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Abstract. Ujung Kulon National Park (UKNP) is a natural world heritage site located at the 

western tip of Java Island and on the edge of the Indian Ocean. This area of 122,956 ha has the 

potential for tsunami hazard originating from Mount Anak Krakatau and the Sunda Arc 

subduction zone. Almost no residents live in the UKNP region, however, it is the only place on 

earth that remains a habitat for the Javan rhino (Rhinoceros sundaicus) whose population is 

less than 100. This study aims to discuss the potential for tsunami hazards in UKNP originating 

from the earthquakes in Indian Ocean. The shallow water equation model was used to simulate 

the generation and propagation of tsunami waves. A total of 50 numerical gauges with intervals 

of 4 km were used as assessment points placed along the 190 km coastline of UKNP. From the 

simulation it can be seen that the height of the tsunami reaches 12.9 m around the coast of 

UKNP causes this area is vulnerable to tsunami hazards. This information can be used as 

consideration for the management of the UKNP area so that it can continue to preserve flora 

and fauna, especially to avoid the extinction of the Javan rhino. 

1. Introduction

A peninsula located at the western end of the island of Java has become the home of one-horned 

rhinoceros that remains on earth. Actually this area is also a habitat for other animals such as Java 

bulls, monkeys, deer, and mouse deer [1]. However, the one-horned rhino or Javan rhino (Rhinoceros 

sundaicus) is the animal that gets the most attention because its population is very vulnerable to 

extinction. Therefore UNESCO established this area as a natural world heritage site in 1992 [2]. 

Previously this area had long been designated as a national park by the Indonesian government with 

the official name Ujung Kulon National Park.  

Historically, this region was not a safe area from natural hazards. Earthquakes often occur but did 

not directly affect the life of plants and wildlife. While the more obvious influence was the eruption of 

volcanoes and tsunamis that have struck several times. During the Krakatoa eruption in 1883 which 

was one of the most severe eruptions on earth, this area was reported to have suffered severe 

environmental damage [3]. The traces of the tsunami in Ujung Kulon due to the 1883 eruption were 

proven by Paris et al through the study of tsunami deposits [4]. Likewise in the latest tsunami event in 

2018 [5][6], this region also experienced the highest tsunami wave runup compared to other coastal 

areas in the Sunda Strait as reported by [6]. [7] and [8] also stated that this area was at risk of 

experiencing a tsunami that could affect the lives of protected animals in the national park. The 

scenario that fits the 2018 tsunami in the Sunda Strait was simulated in 2012 by [9]. Based on these 

simulations, the tsunami caused by the flank collapse of Mount Anak Krakatau directed radially until 
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it reached the coast at the southern tip of the island of Sumatra (Lampung Province) and the western 

end of the island of Java (Banten Province). 

Javan rhinos are often near the beach to meet the needs of salt minerals. Plants as Javan rhino food 

exist in the distance of 0-600 m from the beach. In addition, 61.9% distribution of Javan rhinos is 0-

1000 m from the coast [10]. Figure 1 is a photo report of the death of a rhino in 2018 [2]. Whereas 

Figure 2 illustrates the destruction of forests in the UKNP due to the 2018 tsunami [6]. The tsunami 

can directly hit an individual Javan rhino to cause its death, besides that an important thing is the 

possibility of forest destruction which is a food source for wildlife, especially Javan rhino. In the effort 

to conserve the Javan rhino, tsunami risk analysis is one of the factors that need to be considered in 

addition to other factors that have been analyzed, for example regarding the quality of food [11] and 

habitat suitability [12]. 

     

 

 
 

 

 

Figure 1 Death of a Javan rhino on Ujung 

Kulon beach (courtesy: UKNP 2018) 

Figure 2 Forest destruction as a habitat for Javan 

rhinos in the UKNP due to the 2018 tsunami (photo is 

the result of a survey by Widiyanto et al 2018) 

 

 This article discusses the potential for tsunami hazard in the UKNP due to earthquakes obtained 

from simulations. In this study only tsunamis originating from earthquakes were simulated. The results 

of modeling and analysis can be used as consideration for the management of the national park, 

especially in realizing a safer second habitat outside the existing national park that is prone to 

tsunamis.  

2.  Method 

In this study, tsunami waves propagation were calculated by the long wave equation or shallow water 

equation. Considering that the simulation area is large enough, a spherical coordinate system was 

applied. The nonlinear shallow water equation using spherical coordinates can be stated:  
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Where η is the water surface elevation; (P,Q) denote the volume fluxes in X (West-East) direction 

and Y (South-North) direction, respectively; (φ,ψ) denote the latitude and longitude of the Earth; R is 

the radius of the Earth; g is the gravitational acceleration and h is the water depth. And the term –∂h/∂t 

reflects the effect of transient seafloor motion, can be used to model landslide-generated tsunamis. F 

represents the Coriolis force coefficient due to the rotation of the Earth 
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Equations (1) - (3) are then solved by the COMCOT (Cornell Multi-grid Coupled Tsunami model) 

[13]. This model is one of the most widely used tsunami models and has successfully modeled many 

tsunami cases. Tsunami generation originating from seabed deformation was modeled with elastic 

finite fault plane theory proposed originally by Mansinha and Smylie (1971) and then improved by 

Okada (1985) [13]. This approach requires input in the form of epicenter, focal depth, fault length and 

width, strike angle, dip angle, slip angle, rake angle, and slip. 

The tsunami propagation model from source to points assessed requires bathymetric data. This 

study uses Batnas (6 arcsec resolution) as bathymetry data. These data are sourced from the Geospatial 

Information Agency (Indonesian: BIG). Bathymetry data were used to form the simulation layer. In 

this study, three layers of simulation are used which form a nested grid system. COMCOT uses 

explicit staggered leap-frog finite difference schemes to solve numerical equations (1) - (3). From this 

simulation a tsunami wave height will be obtained in the assessed area, in this study the Ujung Kulon 

National Park. 

The simulation domain is shown in Figure 3 where the observed coastal area is part of the UKNP 

area. At Ujung Kulon Peninsula and Panaitan Island, 50 numerical gauges were placed at intervals of 4 

km along the coastline to review tsunami wave heights that occurred due to an earthquake with 

magnitudes of Mw 8 and Mw 8.7. Selection of earthquake magnitude based on historical and potential 

earthquake that can occur due to ruptures in the Sunda Strait segment. 

 

  
Figure 3. Study area covering a small part of Indonesia, east side of Sunda Strait and west tip of Java 

Island. Red-dots are numerical gauges for detecting water surface elevation. 

3.  Result 

Figure 4 is a visualization of the results of the COMCOT model simulation. For the first simulation, an 

Mw 8 magnitude earthquake with epicenter at coordinates 104.547612 E and -7.277303 S was 

simulated occurring in the middle of the Sunda Strait tectonic segment. This magnitude selection is 

based on the history of tsunamis that occurred along the subduction zone of southern Java. Two 

tsunamis in modern era occurred in 1994 in the south of Banyuwangi with a magnitude of Mw 7.8 and 

in 2006 in the south of Pangandaran with a magnitude of Mw 7.7. Although the magnitude is not so 

large to generate a tsunami, in reality the wave heights and runups that occur were significant. In 

addition, the epicenter was determined randomly but according to historical earthquake data in the 

tectonic segment. Rupture due to earthquake with magnitude was estimated by scaling relation [14] as 

shown in Equation 4-5: 

                 (4) 

                              (5) 

Panaitan island 

Ujung Kulon 

Peninsula 

Banten Province 
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where L is rupture length, W is rupture width, a and b are regression coefficient and Mw is moment 

magnitude. 

Calculation using the equations obtained length and width of 155 km and 66 km respectively. 

Deformation of the seafloor with this area is significant enough to change the sea level above it so that 

it can be the beginning of a tsunami generation (Figure 4). Changes in sea level then spread towards 

the coast as a tsunami wave, and arrived around Ujung Kulon Peninsula and Panaitan Island earlier 

before the tsunami entered the Sunda Strait (Figure 5). The direction of propagation is influenced by 

the angle of direction of the rupture (strike angle) and bathymetry.  

 

  
Figure 4 A sea floor deformation due to the Mw 

8 earthquake produced changes in the surface of 

the water which would propagate as a tsunami 

wave. 

Figure 5 Tsunami propagation from the Indian 

Ocean entering the Sunda Strait. Ujung Kulon 

Peninsula and Panaitan Island were seen to have 

been hit by the tsunami even though in this case 

the waves were not so high. 

 

The second simulation used a greater earthquake magnitude of Mw 8.7 with the same epicenter as the 

first simulation. The choice of magnitude corresponds to the maximum potential for earthquake 

magnitude in the Sunda Strait segment. The length and width of the rupture is greater than the 

magnitude of Mw 8, which is 299 km and 112 km, respectively. Dislocation and deformation are also 

greater, giving rise to higher tsunami waves (Figure 6 and Figure 7). Water level profiles due to 

tsunami waves on two numerical gauges are shown in Figure 7. One of the numerical gauges is located 

on the southern coast of Ujung Kulon peninsula, the other on southern tip of Panaitan Island. From 

this profile, it can be seen the maximum wave height and the arrival time of the tsunami. In this case, 

the tsunami came sooner on Panaitan Island than in Ujung Kulon peninsula, each 14 minutes and 17 

minutes from the time the earthquake occurred. The amplitude and wave height in Ujung Kulon 

Peninsula is significant, 7.4 m and 12.9 m respectively. It is greater than in Panaitan Island, reaching 

5.6 m and 8.4 m for amplitude and height of tsunami wave respectively. The tsunami wave heights for 

Mw 8.0 were lower than Mw 8.7. They were 4.5 m and 5.2 m for Ujung Kulon Peninsula and Panaitan 

Island respectively, which were not significant different in both location. These wave amplitudes, 

wave heights and arrival times can be different if we simulate with different parameters. It is possible 

to obtain a higher wave height. Therefore, it is necessary to simulate various scenarios. A probability 

tsunami hazard assessment (PTHA) may be done for this region. Since PTHA includes intensive 

simulation work, for efficiency, the study area can be expanded, for example by including the entire 

Sunda Strait area. 
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Figure 6 Tsunami waves generated by the Mw 

8.7 earthquake seen higher than the magnitude 

of Mw 8. Black-dots circle is UKNP 

Figure 7 The height of the tsunami on Panaitan 

Island and Ujung Kulon due to the Mw 8.0 and 

Mw 8.7  earthquakes 

 

From the simulation results it can be seen that the UKNP area has a risk of tsunami hazard. 

Likewise, the results of the field survey by Widiyanto et al. illustrate that part of the forest in Ujung 

Kulon National Park was destroyed by the tsunami in December 2018 [6]. Fortunately, the last 

population of Javan rhinos escaped extinction. This suggests that providing a second habitat outside 

the Ujung Kulon peninsula for the Javan rhino is very urgent. Research on the suitability of the release 

location has been investigated, for example by Ramono et al. who conducted a field survey and 

proposed relocation sites on Java, namely on Mount Honje, Mount Halimun, Masigit Kareumbi and 

Leuweung Sancang [15]. Therefore, it is time for the authorities to adopt policies to accelerate the 

realization of the second habitat of Javan rhinos. 

4.  Conclusion 

The simulation results show that the UKNP area has a potential tsunami event with a significant height 

reaching nearly 13 m with a relatively short tsunami arrival time around 15 minutes. Mitigation needs 

to be done to save the Javan rhino habitat. Relocation of populations to second habitats located in 

areas farther from the coast is urgent. 

This simulation only uses earthquakes with magnitudes of Mw 8 and Mw 8.7. The simulation needs 

to be extended for earthquakes with the same magnitude but different parameters causing the seabed 

deformation. Likewise, it can be continued for other magnitudes or worse scenarios need to be 

simulated also to find out the worst impact on UKNP. If deemed necessary, the simulation can be 

reproduced with the magnitude of other earthquakes to form a tsunami hazard probability for UKNP 

that extends to the Sunda Strait or the West Coast of Lampung which also has a UNESCO heritage 

national park namely the Bukit Barisan Selatan National Park. Another future work needs to be 

conducted will be tsunami simulation and analysis related to Mount Anak Krakatau, both due to the 

landslide cliffs and eruptions that directly change the sea surface. 

References 

[1] Hariyadi, ARS, Priambudi, A, Setiawan, R, Daryan, D, Yayus, A, and Purnama, H, Estimating 

the population structure of Javan rhinos (Rhinoceros sondaicus) in Ujung Kulon National 

Park using the markrecapture method based on video and camera trap identification 

Pachyderm No. 49 January–June 2011 

[2] Balai Taman Nasional Ujung Kulon 2020 Sejarah dan Status Kawasan 

https://www.ujungkulon.org/   last access: 9 July 2020 

[3] Verbeek, R. D. M. 1884 The Krakatoa eruption, Nature, 10–15 

-8

-6

-4

-2

0

2

4

6

8

10

0 10 20 30 40 50

W
at

er
 e

le
va

ti
o

n
 (

m
) 

Time (min) 

Panaitan Mw 8.0
Panaitan Mw 8.5
Ujungkulon Mw 8.0
Ujungkulon Mw 8.5

https://www.ujungkulon.org/


ICETIR 2020
IOP Conf. Series: Materials Science and Engineering 982 (2020) 012034

IOP Publishing
doi:10.1088/1757-899X/982/1/012034

6

 

 

 

 

 

 

[4] Paris, R, Wassmer, P, Lavigne, F, Belousov, A, Belousova, M, Iskandarsyah, Y, Benbakkar, M,  

Ontowirjo, B, and Mazzoni, N. Coupling eruption and tsunami records: the Krakatau 1883 

case study, Indonesia Bull Volcanol (2014) 76:814 DOI 10.1007/s00445-014-0814-x 

[5] Widiyanto W, Santoso P B, Hsiao S C and Imananta R T 2019 Post-event field survey of 28 

September 2018 Sulawesi earthquake and tsunami Nat. Hazards Earth Syst. Sci. 19 2781–

2794 https://doi.org/10.5194/nhess-19-2781-2019 

[6] Widiyanto W, Hsiao S C, Chen W B, Santoso P B, Imananta R T and Lian W C 2020 Run-up, 

inundation, and sediment characteristics of the 22 December 2018 Sunda Strait tsunami, 

Indonesia Nat. Hazards Earth Syst. Sci. 20 933–946 https://doi.org/10.5194/nhess-20-933-

2020 

[7] Setiawan R 2018 Preventing Global Extinction of the Javan Rhino: Tsunami Risk and Future 

Conservation Direction Conservation Letters, 11(1) 

[8] Gross M 2018 Last call to save the rhinos Current Biology 28, R1–R16 

[9] Giachetti, T., Paris, R., Kelfoun, K., and Ontowirjo, B. 2012 Tsunami hazard related to a flank 

collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia, Geol. Soc. London, Spec. 

Publ., 361(1), 79–90, doi:10.1144/sp361.7 

[10] Sumunar, DRS, Salsabila, S Fitriana, H A Hamid 2019 Landsat-8 Multispectral Satellite 

Imagery for Rhinoceros Sondaicus Habitat Spatial Distribution Modelling through 

Biophysical Parameters in Ujung Kulon National Park, Indonesia IOP Conf. Series: Earth 

and Environmental Science 286 012044 

[11] Hariyadi, ARS, Sajuthi, D, Astuti, DA, Alikodra, HS, and Maheshwari, H 2016 Analysis of 

nutritional quality and food digestibility in male Javan rhinoceros (Rhinoceros sondaicus) in 

Ujung Kulon National Park, Pachyderm No. 57 July 2015–June 2016 

[12] Rahmat, UM, Santosa, Y, Prasetyo, LB, and Kartono, A P, 2012 Habitat Suitability Modeling of 

Javan Rhino (Rhinoceros sondaicus Desmarest 1822) Ujung Kulon National Park JMHT 

Vol. EISSN: 2089-2063 DOI: 10.7226/jtfm.18.2.129 XVIII, (2):129-137 

[13] Wang, X., 2009. COMCOT User Manual Ver. 1.7. Cornell University, 6, pp.1–59 

[14] Blaser, L. et al., 2010 Scaling relations of earthquake source parameter estimates with special 

focus on subduction environment, Bulletin of the Seismological Society of America. 

[15] Ramono, W., Isnan, M. W., M., Sadjudin, H.R, Gunawan, H, Dahlan, E.N., Sectionov, Pairah, 

Hariyadi, A.R., Syamsudin, M., Talukdar, B.K., And Gillison, A.N. 2009. Report on A 

Second Habitat Assessment for the Javan Rhinoceros (Rhinoceros sondaicus sondaicus) 

within the Island of Java. International Rhino Foundation, Yulee, Fl, Usa. 

 

 

 

https://doi.org/10.5194/nhess-19-2781-2019
https://doi.org/10.5194/nhess-20-933-2020
https://doi.org/10.5194/nhess-20-933-2020



