
Female reproductive skew exacerbates the extinction risk from poaching in the eastern black rhino 

Proceedings of the Royal Society B: Biological Sciences 

DOI: 10.1098/rspb.2022-0075 

Nick Harvey Sky, John Jackson, Geoffrey Chege, Jamie Gaymer, David Kimiti, Samuel Mutisya, Simon 

Nakito, Susanne Shultz 

 

 

Supplementary Information S1 

Method to estimate age-specific vital rates 

We estimated vital rates using additive models because of the relatively small number of individuals 

used at each age, which may mean raw age-specific data are not representative of mean vital rates. 

An additive modelling approach enabled us to capture nonlinear trends in vital rates across an 

individual's lifetime at a finer-scale resolution than a stage-based approach. This was done using 

using generalised additive models (GAMs) implemented in the mgcv package [1]. 

We modelled the probability of birth and death separately. Reserve (factor; Lewa, Ol Pejeta or Ol 

Jogi) and age (numeric integer from zero to 40) were used as explanatory variables to model the 

occurrence of a birth or death for an individual across observation years. The response variables 

were binary, indicating birth/no birth and death/survival, and as such the models were fitted with 

binomial error structures and a logit link function. Reserve was incorporated as a factor and age as a 

smoothing term fit with a thin plate regression spline [2]. We used model selection based on the 

Akaike information criterion (AIC) [3,4] to decide the basis dimension (k value) to use for the 

smoothing term (Figures S1.1 and S1.2).  



 

Figure S1.1 The AIC values of the breeding GAM with different k-values. A value of 9 for k was 
selected 



 

Figure S1.2 The AIC values of the breeding GAM with different k-values. A value of 9 for k was 
selected 

 

The DHARMa package in R was used to calculate scaled model residuals in order to assess the 

distributional assumption of the models [5]. DHARMa uses a simulation-based approach to create 

scaled residuals for mixed effects models that are visually interpretable and allow distributional 

assumptions to be tested statistically. We tested for under/overdispersion and uniformity in 

simulated residuals using 1000 simulations (Figure S1.3-10).  

 

 

 

 

 

 

 



Using DHARMa to test distributional assumptions 

Breeding 

 

 

Figure S1.3 DHARMa scaled residuals were used to create a) a QQ plot (One-sample Kolmogorov-
Smirnov test for uniformity. D = 0.049456, p-value = 0.93085) and b) a plot of the residuals against 

the predicted value. There are no outliers identified 

 

 

 



 
Figure S1.4 DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated. Ratio of 

observed to simulated = 0.99571, p-value = 0.964 

 

Figure S1.5 Plot of DHARMa scaled residuals for the age variable against predicted values 



 

 

Figure S1.6 Plot of DHARMa scaled residuals for the population variable against predicted values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mortality 

 

Figure S1.7 DHARMa scaled residuals were used to create a) a QQ plot (One-sample Kolmogorov-
Smirnov test for uniformity. D = 0.06123, p-value = 0.7592) and b) a plot of the residuals against the 

predicted value. There are no outliers identified 



 

Figure S1.8 DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated. Ratio of 
observed to simulated =  1.1121, p-value = 0.432 

  

Figure S1.9 Plot of DHARMa scaled residuals for the age variable against predicted values 



 

.  

Figure S1.10 Plot of DHARMa scaled residuals for the population variable against predicted values 

 

References 

1. Wood SN. 2011 Fast stable restricted maximum likelihood and marginal likelihood estimation of 
semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B 
(Statistical Methodology) 73, 3–36. (doi:https://doi.org/10.1111/j.1467-9868.2010.00749.x) 

2. Wood SN. 2003 Thin plate regression splines. Journal of the Royal Statistical Society: Series B 
(Statistical Methodology) 65, 95–114. (doi:https://doi.org/10.1111/1467-9868.00374) 

3. Akaike H. 1987 Factor analysis and AIC. Psychosometrica 52, 317–332. 

4. Burnham KP, Anderson DR. 2004 Multimodel Inference: Understanding AIC and BIC in Model 
Selection. Sociological Methods & Research 33, 261–304. 
(doi:https://doi.org/10.1177%2F0049124104268644) 

5. Hartig F. 2018 DHARMa: residual diagnostics for hierarchical (multi-level/ mixed) regression 
models. See https://CRAN.R-project.org/package-DHARMa. 

 



Supplementary Information S2 - Formulation of the stochastic individual-based model 

Description of the individual-based model using the ODD protocol described by Grimm et al. (2006) 

Purpose 

There are two main purposes of this model. The first is to evaluate the differences in population 

viability between three discrete Kenyan populations of eastern black rhinos. The second is to 

understand the effect of female reproductive skew on these populations under different poaching 

pressures. 

State variables and scales 

The models were formed at the level of individual females. Individuals are characterised by three 

state variables, their age (a, integer between 0 and 40 in years), the population they belong to (Lewa 

L, Ol Jogi J, or Ol Pejeta, P) and their reproductive value (v). As the populations were discrete, the 

three models were separate with no movement of individuals between them. Each population is 

characterised by the number of individuals at each age in each year.  

Process overview and scheduling 

The models proceed in annual time steps. Within each year or time step, 2 phases are processed: 

mortality and then birth. This order was selected as even though a female could give birth then die 

in the same year, a new born calf would not survive if that occurred. In each year, based on age, 

population and reproductive value females had a given probability of reproduction or mortality. An 

overview of the life-cycle and transition probabilities for Lewa is given in figure 1 L is replaced with P 

for Ol Pejeta and J for Ol Jogi.  



 

Figure S2.1 Schematic of the life-cycles for the individual-based stochastic projection model for 

female eastern black rhinos on Lewa. Each individual at each age (𝑎𝑎) had mean annual predicted 

birth probabilities of 𝑓𝑓L,v,𝑎𝑎 (Lewa), 𝑓𝑓J,v,𝑎𝑎 (Ol Jogi) or 𝑓𝑓P,v,𝑎𝑎 (Ol Pejeta), and mean annual predicted 

mortality probabilities of µL,𝑎𝑎 (Lewa) and µJ,𝑎𝑎 (Ol Jogi) or µP,𝑎𝑎 (Ol Pejeta). All individuals born were 

females at age 0. Individuals below the 5 were given a breeding probability of 0. For reproductive 

ages, survival or mortality events occurred before breeding events. Individuals living past the age of 

40 were removed from the analysis. 

Design concepts 

 Reproductive skew: A distribution of historical breeding success was created using the number of 

male or female calves every female in the dataset over the age of 9 had successfully raised to the 



age of one year, divided by their age above 5, to give an annual rate of yearling production in their 

reproductive ages. This resembled a zero-inflated Poisson distribution (Supplementary Information 

S6). This distribution remained constant throughout the projections, therefore assuming that the 

distribution of reproductive success did not change. These rates were used to create a distribution of 

reproductive success using the hist() function in R. Every year, either at initialisation of the model or 

at birth, new individuals were assigned a reproductive value drawn from this distribution using the 

sample() function. This assigned each individual an integer of one to ten, according to the 

probabilities from the distribution. All reproductive values of new individuals were scaled around 

zero using the scale() function, the preserve the average breeding probability of each population. 

These values were divided by 100 so that the highest modifications were an order of magnitude 

lower than the annual breeding probabilities of reproductive age females. This reproductive value 

followed the individual through their entire lives and was used to modify their breeding probability 

every year in the simulations. Stochasticity: The baseline size of environmental stochasticity was 

estimated separately for the breeding and mortality rates and separately for each reserve using the 

standard deviation of the total birth and mortality rates over the whole period of the dataset on 

each reserve. The environmental stochasticity in a particular year was drawn from a truncated 

normal distribution created using rtruncnorm(). For the breeding rate, this distribution was 

truncated at 0.5 and -0.5, the mean was 0 – density dependence and the standard deviation was the 

baseline environmental stochasticity + density dependence. For the mortality rate, this distribution 

was truncated at 0.5 and -0.5, the mean was 0 + density dependence and the standard deviation was 

the baseline environmental stochasticity + density dependence. After this we ensured that no 

individuals below the age of 5 bred, as this is a pre-reproductive life stage. Overall, this means that 

at larger population sizes, breeding rates were lower and more variable and mortality rates were 

higher and more variable. Birth and mortality are interpreted as binary events drawn from the 

Bernoulli distribution, created using rbinom()for each individual from each reserve, with a 

probability from the mean age-specific probability from the birth and mortality models, modified by 

the reproductive value of the individual, environmental stochasticity and density dependence.  

Interaction: Interactions that cause density dependence were modelled implicitly. When the 

population was over 75% of the estimated ecological carrying capacity (ECC) for each reserve, 

mortality increased and reproduction decreased with population size. Density dependence was 

modelled to act on the population by affecting the environmental stochasticity. Below 0.75(ECC), 

environmental stochasticity was calculated as outlined below. If the population was a proportion x 

above ECC, then the simulation distributions from which environmental stochasticity was drawn 

were altered using 4(x-0.75) The size of the standard deviations were increased by adding 4(x-0.75) 



to the quantity calculated in section 2.5. The mean of the sampling distribution for breeding 

probability was decreased from zero by 4(x-0.75), and the mean of the sampling distribution for 

mortality probability was increased from zero by 4(x-0.75). Observation: For analysis, we recorded 

the population-level variable of population size. We also recorded the number of simulations that 

reached a population of 0 over 100 years, and the proportion of 500 simulations that reached 0 was 

recorded as extinction rate.  

 

Initialisation and input 

We began the projection with the age-structure present at the end of 2019 for each reserve. We 

cannot present the starting age-structure due to confidentiality. Demographic stochasticity was 

incorporated by performing 500 iterations of the projection model. We projected forward 100 years. 

For this projection, age-specific birth and mortality probabilities were averaged across the study 

period from the model predictions with the highest predictive performance. Explicitly, the mean age 

specific predicted birth probability, 𝑝𝑝(age specific 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ), is given by the following binomial additive 

models 

𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ) = �1 + 𝑒𝑒−�𝑅𝑅0+𝑓𝑓(𝑎𝑎)��
−1

 

Where R0 is the intercept dependent on the reserve , and the function 𝑓𝑓 () describes a thin plate 

regression spline smoother at age 𝑎𝑎.  

The mean age-specific predicted mortality probability, 𝑝𝑝(age specific 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), is given by the following 

binomial additive model 

𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ) = �1 + 𝑒𝑒−�𝑅𝑅0+𝑓𝑓(𝑎𝑎)��
−1

 

 

For a particular individual in a particular year 𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ) was given by the following equation 

𝑝𝑝(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ) = 𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ) + 𝑣𝑣 + 𝑏𝑏 

Where v is the reproductive value of the female and b is the environmental stochasticity modified by 

density dependence. 

For a particular individual in a particular year 𝑝𝑝(mort) was given by the following equation 

𝑝𝑝(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑝𝑝(𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) + 𝑑𝑑 

Where d is the environmental stochasticity modified by density dependence. 



Supplementary Information S3 - Calculation of long-term population growth rate 

Demographic potential 

We created Leslie matrices for each reserve from the estimated age-specific vital rates and then 

using the popbio package [1] we calculated the asymptotic population growth rate, λ, for each 

population. Considering a Leslie matrix A, the individual elements of the matrix aij  give the 

transitions of individuals at age j to age i during a single year. λ is the dominant eigenvalue of A, and 

the proportional rate of increase. The intrinsic rate of increase of the population r, which we term 

the demographic potential growth rate [2], is given by: 

𝑟𝑟 = 𝑙𝑙𝑙𝑙𝑙𝑙 

Long-term realised population growth rate 

We calculated the proportional change, or ‘realised annual population growth rate’ between year t 

and year t+1 individually for each of the 500 simulations. We then plotted the mean and 95% 

confidence intervals of this value for each reserve over the 100 years of the population projections.  

We calculated the long-term realised population growth rate as the average from year 25 to year 

100 and the average confidence intervals over the same time period, as transient dynamics in the 

early time steps of the simulations would have inflated population growth rates and at year 25 the 

growth rates entered a stochastic equilibrium (Figure S3.1 ). Here x is the long-term realised 

population growth rate, and if x > 1 then the population will increase over time. The estimated long-

term intrinsic rate of increase rlong, is given by: 

𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙 



 

Figure S3.1 Average growth rates of the projections of each population over 500 simulations 



a) 

b) 
 



 

Figure S3.2 Average growth rates of the projections of over 500 simulations with 95% confidence 
intervals for a) Lewa, b) Ol Pejeta and c) Ol Jogi 
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Supplementary Information S4 - Lewa and Ol Pejeta elasticities 

Methods 

We calculated elasticities of this demographic potential for each vital rate from the Leslie matrices. 

Elasticities quantify the proportional change in population growth rate that results from a 

proportional change in one of the matrix elements [1–3]. These are calculated by: 

𝑒𝑒
𝑖𝑖𝑖𝑖 = 

𝑎𝑎𝑖𝑖𝑖𝑖
𝜆𝜆  𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

 

Elasticity analysis shows the relative contributions of each vital rate to λ [3] and allows for direct 

comparison between different vital rates. This means survival and reproduction can be compared, 

which is not possible when using sensitivities. Elasticities therefore give an estimate of the 

importance of ages and demographic rates to the populations and their management.  

 

Results 

 

 

 

 

a) 



 

 

Figure S4.1 Elasticities both vital rates for a) Ol Jogi, b) Lewa and c) Ol Pejeta 

 

We used elasticity analysis to show which ages and vital rates should be management priorities for 

the management of eastern black rhino populations. Mortality rates have a much greater impact on 

λ than fecundity rates, which is expected in mammals with late maturity and low reproductive rates 

b) 
 

c) 



[4]. Mortality rates of younger individuals contribute more to λ, and elasticities decline gradually 

with age which can be understood as the younger an individual is, the greater its lifetime 

reproductive potential. This is an important result for the conservation of black rhinos as, coupled 

with this, all three populations experience high neonatal death rates (Figure 1). Calf deaths are 

relatively common and will have a proportionately larger effect on the growth of the population 

than deaths of older individuals. There are peaks in the contribution of fecundity to λ at ages that 

broadly correspond with the peaks in fecundity rates . 

Discussion 

Studies of large herbivore dynamics generally identify the survival of adult females [5] and pre-

reproductive life stages [6] as the most important life stages. This study suggests that it is juvenile 

survival that is most important for black rhino population dynamics. While elasticity analysis shows 

that that mortality rates have a larger impact on population growth rates than fecundity rates, 

unstructured variation in survival probabilities has been theorised to have no effect on overall 

demographic variance [7] or extinction risk [8]. 

The significance of juvenile survival is important for conservation in light of the hypothesis that 

juvenile survival is the first vital rate to be affected by increasing density of a population or other 

stressors [9]. If this is true, and it is also the vital rate that is most important to future population 

growth, then monitoring juvenile survival is vital for conservation of black rhinos. Any increases in 

juvenile mortality will act as an early warning system for impacts on the population and need to be 

addressed quickly to prevent a depression of population growth. In Namibia and South Africa, calf 

mortality rates within the first year after birth have been found to range between 8% and 14% [10]. 

Our GAMs predict comparable rates, 12% for Lewa and Ol Pejeta and 17% for Ol Jogi. Focusing of 

reducing the death rate of calves should therefore be a conservation priority for these reserves, and 

black rhino managers. Detecting and determining the cause of calf mortalities can be difficult [86], 

but there are suggestions that predation may be an important factor [11,12]. Whether or not 

managing to reduce predation is possible ore desirable is debatable, but the causes of calf mortality 

are an important area for future research.  
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Supplementary Information S5 – Age-specific vital rates and mean reserve-specific vital rates 

 

 

Figure S5.1 Birth and death rates for all ages, defined as the probability that an individual will breed 
or die in each year. Points show the raw aggregate demographic rates, with standard errors. Lines 
show the predicted demographic rates calculated using GAMs 

 



 

Figure S5.2 The mean demographic rates across all ages for each reserve, with standard errors. 

 

 

 

 



 

Figure S5.3 Birth and death rates for all ages for a) Lewa, b) Ol Pejeta and c) Ol Jogi. This is defined as 
the probability that an individual will breed or die in each year. Points show the raw aggregate 

demographic rates, lines show the predicted demographic rates calculated using GAMs.  

a) 

c) 

b) 
 



Supplementary Information S6 – Female reproductive skew 

 

 

Figure S6.1 Histogram showing the variation in reproductive value of all females above the age of 9, 
estimated using the number of calves they raise to the age of one year annually 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S6.1 Histogram showing the variation in reproductive value of all females above the age of 9, 
estimated using the number of calves they raise to the age of one year annually for a) Lewa b) Ol 
Pejeta and c) Ol Jogi 

a) 
 

b) 
 

c) 
 



Supplementary Information S7 – Lewa and Ol Pejeta population projections 

 

 

Figure S7.1 A comparison of the population projections for Lewa a) without and b) with female 
reproductive skew. 

a) 

b) 



 

 

Figure S7.2 A comparison of the population projections for Ol Pejeta a) without and b) with female 
reproductive skew. 

 

a) 

b) 


