
pathogens

Review

Role of Zoo-Housed Animals in the Ecology of Ticks and
Tick-Borne Pathogens—A Review

Johana Hrnková 1,2,* , Irena Schneiderová 2,3, Marina Golovchenko 4, Libor Grubhoffer 4,5, Natalie Rudenko 4
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Abstract: Ticks are ubiquitous ectoparasites, feeding on representatives of all classes of terrestrial
vertebrates and transmitting numerous pathogens of high human and veterinary medical importance.
Exotic animals kept in zoological gardens, ranches, wildlife parks or farms may play an important
role in the ecology of ticks and tick-borne pathogens (TBPs), as they may serve as hosts for local
tick species. Moreover, they can develop diseases of varying severity after being infected by TBPs,
and theoretically, can thus serve as reservoirs, thereby further propagating TBPs in local ecosystems.
The definite role of these animals in the tick–host-pathogen network remains poorly investigated.
This review provides a summary of the information currently available regarding ticks and TBPs in
connection to captive local and exotic wildlife, with an emphasis on zoo-housed species.

Keywords: Ixodidae; ectoparasites; tick-borne diseases; tick hosts; zoo animals; exotic species;
wildlife parks

1. Introduction

Ticks (Acari: Ixodidae) are arthropod ectoparasites, distributed worldwide. They are
strictly hematophagous and feed on numerous terrestrial vertebrate species, including
mammals, reptiles, birds and amphibians [1]. Studies suggest that, on a local scale, host
selection of ticks and other ectoparasites is connected mainly with the ecological habitat
they occupy [2–4]. Even though ticks are highly adaptable and able to colonize various
habitats, they are usually recognized (mainly among the public) as parasites typically found
in rural or forest areas. This notion is contradicted by several recent studies which showed
that ticks are also frequently observed in urban and peri-urban habitats [5–8]. Typical
urban areas inhabited by ticks include recreational areas, parks and cemeteries [9–11].
The increasing rate of urbanization worldwide facilitates the creation of ecotones which
are ideal for the emergence of hotspots of tick-borne pathogens (TBPs) that might infect
free-living, domesticated and possibly even zoo-housed animal species, potentially also
endangering the urban human population [12–14]. Zoological gardens (zoos) are popular
urban recreational areas with a semiforested or park-like character. The seminatural,
fragmented environment characteristic for zoos is created to host various animal species
with different habitat requirements. This is a factor that positively influences the life
cycle of ticks and other ectoparasites [15–18]. That is why zoos are nowadays recognized
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as potential TBPs refugia [19–22]. Animal species kept in such refugia can therefore
potentially serve as tick and TBPs reservoirs, allowing further propagation of TBPs within
their local ecosystems.

Indeed, several indigenous tick species have been reported in the areas of zoos,
wildlife parks or farms worldwide. In the United States of America (USA) and Canada,
Ixodes pacificus [23], Ixodes scapularis [24–26], Amblyomma americanum, Rhipicephalus san-
guineus and Dermacentor variabilis [25,27,28] have been reported to exist in such captive
exotic animal facilities. In Southern America, Brazilian zoo-animal infection cases have
been connected to the following tick species of the Amblyomma and Rhipicephalus genera:
A. dubitatum, A. calcaratum, A. aureolatum, A. sculptum or R. sanguineus in Southeastern
regions of Brazil [21]. More Amblyomma species were collected from animals kept in zoos lo-
cated in Northern and Northwestern Brazil: A. dissimile, A. variatum, A. geayi, A. longirostre,
A. goeldii, A. humerale, A. naponense or A. nodosum [29,30]. In Europe, Ixodes ricinus is the
most common tick found in zoos and wildlife parks or farms [20,31–34]. Nonindigenous
tick species have been reported to feed on zoo animals, for example, the Asian tick, Am-
blyomma javanense, has been found on zoo-kept Asian water monitor (Varanus salvator) in
South Carolina, USA [25].

All tick species belonging to the tick genera mentioned above (Amblyomma, Dermacen-
tor, Ixodes and Rhipicephalus) develop in the three-host life cycle. The three-host life cycle is
characteristic in its variability of host selection for each tick developmental stage (larvae,
nymph and adult) [12]. Generally, the selection of natural hosts depends strongly on the
development stage, in part due to different questing strategies connected to the position of
the ticks on vegetation (how high each development stage can climb) [35]. Ideal hosts for
tick larvae include small rodents like mice (for example Peromyscus spp. [36], Apodemus
spp. [37]) or voles (for example Myodes spp. and Microtus spp. [37]), reptiles (like Bothrops
spp. or Dispas spp. in Brazil [38]) and birds (for example migratory species like Anthus
trivialis in Europe [39] or Melospiza melodia in the USA [40]). Such hosts are also suitable
for nymphs. Both nymphs and larvae can also be found on larger animals like sheep,
goats or other medium-sized animals [41,42]. Adult ticks frequently feed on larger animals,
e.g., species of the Cervidae, Bovidae or Suidae families [35,42]. With each blood meal,
ticks can acquire or spread various TBPs either by horizontal (stage-to-stage) transmission,
vertical (female-to-egg) transmission or by cofeeding (nonsystemic) transmission [12,43,44].
Natural foci with the potential for emergence of TBPs represent a danger that is supported
further by the ability of ticks and TBPs to adapt to host and habitat change [3,4,45,46].

2. Tick-Borne Pathogens in Zoo-Housed Animals

Infections caused by numerous TBPs have been reported in exotic (and local) animals
under captive care in zoos, ranches, private farms and other similar facilities in many parts
of the world (Figure 1). The various tick species that are able to transmit pathogens and are
found in such facilities generally have well-studied vector capacity and competence for
pathogens of medical and veterinary importance. Such key information can provide us
with information regarding the risk of zoo-housed or urban-dwelling animals contracting
tick-borne infections in a given geographic region.
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Figure 1. Ticks and tick-borne pathogens reported from zoo-housed animals: Ticks (A) or tick-borne pathogens (B) 
feeding on/detected in zoo-housed animals were found in all countries where this kind of research was performed. It in-
dicates that zoo-housed animals may serve as hosts and reservoirs for local/established but also imported ticks and 
tick-borne pathogens. Nevertheless, lack of wider data and their anecdotal nature does not allow us to make definitive 
presumptions. Further research is needed to help us in understanding of the role of zoo-housed animals in tick biology. 
TBEV—tick-borne encephalitis virus. SFTSV—severe fever and thrombocytopenia syndrome phlebovirus  

3. Tick-Borne Encephalitis Virus (TBEV) 
The TBEV can infect a wide range of mammals [71]. In humans, nonhuman pri-

mates, dogs and some rodent species, it can cause serious, and sometimes fatal, menin-
goencephalitis [72–74]. In ungulates, TBEV usually causes a subclinical infection, but the 
virus can be excreted into the milk of viremic individuals [75]. In rodents and insecti-
vores, TBEV infection leads to long viremia without symptoms; this makes such species 
suitable reservoirs for the virus [71,76,77]. 

In 2006, a fatal case of TBEV infection was described in a female Barbary macaque 
(Macaca sylvanus) kept within the monkey enclosure of a zoo situated in southern Ger-
many [78]. The monkey suffered staggering paresis of the hindlegs, incoordination and 
intermittent opisthotonos, before entering a coma four days after the onset of these 
symptoms. The comatose monkey was subsequently euthanized, and a post mortem 
necropsy, polymerase chain reaction (PCR) tests and histological tests confirmed an in-

Figure 1. Ticks and tick-borne pathogens reported from zoo-housed animals: Ticks (A) or tick-borne pathogens (B) feeding
on/detected in zoo-housed animals were found in all countries where this kind of research was performed. It indicates
that zoo-housed animals may serve as hosts and reservoirs for local/established but also imported ticks and tick-borne
pathogens. Nevertheless, lack of wider data and their anecdotal nature does not allow us to make definitive presumptions.
Further research is needed to help us in understanding of the role of zoo-housed animals in tick biology. TBEV—tick-borne
encephalitis virus. SFTSV—severe fever and thrombocytopenia syndrome phlebovirus

The tick species that belong to I. ricinus complex, which are predominant in Eurasian
zoos and wildlife farms, i.e., I. ricinus and Ixodes persulcatus, are the primary vectors of Rick-
ettsiales like Anaplasma phagocytophilum [47], tick-borne encephalitis virus (TBEV) [20,48,49],
Bartonella spp., Francisella tularensis, multiple Borrelia spp. [20,49,50] and Babesia spp. [49,51].
The ticks commonly found in North American and Canadian zoos or ranches, i.e., I. scapu-
laris and I. pacificus, are also recognized vectors of dangerous pathogens. Both I. scapularis
and I. pacificus are known to transmit spirochetes from Borrelia burgdorferi sensu lato com-
plex and Borrelia myamotoi [50], Babesia microti, A. phagocytophilum, Ehrlichia muris-like sp. or
deer tick virus [52]. A. americanum and D. variabilis ticks are known vectors of Cytauxzoon fe-
lis [53]. A. americanum is also known vector of Ehrlichia chaffeensis [54], Ehrlichia ewingii [55],
Rickettsia amblyommii and Borrelia lonestari [56]. D. variabilis transmits Rickettsia rickettsii -
causative agent of Rocky Mountain spotted fever and other Rickettsiales [57]. R. sanquineus,
found in Southern and Northern American zoos, were confirmed to transmit Anaplasma
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platys, Hepatozoon canis, Cercopithifilaria spp. [58–60], Ehrlichia canis, Rickettsia massiliae,
Rickettsia conorii and R. rickettsii [59,60]. The majority of tick species found on animals
housed in zoos and botanical gardens of Southern America, Brazil in particular, belong to
the genus Amblyomma. In the Northern regions of Brazil A. geayi, A. varium, A. longirostre
have been confirmed as vectors of Rickttsia amblyommatis [29,61–64]. A. varium, A. nodosum
and A. humerale are able to transmit Rickettsia bellii [29,62–65]. A. dissimile was confirmed
to carry Rickettsia sp. of the colombianensi strain [29,66], A. nodosum is also able to carry
Rickettsia parkeri-like agent [29,65]. Further studies confirmed the presence of A. sculptum
and A. aureolatum the main vectors of R. rickettsii (Brazilian spotted fever) in Southern
regions of Brazil [21,67]. Other released results revealed the ability of A. calcaratum to
vector the NOD strain of Rickettsia sp. [68] while A. dubitatum was confirmed to transmit
several Rickettsia sp. [69] (see Figure 1 for an overview of the various tick species and their
natural geographical distribution). These findings reveal the heightened risk for captive
wildlife animals to be infected with the aforementioned pathogens. The risk of infection,
however, is influenced by a large spectrum of factors including the reservoir capacity of
the infected animal species or the presence of natural reservoir hosts of selected TBPs (for
example, i.e. Peromyscus leucopus) that are able to thrive in urban environment [70]. The
clinical manifestation of tick-borne diseases (TBDs) depends on the infected animal species;
they can be hidden and nonspecific, which leads to underestimates of the epizootiology
and pathology of many TBDs and their related issues among captive wildlife species.
However, there are also reports of infections of tick-borne pathogens which have led to
serious diseases and even fatalities, as will be discussed in this review.

3. Tick-Borne Encephalitis Virus (TBEV)

The TBEV can infect a wide range of mammals [71]. In humans, nonhuman primates,
dogs and some rodent species, it can cause serious, and sometimes fatal, meningoencephali-
tis [72–74]. In ungulates, TBEV usually causes a subclinical infection, but the virus can be
excreted into the milk of viremic individuals [75]. In rodents and insectivores, TBEV infec-
tion leads to long viremia without symptoms; this makes such species suitable reservoirs
for the virus [71,76,77].

In 2006, a fatal case of TBEV infection was described in a female Barbary macaque
(Macaca sylvanus) kept within the monkey enclosure of a zoo situated in southern Ger-
many [78]. The monkey suffered staggering paresis of the hindlegs, incoordination and
intermittent opisthotonos, before entering a coma four days after the onset of these symp-
toms. The comatose monkey was subsequently euthanized, and a post mortem necropsy,
polymerase chain reaction (PCR) tests and histological tests confirmed an infection with
TBEV. Even though this was the first described case of a natural TBEV infection in macaques,
it was very similar to experimental infections of macaques used as model organisms for
TBEV pathogenesis [78,79]. Later, serological tests were conducted on the remaining
283 macaques living within the same enclosure; among them, six (2.1%) were seropositive
for anti-TBEV antibodies [72]. Anti-TBEV antibodies were also detected in sheep on the
neighboring pastures, with a seroprevalence of 9% [72]. Similar cases could be prevented
in the future, as macaques (and probably other primates) are likely to develop anti-TBEV
immunity after vaccination with TBEV vaccines designed for human-use [80].

On the other hand, tests for anti-TBEV antibodies among other zoo animals were
mostly negative, according to previous Czech zoological research results [20]. In this
research, only two seropositive samples were recorded out of 133 tested serum samples
from 69 animal species: one from a markhor (Capra falconeri) and one from a reindeer
(Rangifer tarandus), as confirmed by both enzyme-linked immunosorbent assay and a
neutralization test.

4. Lyme Borreliosis Spirochetes

Lyme borreliosis (LB) spirochetes can cause systemic disease in humans, nonhuman
primates, carnivores, ungulates and some rodent species [81–83], causing pathological
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changes in the skin, joints, heart and central nervous system [84,85]. However, clinical
symptoms of LB in different animal species are variable [86,87]. They are influenced by,
among other factors, the species of the Borrelia species and strain [88–90], as well as the host
animal species and its breed. Different symptoms can be observed between horses [91,92],
dogs [92–94] and natural hosts, like the white-footed mouse (P. leucopus) [90]. However,
in many individuals, Borrelia infection symptoms are nonspecific, and asymptomatic
infections are common in seropositive animals with lower antibody titers [87,91,94].

The prevalence of Borrelia among zoo animals has been investigated in Germany and
the Czech Republic [19,20]. High numbers of Borrelia-infected individuals, or individuals
having anti-Borrelia antibodies, were found in both studies. In the Czech Republic, DNA
from spirochetes of the B. burgdorferi sensu lato complex was detected in a significant
number of the tested vertebrate serum samples (69 positive cases, out of 133 tested samples
– 51.8% affected). Those species with the highest number of positive samples were the
Barbary sheep (Ammotragus lervia) with five positive samples (total sample size: n = 6),
Grant’s zebra (Eguus quagga boehmi) also with five (n = 6), Hartmann’s mountain zebra
(Equus zebra hartmannae) with four positive samples (n = 5), Grey wolves (Canis lupus)
with four positives (n = 4) and Addax (Addax nasomaculatus) with five positive samples
(n = 5) (Table 1; [20]). In Germany, sera from 1487 zoo animals were tested for the presence
of anti-Borrelia antibodies. One hundred fifty-four samples (10.4%) were positive, while
168 samples (11.3%) produced borderline results. The highest number of positive samples
was observed in Przewalski horses (Equus przewalskii), with 22 positives out of 98 tested
animals, lions (Panthera leo), where 11 out of the 49 tested lions were positive, and forest
buffalo (Syncerus caffer nanus), where four out of nine were positive ([19]; Table 1). Consid-
ering these studies [19,20,22], it is obvious that several animal species are susceptible to
Borrelia infection. Among these are also the domestic goat (Capra aegagrus f. hircus), Barbary
sheep (A. lervia), markhor (C. falconeri), mountain goat (Oreamnos americanus) and llama
(Lama guanicoe) (Table 1). However, in some cases, the results of these studies varied. For
example, in the German study, significant numbers of positive sera samples were found in
domestic cattle (Bos primigenius f. taurus) and impala (Aepyceros melampus) [19]; however, in
the Czech study, the sera of these animal species were negative [20]. On the other hand,
the opposite was true for African wild dogs (Lycaon pictus) within the two zoos [19,20].

The serum complement of some animal species has a borreliacidal effect, which not
only protects these animals from spirochete infection, but also purges Borrelia from infected
ticks feeding on these animals [22,95,96]. This has a strong impact on the ecology of LB
spirochetes within ecosystems where such animals are present.

In research conducted by Ticha et al. [22], serum samples from zoo animals were tested
for possible borreliacidal effects on three species of spirochetes from the B. burgdorferi sensu
lato complex (B. burgdorferi sensu stricto (s.s.), Borrelia garinii and Borrelia afzelii). From the
135 tested serum samples from various zoo animals, 78 demonstrated some borreliacidal
effect towards at least one of the tested Borrelia spp. The strongest borreliacidal effect
was observed in the sera from the Burmese python (Python bivittatus), European rabbit
(Oryctolagus cuniculus), radiated tortoise (Astrochelys radiata) and impala (A. melampus)
(Table 1). Of all of the tested sera, only some showed borreliacidal effects toward all three
tested Borrelia spp., as showed in Table 1. Most samples possessed selected resistance
(resistance only towards one or two of the tested Borrelia types) or were sensitive to the
studied Borrelia species. Sera from most of the carnivores, even-toed ungulates, rodents
and some reptiles, showed only weak borreliacidal effects on the tested spirochetes.

The absence of a borreliacidal effect in the sera of some zoo animals could be an
indication of their permissiveness to Borrelia infections, suggesting that these animals can
theoretically serve as Borrelia reservoirs. On the other hand, animals whose sera have
strong borreliacidal effects should be resistant to Borrelia infection. Unfortunately, no tests
were conducted to assess whether these animals could also resolve Borrelia in the infected
ticks feeding on them.
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Table 1. The prevalence of Borrelia specific antibodies in exotic zoo animals in Czech Republic and Germany together with observed borrelicidal effect of zoo animal sera.

Group Family Animal Species Borrelia Seroprevalence Borrelicidal Effect

DE CZ Borrelia burgdorferi s.s. Borrelia garinii Borrelia afzelii

Odd-toed ungulates

Equidae

Equus africanus f. asinus 13/1 (8%) 2/2 (100%) weak to moderate moderate to strong moderate to strong

Equus africanus somaliensis 10/1 (10%) 1/1 (100%) -* - -

Equus ferus caballus 5/2 (40%) 3/3 (100%) - - -

Equus ferus ferus - 5/5(100%) - - -

Equus grevyi 18/1 (6%) - - - -

Equus hemious kulan 12/2 (17%) - - - -

Equus przewalskii 98/22 (22%) - - - -

Equus quagga 33/9 (27%) 8/7 (88%) weak strong Strong

Equus zebra 25/1 (4%) 5/4 (80%) weak strong Strong

Tapiridae Tapirus terrestris 10/2 (20%) - - - -

Rhinocerotidae
Ceratotherium simum 3/2 (67%) - - - -

Diceros bicornis - 7/0 (0%) - - -

Even-toed ungulates

Cervidae

Alces alces alces 13/2 (15%) 1/1 (100%) - - -

Cervus albirostris 10/1 (10%) - - - -

Cervus canadensis - 1/1 (100%) - - -

Cervus elaphus bactrianus 11/0 (0%) - - - -

Cervus elaphus hippelaphus 37/0 (0%) - - - -

Cervus eldi thamin 10/1 (10%) - - - -

Cervus nippon pseudaxis 20/0 (0%) - - - -

Cervus timorensis 3/1 (33%) - - - -

Dama dama dama 20/0 (0%) - - - -

Elaphurus davidianus 14/0 (0%) - - - -

Moschus moschiferus 4/3 (75%) - - - -

Rangifer tarandus 13/1 (8%) 1/1 (100%) - - -

Camelidae

Camelus ferus f. bactrianus 14/1 (7%) - - - -

Lama guanicoe 48/3 (6%) 1/1 (100%) - - -

Lama vicugna 5/1 (20%) - - - -
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Table 1. Cont.

Group Family Animal Species Borrelia Seroprevalence Borrelicidal Effect

DE CZ Borrelia burgdorferi s.s. Borrelia garinii Borrelia afzelii

Suidae Phacochoerus africanus - 1/0 (0%) weak weak Weak

Bovidae

Addax nasomaculatus - 5/5 (100%) - - -

Aepyceros melampus 6/1 (17%) 3/0 (0%) strong strong weak to strong

Ammelaphus imberbis - 2/2 (100%) - - -

Ammotragus lervia 19/1 (5%) 6/5 (83%) moderate weak Moderate

Antidorcas marsupialis - 1/0 (0%) - - -

Antilope cervicapra 16/1 (6%) - - - -

Bison bison 14/2 (14%) - - - -

Bison bonasus 17/0 (0%) - - - -

Bos gaurus 8/1 (13%) - - - -

Bos gaurus f. frontalis 4/1 (25%) - - - -

Bos javanicus 23/2 (9%) - - - -

Bos primigenius f. Taurus 21/2 (10%) 2/0 (0%) weak strong Moderate

Boselaphus tragocamelus 7/2 (29%) - - - -

Bubalus arnee f. bubalis 9/2 (22%) - - - -

Budorcas taxicolor 11/3 (27%) - - - -

Capra aegagrus cretica 9/1 (11%) - - - -

Capra aegagrus f. hircus 17/4 (24%) 5/5 (100%) - - -

Capra caucasica - 1/1 (100%) - - -

Capra falconeri heptneri 12/5 (42%) 1/1 (100%) - - -

Capra ibex nubiana 6/2 (33%) - - - -

Cephalophus natalensis 1/1 (100%) - - - -

Connochaetes gnou - 3/1 (33%) weak strong Weak

Damaliscus pygargus phillipsi - 1/1 (100%) - - -

Eudorcas thomsonii - 2/2 (100%) - - -

Gazella dama 9/1 (11%) - - - -
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Table 1. Cont.

Group Family Animal Species Borrelia Seroprevalence Borrelicidal Effect

DE CZ Borrelia burgdorferi s.s. Borrelia garinii Borrelia afzelii

Hemitragus jemlahicus 10/0 (0%) - - - -

Hippotragus equinus - 1/1 (100%) - - -

Hippotragus niger - 4/3 (75%) moderate strong Strong

Kobus ellipsiprymnus 11/1 (9%) 1/0 (0%) moderate moderate to strong moderate to strong

Kobus leche - 1/1 (100%) - - -

Naemorhedus caudatus - 2/0 (0%) weak moderate to strong Moderate

Nanger dama - 5/3 (60%) weak to moderate moderate Moderate

Oreamnos americanus 20/9 (45%) 2/2 (100%) - - -

Oryx gazella dammah 10/0 (0%) 5/3 (60%) moderate strong weak to strong

Oryx gazella gazella 10/0 (0%) 2/2 (100%) - - -

Ovibos moschatus 11/8 (72%) - - - -

Ovis ammon f. aries 83/8 (10%) 5/3 (60%) moderate strong Moderate

Ovis ammon musimon 18/3 (17%) - - - -

Ovis dalli 3/1 (33%) - - - -

Ovis nivicola 1/1 (100%) - - - -

Pseudois nayaur 11/0 (0%) - - - -

Redunca redunca 14/0 (0%) 1/0 (0%) strong strong Weak

Saiga tatarica 31/1 (3%) - - - -

Syncerus caffer caffer 17/2 (12%) 1/0 (0%) weak weak Weak

Syncerus caffer nanus 9/4 (44%) - - - -

Tragelaphus angasii - 2/1 (50%) weak weak Weak

Tragelaphus strepsiceros 10/0 (0%) 2/2 (100%) - - -

Giraffidae
Giraffa c. reticulate - 1/0 (0%) moderate strong Strong

Giraffa c. rothschildi - 2/0 (0%) moderate strong Strong
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Table 1. Cont.

Group Family Animal Species Borrelia Seroprevalence Borrelicidal Effect

DE CZ Borrelia burgdorferi s.s. Borrelia garinii Borrelia afzelii

Carnivores

Felidae

Acinonyx jubatus - 1/0 (0%) weak weak Weak

Crocuta crocuta - 1/1 (100%) - - -

Felis lybica 4/1 (25%) - - - -

Felis serval 3/1(33%) 1/0 (0%) weak weak Weak

Lynx rufus 2/1 (50%) - - - -

Panthera leo 49/11 (22%) 1/0 (0%) weak weak Weak

Panthera leo persica - 1/0 (0%) weak moderate Weak

Panthera onca 15/1 (7%) - - - -

Panthera pardus 59/8 (14%) - - - -

Panthera pardus orientalis - 1/0 (0%) weak weak Weak

Panthera tigris 98/2 (2%) - - - -

Puma concolor 12/0 (0%) - - - -

Ursidae

Ursus arctos arctos 11/0 (0%) - - - -

Ursus maritimus 12/0 (0%) - - - -

Ursus thibetanus 6/1 (17%) - - - -

Canidae

Canis lupus - 4/4 (100%) - - -

Canis mesomelas - 1/1 (100%) - - -

Lycaon pictus 14/0 (0%) 2/1 (50%) weak weak Weak

Otariidae Zalophus californianus 1/1 (100%) - - - -

Primates
Cercopithecidae Colobus angolensis - 1/0 (0%) - - -

Hylobatidae Hylobates lar - 1/1 (100%) - - -

Birds
Phoenicopteridae Phoenicopterus roseus - 1/1 (100%) weak weak Strong

Struthionidae Struthio camelus - 2/0 (0%) weak weak Strong

Reptiles

Testudinidae Astrochelys radiata - 1/0 (0%) strong strong Strong

Crocodylidae Crocodylus siamensis - 3/0 (0%) weak weak Weak

Pythonidae Python bivittatus - 1/0 (0%) strong strong Strong

DE—Germany, CZ—Czech Republic, * hyphens in the table represent unavailable data in given research.
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5. Babesia, Theileria and Cytauxzoon Piroplasmida

Babesia species are often observed in captive or semicaptive cervids and bovids [24,34,97–99],
but they have also been found in other captive animal species. These protozoan parasites
can complete their life cycle within multiple tick species, including I. scapularis [98,99],
I. ricinus [97,100], Dermacentor albipictus [101], A. americanum [24] and I. pacificus [99].
Babesiosis has a range of typical symptoms, like hemolytic anemia, jaundice, fever, shaking
and hemoglobinuria [102]. However, an asymptomatic disease course is also possible,
especially in animals with a well-developed immunity [98].

Cases of acute babesiosis in nonindigenous cervids were reported in 2009 and 2012 in
Germany [34]. In response, a nation-wide project was conducted in 2013, where samples
were collected from 16 zoos located across the country [34]. This survey resulted in the
detection of Babesia capreoli, Babesia divergens, Babesia venatorum, Theileria spp. and one
unidentifiable Babesia sp., in captive reindeer (R. tarandus). Of the 123 tested reindeer
samples, 29 were positive (23.6%), and 12 of the 16 facilities harbored at least one reindeer
that tested positive for Babesia spp. [34].

Other babesiosis outbreaks were recorded in the Netherlands in 2011 and 2015 [97,103].
In 2011, a captive-bred forest reindeer calf died due to an acute B. venatorum infection [103].
In 2015, five out of 14 reindeer kept in the Ouwehand Zoo tested positive for B. capreoli,
either through PCR testing or blood smears. Of the five positive animals, two died, one
was euthanized and another animal died without testing positive for Babesia spp. All
the mortalities were among young calves, born in the year of the outbreak, or in 2014.
The surviving individuals with positive test results were adult females with no clinical
signs of disease [97]. In Switzerland, a case report was published in 2019 identifying a
young, captive reindeer calf with severe babesiosis infection clinical signs as positive for
B. venatorum [32]. In Great Britain, seven fatal cases of babesiosis were confirmed in captive
reindeer between the years 1997 and 1998, and B. divergens was identified as the probable
causative species [104].

Canada and USA have also reported several acute and subclinical cases of babesiosis.
Two fatal cases were reported in Canada in 2012, involving Babesia spp. isolated from
captive-bred adult wapiti (Cervus canadensis) [105]. Between the years 2013 and 2016, nine
fatal babesiosis cases were detected in Canadian zoo-kept adult reindeer and wapiti [24].
A higher number of positive cases were observed in Canada between the years 2016 to
2018 in zoo, or farm-kept cervids, like wapiti and red deer (Cervus elaphus) [98]. In the USA,
fatal babesiosis infections were described very early in captive-bred cervids, including in
caribou (Rangifer tarandus caribou) at the Minnesota Zoo [106] and the North American elk
(Cervus elaphus canadiensis) kept on a farm in Texas [101]. Other severe American cases of
babesiosis were observed in 2003 (semicaptive, adult North American elk; [107]) and in
2005 (adult captive reindeer from New York zoo; [108]). The study from New York zoo also
identified three asymptomatic hosts of B. odocoilei: Yak (Bos grunniens), muntjac (Muntiacus
reevesi) and markhor (C. falconeri) [108].

All the aforementioned Canadian and American studies related the positive samples
to Babesia odocoilei. This Babesia species seems to be predominant in Canadian and North
American captive cervids [24,98,105,107]. Considering these cases, it can be reasonably
assumed that babesiosis is yet another global, tick-borne related threat to captive cervids.

However, babesiosis infection is not exclusive to cervids and bovids; research con-
ducted in several Brazilian zoos showed the prevalence of babesiosis in zoo felids, canids
and a genet (Genetta tigrina). Most animals were seropositive for Babesia canis, but some
(Oncifelis colocolo and the genet) were positive for a Babesia sp. with close similarity to
Babesia leo, according to DNA testing [109]. In addition, free-roaming domestic cats in Brazil
often stray into zoo areas and are therefore considered potential carriers of babesiosis. Both
Babesia sp. (Babesia vogeli) and Theileria sp. were confirmed in some of the tested cat samples
in the same area as these Brazilian zoo animals [110]. In Kansas, USA, an unknown Babesia
spp. was observed in maned wolves (Chrysocyon brachyurus) in 2012 (first occurrence) and
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again in 2019. Both cases had severe clinical symptoms, and one case (2012) was fatal, even
after treatment [111,112].

Piroplasms of the genera Theileria and Cytauxzoon are also dangerous protozoan
parasites. Theileria have been observed in many tick species, including Amblyomma spp.,
Haemahysalis spp., Rhipicephalus spp. and Hyalomma spp. [113], whereas Cytauxzoon has been
found in Dermacentor spp. [113–115]. Theileria species are variable in their pathogenesis and
lifecycles; there are the so-called “transforming” species (T. annulata, T. parva, T. lestoquardi,
T. taurotragi etc.) and the “nontransforming” species (T. orientalis, T. mutans, T. cervi and
T. velifera) [113,116,117]. The transforming Theileria species have the ability to influence host
leucocytes, causing them to enable unlimited proliferation of infected cells [116], resulting in
symptoms such as polyphagia followed by anorexia, nasal discharge, fever, anemia, febrile
generalized lymphadenopathy and hemorrhaging on the mucous membranes of the buccal
cavity and conjunctiva [113,118]. Such an infection may be fatal. The nontransforming
species lack the ability to cause proliferation, resulting mostly in benign infections with
mild symptoms [116]. These symptoms can become chronic, causing anemia or persistent
subclinical infections [119]. Theileria infections vary in terms of symptoms, depending on
the infected animal species and the Theileria species. Besides from the free-roaming cats of
Brazil [110], an unknown Theileria spp. was detected in Missouri, USA, in an adult male
captive reindeer (R. tarandus [120]). Infections of South American tapirs (Tapirus terrestris)
with Theileria equi were confirmed in zoo and botanical gardens located in Northern parts
of Brazil [121]. Theileria bicornis was detected in samples of captive white rhinoceros
(Ceratotherium simum) and black rhinoceros (Diceros bicornis) in Australian zoo [117]. A
Theileria spp. was also found in the blood sample of one captive reindeer (R. tarandus) kept
in a German zoo [34].

Cytauxzoon felis is a parasite of felids, of both wild and domestic origin. This parasite
has been observed on several occasions in samples from zoo felids reared in Brazil, i.e., in
ocelots (Leopardus pardalis) [114,122], lions (P. leo) [115], pumas (Puma concolor) and jaguars
(Panthera onca) [114]. In Florida, USA, a white tiger (Panthera tigris) housed in a private
breeding facility was also reported as positive for C. felis [123]. Cytauxzoonosis infection can
be asymptomatic [114], but also fatal [115,123]. The disease has two phases: erythrocytic
and macrophagic [124]. The erythrocytic phase is usually connected to anemia, while the
macrophagic phase is marked by systemic circulatory obstructions, caused by schizont
macrophages, and presents clinical signs such as anorexia, depression, dehydration, fever,
icterus and dyspnea [124,125].

6. Rickettsiales

The bacteria of the order Rickettsiales cause a variety of diseases of veterinary
and medical importance, including bovine anaplasmosis, human ehrlichiosis, Rocky
Mountain spotted fever and scrub typhus [126]. Within the order Rickettsiales, the gen-
era Rickettsia, Ehrlichia and Anaplasma are dependent on tick vectors like A. americanum,
R. sanguineus, D. variabilis, Ixodes spp., Haemaphysalis spp., Hyalomma spp. and Aponomma
spp. [23,26,28,31,127,128]. Various, and often nonspecific, clinical symptoms are associ-
ated with Rickettsiales infections in animals (anorexia, depression, dehydration, fever,
lethargy, lymphadenopathy and ataxia) [23,26,28,129]. Acute infections with bacteria from
the Anaplasmataceae family (Anaplasma, Ehrlichia) can be detected using blood smears,
showing a characteristic “morulae” (mulberry-shaped microcolonies) located in the host
cell cytoplasm [26,28,128].

In Europe, several reports have confirmed positive cases for Rickettsiales. A. phagocy-
tophilum has been found in blood samples of captive reindeer (R. tarandus) kept in German
zoos [33]. Furthermore, an asymptomatic lion (P. leo) was positive for an infection with
Rickettsia sp. and A. phagocytophilum in Italy [130]. Acute anaplasmosis (A. phagocytophilum)
was observed in captive timber wolves (Canis lupus occidentalis) in Austria [31].

In the USA, several cases were also reported for anaplasmosis (A. phagocytophilum),
in four captive Przewalski’s horses (E. przewalskii) from Virginia [26]. E. chaffeensis was
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found in five ring-tailed lemurs (Lemur catta) and one ruffed lemur (Varecia variegate rubra)
in the Duke Lemur Center in North Carolina (USA; [28]). A. phagocytophilum (under the old
nomenclature of Ehrlichia equi in the case report) was confirmed in llama (Lama glama) from
California, USA [23] and lastly, canine ehrlichiosis was noted in Florida, USA, in wolves,
dogs and wolf-dog crosses [27].

Substantial research from Brazilian zoos showed that Ehrlichia canis was found in
the following captive felids: jaguars (P. onca), ocelots (L. pardalis), jaguarundi (Puma
yagouaroundi) and little spotted cats (Leopardus tigrinus). In this research, antibodies were
found in four felids: two jaguarundi, one little spotted cat and one margay (Leopardus
wiedii; [131]). Another study from Brazil confirmed that antibodies for E. canis existed
in captive ocelots [122]. Further studies from André et al. [132] confirmed Ehrlichia spp.
in captive canids, including European wolves (C. lupus), bush dogs (Speothos venaticus)
and crab-eating foxes (Cerdocyon thous). Pumas (P. concolor), little spotted cats (L. tigrinus),
ocelots (L. pardalis), jaguarundis (P. yagouaroundi), tigers (P. tigris) and lions (P. leo) also
tested positive for Ehrlichia spp. Furthermore, Anaplasma spp. was confirmed in bush dogs
and little spotted cats [132]. Three free-roaming cats surrounding the Brazilian zoo also
tested positive for Anaplasma spp., which is closely related to A. phagocytophilum [110],
showing that local animals can be a source of tick-borne pathogens that are then transferred
to zoo-kept animals.

7. Coinfections with Multiple and Less Common Pathogens

In a report of Zhang et al. [133], novel Theileria spp., together with A. phagocytophilum
and Anaplasma bovis, were found in the post mortem dissection of a one-year old South
African giraffe (Giraffa camelopardalis giraffa), which was kept in Zhengzhou Zoo, China. The
animal died suddenly, one day after the onset of severe clinical symptoms [133]. Another
coinfection was observed in a lion (P. leo) in the Fasano Safari park in Italy. The animal
tested positive for Coxiella burnetii, Rickettsia sp. and A. phagocytophilum [130]. In 2017,
a rare emerging tick-borne virus causing severe fever and thrombocytopenia syndrome
phlebovirus (SFTSV) was identified in two fatal cases in cheetah, infected in Hiroshima
City Asa Zoological Park, Japan [134].

Regarding the aforementioned TBPs in zoo-housed and captive animals, Table 2
summarizes the prevalence, country of origin, animal species and collected tick species
(excluding Borrelia spp. since these are discussed extensively in Table 1)

Table 2. Ticks and tick-borne diseases detected in animals living in zoos and zoo-like establishments.

Pathogen Animal Species Tick Species Found Prevalence
(Positive/Tested) Country Reference

TBEV

Barbary macaque (Macaca sylvanus) Ixodes ricinus 8/284 (2.8%) Germany [72,78]

Markhor (Capra falconeri) I. ricinus 1/1 ab* (100%) Czech Republic [20]

Reindeer (Rangifer tarandus) I. ricinus 1/1 ab (100%) Czech Republic [20]

Babesia spp.

Ocelot (Leopardus pardalis) N/A 26/43 ab (60.5%) Brazil [109]

Little-spotted cat (Leopardus tigrinus) N/A 9/38 ab (23.7%) Brazil [109]

Margay (Leopardus wiedii) N/A 2/4 ab (50%) Brazil [109]

Pampas cat (Oncifelis colocolo) N/A 3/5 ab (60%) Brazil [109]

Jaguar (Panthera onca) N/A 6/13 ab (46.1%) Brazil [109]

Puma (Puma concolor) N/A 2/18 ab (11.1%) Brazil [109]

Jaguarundi (Puma yagouaroundi) N/A 6/25 ab (24%) Brazil [109]

Crab-eating fox (Cerdocyon thous) N/A 2/39 ab (5.1%) Brazil [109]

Bush dog (Speothos venaticus) N/A 8/27 ab (29.6%) Brazil [109]

Maned wolf (Chrysocyon brachyurus) N/A 2/2 (100%) USA [111,112]

Reindeer (R. tarandus) N/A 1/1 (100%) USA [106]
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Table 2. Cont.

Pathogen Animal Species Tick Species Found Prevalence
(Positive/Tested) Country Reference

Babesia odocoilei

Wapiti (Cervus canadensis) N/A 2/30 (6.7%) Canada [98,105]

Reindeer (R. tarandus) speculated Ixodes
scapularis 12/12 (100%) Canada, USA [24,108]

Red deer (Cervus elaphus) N/A 4/144 (2.8%) Canada, USA [98,101,107]

Markhor (C. falconeri) speculated I. scapularis 4/6 (66.7%) USA [108]

Yak (Bos grunniens) speculated I. scapularis 1/2 (50%) USA [108]

Muntjac (Muntiacus reevesi) speculated I. scapularis 1/2 (50%) USA [108]

Babesia venatorum Reindeer (R. tarandus) I. ricinus 21/141 (14.9%)
Germany,

Netherlands,
Switzerland

[32,34,103]

Babesia capreoli Reindeer (R. tarandus) I. ricinus 7/137 (5.1%) Germany,
Netherlands [34,97]

Babesia divergens Reindeer (R. tarandus) I. ricinus 7/154 (4.5%) Germany, Great
Britain [34,104]

Babesia capreoli-like Reindeer (R. tarandus) I. ricinus 4/123 (3.3%) Germany [34]

Babesia odocoilei-like Reindeer (R. tarandus) I. ricinus 2/123 (1.6%) Germany [34]

Babesia leo Genet (Genetta tigrina) N/A 1/2 (50%) Brazil [109]

Theileria spp.
Reindeer (R. tarandus) N/A 1/1 (100%) USA [120]

Reindeer (R. tarandus) I. ricinus 1/123 (0.8%) Germany [34]

Theileria equi Tapir (Tapirus terrestris) N/A 11/19 (57.9%) Brazil [121]

Theileria bicornis
White rhinoceros

(Ceratotherium simum) N/A 2/2 (100%) Australia [117]

Black rhinoceros (Diceros bicornis) N/A 1/7 (14.3%) Australia [117]

Cytauxzoon felis

Ocelot (L. pardalis) N/A 7/138 (5%) Brazil [114,122],

Puma (P. concolor) N/A 2/9 (22.2%) Brazil [114]

Jaguar (Panthera onca) N/A 1/9 (11.1%) Brazil [114]

Lion (Panthera leo) Amblyomma cajennense 1/1 (100%) Brazil [115]

Tiger (Panthera tigris) Amblyomma americanum 1/1 (100%) USA [123]

Anaplasma
phagocytophilum

Reindeer (R. tarandus) I. ricinus 17/123 (13.8%) Germany [33]

Przewalski’s horse
(Equus przewalskii)

unspecified Ixodid
ticks 4/4 (100%) USA [26]

Lion (P. leo) N/A 1/10 (10%) Italy [130]

Timber wolf (Canis lupus occidentalis) I. ricinus 1/1 (100%) Austria [31]

Llama (Lama glama) Ixodes pacificus 1/1 (100%) USA [23]

Little-spotted cat (L. tigrinus) N/A 4/25 (16%) Brazil [132]

Bush dog (Speothos venaticus) N/A 1/27 (3.7%) Brazil [132]

Ehrlichia canis

Jaguar (P. onca) N/A 2/9 (2.2%) Brazil [131]

Ocelot (L. pardalis) N/A 3/30 (10%) Brazil [122,132]

Jaguarundi (P. yagouaroundi) N/A 5/25 ab (20%) Brazil [131,132]

Little-spotted cat (L. tigrinus) N/A 5/39 ab (12.8%) Brazil [131,132]

Margay (Leopardus wiedii) N/A 1/1 ab (100%) Brazil [131]

Puma (P. concolor) N/A 3/17 (17.6%) Brazil [131,132]

Pampas cat (L. colocolo) N/A 1/3 (33.3%) Brazil [131]

Lion (P. leo) N/A 2/12 (16.7%) Brazil [132]

Crab-eating fox (C. thous) N/A 3/39 (7.7%) Brazil [132]

Bush dog (S. venaticus) N/A 5/27 (18.5%) Brazil [132]

Timber wolf (Canis lupus) Rhipicephalus sanquineus 13/17 (76.5%) USA [27]
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Table 2. Cont.

Pathogen Animal Species Tick Species Found Prevalence
(Positive/Tested) Country Reference

Ehrlichia chaffeensis

Ring-tailed lemur (Lemur catta) A. americanum 7/9 (77.8%) USA [28]

Ruffed lemur (Varecia
variegate rubra) A. americanum 1/10 (10%) USA [28]

Little-spotted cat (L. tigrinus) N/A 3/25 (12%) Brazil [132]

Ocelot (L. pardalis) N/A 2/15 (13.3%) Brazil [132]

Puma (P. concolor) N/A 2/8 (25%) Brazil [132]

Tiger (P. tigris) N/A 2/8 (25%) Brazil [132]

Jaguarundi (P. yagouaroundi) N/A 1/19 (5.3%) Brazil [132]

Lion (P. leo) N/A 1/12 (8.3%) Brazil [132]

European wolf (C. lupus) N/A 1/3 (33.3%) Brazil [132]

Crab-eating fox (C. thous) N/A 2/39 (5.1%) Brazil [132]

Rickettsia spp. Lion (P. leo) N/A 2/10 (20%) Italy [130]

Theileria spp.,
A. phagocytophilum and

A. bovis

South African giraffe (Giraffa
camelopardalis giraffa) N/A 1/1 (100%) China [133]

Coxiella burnetii and
A. phagocytophilum Lion (P. leo) N/A 1/1 (100%) Italy [130]

SFTSV Cheetah (Acinonyx jubatus) unspecified Ixodid
tick 2/2 (100%) Japan [134]

specific data. ab*: antibodies positive; without ab: PCR positive; N/A: No ticks found on the positive animals.

8. Conclusions and Recommendations

All of the aforementioned studies confirm the significant threat of ticks and tick-borne
diseases to wild animals housed in zoos, wildlife parks or farms. Such zoo and zoo-like
areas have been identified as being suitable for tick vectors and reservoir hosts of TBPs. The
pathogens found in zoo-housed animals included viruses (TBEV, SFTSV), bacteria (Borrelia,
Anaplasma, Ehrlichia, Rickettsia spp.) and protozoal parasites (Babesia, Cytauxzoon and Theile-
ria spp.). It was confirmed that infection of the tick vectors with some of these pathogens,
for example, Borrelia spp., TBEV, Anaplasma spp. and Babesia spp., increases the tick mobility,
cold resistance, desiccation resistance and overall chance of survival [135]. There are other
known tick-borne threats that are yet to be observed in zoo-housed animals, like the filariid
nematode species Cercopithifilaria spp. and Acanthocheilonema spp. These parasites are
frequently associated with dogs [136–140] and occasionally with wild-living animals [141].
They can be transmitted by various tick species, i.e., Haemaphysalis flava, Haemaphysalis
japonica [141], A. americanum [142], I. scapularis [143,144] and R. sanquineus [145,146]. Fo-
cused sampling should be conducted to determine the potential spread of these parasites
in zoos and other similar establishments.

Clinical manifestations of infections with the TBPs in captive animals can vary from
unapparent to serious and even life threating [147]. It is clear that captive animals have
variable sensitivities to the studied pathogens; however, it is not clear if zoo and farm-
housed animals play a significant role as tick hosts and TBP reservoirs in their ecosystems.
In the case of TBPs, most of them are probably incidental dead-end hosts, as they would
not produce sufficient bacteremia/viremia for the infection of other ticks (although this
question remains to be answered definitively). Figure 2 provides a summary of the amount
of samples collected and tested across the several orders of zoo-housed animals (with
connection to TBPs). More abundant sampling (Artiodactyla, Carnivora,) provides results
that can be used to evaluate the role of these animal orders in the ecology of several
TBPs. Data on Primates and Preissodactyla are insufficient to draw any wider conclusions
in terms of overall TBP transmission, and they usually provide information about the
incidence of only one pathogen (case reports).
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Figure 2. Differences in sampling for TBPs in zoo-housed animals (divided by orders). From this
histogram, we can note the lack of testing in the Preissodactyla and Primates order. The orders
Struthioniformes (2 samples), Phoenicopteriformes (1 sample), Testudines (1 sample), Squamata
(1 sample) and Crocodilia (3 samples) have been tested only for Borrelia antibodies and in such small
numbers that it would not provide any graphical value in the histogram. The role of these orders in
the overall TBPs ecology is unclear; information is isolated only on the one tested pathogen. Some
orders of animals, which are potentially threatened by TBPs and ticks, are omitted completely. For
example: Chiroptera, Dermoptera, Edentata, Insectivora, Lagomorpha, Marsupialia, Proboscidea and
Pholidata which all have the potential to carry ticks and therefore contract TBDs. Species from these
orders are often kept in zoos in outdoor or semi-outdoor enclosures and the contact with ticks can
occur. This suggests further need for the increase in research of the omitted or lacking animal orders.

Some of the pathogens (TBEV, Borrelia spp., A. phagocytophilum, E. cheffeensis, C. burnetii)
and tick species (A. americanum, A. sculptum I. ricinus, I. scapularis, D. variabilis) detected in
zoos or zoo-like areas represent a notable threat to the health of humans that live nearby.
Since zoos are places with high densities of humans, exotic animals, domestic animals and
wildlife opportunists, they create ideal hotspots for the spread of TBPs, ticks and other
ectoparasites [18]. The importance of surveillance and research of tick vectors and TBPs
that exist in close proximity to human habitats is supported by the fact that the annual
number of visitors to zoos is more than 700 million worldwide [148]. The already available
evidence of tick-borne pathogens infecting zoo-housed animals should raise awareness of
scientists, zookeepers, veterinarians, medical doctors and other specialists.

Another risk for zoo and other captive animals is free-roaming domestic cats that
often stray into zoo or farm grounds. These cats are commonly infested with local ticks,
and are hosts to various vector-borne infections [110,149–151]. They can thus potentially
serve as one of the sources that increase the numbers of infected ticks in the areas that
they commonly occupy. As a preventative measure, the activity of free-roaming domestic
cats should be monitored and minimized in establishments where exotic animals are kept.
Advanced preventative techniques in the forms of various vaccines are also available for the
prevention of tick-borne infections in some animal species. In addition to the existing TBEV
vaccine approved for human use, which was shown to be efficient for other primates [80],
there is a borrelia vaccine approved for use in dogs [152]. Recently, this vaccine was tested
on horses [153], and it could be expected that it may trigger protection in other animals
too, at the very least, in canids. Furthermore, vaccines against bovid ticks from the genus
Rhipicephalus were developed for use in cattle [154], and since the vaccine works in sheep
as well, it can be expected that it may protect other ruminant species [154]. Also, landscape
management with respect to tick-associated risks can help lower the prevalence of ticks,
and subsequently, of TBPs, thus enhancing any other preventative measures taken [155].
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In conclusion, ticks and TBPs present a challenge for a wide range of zoo, veteri-
nary and public health experts. However, due to the poor understanding of the role
of zoo animals in the biology of ticks and TBPs, further research in this area is clearly
urgently required.

9. Other Potentially Tick-Borne Threats to Zoo-Housed and Captive Animals

Some pathogens are less specialized and spread through a wider range of vectors, e.g.,
vertebrates, mites, lice, mosquitoes and, of course, ticks. Even though some pathogens are
less studied, they still represent a threat to both animal and human health.

Bacteria of the order Chlamydiales have been connected to Ixodid ticks for some
time [156–159]. The most intensively studied is the Chlamydiaceae family. Other families
are included in the order, but they are usually summarized under the term Chlamydia-like
organisms (CLOs). These bacterial pathogens are causative agents of wide range of human
and animal (some zoonotic) diseases [160]. Tick-borne CLO transmissions have been
observed in humans [156], while various species of animals have been confirmed to harbor
chlamydial agents, but without the direct connection to ticks. Among vertebrates, several
species of bats (free-living and captive) have been found to be positive for a wide range
of CLOs [161]. Chlamydophila psittaci has been found in the eyes of various livestock [162].
Chlamydophila abortus and Chlamydophila pecorum has been detected in a water buffalo
(Bubalus bubalis) [163]. Chlamydia felis infection has been confirmed in cats and dogs [164],
while Chlamydiaceae has been detected in domestic pigs (Sus scrofa f. domestica) [165]. These
studies suggest the possibility of infection for both humans and captive/domestic animals
living in their close vicinity.

Another potentially tick-borne pathogen that causes health problems is the bacteria
F. tularensis. This pathogen can be transmitted through various sources: aerosol droplets,
infected animal carcasses, contaminated food (alimentary transmission) or the bite of an
infected arthropod [166,167]. F. tularensis can be transmitted by all tick life stages and
horizontal transmission has been confirmed [167]. There have been positive cases of
tularemia infection in animals in several zoological gardens. A fatal case in a Bornean
orangutan (Pongo pygmaeus) was reported at Topeka Zoo, Kansas in 2003 [25], which
was directly connected to tick bite. Several other zoos in North America have confirmed
F. tularensis infections in other animal species: golden-lion tamarins (Leontopithecus rosalia),
red-handed tamarin (Saguinus midas) [25], squirrel monkeys (genus Saimiri) [168], black and
white-ruffed lemurs (Varecia variegate), ring-tailed lemurs (L. catta), white handed gibbon
(Hylobates lar) and greater spotnose guenon (Cercopithecus nictitans) [169]. F. tularensis
infections have also been observed in animals in German zoos (in a wide range of animal
species) [170]. Human and animal (tamarins and a talapoin monkey (Miopithecus talapoin))
cases have also been reported in Canada [171]. However, none of these studies provided
any link to tick or other ectoparasite bites, so it remains unclear whether the connection
exists. Nonetheless, it is still evident that zoo-housed animals and humans are threatened
by this pathogen.

Bacteria of the genus Bartonella are known to cause various diseases, for example,
the cat scratch disease in humans [172]. Bartonella spp. has been connected to several tick
species [172–175]. Domestic cats are known reservoirs of Bartonella spp., e.g., B. henselae,
B. clarridgeiae and B. koehlerae [176,177]. Samples from free-roaming domestic cats located
in zoo areas in Brazil have been found to be positive for Bartonella spp. [110]. This could
lead to spillover of this pathogen to the zoo tick population, even though the described
infestation was most likely flea-borne [110]. Recently, tick-borne Bartonella spp. cases have
been observed in dromedary camels (Camelus dromedarius) infected with B. henselae [178],
domesticated yaks (Bos grunniens) [179] and in livestock animals like cattle [180,181],
goats [181,182] and horses [182]. Some of these species, like dromedary camels or yaks, are
often kept in zoos, so this information may be useful for the prevention of this potentially
tick-borne disease.
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There are other widely known pathogens that are yet to be fully established as po-
tentially tick-borne, e.g., the parasite Toxoplasma gondii. Even though this parasite is not
usually associated with ticks, some studies have proved the ability of ticks to transmit
it [183,184]. In conclusion, it should be noted even pathogens which are less commonly
attributed to ticks and captive animals have the potential to cause serious damage.
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