actual data between 2010 and 2015 using the mean 

absolute percentage error (MAPE). Secondly, we compare the estimates with other models. 

Thirdly, we utilise a visual plot of the data to compare actual versus forecasted values. Error 

bars are calculated based on uncertainty over the area under rhino management. In this way, 

a coefficient of variation (CV) of 30% was calculated. In the absence of available data to 

estimate the CV for numbers killed, the same CV is assumed. The smaller the CV the greater 

weighting that data point and/or time series gets due to the higher precision associated with 

the data point. The CV for rhinos is relatively high, and indicates the uncertainty in the 

underlying spatial data and kill data rather than the population survey data, which is likely to 

be fairly accurate. In the next section, we use actual data to assess the forecast accuracy of 

the predator-prey model based on three different production functions. 

 

5.10. Results 

 

5.10.1. Parameter values 

Most of the parameter values in the model are given in Crookes (2017), and are therefore not 

repeated here. The values obtained for a and β, for the different models, which are 

summarised in Table 5.4, indicate that the Schaefer and Baranov models produces similar 

estimates for β. The value of a is much lower under the adaptive expectations model, which 

one expects as harvests have time to adjust to changes in stocks.  But the most significant 

result from the analysis is that, over time when expectations fully adjust, the value of β is 1, 

indicating that the model reverts to the standard Schaefer and Baranov production functions. 

 

Table 5.4: Values of parameters under different harvesting functions 



 ‘a’ β 

A. Baranov production function   

Model 1: Myopic (constant E) 16.1 2.96 

Model 2: Myopic (variable E) 15.55 2.96 

Model 3: Adaptive expectations 1.33 1.00 

   

B. Schaefer production function   

Model 1: Myopic (constant E) 13.33 2.96 

Model 2: Myopic (variable E) 10.73 2.96 

Model 3: Adaptive expectations 1.13 1.00 

 

 

5.10.2. Model 1: Myopic: current stocks only 

 

The stock flow diagram of model 1 (Figure 5.1) indicates that the myopic model is linear in 

the sense that there is no feedback between the different components of the model.   

 

<Figure 5.1 here> 

 

In spite of this, the model is able to reproduce the historic behaviour of the data extremely 

well. Projecting the model forward indicates that rhino stocks will recover to carrying capacity 

(Figure 5.2, top row, first column).  Although hunting mortality and CPUE is reasonably well 

replicated, harvest rates are considerably less than 2012 values. 

 

<Figure 5.2 here> 
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5.10.3. Model 2: Current stocks, future profitability 

The myopic model considers dynamics based on only one system: stocks.  The second model 

relaxes this assumption, and harvesting decisions are a function of both current stocks and 

expectations of future profitability.  The stock flow diagram for the model in Figure 5.3 

indicates that there is now feedback between three components in the models: stocks, 

poaching effort and profitability.  In contrast to the myopic model presented above which 

was linear, this is a dynamic model.  Effort influences both poacher profit as well as stocks, 

and while stocks influence poacher profit and profitability in turn influences changes in effort. 

 

<Figure 5.3 here> 

 

The fit of the model with the historical abundance data is as good as the myopic model (Figure 

5.2, second row, first column), however the dynamics are significantly different.  For the 

Baranov model, populations decline but stabilise at a long term equilibrium value, whereas 

for the Schaefer model populations with variable effort, rhino abundance declines to 

extinction (Figure 5.2, third row, column one).  The difference is due to the density dependent 

term β which affects harvests in different ways in the model.  

 

5.10.4. Model 3: Future stocks, future profitability 

The third model simulates the effects of the adaptive expectations model, where harvesting 

decisions are based on both future stocks as well as future profitability (Figure 5.2, bottom 

row). It also replicates the historical data well, but harvests are significantly higher compared 

with the other two models (Figure 5.2). Once expectations fully adjust, stocks are more likely 

to be driven to extinction sooner, even compared with the Schaefer model (compare row 

three and row four of Figure 5.2, first column). The adaptive expectations model replicates 

the Crookes (2017) model. 

 

5.10.5. Schaefer logistic regression results 

The previous models all utilize numerical methods for estimating the value of the parameters 

in the model. We can now compare this method with the results obtained from the least 

squares method. The estimation results are given in Table 5.5. These show that the 
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coefficients are highly significant (p<0.01) and the model fit reasonable (Adj. R2=0.557). 

However, although the estimate for carrying capacity k is significant, it differs markedly from 

estimates from the LV model. Here k=0.16 individuals/km2, while the LV model using 

numerical methods to estimate produced an estimate for k=0.4 individuals/km2 (Crookes 

2017). Clark (1990) note that bioeconomic models are often sensitive to changes in their 

underlying parameters. This suggests that forecasts of rhino abundance could differ markedly 

depending on the parameters employed. It is therefore necessary to assess forecast accuracy 

using a quantitative measure. Next, we will consider the results of the MAPE calculations. 

 

Table 5.5: Least squares regression results for Schaefer logistic specification 

 Coefficient T stat Statistic/data Sig 

K 0.1627 14.11  *** 

qk/r 14.9901 5.47  *** 

     

Model F   29.96 *** 

Adj R2   0.557  

N   24  

Notes: *** Significant at least at the 1 percent level 

 

5.10.6. MAPE calculation 

Table 5.6 indicates that the LV models calibrated using numerical methods produced “highly 

accurate” calibration estimates of the historical data [based on MAPE]. This suggests that all 

three models could be used to make predictions of rhino abundance. By contrast, the LV 

model based on the least squares methodology provided a forecast that is “poor”. Although 

a limitation of the MAPE measure is that it overstates the error found in population forecasts 

(Tayman and Swanson 1999), the measure nonetheless indicates large discrepancies between 

the LV models based on numerical method calibration, and those using the least squares 

method. More advance econometric specifications are possible that may address some of the 

problems with the traditional Schaefer logistic model (e.g. Zhang and Smith, 2011), however 

this is beyond the scope of this study. The best model, according to the MAPE calculation, was 
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the Schaefer LV model (which is the Cobb Douglas with adaptive expectations model), 

estimated using numerical methods (which is also the model used by Crookes (2017).  

 

Table 5.6: Calculations of MAPE (%) for the three production functions (2010-2015) 

Production function MAPE (%) 

LV: Cobb-Douglas (a=0;α=0.002; β=0) 8.76 

LV: Cobb-Douglas (a=1;α=0.002; β=0) 7.95 

LV: Schaefer (a=1; ;α=1; β=1) 5.55 

LV: Baranov (a=1; α=0.002; β=0) 8.80 

Econ: Schaefer logistic 101.75 

LV= Lotka-Volterra; Econ= Econometric. Cobb-Douglas harvest function given in Equation 9 

Source: Own calculations 

 

In the next section, we consider some of the implications of this for conservation by 

comparing forecasts of the model forward from 2015 to 2020. 

 

5.10.11. Forecast accuracy 

The Schaefer LV model provided the best calibration of rhino abundance for the historical 

data to 2015 based on the MAPE measure. We compare forecasts from 2015 to 2020 through 

a visual plot of the data, as well as by comparing the forecasts of the LV Schaefer model with 

forecasts from Emslie and Adcock (2016). 

 

Figure 5.4 summarises the results of the visual plots for both rhino abundance (Figure 5.4, top 

graph) and number killed (Figure 5.4, bottom graph). The results show that the data provide 

a reasonable fit with the historical data given the uncertainty associated with the data. Also, 

the forecasts are highly accurate over the short to medium term (2-3 years), but that the 

forecasts are still reasonably accurate over the seven years of the forecast, particularly as it 

pertains to rhino abundance.  

 

<Figure 5.4 here> 
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Table 5.7 summarises the results of the comparison of the LV Schaefer model (for black and 

white rhino) with forecasts from Emslie and Adcock (2016, white rhinos only). The Table 

indicates that the forecasts by Emslie and Adcock (2016) and Crookes (2017) are remarkably 

similar, but both underestimate the actual number (in 2019). A reason for this is that neither 

model could anticipate the effects of the droughts that occurred in 2018/19 on rhino 

abundance. In spite of this, the forecast capability of both models is highly accurate. Given 

that Crookes’ (2017) model is based on 2012 rhino abundance data, it means that this model 

has a forecast accuracy of at least seven years.  

 

Table 5.7: Forecasts of rhino abundance: 2015 – 2020 

Forecasts Year White 

rhino1 

Annual. 

% 

change 

White 

& Black 

Rhino2 

Annual 

% 

change 

Starting number (actual data) 2015 18489  20306  

Based on last 5+ years 

poaching data 

2020 16277 -2.5% 16743 -3.8% 

Actual population (2019) 3    13206  

Source: 1 White Rhino estimates from Emslie and Adcock (2016); 2 White & black rhino 

estimates from Crookes (2017). 3 Actual data from annual reports from Department of 

Agriculture, Forestry and Fisheries (DEFF) 

Notes: Emslie and Adcock (2016) uses a growth rate of 0.077 for white rhinos, Crookes 

(2017) models a growth rate of both black and white rhinos of 0.061. Assumes 100% 

detection rate. Crookes (2017) estimates based on the Schaefer LV model 

 

5.11. Discussion 

Crookes and Blignaut (2016) compare the forecasting capabilities of a simple LV system 

dynamics model modelling intersectoral dynamics with a forecast generated by Artificial 

Neural Networks (ANN). They demonstrate that these simple LV models based on the logistic 

model provide a comparable forecast to Neural Networks over a ten year period. More 

recently Li et al. (2017) found that the LV model provided ‘highly accurate’ forecasts of Battery 

Electric Vehicle (BEV) demand in China. In the present study, we assess forecast accuracy of 
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the LV model using numerical methods to estimate the value of the parameters (MCMC). We 

compare three LV models based on different production functions, and assess the prediction 

accuracy high over the short to medium term using MAPE. This is compared with an LV model 

developed using the least squares method. The results showed that the LV model estimated 

using numerical methods produced better estimates for the unknown biological and harvest 

parameters compared with estimates derived from an LV model estimated using the least 

squares methodology. 

 

Previous studies have found that the logistic model provides robust predictions in a variety of 

sectors. For example, Devezasa and Corredine (2001) found that “the simple logistic often 

outperforms more complicated parameterizations, which have the disadvantage of losing 

physical interpretations for their parameters.” (p.28, see also Marchetti et al. 1996). In this 

assessment, the simple Schaefer production function (Cobb Douglas with Adaptive 

expectations) provided the best forecast of rhino abundance data. This again supports the 

assertion that “simple is better” in forecasting specifications. Although this is not an 

exhaustive evaluation of the forecasting capability of the predator-prey system, and there 

may be instances when other functional forms are preferable, it nonetheless indicates the 

potential of even these models to provide forecasts of different entities. 

 

The modelling exercise also indicated that just because a model is validated according to 

statistical criteria it does not mean that it is suitable for forecasting. The time series regression 

model provided statistically significant parameter estimates (at least at the 1 percent level), 

yet the forecasting capabilities of the model were poor. Our results show that model 

validation should include an assessment of forecast accuracy by comparing model estimates 

with a segment of the historical data before it is used to forecast into the realm of the 

unknown. While forecasting remains a highly imprecise science, with many unknown factors 

and variables, these validation methods can improve the robustness of predictions. 

 

Our study also sheds light on hunter behaviour. The adaptive expectations model was 

indicated as the best fit with the historical data. It shows that future stocks are the basis on 

which poachers form expectations of harvests, and that elasticities of substitution of stocks 
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and effort are unity (Schaefer model). This means that harvests have fully adjusted to 

expectations around stocks and are thus higher than would be the case under a Cobb-Douglas 

specification (with α,β<1). This was the most aggressive harvesting regime of the models 

considered. Poachers do appear to have revised their poaching behaviour downward as a 

result of declines in rhino abundance, which shows promise that rhino populations may 

rebound in the future. 
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Figure 5.1: Stock flow diagram for constant effort model (harvesting function model 1) 
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Figure 5.2: Dynamics over time of hunting from different harvesting functions. The intersection of the dashed lines indicate 2012 data. Therefore, 

values to the right of the vertical dashed lines are all projected values. The black lines are for the Baranov model, while grey lines are for the 

Schaefer model. 
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Figure 5.3: Stock flow diagram for variable effort models (harvesting function model 2 and 3) 
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Figure 5.4: Visual plot of A. rhino abundance (top graph) and B. Number killed (bottom graph). 

The error bars represent coefficients of variation (CVs) and the triangles actual data. The solid 

line represents model simulations from the LV Schaefer model (a=1), and the dotted line 

represents forecasts from the same model. 

 


