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  Propositions 

 
 

1. In our present epoch, creating and maintaining safe havens is the only key to 

nature conservation. 

(this thesis) 

 

2. Although animal behaviour is fully predictable, humans do not have the capacity 

to understand it. 
(this thesis) 

 

3. Hypothesis testing is weakened by model assumptions. 
 

4. If ecosystems are characterized by alternative stable states, then recent global 

changes must encourage scientists to focus on the Earth's alternative future. 

 

5. Constitutional freedom to profess religion drives inequity by legitimizing the 

behaviour of only an entitled group. 

 

6. To achieve global sustainability, the average human birth rate needs to reduce to 

below replacement level. 
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Summary

English

Sentinel animals: enriching artificial intelligence with wildlife ecology to guard

rhinos

The survival of both African rhinoceros species is under threat due to large-scale poaching.

The pressure that poaching currently exerts on rhino populations is too large to solely wait

for long-term conservation strategies, e.g., demand and corruption reduction campaigns,

to take effect. Consequently, protection efforts aimed at the short-term survival of the

rhino species seem to be urgently needed. Unfortunately, current rhino protection efforts

fail to prevent large rhino population declines as conservation officers often fail to localize

poachers before they can kill a rhino. Therefore I aimed to develop a poacher early warning

system that provides conservation officers with more situational awareness, which can

therefore decrease the risk of shootouts between poachers and conservation officers.

For this task I focused on developing a “sentinel-based poacher early warning system”, for

which I envision nature reserves where abundant prey animals are tracked and where the

movement responses of these animals are automatically used to detect the presence and

infer the location of poachers. Hence the term: “sentinel”, as the animals themselves will

take the role of game wardens. The benefit of such a system is that it could be working

at all times and is not limited solely to rhino poachers. Apart from the obvious wildlife

conservation challenge this thesis poses, it also tackles a major scientific challenge: to be

able to detect abrupt changes in an environmental variable based on animal movement. In

order to solve this challenge, a myriad of environmental and animal movement variables

needed to be considered in interaction in a single model. This premise lead me to the use

of a non-traditional statistical approach for wildlife ecologists: artificial intelligence.

This thesis brings together a number of coherent papers about wildlife conservation, move-

ment ecology and artificial intelligence, aimed at investigating the necessity, analytics and

applicability of a sentinel-based poacher early warning system. In Chapter 2 I critically

evaluated whether rhino protection efforts aimed at the short-term survival of the species

are actually needed. I examined this by investigating if legal international rhino horn
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trade could be an ultimate solution for rhino poaching. Through an integrative review

of scientific and grey literature about rhino horn trade legalization, I identified four main

mechanisms through which a legal rhino horn market would influence the remaining wild

rhino populations: 1) financial viability for private rhino owners, 2) rhino horn demand,

3) laundering of rhino horns, and 4) behaviour of rhino horn consumers. Subsequently, I

determined through plausible reasoning that only the increased revenue for rhino farmers

could potentially benefit rhino conservation. Conversely, the global demand for rhino

horn is likely to increase to a level that cannot be met solely by legal supply. Moreover,

corruption is omnipresent in countries along the trade routes, which has the potential to

negatively affect rhino conservation. Finally, programmes aimed at reducing rhino horn

demand will be counteracted through trade legalization by removing the stigma on con-

suming rhino horn. After combining these insights and comparing them with criteria for

sustainable wildlife farming, I concluded that legalizing rhino horn trade will likely neg-

atively impact the remaining wild rhino populations. To preserve rhino species I suggest

to combine long- and short-term conservation approaches, by prioritizing the reduction of

corruption within rhino horn trade, increasing the rhino population within well-protected

‘safe havens’ and implementing educational programmes and law enforcement targeted at

rhino horn consumers.

In Chapter 3 I investigated how much tropical animal populations in general are im-

pacted by hunting, apart from solely considering African rhinos. I did this by analyzing

how much human hunters alter the abundance and spatial distribution of animals in the

tropics. Through a systematic review and a mixed effects meta-analysis I estimated that

bird abundances declined on average by 58% (95% CI: 25-76%) and mammal abundances

by 83% (95% CI: 72-90%) in hunted compared with unhunted areas. Mammal population

densities were higher inside than outside protected areas, but hunting pressure reduced

mammal abundances even within protected areas. Furthermore, I determined that bird

populations were depleted within 7 kilometers and mammal populations within 40 kilo-

meters from roads and settlements, which function as access points for hunters. These

results signify that the impact of hunting on both the abundance and distribution of trop-

ical animals is very large. Although these results suggest that the effect of hunting within

protected areas is less detrimental than outside reserves, gazettement of protected areas

seems insufficient to safeguard wildlife populations if not accompanied with improved

reserve management, effective law enforcement and on-ground protection efforts.

In Chapter 4 I studied the link between individual movement rules and emergent col-

lective movement properties, which can both provide information about changes in the

perceived environment of animals. For this I used an agent-based simulation model to

investigate the indirect effects of fear and resources on animal group structures. In this

model only the individual movement rules were directly affected by fear and resources,

but through self-organization the effects of fear and resources also became apparent in

the size of the formed groups. I specifically focused on the inherent variability in sizes of
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groups that were generated from identical self-organizing processes. I found that the coef-

ficient of variation of group size generally lied between 50 and 150% in these simulations,

depending on both animal density and the resource scarcity/predation trade-off. Given

that the variations of group size are already this large in homogeneous and deterministic

scenarios, I consider group size an imprecise collective movement proxy for environmental

conditions. Considering this imprecision of group size as a proxy and its time lag with

changes in environmental conditions, group size can likely only be informative for slowly-

evolving environmental conditions and will require information about the recent history

of the animal group in order to be informative.

In Chapter 5 I predicted the environment of animals based solely on their movement

data. I specifically investigated how much of the variation in different environmental

variables influenced animal movement in its multivariate entirety. I did this by linking

high-resolution sensor data from cows in a controlled environment to various environ-

mental variables through extensive feature engineering and machine learning to predict

the environment from animal movement sensor data. Using this data-driven framework I

demonstrated that it is possible to quantify environmental influence on animal movement

with the performance metrics of machine learning regression algorithms. Depending on

the chosen time window of feature engineering, the influence of environmental variables

on different time scales can be studied. Furthermore, different types of animal move-

ment features (e.g., individual- and collective-based, or GPS- and accelerometer-based)

can be included separately or in combination in the framework. Even though the aim of

this framework is to quantify the exact contribution of separate environmental variables

on the total variation in animal movement, the core of this framework can be used to

accurately predict environmental variation from animal movement as well.

In Chapter 6 I developed a sentinel-based poacher early warning system in Welgevonden

Game Reserve (South Africa). Using sensor data from 138 savanna ungulates combined

with experimentally staged human intrusions, I algorithmically detected and localized

poachers using animal movement data. I used a three-step analytical process to achieve

this, namely: 1) animal behaviour classification, 2) poacher detection, and 3) poacher

localization. In the first step I demonstrated the importance of interpreting animal move-

ment as deviations from expectations given recent movement history and similar envi-

ronmental conditions, given the complex relationship between the animals’ heterogeneous

environment and movement. I achieved an average precision of 46% to classify animal

movement responses to humans versus all other movement. Even though this performance

is quite an achievement (given the large class imbalance between normal and response be-

haviour, the inherent variability in animal movement, and environmental heterogeneity

in the study area), it still leads to a substantial amount of misclassification. However,

in the next two steps I considered the classified responses of all animals collectively in a

spatiotemporal context, which allowed me to drastically improve upon this performance

in the detection and localization of ‘poachers’. Periods with humans present in the area
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could be distinguished from periods without humans with 86% accuracy in a balanced

validation design, and these humans were localized with less than 500m error in 54.2%

of the experimentally staged poaching intrusions. This chapter thus demonstrates the

feasibility of the main theme of this thesis, namely to use a sentinel-based poacher early

warning system to detect and localize poachers.

In Chapter 7 I investigated the performance of an automated animal detection algorithm

for aerial imagery with the intention to gauge the potential of aerial imagery to supplement

or replace animal-born sensors to track animals en masse in the near future. Using a deep

learning approach I automatically identified large savanna herbivores inside images from

an aerial wildlife survey in Kenya, after which I also classified the animal species using the

same model. With this approach I managed to detect 90-95% of the number of individual

animals that were found by four layers of human annotation, of which I correctly detected

2.8-4.0% extra animals that were missed by all humans. The model did result in 1.6-5.0

false positives per true positive, which emphasizes the importance of manual verification

of automatic animal counts from aerial images. In this chapter I specifically demonstrated

the potential of semi-automatic aerial animal counts to improve the precision and accuracy

of animal population estimates. Furthermore, the results indicated that automated animal

detections from aerial images have the potential to find more animals than humans can,

especially when the algorithm is supplied with images taken at a fixed rate. Considering

the aforementioned, I acknowledge the potential of aerial imagery to supplement en masse

tracking with sensor tags. However, given that the detection chance of animals in images

decreases substantially with horizontal distance to the camera, I expect animal tracking

with cameras to be only suitable for relatively small areas.

Finally, in Chapter 8 I synthesized my combined research in light of both wildlife conser-

vation and wildlife ecology. I argued that the applicability of my developed sentinel-based

poacher early warning system lies mainly in the aid it can provide to short-term wildlife

protection efforts during the Anthropocene, which can concurrently reduce some of the

negative effects associated with ‘militarized conservation’ (e.g., human rights violations).

I plead for collaboration between conservationists working on short- and long-term conser-

vation strategies, to maximize the efficacy of conservation by considering the occasional

trade-off between conservation success in the Anthropocene and the development of a

society that is in harmony with nature. Furthermore, I forecasted a large role for ar-

tificial intelligence in wildlife ecology research, which may drastically change the way

scientific understanding is acquired in the near future. Exciting developments related to

explainability and causality within artificial intelligence are currently being undertaken

by computer scientists, but these scientists do require the input of ecologists to make

these developments truly insightful and applicable to the real world.
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Dieren als schildwacht: kunstmatige intelligentie met dierecologie verrijken

om neushoorns te beschermen

Het voortbestaan van beide Afrikaanse neushoornsoorten wordt bedreigd door

grootschalige stroperij. De druk die stroperij momenteel op neushoornpopulaties uitoefent

is te groot om alleen maar het effect van beschermingsstrategieën voor de lange termijn

af te wachten, zoals campagnes voor het verminderen van corruptie en de vraag naar

neushoornhoorn. Daarom lijken beschermingsinspanningen dringend nodig die gericht

zijn op het voortbestaan van de neushoornsoorten op de korte termijn. Helaas slagen de

huidige inspanningen ter bescherming van neushoorns er niet in om een grote afname van

de neushoornpopulatie te voorkomen, aangezien natuurbeschermers er vaak niet in sla-

gen stropers te lokaliseren voordat dezen een neushoorn kunnen doden. Daarom wilde ik

een vroegtijdig waarschuwingssysteem voor stropers ontwikkelen dat natuurbeschermers

meer omgevingsbewustzijn biedt, waardoor het risico op schietpartijen tussen stropers en

natuurbeschermers kan worden verminderd.

Voor deze taak heb ik me gefocust op het ontwikkelen van een “vroegtijdig

waarschuwingssysteem voor stropers op basis van schildwachten”, waarbij ik me natu-

urreservaten voor ogen heb waar prooidieren in grote aantallen worden gevolgd en waar

de bewegingsreacties van deze dieren automatisch worden gebruikt om de aanwezigheid

van stropers te detecteren en diens locatie af te leiden. Vandaar de term: “schildwacht”,

aangezien de dieren zelf de rol van natuurbeschermers op zich zullen nemen. Het voordeel

van zo’n systeem is dat het constant actief kan zijn en niet alleen beperkt is tot neushoorn-

stropers. Afgezien van de voor de hand liggende uitdaging omtrent dierbescherming die

dit proefschrift stelt, pakt het ook een grote wetenschappelijke uitdaging aan: het kunnen

detecteren van abrupte veranderingen in een omgevingsvariabele op basis van de beweg-

ingen van dieren. Om deze uitdaging op te lossen moesten een groot aantal omgevings-

en dierbewegingsvariabelen in interactie in één enkel model worden verwerkt. Dit uit-

gangspunt leidde me tot het gebruik van een niet-traditionele statistische benadering

voor dierecologen: kunstmatige intelligentie.

Dit proefschrift brengt een aantal samenhangende artikelen over natuurbehoud, beweg-

ingsecologie en kunstmatige intelligentie samen, gefocust op het onderzoeken van de

noodzaak, analytiek en toepasbaarheid van een vroegtijdig waarschuwingssysteem voor

stropers op basis van schildwachten. In Hoofdstuk 2 heb ik kritisch geëvalueerd of

beschermingsinspanningen die gericht zijn op het voortbestaan van de neushoornsoorten

op de korte termijn daadwerkelijk nodig zijn. Dit deed ik door te onderzoeken of legale

internationale handel in neushoornhoorns een definitieve oplossing zou kunnen zijn tegen

het stropen van neushoorns. Door middel van een integrale literatuurstudie van weten-

schappelijke en grijze literatuur over de legalisatie van neushoornhoornhandel, heb ik vier
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hoofdmechanismen gëıdentificeerd waarmee een legale markt voor neushoornhoorns de

resterende wilde neushoornpopulaties zou bëınvloeden: 1) de financiële levensvatbaarheid

van particuliere neushoorn eigenaren, 2) de vraag naar neushoornhoorn, 3) het witwassen

van neushoornhoorns, en 4) het gedrag van neushoornhoorn consumenten. Vervolgens

stelde ik door middel van plausibel redeneren vast dat alleen de hogere inkomsten voor

neushoornboeren mogelijk ten goede zouden komen aan het voortbestaan van neushoorns.

Aan de andere kant zal de mondiale vraag naar neushoornhoorns waarschijnlijk toenemen

tot een niveau wat te hoog is voor een legaal aanbod om volledig aan te voldoen. Bovendien

is corruptie alomtegenwoordig in landen langs de neushoornhoorn handelsroutes, wat de

bescherming van neushoorns negatief kan bëınvloeden. Ten slotte zullen programma’s die

gericht zijn op het verminderen van de vraag naar neushoornhoorn worden tegengewerkt

door de handelslegalisatie aangezien dit het stigma op het consumeren van neushoorn-

hoorn weg zal nemen. Na deze inzichten gecombineerd te hebben en te hebben vergeleken

met criteria voor de duurzame veeteelt van wilde dieren, kwam ik tot de conclusie dat

het legaliseren van de handel in neushoornhoorns waarschijnlijk een negatief effect zal

hebben op de resterende wilde neushoornpopulaties. Om neushoornsoorten te behouden

adviseer ik voor om lange en korte termijn beschermingsstrategieën te combineren, door

prioriteit te geven aan het terugdringen van corruptie binnen de neushoornhoornhan-

del, de neushoornpopulaties te laten toenemen in goed beschermde ‘veilige havens’ en

educatieve programma’s en wetshandhaving gericht op neushoornhoorn consumenten te

implementeren.

In Hoofdstuk 3 heb ik onderzocht hoeveel de dierenpopulaties in de tropen over het al-

gemeen worden bëınvloed door de jacht, in tegenstelling tot alleen Afrikaanse neushoorns

in ogenschouw te nemen. Ik deed dit door te analyseren hoe groot het effect van jagers is

op de hoeveelheid tropische dieren en diens ruimtelijke verspreiding. Door middel van een

systematische review en een mixed-effects meta-analyse berekende ik dat de hoeveelheid

vogels gemiddeld met 58% (95% BI: 25-76%) en zoogdieren met 83% (95% BI: 72-90%) zijn

afgenomen in bejaagde ten opzichte van niet-bejaagde gebieden. De populatiedichtheid

van zoogdieren was binnen beschermde gebieden hoger dan erbuiten, maar zelfs erbin-

nen verminderde de jachtdruk het aantal zoogdieren. Verder heb ik vastgesteld dat de

vogelpopulaties binnen een radius van 7 kilometer van wegen en nederzettingen (die als

toegangspunten voor jagers fungeren) waren afgenomen en de zoogdierpopulaties zelfs

binnen 40 kilometer. Deze resultaten duiden erop dat het effect van de jacht op zowel

de hoeveelheid als de verspreiding van tropische dieren erg groot is. Hoewel deze resul-

taten suggereren dat het effect van jagen in beschermde gebieden minder schadelijk is dan

erbuiten, lijkt het aanwijzen van beschermde gebieden onvoldoende om dierenpopulaties

te beschermen als het niet gepaard gaat met goed beheer, effectieve wetshandhaving en

beschermingsinspanningen.

In Hoofdstuk 4 heb ik het verband bestudeerd tussen de bewegingsregels van individuen

en de daaruit volgende collectieve bewegingseigenschappen, welke beide informatie kun-
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nen verschaffen over veranderingen in de waargenomen omgeving van dieren. Hiervoor

heb ik een simulatiemodel gebaseerd op individuen gebruikt om de indirecte effecten van

angst en voedsel op de groepsstructuren van dieren te onderzoeken. In dit model werden

alleen de individuele bewegingsregels direct bëınvloed door angst en voedsel, maar door

zelforganisatie werden de effecten van angst en voedsel ook zichtbaar in de grootte van de

gevormde groepen. Ik heb me specifiek geconcentreerd op de inherente variabiliteit in de

grootte van groepen die werden gegenereerd door identieke zelforganiserende processen.

Ik ontdekte dat de variatiecoëfficiënt van de groepsgrootte in deze simulaties over het

algemeen tussen de 50 en 150% lag, welke afhankelijk was van zowel de dierdichtheid als

de balans tussen voedselschaarste en predatie. Aangezien de variaties in groepsgrootte al

zo groot zijn in homogene en deterministische scenario’s, beschouw ik groepsgrootte als

een niet-precieze collectieve bewegingsproxy voor omgevingsvariabelen. Gezien deze lage

precisie van groepsgrootte als een proxy en diens vertraging met veranderingen in omgev-

ingsvariabelen, kan groepsgrootte waarschijnlijk alleen informatief zijn voor langzaam ve-

randerende omgevingsvariabelen en zal informatie nodig zijn over de recente geschiedenis

van de groep om informatief te kunnen zijn.

In Hoofdstuk 5 heb ik de omgeving van dieren voorspeld op basis van uitsluitend hun

bewegingsdata. Ik heb specifiek onderzocht hoeveel van de variatie van verschillende

omgevingsvariabelen de beweging van dieren in zijn multivariate geheel bëınvloedde. Ik

deed dit door hoge resolutie sensordata van koeien in een gecontroleerde omgeving te

koppelen aan verschillende omgevingsvariabelen door middel van uitgebreide kenmerkex-

tractie en machinaal leren om de omgeving te voorspellen op basis van bewegingssensor-

data van dieren. Met behulp van dit data-gestuurde raamwerk heb ik aangetoond dat het

mogelijk is om de invloed van de omgeving op de beweging van dieren te kwantificeren

met de prestatiemetrieken van regressie-algoritmen voor machinaal leren. Afhankelijk

van het gekozen tijdvenster van kenmerkextractie, kan de invloed van omgevingsvari-

abelen op verschillende tijdschalen worden bestudeerd. Bovendien kunnen verschillende

soorten bewegingskenmerken van dieren (bijvoorbeeld individueel en collectief, of op GPS

en versnellingsmeter gebaseerd) afzonderlijk of in combinatie in het raamwerk worden

opgenomen. Hoewel het doel van dit raamwerk is om de exacte bijdrage van afzonderlijke

omgevingsvariabelen aan de totale variatie in dierbewegingen te kwantificeren, kan de

essentie van dit raamwerk ook worden gebruikt om de omgevingsvariatie nauwkeurig te

voorspellen op basis van dierbeweging.

In Hoofdstuk 6 heb ik een vroegtijdig waarschuwingssysteem voor stropers ontwikkeld in

Welgevonden Game Reserve (Zuid-Afrika). Met behulp van sensordata van 138 savanne-

hoefdieren in combinatie met experimenteel geënsceneerde menselijke indringers, heb ik

stropers algoritmisch gedetecteerd en gelokaliseerd met behulp van bewegingssensordata

van dieren. Ik heb een analytisch proces van drie stappen gebruikt om dit te bereiken,

namelijk: 1) classificatie van diergedrag, 2) detectie van stropers en 3) lokalisatie van

stropers. In de eerste stap heb ik het belang aangetoond van het interpreteren van dierbe-
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wegingen als afwijkingen van verwachtingen op basis van de recente bewegingsgeschiedenis

en vergelijkbare omgevingsomstandigheden, gezien de complexe relatie tussen de hetero-

gene omgeving van dieren en hun beweging. Ik heb een gemiddelde precisie van 46%

bereikt om de bewegingsreacties van dieren op mensen te classificeren ten opzichte van

alle andere bewegingen. Hoewel deze precisie een behoorlijke prestatie is (gezien de grote

klassendisbalans tussen normaal en responsgedrag, de inherente variabiliteit van dierbe-

wegingen en de heterogeniteit in de omgeving in het studiegebied), leidt het toch tot

een aanzienlijke mate van misclassificatie. In de volgende twee stappen heb ik echter de

geclassificeerde reacties van alle dieren gezamenlijk in een tijdruimtelijke context bekeken,

waardoor ik de prestatie bij het detecteren en lokaliseren van ‘stropers’ drastisch kon

verbeteren. Perioden met mensen die in het gebied aanwezig waren, konden worden on-

derscheiden van perioden zonder mensen met een nauwkeurigheid van 86% in een gebal-

anceerd validatieontwerp. Verder werden deze mensen gelokaliseerd met een fout van

minder dan 500 meter in 54,2% van de experimenteel geënsceneerde stroperij-inbraken.

Dit hoofdstuk demonstreert dus de haalbaarheid van het hoofdthema van dit proefschrift,

namelijk het gebruik van een vroegtijdig waarschuwingssysteem voor stropers op basis

van schildwachten om stropers te detecteren en lokaliseren.

In Hoofdstuk 7 heb ik de prestaties onderzocht van een geautomatiseerd dier-

detectiealgoritme voor luchtfoto’s om het potentieel van luchtfoto’s te peilen als aanvulling

op of vervanging van sensoren om dieren en masse te volgen in de nabije toekomst. Met be-

hulp van een diep leren benadering identificeerde ik automatisch grote savanne-herbivoren

in luchtfoto’s van een wildtelling in Kenia, waarna ik ook de diersoorten classificeerde met

hetzelfde model. Met deze aanpak slaagde ik erin om 90-95% van het aantal individuele

dieren te detecteren dat werd gevonden door vier lagen van menselijke annotatie, waar-

van ik correct 2,8-4,0% extra dieren detecteerde die door alle mensen werden gemist. Het

model resulteerde wel in 1,6-5,0 foutpositieven per echt positief, wat het belang benadrukt

van handmatige verificatie van automatische wildtellingen op basis van luchtfoto’s. In dit

hoofdstuk heb ik specifiek het potentieel aangetoond van semiautomatische wildtellin-

gen vanuit de lucht om de precisie en nauwkeurigheid van dierpopulatie schattingen te

verbeteren. Bovendien gaven de resultaten aan dat geautomatiseerde dier-detecties met

luchtfoto’s het potentieel hebben om meer dieren te vinden dan mensen, vooral wanneer

het algoritme foto’s krijgt aangeleverd die met een vaste frequentie zijn gemaakt. Gezien

het bovenstaande bevestig ik het potentieel van luchtfoto’s als aanvulling voor het en

masse volgen van dieren met sensors. Echter, gezien het feit dat de detectiekans van dieren

in foto’s aanzienlijk afneemt met de horizontale afstand tot de camera, verwacht ik dat

het volgen van dieren met camera’s alleen geschikt is voor relatief kleine gebieden.

Ten slotte heb ik in Hoofdstuk 8 mijn totale onderzoek samengevat qua zowel natuurbe-

houd als dierecologie. Ik betoogde dat de toepasbaarheid van mijn ontwikkelde vroegtijdig

waarschuwingssysteem voor stropers op basis van schildwachten voornamelijk ligt in de

hulp die het op de korte termijn kan bieden aan beschermingsinspanningen van wilde
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dieren tijdens het Antropoceen, wat tegelijkertijd enkele van de negatieve effecten van

‘gemilitariseerd natuurbehoud’ kan verminderen (zoals mensenrechtenschendingen). Ik

pleitte voor samenwerking tussen natuurbeschermers die werken aan zowel lange als korte

termijn beschermingsstrategieën, om de effectiviteit van natuurbehoud te maximaliseren

door rekening te houden met de af en toe voorkomende afweging tussen natuurbehoud

in het Antropoceen en de ontwikkeling van een samenleving die in harmonie is met de

natuur. Verder voorspelde ik een grote rol voor kunstmatige intelligentie in dierecolo-

gie onderzoek, wat de manier waarop wetenschappelijk inzicht wordt verworven in de

nabije toekomst drastisch kan veranderen. Spannende ontwikkelingen met betrekking tot

uitlegbaarheid en causaliteit binnen kunstmatige intelligentie worden momenteel onder-

nomen door informatici, maar deze wetenschappers hebben de input van ecologen nodig

om deze ontwikkelingen daadwerkelijk inzichtelijk en toepasbaar te maken voor de echte

wereld.
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Español

Animales centinela: enriqueciendo la inteligencia artificial con ecoloǵıa de vida

silvestre para proteger a los rinocerontes

La supervivencia de las dos especies de rinocerontes Africanos está amenazada debido

a la caza furtiva a gran escala. La presión de la caza furtiva en las poblaciones de

rinocerontes es demasiado grande como para esperar solamente a que las estrategias de

conservación a largo plazo tengan efecto, p. ej. las campañas de reducción de demanda y

corrupción. Pareciera una necesidad urgente tener esfuerzos de protección enfocados a la

supervivencia a corto plazo de ambas especies de rinoceronte. Desafortunadamente, los

esfuerzos actuales de protección fallan en prevenir grandes reducciones de poblaciones de

rinocerontes, mientras que los oficiales de conservación frecuentemente fallan en localizar

a los cazadores antes de que maten a un rinoceronte. Por esto me enfoqué en desarrollar

un sistema de alerta temprana de cazadores furtivos que proporcione a los oficiales de

conservación más conciencia de la situación actual, y con el cual puedan reducir el riesgo

de tiroteos entre cazadores furtivos y oficiales de conservación.

Para esta tarea me enfoqué en desarrollar un “sistema de alerta temprana de cazadores

furtivos basado en centinela”, para lo cual visualizo reservas naturales donde abundantes

animales de presa sean rastreados y donde las respuestas del movimiento de estos animales

sean automáticamente usadas para detectar la presencia e inferir la ubicación de los

cazadores furtivos. Por eso el término: “centinela”, ya que son los mismos animales los

que tomarán el rol de guardabosques. El beneficio de tal sistema es que podŕıa funcionar en

todo momento y no es limitado solamente a los cazadores de rinocerontes. Además de los

obvios desaf́ıos de conservación de fauna silvestre que esta tesis plantea, también aborda un

gran desaf́ıo cient́ıfico: ser capaz de detectar cambios abruptos en una variable ambiental

basada en el movimiento animal. Para resolver este desaf́ıo, una gran cantidad de variables

ambientales y de movimiento animal necesitaron ser consideradas en interacción en un

modelo único. Esta premisa me llevó a usar un enfoque estad́ıstico no tradicional para

los ecólogos de fauna silvestre: la inteligencia artificial.

Esta tesis reúne un numero de art́ıculos relevantes acerca de la conservación de fauna sil-

vestre, ecoloǵıa del movimiento e inteligencia artificial, enfocados en investigar la necesi-

dad, la anaĺıtica y la aplicabilidad de un sistema de alerta temprana de cazadores furtivos

basado en centinela. En el Caṕıtulo 2 evalué cŕıticamente si los esfuerzos de protección

de rinocerontes enfocados en la supervivencia a corto plazo de las especies son realmente

necesarios. Examiné esto investigando si el comercio legal internacional de los cuernos de

rinoceronte podŕıa ser una solución definitiva para la caceŕıa furtiva de rinocerontes. Por

medio de una revisión integradora de literatura cient́ıfica y literatura gris de la legalización

del comercio de cuernos de rinoceronte, identifiqué cuatro mecanismos principales a través

de los cuales el mercado legal de cuernos de rinoceronte influiŕıa las poblaciones silvestres
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de rinocerontes: 1) viabilidad financiera de los propietarios privados de rinocerontes, 2)

demanda de los cuernos de rinoceronte, 3) blanqueo de cuernos de rinoceronte, y 4) com-

portamiento de los consumidores de cuernos de rinoceronte. Subsecuentemente, determiné

a través del razonamiento plausible que solamente un incremento en las ganancias de los

criadores de rinocerontes podŕıa beneficiar potencialmente la conservación de rinocerontes.

En cambio, es probable que aumente la demanda global de cuernos de rinoceronte a un

nivel que no puede ser cubierta solamente por el suministro legal. Además, la corrupción

está omnipresente en páıses a lo largo de las rutas comerciales, las cuales tienen el poten-

cial de afectar negativamente la conservación de rinocerontes. Finalmente, los programas

enfocados en reducir la demanda de rinocerontes será contrarrestada por medio de la le-

galización comercial removiendo el estigma de consumir cuernos de rinoceronte. Después

de combinar estas perspectivas y compararlas con criterios para la cŕıa sustentable de

fauna silvestre, conclúı que legalizar el comercio de cuernos de rinoceronte posiblemente

impactaŕıa negativamente a las poblaciones silvestres de rinocerontes restantes. Para

preservar las especies de rinoceronte, sugiero combinar enfoques de conservación a corto

y largo plazo, priorizando la reducción de la corrupción en el comercio de cuernos, in-

crementando las poblaciones dentro de “refugios seguros” bien protegidos e implementar

programas educativos aśı como el cumplimiento de la ley enfocado a los consumidores de

cuernos de rinoceronte.

En el Caṕıtulo 3 investigué qué tanto son impactadas, en general, las poblaciones

tropicales de animales por la caceŕıa, además de los rinocerontes Africanos. Hice esto

analizando qué tanto alteran los cazadores la abundancia y distribución espacial de los

animales en los trópicos. A través de una revisión sistemática y de un meta-análisis con

efectos mixtos estimé que las abundancias de aves disminuyeron en promedio un 58%

(95% IC: 25-76%) y las abundancias de mamı́feros un 83% (95% IC: 72-90%) en áreas

de caceŕıa comparadas con áreas sin caceŕıa. Las densidades poblacionales de mamı́feros

fueron más altas dentro de las áreas protegidas que fuera de las mismas, pero la presión

de caceŕıa redujo las abundancias de mamı́feros incluso dentro de las áreas protegidas.

Además, determiné que las poblaciones de aves y mamı́feros desaparecieron, respectiva-

mente, a los 7 y 40 kilómetros adyacentes a las carreteras y asentamientos humanos que

funcionan como puntos de acceso para los cazadores. Estos resultados dan a conocer que

el impacto de la caceŕıa es muy grande tanto en la abundancia como en la distribución de

animales tropicales. A pesar de que estos resultados sugieren que el efecto de la caceŕıa

dentro de las áreas protegidas es menos perjudicial que fuera de las reservas, delimitar

áreas protegidas parece insuficiente para salvaguardas poblaciones de fauna silvestre si

no se acompaña de un manejo mejorado de la reserva, cumplimiento efectivo de la ley y

esfuerzos de protección sobre el terreno.

En el Caṕıtulo 4 estudié el v́ınculo entre las reglas del movimiento individual y las

propiedades de movimiento colectivo emergente, que pueden proveer información acerca

de los cambios en el ambiente percibido de los animales. Para esto usé un modelo de sim-
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ulación basado en agentes para investigar los efectos indirectos del miedo y de los recursos

en las estructuras de los grupos de animales. En este modelo solamente las reglas de del

movimiento individual fueron directamente afectadas por el miedo y por los recursos, pero

por medio de la propia organización los efectos del miedo y de los recursos también fueron

evidentes en el tamaño de los grupos formados. Espećıficamente me enfoqué en la variabil-

idad inherente de los tamaños de los grupos que fueron generados por procesos idénticos

de organización propia. Encontré que los coeficientes de variación del tamaño de grupo

generalmente fueron del 50% y 150% en estas simulaciones, dependiendo de la densidad

animal y de la compensación entre la escasez de recursos y la depredación. Dado que las

variaciones del tamaño del grupo son ya muy grandes en escenarios homogéneos y deter-

mińısticos, considero que el tamaño del grupo es un indicador impreciso del movimiento

colectivo para las condiciones ambientales. Considerando esta imprecisión del tamaño de

grupo como un indicador, aśı como su retraso de tiempo con los cambios en las condi-

ciones ambientales, el tamaño de grupo podŕıa solamente ser informativo para condiciones

ambientales lentamente cambiantes y requerirá información acerca de la historia reciente

del grupo animal para poder ser informativa.

En el Caṕıtulo 5 predije el ambiente de los animales basado solamente en los datos de

su movimiento. Espećıficamente investigué qué tanto de la variación en diferentes vari-

ables ambientales influyó el movimiento animal en su totalidad multivariante. Hice esto

vinculando datos de sensores de alta resolución de vacas en un entorno de condiciones

ambientales controladas a través de una amplia ingenieŕıa de funciones y aprendizaje au-

tomático para predecir el ambiente a partir de los datos de sensores del movimiento de

animales. Usando este marco de referencia basado en datos demostré que es posible cuan-

tificar la influencia ambiental en el movimiento animal con las métricas del rendimiento

de los algoritmos de regresión del aprendizaje automático. Dependiendo de la ventana

de tiempo elegida en la ingenieŕıa de funciones, se puede estudiar la influencia de las

variables ambientales a diferentes escalas de tiempo. Adicionalmente, se pueden incluir

diferentes tipos de caracteŕısticas del movimiento animal (p. ej. basadas en lo individual

o en lo colectivo, o basadas en GPS y acelerómetro) por separado o en combinación con

el marco de referencia. Aunque el propósito de este marco de referencia es cuantificar

la contribución exacta de las variables ambientales por separado en la variación total del

movimiento animal, el núcleo de este marco de referencia puede ser usado también para

predecir de manera precisa la variación ambiental del movimiento animal.

En el Caṕıtulo 6 desarrollé un sistema de alerta temprana de cazadores furtivos basado

en centinela en la reserva Welgevonden Game Reserve (Sudáfrica). Usando datos de sen-

sores de 138 ungulados de la sabana combinados con intrusiones humanas experimental-

mente escenificadas, detecté y localicé algoŕıtmicamente cazadores furtivos usando datos

del movimiento animal. Para lograr esto, utilicé un proceso anaĺıtico de tres pasos: 1)

clasificación del comportamiento animal, 2) detección de cazadores furtivos, y 3) ubicación

de los cazadores furtivos. En el primer paso demostré la importancia de interpretar el
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movimiento animal como desviaciones de las expectativas dada la historia del movimiento

reciente y condiciones ambientales similares, dada la compleja relación entre el ambiente

heterogéneo del ambiente animal y su movimiento. Logré una presión promedio de 46%

para clasificar las respuestas del movimiento animal hacia el humano en comparación con

los otros tipos de movimiento. Aunque este resultado es un gran logro (dado el gran

desbalance de clase entre el comportamiento normal y el de respuesta, la inherente vari-

abilidad en el movimiento animal, y la heterogeneidad ambiental en el área de estudio),

esto aún conlleva una cantidad sustancial de clasificación errónea. Sin embargo, en los

siguientes dos pasos consideré las respuestas clasificadas de todos los animales colecti-

vamente en un contexto espaciotemporal, el cual me permitió mejorar drásticamente la

detección y localización de “cazadores furtivos”. Los periodos con humanos presentes en

el área podŕıan ser distinguidos de los periodos sin humanos con una precisión de 86% en

un diseño de validación balanceado, y estos humanos fueron localizados con un error de

menos de 500m en el 54.2% de las intrusiones humanas experimentalmente escenificadas.

Este caṕıtulo entonces demuestra la factibilidad del tema principal de esta tesis, usar

un sistema de alerta temprana de cazadores furtivos basado en centinela para detectar y

localizar cazadores furtivos.

En el Caṕıtulo 7 investigué el desempeño de un algoritmo automatizado de detección

animal para imágenes aéreas con la intención de calibrar el potencial de imágenes aéreas

para suplementar o reemplazar sensores creados para rastrear animales en masa en un

futuro cercano. Usando un enfoque de aprendizaje profundo identifiqué automáticamente

grandes herb́ıvoros de sabana en imágenes capturadas durante una campaña aérea de

fauna silvestre en Kenia, después de la cual también clasifiqué las especies de animales

usando el mismo modelo. Con este enfoque logré detectar el 90-95% del número de

animales individuales que fueron encontrados por cuatro capas de anotación humana, de

las cuales detecté correctamente 2.8-4.0% de animales adicionales que todos los humanos

pasaron por alto. El modelo resultó en 1.6-5.0 falsos positivos por positivo verdadero, lo

que enfatiza la importancia de la verificación manual de recuentos automáticos de animales

a partir de imágenes aéreas. En este caṕıtulo demostré espećıficamente el potencial de los

recuentos aéreos semiautomatizados de animales para mejorar la precisión y exactitud de

las estimaciones de poblaciones animales. Adicionalmente, los resultados indicaron que la

detección automatizada en imágenes aéreas tiene el potencial de encontrar más animales

que los humanos, especialmente cuando el algoritmo se suministra con imágenes tomadas

a una velocidad constante. Considerando todo lo anterior, reconozco el potencial de las

imágenes aéreas para suplementar rastreo en masa con sensores. Sin embargo, dado que

la posibilidad de detección de animales en imágenes disminuye substancialmente con la

distancia horizontal a la cámara, considero que el rastreo de animales con cámaras es

apropiado solamente para áreas relativamente pequeñas.

Finalmente, en el Caṕıtulo 8 sinteticé mi investigación combinada a la luz de la con-

servación y ecoloǵıa de la fauna silvestre. Argumenté que la aplicabilidad del sistema de
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detección temprana de cazadores furtivos basado en centinela que desarrollé radica prin-

cipalmente en la ayuda que este puede proveer a los esfuerzos de protección a corto plazo

de la fauna silvestre durante el Antropoceno, lo cual puede concurrentemente reducir al-

gunos de los efectos negativos asociados con la “conservación militarizada” (p. ej. las

violaciones a los derechos humanos). Abogo por la colaboración entre conservacionistas

trabajando en estrategias de conservación a corto y largo plazo para maximizar la eficacia

de conservación considerando el equilibrio ocasional entre el éxito de la conservación en

el Antropoceno y el desarrollo de una sociedad que esté en armońıa con la naturaleza.

Además, pronostiqué un papel importante de la inteligencia artificial en la investigación

en ecoloǵıa de la fauna y flora silvestre, el cual puede cambiar drásticamente la manera en

que el conocimiento cient́ıfico sea adquirido en el futuro cercano. Actualmente, cient́ıficos

computacionales están llevando a cabo emocionantes desarrollos relacionados con la expli-

cabilidad y la causalidad dentro de la inteligencia artificial, pero estos cient́ıficos requieren

la participación de los ecólogos para hacer que los desarrollos sean verdaderamente per-

spicaces y aplicables en el mundo real.
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动动动物物物哨哨哨兵兵兵：：：结结结合合合野野野生生生动动动物物物生生生态态态学学学和和和人人人工工工智智智能能能来来来保保保护护护犀犀犀牛牛牛

由于大规模的偷猎行为，两种非洲犀牛的生存都受到严重的威胁。当前偷猎行为对犀

牛种群造成的压力太大，以至于长期的保护策略（例如，减少需求和腐败的行动）难

以落实干预。因此，我们迫切地需要针对犀牛物种生存的短期保护措施。然而，由于

保护执法人员常常无法在犀牛被猎杀之前找到偷猎者的位置，当前的犀牛保护措施往

往无法防止犀牛数量的大幅下降。因此，我的目标是开发一种可为保护人员提供更多

态势感知的偷猎者预警系统，从而降低偷猎者与保护人员之间发生枪战的风险。

为此，我专注于开发一个“基于哨兵的偷猎者预警系统”。我构想在自然保护区内追踪

足量的被捕食者，并自动通过这些动物的运动响应来识别偷猎者的存在并推断出他们

的位置。这些被追踪的动物就是“哨兵”，而动物本身将扮演游戏管理员的角色。这种

系统的好处是它可以持续工作，而不仅限于在犀牛偷猎者出现的时候。本论文除了解

决前面提出的关于野生动物保护的挑战之外，还解决了一个重大科学挑战：基于动物

运动轨迹来检测某个环境变量的突变。解决这一挑战需要在单个模型的交互中考虑大

量的环境和动物运动变量，而这个前提使我想到了生态学家使用的一类非传统统计方

法：人工智能。

本论文汇集了多篇有关野生动物保护、运动生态学和人工智能的子论文，旨在研究

基于哨兵的偷猎者预警系统的必要性、可分析性和适用性。在第第第2章章章中，我评估了针

对犀牛短期生存的保护措施的必要性。我从调查合法的国际犀牛角贸易是否可以作

为控制犀牛偷猎的最终解决方案这个问题入手，通过总结和论述有关犀牛角贸易合

法化的科学论文和灰色文献，确定了犀牛角贸易的合法化影响野生犀牛种群的四个主

要机制：1）私人犀牛所有者的财务情况；2）犀牛角的需求；3）犀牛角的清洗；4）

犀牛角消费者的行为。随后，我通过合理的推理确定，只有增加犀牛牧民的收入才能

潜在地保护犀牛。然而，全球对犀牛角的需求可能会增加到仅靠合法供应无法满足的

水平。此外，在贸易路线沿线的国家中，腐败无处不在，这可能对犀牛的保护产生消

极影响。最后，减少犀牛角需求的计划或可能被通过消除食用犀牛角的污名来实现贸

易合法化的行动所抵消。结合这些见解并将其与野生动物的可持续养殖标准进行比较

后，我得出结论：犀牛角贸易的合法化可能会对剩余的野生犀牛种群产生负面影响。

为了保护犀牛种群，我建议将长期和短期的保护策略结合起来，通过优先减少犀牛角

贸易中的腐败，在受到良好保护的“安全港” 内增加犀牛的数量，并对犀牛角消费者实

施教育计划和法律干预。

除了单独考虑非洲犀牛之外，在第第第3章章章中我还研究了狩猎会多大程度地影响热带动物

种群。为了回答这个问题，我定量分析了猎人改变热带地区动物丰度和空间分布的程

度。通过系统综述和混合荟萃分析模型，我发现狩猎地区的鸟类平均丰度比非狩猎区

少58％（95％CI：25-76％），而哺乳动物的平均丰度比非狩猎区少83％（95％CI：72-

90％）。保护区内部的哺乳动物种群密度要高于保护区外，但即使在保护区内，狩猎

压力也会降低哺乳动物的丰度。此外，鸟类种群在距离道路和居民区7公里以内耗尽，

而哺乳动物在距离道路和居民区40公里以内耗尽，此标准可指示猎人的出入点。这些
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结果表明，狩猎对热带动物的数量和分布的影响都非常大。尽管结果表明保护区内的

狩猎危害要比保护区外小，但如果没有完善的保护区的管理、有效的执法和地面保护

措施，单单通过保护区的设定似乎不足以保护野生动物种群。

在第第第4章章章中，我研究了动物个体运动规则与集体运动属性之间的联系，两者结合可提供

有关动物感知环境变化的知识。为此，我使用了个体为本模型来研究恐惧和资源对动

物群体结构的间接影响。在这个模型中，虽然只有个体的运动规则直接受到恐惧和资

源的影响，但通过自组织过程，恐惧和资源也间接地影响着形成群组的规模。我特别

关注由相同的自组织过程形成的群组规模的内在差异性。在我的模拟中，群组规模的

差异系数通常在50％至150％之间，这取决于动物密度和资源稀缺程度/捕食的权衡。

鉴于在同质和确定性场景中群组规模的差异已经如此之大，我认为群组规模不是一个

能准确指示环境条件的运动指标。考虑到这种不精确性和其随环境变化而变化的滞后

性，群体规模可能仅对缓慢变化的环境条件的指示具有参考价值，且这种参考价值需

依赖于有关动物群体运动的近期历史信息。

在第第第5章章章中，我根据动物的运动数据预测了动物的环境。我特别关注不同环境变量作

为多元整体对动物运动的影响的差异性。为此，我通过特征工程和机器学习的方法，

将可控环境中奶牛的高分辨率传感器数据与各种环境变量相关联，从而利用动物运动

的传感器数据来预测环境状况。通过这种数据驱动的方法框架，我证明了使用机器学

习回归算法的性能指标可以量化环境对动物运动的影响。通过在特征工程中选择不同

的时间窗口，我们可以分析环境变量在不同时间尺度上的影响。此外，不同类型的动

物运动特征（例如，基于个体和基于集体的特征，或基于GPS定位和基于加速度的特

征）可以被单独或共同包含在这个框架中。虽然此框架的初衷是量化单一环境变量对

动物总体运动模式的确切贡献，但该框架的核心也可运用于动物运动对环境变化的预

测。

在第第第6章章章中，我在Welgevonden Game Reserve（南非）开发了一套基于哨兵的偷猎者预

警系统。利用138只非洲稀树草原有蹄类动物的运动传感器数据以及分阶段进行的人类

入侵实验，我通过算法检测并定位了偷猎者。这需要通过三步分析来实现，即：1）动

物行为分类；2）偷猎者检测；3）偷猎者定位。在第一步中，鉴于异质环境与动物运

动之间存在复杂的关系，我证明了基于近期运动历史与相似环境条件用偏离期望值的

程度来解释动物运动模式的重要性。我对响应人为干扰下的动物运动与其他运动形式

的区分度达到46％。虽然这已是很不错的推进了（鉴于正常行为和响应行为之间存在

很大的类别失衡、动物运动的固有变异性以及研究区域中的环境异质性），但它仍然

会产生大量的错误分类结果。因此，在接下来的两个步骤中，我考虑了所有动物在时

空环境中的分类反应，这大大提高了对“偷猎者” 的检测和定位精度。这种平衡验证模

型对有人为干扰的与没有人类活动的时期的区分度高达86％，并且在实验性盗猎入侵

中，我们对54.2％的偷猎者定位的误差都小于500米。因此，本章证明了本论文核心主

题的可行性，即使用基于哨兵的偷猎者预警系统来检测和定位偷猎者。

在第第第7章章章中，我研究了应用航空影像对动物个体的自动检测算法，旨在评估航空图像

在不久的将来协助或替代动物运动传感器来追踪动物群体的潜力。通过深度学习的方

法，我从肯尼亚的一次航空野生生物调查影像中自动识别了非洲稀树草原上的草食性
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动物，并使用相同的模型识别了动物的物种。我通过这种方法检测出了在四层实地调

查中调查人员发现的90-95％的动物个体，此外，我还额外检测出了调查人员没有发现

的2.8-4.0％的动物。当然，该模型的每个真阳性结果会伴随出现1.6-5.0个假阳性结果，

这也强调了通过对航空影像的目视解译来验证动物自动计数结果的重要性。本章着重

说明了半自动航空动物计数在提高动物种群数量估算的精确度和准确性方面的潜力。

此外，研究结果表明，从航空影像中自动检测动物的方法或可比人类实地调查识别出

更多的动物，尤其是当该算法应用于以固定速率拍摄的图像时。因此，航空影像有协

助动物传感器进行大规模追踪的潜力。但是，鉴于对航空影像中动物的检测率会随着

其距相机的水平距离的增加而大大降低，使用相机进行动物追踪仅适用于相对较小的

区域。

最后，在第第第8章章章中，我结合了野生动物保护学和动物生态学对我的研究进行了总结。

我认为，我开发的基于哨兵的偷猎者预警系统的应用价值主要在于它可以为人类世的

短期野生动物保护提供帮助，同时可以减少“军事保护” 可能带来的负面影响（例如侵

犯人权）。我呼吁实施短期和长期保护战略的环境保护主义者相互合作，权衡野生动

物保护与社会发展，贯彻人与自然和谐相处的理念，来最大程度地发挥保护效力。此

外，我预期人工智能在野生动植物生态学研究中会发挥重要的作用，这可能在不久的

将来会极大程度地改变科学理解的方式。目前，计算机科学家在人工智能的可解释性

和因果关系领域，已实现了令人兴奋的发展，但是他们也需要生态学家的助力，来能

使这些发展有更深刻的见解并适用于现实世界。
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Chapter 1

Introduction



2 Introduction

1.1 Rhino poaching

The Earth is well underway into the Anthropocene, meaning that humans globally dom-

inate most contemporary environmental change (Lewis & Maslin, 2015). Due to these

changes, biodiversity had been diminished over the past centuries and has been doing so

at an accelerating rate over the past decades (IPBES, 2019). The most important direct

drivers of biodiversity decline include land-use change, climate change, pollution, wildlife

exploitation and invasive species, of which the relative importances differ per system and

time scale (IPBES, 2019; Maxwell et al., 2016). Perhaps counterintuitively based on re-

cent media reports, it is currently not climate change that is overall threatening the IUCN

Red List species most, but wildlife exploitation (Maxwell et al., 2016).

One of the most worrying examples of wildlife exploitation over the past decade has

been the African rhinoceros (white rhino Ceratotherium simum and black rhino Diceros

bicornis) (WWF, 2021). Both African rhino species were once widespread and abundant

in the African continent, but were gradually hunted to near-extinction after Western

colonization (’t Sas-Rolfes, 2011). The globally most abundant rhino subspecies today

(the southern white rhino, estimated at approximately 20,000 individuals in 2010 (Emslie

et al., 2016; Rubino & Pienaar, 2017)) was once even considered extinct, until at the

beginning of the 20th century a population of less than 20 individuals was rediscovered

in the Hluhluwe-Umfolozi Park in South Africa. The other white rhino subspecies (the

northern white rhino) has been hunted to extinction in the wild during the course of this

study, since the last male died on 19 March 2018 (Njehia, 2018). The black rhino still had

a population of around 100,000 individuals in the 1960s, which made it by far the globally

most abundant rhino species at that time, but was poached to less than 2,500 individuals

in the early 1990s (’t Sas-Rolfes, 2011). However, both African rhino species increased

in number since the 1990s (primarily due to the effective conservation efforts in South

Africa), which resulted in that approximately 95% (19,000 individuals) of all remaining

white rhinos and 40% (1900 individuals) of all black rhinos lived in South Africa in 2010

(Emslie et al., 2016; Rubino & Pienaar, 2017). Unfortunately, roughly around 2010 as

well, a resurgence of rhino poaching occurred due to a certain demand originating from

Southeast Asia (Figure 1.1).
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Figure 1.1: Number of recorded poached rhinos in South Africa from 2007 until

2020 (Save the Rhino, 2021). Note, and appreciate, that no

Before-After-Control-Impact design (or any other statistics) has been employed to

“test” the effect of my PhD on the recent reduction in rhino poaching. On the

contrary, it is more likely that there are currently less rhinos to poach than less

poachers (Ferreira & Pienaar, 2020).

Historically there has long been a demand for rhino horn from cultures in Southeast Asia,

East Asia and the Middle-East, but in the past decade the demand from (and supply

to) Southeast Asia increased dramatically (Milliken & Shaw, 2012). A large proportion

of the Vietnamese people is now willing and able to buy rhino horn, mainly to use it as

a status symbol (USAID Vietnam, 2018), and a large group of Chinese people currently

demands rhino horn for traditional medicine (USAID Wildlife Asia, 2018). Facilitated by

well-organized criminal networks (Ayling, 2013; Rademeyer, 2016; Van Uhm, 2012), this

demand has led to unsustainable levels of rhino poaching in South Africa (Figure 1.2),

which has lead some to forecast the imminent extinction of these species (Biggs et al.,

2013; Haas & Ferreira, 2016). Given that there is no scientific evidence for the efficacy of

rhino horn as a medicine (Cyranoski, 2018), the obvious, ultimate and preferable solution

for rhino poaching is considered by many to be the reduction of demand for rhino horn
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(Litchfield, 2013). Former rhino horn consumer countries, e.g., Japan and Yemen, have

already been through this transition in the recent past (Prins & Okita-Ouma, 2013), so

there could be a potential for a change in consumer behaviour in China and Vietnam as

well. However, given the current dangerously high poaching levels and because such a

transition in behaviour and culture will likely take time (especially since the market for

medicinal rhino horn is increasing due to global promotions by the Chinese government,

as supported by the World Health Organization (Cyranoski, 2018; WHO, 2013)), rhino

protection efforts aimed at the short-term survival of the species seem to be urgently

needed.

Figure 1.2: Poached white rhino skull that I found in Kruger National Park (South

Africa) on 3 March 2020. Note the encircled axe marks at the bases of the former

horns.

The rhino conservation sector, especially in South Africa, has responded to this alarming

extinction risk in a number of ways. First, intensive patrols with anti-poaching rangers

are being undertaken, fences have been built or improved around protected areas, scouting

drones have been deployed, horns of living rhinos have been equipped with RFID chips

and information technology has been included at various levels to stop poaching (Cambron

et al., 2015; Conway-Smith, 2013; Penny et al., 2019; SANParks, 2015; Wildlife ACT,

2014). Second, education and awareness campaigns have been set up to decrease the illegal

demand for rhino horn (African Wildlife Foundation, 2014; Greenfield & Veŕıssimo, 2019;
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Save the Rhino, 2013; Veŕıssimo & Wan, 2019; WildAct Vietnam, 2019). Third, synthetic

horns have been proposed to replace real ones and with that disturb the illegal market

(Save the Rhino, 2016b). Fourth, cargo is being checked more intensively for animal body

parts and negotiations with Asian governments are taking place to further enforce the

ban on domestic sales of rhino horn in an effort to control the illegal trade (Save the

Rhino, 2013, 2015). Fifth, horns of living rhinos have been dyed, poisoned or removed

to devalue rhino horn (Ferreira et al., 2014; Rubino & Pienaar, 2017; Save the Rhino,

2016a). All these efforts have not been able to stop rhino poaching from taking place,

but have possibly assisted in the decrease of rhino poaching events recorded in South

Africa since 2014 (Figure 1.1). However, a grim reality is that Kruger National Park, the

world’s rhino poaching hotspot and (maybe former) rhino stronghold, experienced a 70%

decline in their rhino population during the last decade (SANParks, 2020), of which the

far majority disappeared between 2013 and 2018 (Ferreira & Pienaar, 2020). Currently

there are only 3500 to 4000 rhinos left in Kruger National Park, which implies that there

are nowadays simply less rhinos to poach.

1.2 Poacher early warning system

Sadly, poaching still continues to be a threat to the survival of African rhinos, as conser-

vation officers often arrive too late at crime scenes (O’Donoghue & Rutz, 2016). Further-

more, deadly force used by poachers incites the authorities into intensified “militarized

conservation”, resulting in frequent shootouts between poachers and conservation officers

(Duffy, 2014). An effective method for early poacher detection and localization is thus

urgently needed, so that preventive action can be taken. With situational awareness,

law enforcers can operate under safer conditions with reduced risk of fatalities and the

potential to de-escalate conflicts. An effective poacher early warning system would thus

contribute to the prevention of lethal violence, not only against wildlife, but also against

conservation officers and poachers (Duffy, 2014).

Here I present such a poacher early warning system, based on the movement responses

of sentinel animals. Humans often disturb animals when moving through a landscape,

thereby changing the animals’ movement (Frid & Dill, 2002; Tablado & Jenni, 2017).

When the effect of humans on the movement of animals is adequately understood, the

animals’ perception about the presence and location of humans can be inferred from the

animals’ movement behaviour (Rosenzweig, 2007). Using this approach, animals can be

used as sentinels to monitor the location of poachers through space and time, not much

unlike canaries have been used as sentinels to monitor the presence of toxic gasses in

mines.
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1.3 Scientific background

The scientific background for the concept of a sentinel-based poacher early warning system

is well in place. Prey species have evolved a suite of traits aimed at preventing them from

being killed, e.g., via early predator detection and escape (Cooper & Blumstein, 2015).

This often extrapolates to humans as well, since many prey species evolved together

with human hunters, leading to anthropogenic disturbance stimuli triggering similar, or

often even stronger, evasive responses (Frid & Dill, 2002; Zbyryt et al., 2018). Moreover,

when one or several individuals in a group respond to a disturbance, the movement of

all individuals and the entire group structure often changes (Helbing et al., 2000). This

phenomenon can be described through a simple self-organizing process composed of inter-

individual movement rules of attraction, repulsion and alignment (Couzin & Krause, 2003;

Herbert-Read et al., 2015). Even small changes in individual movement rules can result in

large and visually striking changes of collective movement patterns (Couzin et al., 2002;

Krause & Ruxton, 2002), which can aid in the detection of anomalous movement patterns

due to the presence of a poacher.

1.4 Scientific challenge

Despite the well-supported theoretical background for the concept of a sentinel-based

poacher early warning system, some non-trivial scientific developments are still needed

for the early warning system to work in practice. Generally speaking, being able to

describe differences in animal movement given varying environmental conditions (e.g., the

presence of a fear-inducing disturbance) is not the same as being able to detect a change

in environmental conditions given information about animal movement. This contrast

is two-fold: ecological (1) as well as statistical (2). First, animal behavior is known

to be complex and context-dependent. Even simple movement variables such as mean

displacement are often highly variable due to differences in time of day, season, weather

conditions, vegetation patterns and landscape features (Nathan et al., 2008; Patterson

et al., 2008). The effects of each of these environmental variables on animal movement

can furthermore be multi-faceted, having both direct effects (e.g., dense tree cover slowing

animals down by making a terrain difficult to traverse) as well as indirect effects (e.g.,

trees slowing animals down by inciting them to forage and at the same potentially inciting

them to speed up due to the risk of ambush predators) (Fryxell et al., 2008; Nathan et al.,

2008). Making it even more complex, environmental variables interact with each other

in their effect on animal movement, e.g., animals can select areas with high tree cover

during the day and more open areas during the night to decrease predation risk (Ager et

al., 2003). Second, a statistical difference in a response variable (e.g., mean displacement

of an animal) between two states of an environmental condition (e.g., dense versus open

areas) does not necessarily mean that a sudden change in this condition can be detected
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by measuring and analyzing the response variable in real-time. A statistical difference

in a response variable between two groups is acquired by comparing the distribution

of an accumulation of many data records, often with a substantial variance within the

same group. Such a statistical approach will not suffice when trying to detect a switch

in the state of an environmental variable based on response variables, where I consider

environmental state switches broadly (e.g., suitable to unsuitable forage habitat, day to

night, center to edge of a social group, encountering a predator, etc.).

The detection of state switches in movement behaviour itself is a rapidly evolving field in

movement ecology (Langrock et al., 2014; Patterson et al., 2008), but the detection of a

state switch of an environmental variable based on animal movement less so. Environmen-

tal variables are known to influence animal movement via three mechanisms (Nathan et

al., 2008): the animals’ internal state (“why move?”), motion capacity (“how to move?”)

and navigation capacity (“where to move?”), which makes inference on the functional

relationship between an environmental variable and animal movement complex. More-

over, given that the animals’ environment is often heterogeneous, multiple environmental

variables are often changing at the same time (Nathan et al., 2008). Past movement

ecology research has therefore focused mainly on quantitatively describing animal move-

ment and its state switches (e.g., via state-space modelling (Patterson et al., 2008)) and

relating these patterns post hoc to environmental variables (Avgar et al., 2013; Signer &

Ovaskainen, 2017; Wilmers et al., 2015). To be able to make direct predictions about an

underlying environmental variable from animal movement, it is thus needed to substitute

our lack of understanding about the functional relationship between the environment and

animal movement.

To develop this substitute for the goal to reliably infer an abrupt change of a single

environmental variable from animal movement, a different statistical approach is required

in which all other important environmental influences are accounted for. This approach

requires that the interaction of many variables are combined in a single model that allows

for complex data-driven relationships. Artificial intelligence offers such an approach.

When combining many high-resolution animal trajectories with accurate environmental

data about both the spatial (e.g., terrain and vegetation) and temporal aspects (e.g.,

time of day and weather), an estimate of “normal” animal behaviour given the prevailing

conditions could be developed. Knowing the expected animal movement behaviour allows

for the computation of the deviation of various movement features (both individual and

collective), which can be used to train a data-driven machine learning classification model

to detect the presence of a poacher.

The addition of this thesis to science lies mainly in the merging of two scientific fields:

animal ecology and artificial intelligence. This thesis neither develops new fundamental

ecological theories, nor does it develop new machine learning algorithms. However, what

it does is combining previously acquired domain knowledge of animal ecology with the
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available toolbox provided by artificial intelligence into a framework that allows for the

the detection of abrupt environmental changes from animal movement. Incorporating

domain knowledge (viz., animal ecology) into a machine learning system is one of the

most important aspects to make systems succeed in their tasks (DeepLearning.AI, 2021;

Yu et al., 2010). Given the absence of an existing framework for the aforementioned

task to which I could contribute, I did not set out to answer a specific overall research

question in this thesis, but rather aimed at developing the full methodological framework

and reflect on its mechanisms and uses.

1.5 Thesis outline

This thesis brings together a number of coherent research papers about wildlife conser-

vation, movement ecology and artificial intelligence, aimed at investigating the necessity,

analytics and applicability of a sentinel-based poacher early warning system. As such,

some chapters focus on the societal challenge of poaching (Chapter 2; Chapter 3), while

other chapters deal with the scientific challenge of predicting an environmental variable

from animal movement (Chapter 4; Chapter 5), combine both challenges (Chapter 6), or

focus on the eventual implementation of a sentinel-based poacher early warning system

(Chapter 7). Each research chapter has on purpose been framed as broad as possible, to

make its content also generally applicable outside the scope of this thesis.

In Chapter 2 I critically evaluate whether rhino protection efforts aimed at the short-

term survival of the species are actually needed. I examine this by investigating if legal

international rhino horn trade would be an alternative ultimate solution for rhino poach-

ing. Through an integrative review of scientific and grey literature about rhino horn

trade legalization, I identify the main mechanisms by which a legal rhino horn market

would influence the remaining wild rhino populations. Subsequently, I weigh through

plausible reasoning the importance of these mechanisms on the predicted overall effect

of a legal rhino horn trade on wild rhino populations. In Chapter 3 I investigate how

large the impact of hunting is on animal populations in general to gauge the potential

of innovative protection efforts. I did this by analyzing how much human hunters alter

the spatial distribution of animals in the tropics. Through a systematic review and a

mixed effects meta-analysis I estimate the overall reduction in mammal and bird abun-

dance in hunted versus unhunted sites. I focus here on the extent of population depletion

by comparing population sizes with distances to human access points, both for protected

and unprotected areas. In Chapter 4 I study the link between individual movement

rules and emergent collective movement properties, which can both provide information

about changes in the perceived environment of animals. I use an agent-based simulation

model to study the indirect effects of fear and resources on animal group structures. Only

the individual movement rules are directly affected by fear and resources in this model,

but through self-organization the effects of fear and resources also become apparent on
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a collective level. I specifically focus on the variation in group sizes that are generated

from identical self-organizing processes. In Chapter 5 I describe an analytical frame-

work to predict the environment of animals based solely on their movement data. By

doing this I investigate how much of the animal’s environment influences their movement.

Here I link high-resolution sensor data from cows in a controlled environment to various

environmental variables by using extensive feature engineering and machine learning to

predict the environment from animal movement sensor data. Using this data-driven ap-

proach I demonstrate that it is possible to quantify environmental influence on animal

movement. In Chapter 6 I combine the learned lessons from the previous two chapters

into a sentinel-based poacher early warning system in Welgevonden Game Reserve (South

Africa). Using sensor data from 138 savanna ungulates I first automatically classify flight

responses caused by staged “poaching” intrusions undertaken by employees of the reserve.

Secondly, I use the classified flight responses to automatically detect time periods with

“poaching” intrusions. Thirdly, I use the sensor data of both fleeing and non-fleeing an-

imals collectively to automatically localize the “poachers” through space and time. In

Chapter 7 I gauge the potential of aerial imagery to supplement or replace animal-born

sensors to track animals en masse in the near future. For this I investigate the perfor-

mance of an automated animal detection algorithm. Using a deep learning approach I

automatically identify animals inside images from an aerial wildlife survey in Kenya, after

which I also classify the animal species using the same model. Furthermore, I compare

the precision and accuracy of population estimates that can be obtained with automatic

animal detection versus those of manual aerial counts. Finally, in Chapter 8 I synthesize

my combined research in light of the scientific and societal challenges underlying the de-

velopment of a sentinel-based poacher early warning system. Here I also look to the future

and discuss the applicability of technology to aid nature conservation. Furthermore, next

to wildlife conservation, I focus separately on the impact of my employed methods on

ecological research. I discuss the potential of the interface between artificial intelligence

and ecology, after which I suggest future research directions that could advance ecology

as a science.





Chapter 2

Will legal international rhino horn

trade save wild rhino populations?

This chapter is based on:

Eikelboom, J. A. J., Nuijten, R. J. M., Wang, Y. X. G., Schroder, B., Heitkönig,

I. M. A., Mooij, W. M., van Langevelde, F., & Prins, H. H. T. (2020). Will legal interna-

tional rhino horn trade save wild rhino populations? Global Ecology and Conservation,

23, e01145. https://doi.org/10.1016/j.gecco.2020.e01145

https://doi.org/10.1016/j.gecco.2020.e01145
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Abstract

Wild vertebrate populations all over the globe are in decline, with poaching being the

second-most-important cause. The high poaching rate of rhinoceros may drive these

species into extinction within the coming decades. Some stakeholders argue to lift the

ban on international rhino horn trade to potentially benefit rhino conservation, as current

interventions appear to be insufficient. We reviewed scientific and grey literature to

scrutinize the validity of reasoning behind the potential benefit of legal horn trade for

wild rhino populations. We identified four mechanisms through which legal trade would

impact wild rhino populations, of which only the increased revenue for rhino farmers could

potentially benefit rhino conservation. Conversely, the global demand for rhino horn is

likely to increase to a level that cannot be met solely by legal supply. Moreover, corruption

is omnipresent in countries along the trade routes, which has the potential to negatively

affect rhino conservation. Finally, programmes aimed at reducing rhino horn demand

will be counteracted through trade legalization by removing the stigma on consuming

rhino horn. Combining these insights and comparing them with criteria for sustainable

wildlife farming, we conclude that legalizing rhino horn trade will likely negatively impact

the remaining wild rhino populations. To preserve rhino species, we suggest to prioritize

reducing corruption within rhino horn trade, increasing the rhino population within well-

protected ‘safe havens’ and implementing educational programmes and law enforcement

targeted at rhino horn consumers.
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2.1 Introduction

The majority of wild vertebrate populations are in severe decline and one-third of all

mammal and bird species are currently under threat by unsustainable subsistence hunting,

poaching and wildlife trade (IPBES, 2019; Rivalan et al., 2007; Scheffers et al., 2019).

Large-scale poaching operations are taking place all over the world, heavily impacting

the remaining number of rhinoceros, elephants, vultures, pangolins and numerous other

animal species (Conrad, 2012; Fischer, 2004; Rademeyer, 2016). Their horns, tusks,

claws, scales, bones and other body parts are smuggled in large quantities mainly to

Southeast and East Asia, where they are processed into products that function as status

symbols and traditional medicines (Milliken & Shaw, 2012). Illegal trafficking of animal

products, e.g., rhino horn, is often undertaken by international crime groups, which can be

both opportunistically formed collectives or structured and organised networks, that may

have ties or are involved with conservation, tourism and/or trophy hunting industries

(Ayling, 2013; Rademeyer, 2012, 2016; Van Uhm, 2012). Especially rhino horns are

extremely valuable on the black market, being sold between US $ 30,000 and 65,000 per

kg in Vietnam, thereby being worth more than gold, heroin or cocaine (Rademeyer, 2016;

Van Uhm, 2012). The poachers may be locals that live near nature reserves who can

earn between US $ 500 and 20,000 per poached rhino, depending on the role they fulfil

(Rademeyer, 2016). However, there seems to be a trend towards more professionally

outfitted and trained poachers (Van Uhm, 2016). Rhino horns are also harvested via

‘pseudo-hunting’, by using rhino trophy hunting as a cover-up for the illegal killing and

trafficking of rhino horns to Southeast Asian markets (Ayling, 2013; Rademeyer, 2016;

Van Uhm, 2018b).

The poaching rate of the two African rhinoceros species (the white rhino Ceratotherium

simum and black rhino Diceros bicornis) increased significantly since 2007 (Figure 2.1),

which has generated substantial global concern (African Wildlife Foundation, 2014; Biggs

et al., 2013; Milliken & Shaw, 2012; Rubino & Pienaar, 2017). It has been estimated that

African rhinos could already become extinct in the wild around the year 2036 (Haas &

Ferreira, 2016). In 2010 it was estimated that South Africa was home to 95% (∼19,000)

of all remaining white rhinos and 40% (∼1900) of all black rhinos (Emslie et al., 2016;

Rubino & Pienaar, 2017). The survival of the South African rhino population could

therefore likely determine the fate of both African rhinoceros species.
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Figure 2.1: Number of recorded poached rhinos in South Africa from 2007 until

2019 (Save the Rhino, 2020).

The rhino conservation sector, especially in southern Africa, has responded to this alarm-

ing extinction risk in a number of ways. First, intensive patrols with anti-poaching rangers

are being undertaken, fences have been built or improved around protected areas, scouting

drones have been deployed, horns of living rhinos have been equipped with RFID chips

and information technology has been included at various levels to stop poaching (Cambron

et al., 2015; Conway-Smith, 2013; Penny et al., 2019; SANParks, 2015; Wildlife ACT,

2014). Second, education and awareness campaigns have been set up to decrease the illegal

demand for rhino horn (African Wildlife Foundation, 2014; Greenfield & Veŕıssimo, 2019;

Save the Rhino, 2013; Veŕıssimo & Wan, 2019; WildAct Vietnam, 2019). Third, synthetic

horns have been proposed to replace real ones and with that disturb the illegal market

(Save the Rhino, 2016b). Fourth, cargo is being checked more intensively for animal body

parts and negotiations with Asian governments are taking place to further enforce the

ban on domestic sales of rhino horn in an effort to control the illegal trade (Save the

Rhino, 2013, 2015). Fifth, horns of living rhinos have been dyed, poisoned or removed

to devalue rhino horn (Ferreira et al., 2014; Rubino & Pienaar, 2017; Save the Rhino,

2016a). All these efforts have not been able to stop rhino poaching from taking place, but

have possibly assisted in the decrease of rhino poaching events recorded in South Africa

from 2014 to 2019 (Figure 2.1). However, reduced rates of successfully tracking down

rhino, because of their dwindling numbers, may also be invoked as an explanation for the



2.1 Introduction 15

decrease of poaching incidents. Furthermore, some state that the overall decrease of rhino

poaching incidents is largely a result of the decrease in poaching in Kruger National Park,

where protection was improved in response to the high poaching rate (Rademeyer, 2016).

As a response, rhino poaching incidents have increased in other areas (Rademeyer, 2016),

notably in Hluhluwe-Imfolozi Park and private game reserves. Unfortunately, the current

poaching rate is still so high that it poses a serious threat to the survival of both African

rhino species (Haas & Ferreira, 2016).

With the aim to reduce the rapid population decline of vulnerable species, international

commercial trade bans of animal products have been implemented through CITES since

1975 (Ayling, 2013). International rhino horn trade has been banned since 1977, which

was followed by a decrease in rhino poaching rate at first (Ayling, 2013). However, the

increase in the population size of white rhino between 1977 and 2007 was likely not

attributed to this trade ban, but to an increase in private ownership and trophy hunting

(Leader-Williams et al., 2005) and the protection in the South African National Parks.

Furthermore, the population size of black rhino has decreased substantially since the

implementation of the trade ban from approximately 65,000 individuals in 1970 to 2400

individuals in 1995 (Leader-Williams et al., 2005). It is unlikely that the ban directly

led to the increase of black rhino poaching, as this was likely caused by rapid economic

and population growth in Southeast Asia (Milliken et al., 1993). Moreover, the poaching

rate of both African rhino species increased dramatically since 2007 despite the trade ban

(Figure 2.1).

Given the failure of an international trade ban to fully stop rhino poaching, a substantial

number of scientists, policy makers, conservationists and rhino owners have argued to

lift the current ban on international rhino horn trade as a potential solution for the

ongoing rhino poaching crisis (Biggs et al., 2013; Rubino & Pienaar, 2020; Taylor et

al., 2017). This was based on the reasoning of “use it, or lose it”, as substantiated by

the Principles and Guidelines for the Sustainable Use of Biodiversity by the Convention

on Biological Diversity (SCBD, 2004). Rhino horn, which is comprised only of keratin,

can be harvested with no ill effect to the animal’s health (Biggs et al., 2013; Rubino &

Pienaar, 2017). However, others are strongly opposed to lifting this ban for both ethical

reasons and concerns about a further increase in rhino poaching (Cheung, Wang, et al.,

2018; Prins & Okita-Ouma, 2013; Save the Rhino, 2018). This topic has been discussed

during several CITES meetings, which led to votes in 2016 and 2019 that twice rejected

proposals to lift the ban (CITES, 2019; Save the Rhino, 2018). Furthermore, scientists

have been studying the potential effects of a rhino horn trade ban lift for approximately

two decades now (Ayling, 2013; Biggs et al., 2013; Cheung, Wang, et al., 2018; Collins et

al., 2016; Conrad, 2012; Fischer, 2004; Rivalan et al., 2007; Taylor et al., 2017). Overall,

this debate has become polarized, which has led to an apparent deadlock in the discussion

(Committee of Inquiry, 2016; Taylor et al., 2017).



16 Legal international rhino horn trade

The potential conservation benefit of legalizing an animal product market can be divided

into two aspects: 1) a legal competing market could offset poaching, and 2) a legal market

could provide financially viability to keep, protect and breed animal populations (see

section 2.8). Past cases show that the legal commercialization of animal products can go

both ways regarding the conservation of a species; with a (potentially) positive effect in the

case of bison meat, crocodilian skins and trophy hunting, but with a (potentially) negative

effect for elephant ivory and lion bones (see section 2.8). There are thus situational- and/or

context-dependent mechanisms that determine how an animal population responds to

a legal animal product trade (Tensen, 2016). It is important to gauge how the rhino

populations could respond to a legalization of international rhino horn trade.

Here we present an integrative review on the pros and cons of legalizing international

rhino horn trade for the sustained preservation of rhinos in the wild by drawing insight,

plausible reasoning, modelling results and empirical data from scientific and grey litera-

ture of multiple disciplines (Snyder, 2019). In this review, we discuss four mechanisms (in

no specific order) that change or come into play if international rhino horn trade would be

legalized and how these mechanisms will potentially impact wild rhino populations (Fig-

ure 2.2). We identified the following mechanisms as the most frequently occurring ones

in scientific literature, in grey literature, and in the arguments of conservationists, policy

makers and private rhino owners: 1) financial viability for private rhino owners, 2) rhino

horn demand, 3) laundering of rhino horns, and 4) behaviour of rhino horn consumers.

These four mechanisms were selected by the authors after thoroughly familiarizing them-

selves with the topic through past work experience and reading top results from literature

search engines about wildlife trade and farming, but without strong a priori hypotheses

about how each of the mechanisms would influence the study’s conclusion. The authors

varied in their initial ideas about whether or not rhino horn trade could benefit rhino

conservation, thereby limiting a potential researcher bias in the selection of the mecha-

nisms. However, we do not suggest that the selected four mechanisms provide a complete

description about what will happen if rhino horn trade is legalized, but we do posit these

mechanisms to be of major importance. We collected and studied the literature ad hoc

to get a thorough understanding about the mechanisms and how these would influence

rhino populations in the case of a horn trade legalization. We did this by first reading the

top results from literature search engines while searching for keywords related to these

mechanisms and wildlife trade and farming. Upon noticing contradictions in views or

knowledge gaps, we continued our search by using more specific keywords. These latter

search results were often read with the purpose to retrieve an answer on specific questions,

in order to get a complete overview of the effects of the mechanisms.
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Figure 2.2: Conceptual diagram of the international legal rhino horn trade scenario

with farmed and wild rhino populations, legal and illegal markets, and four identified

mechanisms (as discussed in the four main sections of this study): a) financial

viability for private rhino owners, b) rhino horn demand, c) laundering of rhino

horns, and (d) behaviour of rhino horn consumers. Green arrows represent a

potential positive effect (higher/larger source leads to a higher/larger destination),

red arrows a potential negative effect (higher/larger source leads to a lower/smaller

destination) and green/red arrows both a potential positive and negative effect. An

improved financial viability for private rhino owners has been hypothesized to benefit

both farmed and wild rhino populations, rhino horn demand has been hypothesized

to increase with a legal market, laundering has been hypothesized to allow for an

increase in illegal horn trade with a legalized market, and it has been hypothesized

that programmes aimed at changing the behaviour of rhino horn consumers will be

less effective with the existence of a stigma-removing legal rhino horn market.
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After discussing the four aforementioned mechanisms, we combine our insights into a con-

clusion where we evaluate each mechanism and whether it will have a positive, negative,

or still unknown effect on the future wild rhino population size. We weigh the relative

importance of these mechanisms and their potential effect on the wild rhino population

through plausible reasoning to come to an overall recommendation about legalizing inter-

national rhino horn trade. We conclude by giving suggestions for future research and for

a policy agenda that would benefit rhino conservation the most according to our study.

In our study we focus primarily on the two African rhino species and often in the setting

of South Africa (as South Africa harbours the majority of all rhinos on Earth at present),

even though we acknowledge the importance of other countries with rhino populations and

the situation of the more rare Asian rhino species. Nevertheless, since illegal wildlife trade

is an interlinked and global system, we posit that our review provides a valid overview

for the situation of all rhino species by primarily considering the world’s largest rhino

population as a case study.

2.2 Financial viability of private rhino ownership

The majority of South African rhinos (both black and white) currently live in either

government-owned national parks or privately owned game reserves and farms (Child et

al., 2012; Knight et al., 2015). In national parks, large amounts of money are often spent

on wildlife protection, paid for by revenues from tourism as well as by affluential external

donors and the state (Annecke & Masubelele, 2016). Privately owned game reserves and

farms on the other hand, need to be financially viable as a business model. For private

rhino owners, the revenue from keeping rhinos on their lands traditionally comes from

tourism, trophy hunting and live animal sales. When in the early 1990s the subsidy

to agricultural commercial farmers stopped in South Africa, a large number of farmers

reverted to game farming as South African law allowed for private ownership of wildlife

(Child et al., 2012; Taylor et al., 2015). Private wildlife ownership is currently only

allowed in South Africa, Namibia and Zimbabwe (Muir-Leresche & Nelson, 2000), where

private wildlife owners have to abide to the national nature protection laws. Populations

of large game animals have increased in southern Africa through this form of farming

(Child et al., 2012). As 80% of the land in South Africa is privately owned (Cousins et

al., 2008), it is thought that private ownership of rhino on these lands can play a critical

role in the recovery and long-term conservation of the species (Collins et al., 2016; Rubino

& Pienaar, 2017). It is estimated that 33% of the total rhino population in South Africa

is now privately owned (Rademeyer, 2016; Rubino & Pienaar, 2017).

For private rhino owners, the increasing security costs of protecting their rhino from

poaching pose a major problem (Rubino & Pienaar, 2020). Income from the traditional

sources (tourism, trophy hunting and/or live sales) is in many cases not sufficient to cover

the increased costs for protection and at the same time create a financially sustainable
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enterprise (Minnaar & Herbig, 2018; Rubino & Pienaar, 2017). It is estimated that

in 2016, 70 of the approximate 400 private rhino owners in South Africa have removed

rhinos from their land due to financial difficulties and the personal security risks posed by

poachers, amounting to a loss of about 200,000 ha of land available for rhino conservation

(CITES, 2016).

The problem sketched above has fuelled the plea for a lift on the trade ban and legaliza-

tion of the market, with private rhino owners being prominent advocates (Private Rhino

Owners Association, 2017; Rubino & Pienaar, 2020). Lifting the trade ban could enable

private rhino owners to exploit an extra way of gaining revenue from keeping rhinos by

selling sustainably harvested horns (Rubino et al., 2018). This increased revenue could

in turn be used to pay for extra anti-poaching measures by private rhino owners. An

additional advantage that is to be expected when legalizing the trade is that the viability

of rhino farming will get an impulse, leading to more entrepreneurs and land-owners being

interested in keeping rhinos. This will increase the population of captive rhinos, which

benefits the global population of this threatened species. Although the conservation value

of a captive population of rhinos is less than that of a healthy wild population (Redford

et al., 2011), a captive population could be an important buffer in case rhinos become

extinct in the wild.

Another frequently used argument is that tax raised from legally traded horns could flow

back to the protection of wild rhino populations and can be invested in livelihood de-

velopment for communities surrounding these parks, which currently form the cradle of

poachers (Di Minin et al., 2015; Rademeyer, 2012). Di Minin et al., 2015 concluded in a

modelling study that this reinvestment of profit from legal sales would actually be a pre-

requisite for a positive effect of legalizing the market on rhino conservation. Given that the

black market price for rhino horn is currently between US $ 30,000 and 65,000 per kg and

rhino horn farming is profitable from approximately US $ 11,500 per kg onwards (Rade-

meyer, 2016; Rubino et al., 2018), there is ample room for legal sales to yield substantial

financial resources to potentially protect rhinos in such a way that poaching becomes less

profitable (Collins et al., 2016; Di Minin et al., 2015). However, it is unlikely that most of

the tax raised through rhino horn sales will be reinvested in wild rhino conservation, since

health care, housing and education of previously disenfranchised people are politically

more urgent for many African governments. Capitalist governments have independent

processes of harvesting and distributing wealth, meaning that sectors that are taxed for

a certain amount are not compensated with an equal amount of governmental funding.

Furthermore, it is questionable whether private rhino owners are major stakeholders in

wild rhino conservation or not, because they only have an indirect financial incentive to

bargain with the government for a reinvestment of taxes to the protection of wild rhinos.

Less poached rhino horns could of course lead to more consumers for farmed rhino horns,

but the significance of this phenomenon will fade when there would be substantially more

farmed rhinos than wild rhinos.
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Legalizing the rhino horn trade would thus have two main advantages through the mech-

anism of increased revenue for rhino owners. First, the owners will have an incentive for

sustaining a viable captive population of rhinos. Second, there will be money available

for the protection of both private (through sustainably harvested horn sales) and wild

rhinos (through taxes), which in turn can discourage poaching. However, it is unclear

if a substantial amount of the raised taxes will be reinvested in the protection of wild

rhinos.

2.3 Demand for rhino horn

The debate about whether or not to legalize international rhino horn trade often focuses

on what will happen to the market demand (viz., in terms of quantity of rhino horn given

current prices or potentially lower or higher prices), i.e., will the overall demand (legal,

viz., supplied mainly by farms, and illegal, viz., supplied by poachers, combined) increase

and how will the current illegal market respond to a legal market? To adequately answer

these questions it should first be known how large the current demand for illegal rhino

horn is. Some estimated the overall demand for rhino horn by looking solely at the current

illegal supply, concluding that demand for rhino horn can be met with 5000 captive white

rhinos through regular non-lethal harvesting of their horns in South Africa alone (Biggs et

al., 2013; Milliken et al., 2009). However, there are many concerns about this estimation.

First, the current illegal demand is already far greater than the current illegal supply

(USAID Vietnam, 2018; USAID Wildlife Asia, 2018). The United States Agency for

International Development concluded via interviewing 1400 Vietnamese people that are

financially able to buy rhino horn (from five different cities that sustain a black market

in rhino horn) that in Vietnam 10% of the people find it acceptable to buy or own rhino,

of which 10% are currently wealthy enough to afford it (USAID Vietnam, 2018). This

suggests that there is a demand for rhino horn from about a million people in Vietnam

alone. In the 14 times more numerous Chinese population, the USAID surveyed 1800

people (from six different cities that have a rhino horn black market) and concluded that

16% have purchased rhino horn in the past, of which 8% in the past 12 months (USAID

Wildlife Asia, 2018). China and Vietnam combined are thus home to millions of potential

rhino horn consumers. Second, Kotze, 2014 argued that rhino horn farming will produce

too few horns to meet the demand in the near future, considering the horn growth rate

of only 6 cm per year on average (Pienaar et al., 1991) and the low reproduction rate

of one calf per 3-5 years (Patton et al., 1999; Swaisgood et al., 2006). Third, Prins and

Okita-Ouma, 2013 argued that Biggs et al., 2013 overlooked the demand for the other

four rhino species; the suggested yield of legal supply is often based on rhino farming in

southern Africa and overlooks Asian rhino species, which are not currently farmed and

are desired for their horns nonetheless. To conclude, current illegal demand is likely far

greater than current illegal supply, with the current estimation of potential buyers far
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exceeding the amount a legal supply could realistically meet in the (near) future (USAID

Vietnam, 2018).

Current demand for rhino horn will likely not stay the same with a legalization of rhino

horn trade and it should thus be estimated how the overall demand will change. First

of all, future overall demand is likely to increase with economic and population growth

in Asia, regardless of rhino horn trade legalization (Tensen, 2016; Vigne et al., 2007).

Furthermore, if the trade ban is lifted new forces will start to influence the demand for

rhino horn as well (Fischer, 2004). An important new force is the removal of the stigma

that comes with buying illegal products. Although Biggs et al., 2013 assumed that with

a legal rhino horn trade “the demand does not escalate to dangerous levels as the stigma

associated with the illegality of the product is removed”, plenty of other studies argued

that the demand will likely increase significantly because of the removal of the stigma

(Collins et al., 2013; Fischer, 2004; Prins & Okita-Ouma, 2013), at least for law-abiding

consumers (Fischer, 2004; USAID Vietnam, 2018; USAID Wildlife Asia, 2018). Another

market force that could result in an increased demand after legalization is the reawak-

ening of old markets, particularly markets that were active in the 1970s and 1980s in

Taiwan, Japan, Singapore and Yemen (Prins & Okita-Ouma, 2013), which could thus

reverse the decreased demand in these old markets (Graham-Rowe, 2011). In addition

to traditional consumer countries, there are also new (e.g., African) countries that sell

Traditional Chinese Medicines in their drug stores and where people start to believe that

wildlife products (including rhino horn) can cure diseases (Cyranoski, 2018). These new

local markets are often overlooked in the estimation of demand. Moreover, a substan-

tial increase in demand (both legal or illegal) could further promote the tragic positive

feedback loop between demand and the rhino extinction rate, which is coined the An-

thropogenic Allee Effect (Challender & MacMillan, 2014; Hall et al., 2008). The Anthro-

pogenic Allee Effect indicates that when the abundance of an animal species decreases,

the demand for its products will increase due to its rarity (Hall et al., 2008). Accounting

for all the aforementioned market forces, the overall demand for rhino horn is expected

to grow significantly with a legalized market, although the recent COVID-19 pandemic

may affect people’s attitudes towards using products of wild animals in unforeseen ways

(Lam et al., 2020).

Ideally, with a legal market that would be supplied mainly by rhino farmers, the illegal

demand for poached horns would disappear or at least become substantially smaller.

Unfortunately, how the illegal demand for rhino horn will respond exactly is uncertain

(Fischer, 2004). From an economic perspective, illegal traders and farmers can compete

with each other in multiple ways that could either benefit or devastate rhino conservation

(Damania & Bulte, 2007). From a social perspective, people that fear heavy penalties

for consuming illegal products will likely shift from the illegal to the legal market when

effective law enforcement is in place. The same applies to people that care about animal

welfare or conservation. These three deterrents have been mentioned by 71-76% of the
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242 interviewed Vietnamese illegal rhino horn consumers (USAID Vietnam, 2018), so it

can be assumed that a substantial portion of the current illegal consumers will consider

switching to a legal market. On the other hand, some people have a preference for illegally

harvested (‘wild’) horns, e.g., those that prefer to buy larger horns as a status symbol and

those that believe that the suffering of the animal enhances the ‘potency’ of the medicine

(Cheung, Mazerolle, et al., 2018; Hanley et al., 2018; Tensen, 2016). It is thus likely that

an illegal market will always persist parallel to a legal market and this should not be

neglected in the debate around the legalization.

Given the high likelihood of a substantially increasing demand with trade legalization, it is

important to consider effective market forces to regulate this increase to avoid it leading

to the detriment of wild rhino populations. Price is such a force that many studies

proposed to influence the market demand (Milner-Gulland, 1993). However, the effect

of price on the overall demand as well as on the illegal demand is ambiguous and may

yield counterintuitive results. For the overall demand, lower prices make on the one hand

rhino horn affordable to more buyers, which could lead to an increase in overall demand

(USAID Vietnam, 2018). On the other hand, a lower price could also weaken the effect of

the Anthropogenic Allee Effect, i.e., a lower price makes it less attractive for people that

are after luxurious or rare products. For the illegal demand, Biggs et al., 2013 argued that

lower prices in the legal market will likely diminish it. While it is true that a lower legal

price can motivate people to move from the illegal to the legal market, it is not always the

case. Like with marijuana, a legal market is more likely to reduce the illegal market when

its price can compete with the illegal market (Morris, 2018). Wildlife product markets

are very different from perfect competition markets, suggesting that lowering the price

may not be a good strategy, as it is hard to make sure that the price in the legal market

is always lower than the illegal price. For example, farmed tiger bones are 50-300% more

expensive than from poached tigers (EIA, 2013). Also, illegal elephant tusks were sold for

only a third of the price of legal tusks (Fischer, 2004). As for rhino farming, the minimum

price for rhino horn to be profitable is approximately US $ 11,500 per kg (Rubino et al.,

2018). If crime networks are able to supply horns at a lower price it is still likely that

consumers will buy illegal products. However, 63% of the 242 Vietnamese illegal rhino

horn consumers would be willing to pay more if the product is scientifically tested by a

trusted supplier and 72% would still buy rhino horn with a 10% increase in price (USAID

Vietnam, 2018). So a substantial portion of the current illegal consumers is likely to

move to the legal market, even if legal prices cannot fully compete with illegal prices. On

the other hand, consumers often overstate their willingness to pay a premium (Katt &

Meixner, 2020). Furthermore, these results also show that price is only a minor concern

to current rhino horn users (USAID Vietnam, 2018; USAID Wildlife Asia, 2018). This is

backed up by the notion that demand for rhino horn is inelastic to price changes (Crookes

& Blignaut, 2015; Milner-Gulland, 1993). For instance, the demand for rhino horn rose

substantially in Yemen despite a 40% increase in price within four years (Vigne et al.,
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2007) and modelling studies have suggested that reducing the price of rhino horn will not

curb rhino poaching (Crookes, 2017). These results suggest that the overall demand for

rhino horn is insensitive to an increase or decrease in price.

The improbability of price being able to control the demand urged researchers to look

into social instead of economic forces. These social forces turned out to be more effective

than price in a modelling study about the rhino horn case (Crookes & Blignaut, 2015).

First, the consumption motives of rhino horn buyers in Southeast and East Asia should

be known to be able to adequately respond to it. According to results of interviews

with 242 Vietnamese illegal rhino horn buyers, the two main drivers of purchase are that

rhino horns “are worth their price no matter how expensive” and “indicate wealth, power

and social status” (USAID Vietnam, 2018). The status and cultural pride of the elite

increases when the prices of ’must-have’ status symbol products are high. The way to

reduce the demand of these Vietnamese people are for example strategies related to heavy

penalties and a focus on animal cruelty (USAID Vietnam, 2018). In a similar study, 140

Chinese illegal wildlife product buyers primarily mentioned that rhino horn “brings good

health” and “cures illness” (USAID Wildlife Asia, 2018). In addition, an underestimated

driver for buying rhino horn in China is the art and antiques market (Gao et al., 2016).

Therefore, eliminating concerns about modern medical practices and increasing public

awareness about animal conservation are key to reducing wildlife consumption in China.

Understanding and anticipating the underlying consumption motives of rhino horn buyers

thus seems more helpful in reducing demand than price changes.

In short, demand for rhino horn is currently much larger than supply and is expected to

increase with economic and population growth in Asia (Tensen, 2016; USAID Vietnam,

2018; USAID Wildlife Asia, 2018; Vigne et al., 2007). With legalization of the market,

demand is likely to increase further (in current, old and new markets) when the stigma

around buying rhino horn is removed and potentially also due to the Anthropogenic Allee

Effect (Challender & MacMillan, 2014; Hall et al., 2008). It will most likely be impossible

to satisfy the demand with legal horns alone, due to a preference of some consumer groups

for illegal (‘wild’) horns and the potentially lower price of illegal horns (Cheung, Mazerolle,

et al., 2018; Hanley et al., 2018). The demand for illegal horn could however be reduced

through a simultaneous increase in law enforcement combined with severe penalties for

buying illegal horn (Tensen, 2016).

2.4 Laundering of rhino horns

The issues and debates about the demand for rhino horn suggest that legal and illegal

markets are likely to co-exist after trade legalization, not only for consumers but also

for suppliers (Fischer, 2004). Illegal rhino horn traders are likely to remain in business

after trade legalization and could start laundering their products into the legal market

(Collins et al., 2013; Fischer, 2004). This is the case with legal ivory trade as well, where
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‘ghost ivory’ (post-1947 ivory being sold as pre-1947 ivory) and ‘look-alikes’ (e.g., elephant

ivory fraudulently mislabelled as mammoth ivory) are being sold to the unsuspecting and

uneducated buyers (CITES, 2019; Collins et al., 2017). Under such conditions, a legal

market can actually give an incentive to illegal suppliers by lowering the chances of being

caught in an illegal exchange, as corruption reduces the rhino horn confiscation rate

(Fischer, 2004; Van Uhm, 2018b). For example, corruption amongst government officials,

e.g., via threats and commission payments (Collins et al., 2016; Rademeyer, 2012), can

allow for the entering of illegal products into legal markets (Bennett, 2015). A similar

situation was found for the legal trade of ivory, in which eight of the twelve African

countries that are home to the majority of elephant populations belong to the top 40%

of the world’s most corrupt countries (Transparency International, 2013; UNEP et al.,

2013).

Widespread corruption exists and expands to all nodes in a trade chain (Bennett, 2015).

Examples of wildlife trade related corruption exist in justice, economic and political sys-

tems (Wyatt et al., 2018), where acts of corruption on an individual level include bribes,

patronage, diplomatic cover and permit abuse (Corruption Tracker, 2011; Nshuli, 2013;

Walker, 2009; Wyatt et al., 2018). For example, a number of rhinos were actually poached

by people who were employed to guard them in Africa during the 1970s and 1980s (Fis-

cher, 2004). More recently in South Africa’s Kruger National Park, police officers and

rangers were directly involved in poaching (Anderson & Jooste, 2014). Similar situa-

tions were discovered in other rhino poaching hotspots in Africa as well (Smallhorne,

2013). For example in Kenya, the stronghold of the eastern black rhino (containing 87%

of the subspecies’ population), the internal government corruption worsened the problem

of population decline (Anderson & Jooste, 2014).

Due to the aforementioned effects of corruption and laundering, legalizing rhino horn trade

would at least need a highly regulated trading system if rhinos are to be preserved. A

Central Selling Organization, the system with the largest control, was proposed by Biggs

et al., 2013. To reduce the effects of corruption, they suggested to shorten the market

chain between suppliers and buyers (Biggs et al., 2013). However, an illegal supply can in

reality always be present as corruption within the Central Selling Organization could still

support laundered poached horns to end up on the legal market (Bennett, 2015; Fischer,

2004). This was the case in the highly controlled diamond trade, where an estimated

5 to 10% of the world’s legal diamond market consisted of ‘blood diamonds’ (Baker,

2015). Considering the huge demand for rhino horn and the small rhino population

(USAID Vietnam, 2018), a potential 5% illegal horns would already be problematic for

the survival of the species. Biggs et al., 2013 also proposed DNA profiling to track

the legality of individual horns. However, this will not only inhibit the potential use of

synthetic horns, but also that of buffalo horn and wood that circulate as ‘rhino horn’ and

which currently comprise a substantial proportion of the market (Collins et al., 2013; Save

the Rhino, 2016b). The demand for genuine rhino horn could therefore increase, together
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with the negative consequences (Collins et al., 2013). Furthermore, DNA profiling will

likely increase the price of legal rhino horns.

In short, corruption is unfortunately a large problem worldwide, also along the rhino horn

trade route in Africa and Asia (Emslie & Brooks, 1999; Wyatt et al., 2018). The illegal

supply of rhino horn is therefore likely to increase when legalizing international rhino horn

trade due to laundering and corruption (Van Uhm, 2018b), even with a highly regulated

trading system (Bennett, 2015; Collins et al., 2013; Fischer, 2004).

2.5 Long-term behavioural change of rhino horn con-

sumers

It is generally thought that the ultimate solution to stop rhino poaching lies in a change

of the consumers’ behaviour (Litchfield, 2013). The demand can be drastically reduced

if not eliminated, by creating a uniform morality that it is wrong to purchase products

that have such a clear negative effect on the survival of a threatened species and by

providing alternatives to fulfil the need for the product (Litchfield, 2013). This can only

be accomplished by a global change in consumer behaviour. Despite the efforts of non-

governmental organisations and conservation incentives (Biggs et al., 2013; Holden et al.,

2019; St John et al., 2010), this has not been achieved yet, as illustrated by the high

poaching rates and large demand for rhino horn and other wildlife products (Save the

Rhino, 2020; USAID Vietnam, 2018; USAID Wildlife Asia, 2018).

Environmental awareness programmes are believed to increase knowledge and concern

(Sampei & Aoyagi-Usui, 2009), but there seems to be a value-action gap remaining in the

general public (Kollmuss & Agyeman, 2002). Furthermore, the outcome of programmes

to reduce consumer demand for wildlife products are only known for about 37% of the

programmes, and the ecological impact has been reported for only 9% (Veŕıssimo & Wan,

2019). An extra complication in the rhino poaching crisis is the scale of the problem.

While local awareness programmes can have strong positive effects on local environmen-

tal problems, e.g., overexploitation by subsistence hunting (Campos-Silva et al., 2017)

or human wildlife conflicts (King et al., 2017), the illegal rhino horn trade represents

an international conservation crisis that involves many stakeholders other than the local

consumers (Milliken & Shaw, 2012; Sutherland et al., 2014). Especially with the current

rise in popularity of Traditional Chinese Medicine, as promoted by the Chinese govern-

ment (Cyranoski, 2018; Master, 2019) and supported by the World Health Organisation

(Matthews-King, 2019; WHO, 2013), the market for perceived medicinal uses of rhino

(and other wildlife) products is increasing (Master, 2019; Tang et al., 2018). Further-

more, half of all planned purchases of rhino horn products in Vietnam were motivated

by the advice of a traditional medical doctor (USAID Vietnam, 2018). Current rhino

horn buyers in Vietnam indicated that although they were aware of the extinction risk
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for rhinos, they do not feel responsible for the killing themselves as they “are one of

many consumers”, “do not kill the animals themselves” or “do not buy products regularly

nor in high quantities” (USAID Vietnam, 2018). These beliefs in combination with the

commercial and governmental lobby for the use of Traditional Chinese Medicine make it

difficult to campaign for the exact opposite However, the incrimination of pangolins as

the origin of the COVID-19 pandemic may put traditional misuse of wild animals in a

new unfavourable light (Lam et al., 2020).

In addition to environmental awareness programmes, law enforcement on the consumer

side of the trade could also change the behaviour of potential buyers of rhino horn (Olmedo

et al., 2018). Buyers of rhino horn in both Vietnam and China indicated that the top

deterrents for future purchases are the link of rhino products to organised crime and the

personal risk of violating the law (USAID Vietnam, 2018; USAID Wildlife Asia, 2018).

When prioritized by the governments of consumer countries, more severe penalties for

rhino horn owners could be implemented and effective law enforcement established. This

has the potential to change the behaviour of consumers in both the short and long term

(Olmedo et al., 2018).

Legalizing the market can be considered the complete opposite of campaigning to reduce

consumer demand. By making it legal to sell and buy rhino horn products, the stigma

around these products is removed and a signal that it is acceptable and useful to buy rhino

horn is implicitly given (Biggs, Holden, et al., 2017). This may hamper critical thinking

by consumers about their own behaviour and limit the impact of education programmes

on the matter. As a comparison, legalization has increased the demand for other products

in the past (see section 2.8). For marijuana the total consumption rose after legalization

due to an increase in new users and extended consumption by regular users (Pacula,

2010). Furthermore, after legalizing crocodilian skin trade, the demand remained robust

for the high-end products (alligator and crocodile skins) and increased dramatically for

the lower-cost (caiman) products (MacGregor, 2002).

In the long term, involving consumers and informing them about the consequences of their

choices is an essential aspect of saving the rhino as a species (Biggs, Cooney, et al., 2017).

This can perhaps best be achieved by emphasizing the lack of efficacy of rhino-based

Traditional Chinese Medicine by engaging professional medical doctors in China, who

have essentially the same ethical standards as their counterparts in the U.S.A. (Nie et al.,

2015). In the long run, such demand-reduction programmes may be more cost-effective

and better able to tackle the complexity of the trade than increasing anti-poaching en-

forcement, independent of the initial price of wildlife products or ecological parameters

(Challender & MacMillan, 2014; Holden et al., 2019). However, for demand-reduction

programmes to become truly effective, conservationists need to adopt more rigorous im-

pact evaluation strategies (Olmedo et al., 2018; ‘t Sas-Rolfes et al., 2019; Veŕıssimo &

Wan, 2019). Nevertheless, given the current critical situation of rhino populations, more
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short-term measures, e.g., law enforcement (Olmedo et al., 2018), should be implemented

as well to ensure the survival of the rhino species. In either scenario, legalizing the rhino

horn market will likely hamper any demand-reduction strategy.

2.6 Discussion

Evaluating the effects of the four mechanisms separately on the rhino population in the

situation of a legalized trade (Figure 2.3), we can summarize that 1) an improved financial

viability of private rhino ownership will likely have a positive effect on the captive rhino

population in countries that allow private wildlife ownership, i.e., South Africa, Namibia

and Zimbabwe (Muir-Leresche & Nelson, 2000). However, it is questionable if this will lead

to a substantial conservation benefit for wild rhino populations. 2) It will most likely be

impossible to satisfy the demand with legal horns alone in the near future (Tensen, 2016;

USAID Vietnam, 2018; USAID Wildlife Asia, 2018). Therefore, legal and illegal trade

circuits would probably exist in parallel due to a preference of some consumer groups for

illegal (‘wild’) horns and the potentially lower price of illegal horns (Cheung, Mazerolle, et

al., 2018; Hanley et al., 2018; Rubino et al., 2018). 3) Corruption is widespread and likely

to remain present in all nodes of the trade chain and can stimulate the illegal trafficking of

poached rhino horns through laundering channels into the legal market (Van Uhm, 2018b),

thereby keeping the poaching incentive alive. Furthermore, even in a tightly controlled

market system corruption will most likely still allow for an influx of poached horns from

African countries, as is the case with blood diamonds and ivory (Baker, 2015; Bennett,

2015; Fischer, 2004; Wasser et al., 2015). 4) Behavioural change of rhino horn consumers

has often been suggested as the ultimate solution to stop rhino poaching, but legalizing

the rhino horn market could likely negatively affect efforts taken in this direction (Biggs,

Holden, et al., 2017). By legalizing the rhino horn market the stigma around buying

illegal products of poached and threatened animals will be removed, which could cause an

overall increasing interest in rhino horn (as happened for crocodilian skins and marijuana)

in the future (MacGregor, 2002; Morris, 2018; Prins & Okita-Ouma, 2013).
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Figure 2.3: The mapped conservation benefit (y-axis, from red to green) and

certainty (x-axis, from grey to transparent) of the four discussed mechanisms

(financial viability for private rhino owners, rhino horn demand, laundering of rhino

horns, and behaviour of rhino horn consumers) on rhino populations: a) business as

usual scenario for wild rhinos, b) legal trade scenario for farmed rhinos, and c) legal

trade scenario for wild rhinos. The symbols are identical to Figure 2.2.
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Cases of trade legalization from the past show that the legal commercialization of animal

products can go both ways regarding species’ conservation; with a (potentially) positive

effect in the case of bison meat, crocodilian skins and trophy hunting, but with a (poten-

tially) negative effect for elephant ivory and lion bones (see section 2.8). To determine how

the rhino populations will respond to the legalization of international rhino horn trade, it

needs to be evaluated what makes a legal animal product market sustainable to benefit

species conservation (SCBD, 2004; Tensen, 2016). Tensen, 2016 determined that wildlife

farming (to supply legal products) can benefit species conservation only if five different

criteria are met. First, consumers should show no preference for products originating

from wild-caught animals. This likely does not apply to all buyers of rhino horn, as larger

horns from poached rhinos function better as status symbols and horns from rhinos that

suffered are believed by some to increase their medicinal potency (Cheung, Mazerolle,

et al., 2018; Hanley et al., 2018). Second, a substantial part of the demand should be met

and the demand should not increase due to a legalized market. This probably does not

apply to rhino horns either, because demand is unlikely to be met by rhino farming in the

near future (USAID Vietnam, 2018; USAID Wildlife Asia, 2018). Third, legal products

should be more cost-efficient in order to combat the black market prices. This criterion

likely does not apply to rhino horn as rhino horn farming was estimated to only be prof-

itable without subsidies when horn is sold at a minimum price of US $ 11,500 per kg

(Rubino et al., 2018). In contrast, poached rhino horn would probably still be profitable

at a much lower price if the risks of rhino poaching do not increase substantially compared

to the current situation (Conrad, 2012). Fourth, wildlife farming should not rely on wild

populations for restocking. This would likely hold true for rhino farming if captive pop-

ulations are well protected, because already more than 30% of all South African rhinos

are privately owned and due to the aridification of farming grounds more area is expected

to become available for rhino farming in the near future (Rademeyer, 2016; Rubino &

Pienaar, 2017). Fifth, laundering of illegal products into the commercial trade should

be absent. This will likely not be the case for rhino horn farming given the enormous

value of the product, the trade network that is already involved and the corruption that

is present in many African and Asian countries (Collins et al., 2013; Fischer, 2004; Wyatt

et al., 2018). In short, the case of rhino horn farming complies with only one of the five

criteria that are needed for wildlife farming to benefit species conservation. According to

Tensen, 2016 even a minor violation of any of the criteria will result in a negative outcome

of wildlife farming to species conservation, but even if a minor violation of these criteria

could be compensated for by the other criteria then violating four out of five criteria

will likely not result in a benefit for rhino conservation from farming rhino commercially.

Similar to this prediction for the rhino horn trade, a modelling study deemed sustainable

harvesting of elephant ivory to be impossible (Lusseau & Lee, 2016), and an assessment

framework study deemed pangolin farming to be unable to yield a conservation benefit

(Challender et al., 2019; Phelps et al., 2014).
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Providing recommendations about scenarios that have never happened before (viz., legal-

izing international rhino horn trade) is challenging, as this is inherently coupled with a

lack of empirical data. As a consequence, all our conclusions could only be determined

with a certain level of certainty (Figure 2.3). In order to increase the certainty of inferences

that can be made about potential effects of legal horn trade on wild rhino populations,

we would suggest to focus future research on three topics. 1) Quantify and describe the

current demand for rhino horn and the potential demand for legal rhino horn better. Al-

though recent studies have taken important steps in this direction (USAID Vietnam, 2018;

USAID Wildlife Asia, 2018), there is potential to better clarify the number of (potential)

consumers, the amount of rhino horn they (want to) consume per time unit, the amount of

money they are realistically willing to pay per unit of legal and illegal rhino horn, their rea-

sons for purchasing rhino horn, and under which circumstances they are willing to switch

to a legal market. This can be achieved through surveys and undercover intelligence

in Southeast Asia. This information is critical to make more certain conclusions about

whether or not there is potential for an illegal rhino horn market to exist in parallel to a

legal market. 2) Rhino horn demand-reduction programmes should adopt more rigorous

impact evaluation strategies. As demand-reduction is often a long-term process, studies

should ideally be designed in such a way that it allows for demand-reducing strategies to

be effective over multiple years and that the impact of the strategies are quantitatively

evaluated for multiple times during this period. Because these programmes are arguably

the only solution to stop the demand for rhino horn entirely and because these are likely

to take a long time to take effect, efforts taken in this direction should be properly cho-

sen, evaluated and ultimately optimized. 3) Economic and political avenues should be

explored and substantiated about how a legal market of farmed rhino horns could benefit

wild rhino populations in national parks and private game reserves. The financial benefit

for rhino conservation related to farmed rhinos is clear, but it is not yet clear through

which mechanisms this could benefit wild rhino populations. As both a healthy captive

and wild population of rhinos could be important in preserving these species during the

Anthropocene, the benefit of legal horn trade should be clear for the entire gradient of

captive to wild rhino.

2.7 Conclusion

A legal rhino horn trade will most likely not be able to satisfy demand in the near future

and will likely even lead to an increase in demand (Figure 2.3c). Omnipresent corrup-

tion in countries along the rhino horn trade routes will, together with demand for illegal

(‘wild’) horns, facilitate the co-existence of legal and illegal markets. In addition, le-

galization will remove the stigma associated with the consumption of illegal products

and will therefore counteract long-term behavioural change programmes targeted at con-

sumers, which is arguably the ultimate solution to wildlife crime. Only one of our four
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considered mechanisms (an increased revenue for private rhino owners) will likely have a

positive impact on rhino conservation, but primarily for the captive rhino populations in

countries that allow private wildlife ownership. However, this one minor positive impact

for rhino conservation will most likely not be able to offset the other negative impacts

of trade legalization (Figure 2.3c). Based on this review, we therefore recommend not

to legalize an international trade in rhino horn. Instead, we suggest to focus efforts on

creating well-protected ‘safe havens’ for the remaining wild rhino populations to bridge

the current period of high demand (short-term approach) and on programmes aimed at

reducing rhino horn demand (long-term approach). We acknowledge that this strategy is

not perfect, because rhinos are still poached in well-protected reserves and behavioural

change programmes still need to improve and prove their effectiveness, which is why our

proposed strategy requires substantial (international) effort.

One could argue that rhinos should be preserved as a species, instead of prioritizing

rhinos in the wild. Focusing on preserving rhinos in the wild through a legal trade ban

has the likely consequence that far less captive rhinos will be kept. Even though healthy

wild animal populations are generally thought to have a higher conservation value than

captive populations (Redford et al., 2011), if in spite of all efforts rhinos do become extinct

in the wild, then it might complicate future reintroduction efforts to have fewer captive

rhinos. This is a risk that should not be underestimated, which makes our suggested short-

term approach of creating well-protected ‘safe havens’ for wild rhino populations all the

more relevant (Welgevonden Game Reserve, 2020). Regardless of one’s opinion to legalize

an international rhino horn market or not, both anti- and pro-trade strategies to save

the rhino from extinction are likely only possible after corruption has been reduced, more

rhinos have been bred and illegal demand has been reduced (Committee of Inquiry, 2016).

The debate about legalizing the rhino horn market should thus not prevent stakeholders

from working together to achieve these goals (Sandbrook et al., 2019).
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2.8 Supplementary materials

There has been a persistent drive for free markets and a trade-barrier free world during

the last two centuries (Irwin, 1995; Wiseman & Ellig, 2007), also in developing countries

(Rodriguez & Williams, 1994). It has even been argued that the environment can be

best preserved through free trade (Schoenbaum, 1992; Yu, 1994), but there may be many

hidden motives behind arguments in favour or against environment-related free trade

(Soloway, 1999). The idea of legalizing trade of a product as a means to decrease related

illegal activities and/or increase wildlife populations is not new. The first aspect of this

legalization process is based on the argument that a legal competing market can offset

criminal activities. For example, this aspect is one of the most important considerations

for national governments to legalize drug use and sales. The potential for this to work

has been demonstrated in several U.S. states, where the number of people involved in the

illegal production and distribution of marijuana decreased drastically after the legalization

of recreational marijuana use (Morris, 2018). The increase in marijuana demand due to

its legalization has been more than offset by the reductions in crime associated with the

legalization (Morris, 2018; Pacula, 2010). However, an important side note is that the

decrease in criminal activities will be smaller in markets that are less competitive, viz.,

where the price of legal products cannot be reduced substantially compared to the original

illegal price (Morris, 2018). Another related case are the so-called ‘blood diamonds’,

viz., diamonds that are mined in war zones and sold to fuel the economy of invading

or rebel armies. The Kimberley Process Certification Scheme was set up in 2003 as an

international agreement to give ‘clean diamonds’ the legal certificates that are required

for regulated trade. It has been estimated that blood diamonds now make up 5 to 10% of

the world’s diamond market, compared to 25% before 2003 (Baker, 2015). However, the

certification scheme failed to prevent the laundering of blood diamonds through bribery

and international smuggling, thereby making it possible for blood diamonds to acquire

certificates as well (Baker, 2015). By design, it also does not prevent human-rights abuses,

natural resource exploitations or even crimes by government armies, which happened for

example in Zimbabwe in 2008 (Baker, 2015).

The second aspect of the legalization process to increase wildlife populations, is about

increasing the population size by making it financially viable to keep, protect and breed

captive populations. This is not unlike trophy hunting in Africa, which has generated

substantial financial support of conservation efforts for target species and natural areas

when managed properly (Dickman et al., 2019; Leader-Williams et al., 2005; Lindsey et

al., 2007). A specific example of this is the white rhino itself, of which the population has

increased drastically due to private ownership and trophy hunting (Leader-Williams et al.,

2005; Roe & Cremona, 2016). However, when poorly managed trophy hunting can have

deleterious genetic effects, alter the age/sex structures or even result in population declines

of target species (Crosmary et al., 2013; Loveridge et al., 2007; Milner et al., 2007; Packer
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et al., 2011). Furthermore, body parts of poached animals can be trafficked by being

concealed as trophies, which has happened with rhino horns from South Africa (Ayling,

2013; Cota, 2013; Rademeyer, 2016). Another case where the animal population increased

due to the animals’ legal economic exploitation is the conservation of American bison, a

species that went down in population from more than 60 million individuals around 1800

to 541 in 1889 and back up to approximately 15,000 wild and 500,000 farmed bison in

2010 (Aune et al., 2017; Environment News Service, 2010). Their conservation is to a

large extent the result of private ownership and farming for meat and tourism (Lueck,

2002).

The combined process of reducing criminal activities, i.e., poaching and trafficking, and in-

creasing the animal population size by legalizing trade also has cases from the past. Inter-

national trade of African elephant ivory has been banned since 1989, which allowed some

populations (especially the adequately protected) to recover (WWF, 2019). However, for

elephant poaching in the Luanga valley (Zambia) the sole explanation for fluctuations

in illegally killed elephants was resource allocation, viz., if more money was allocated to

anti-poaching it resulted in fewer kills, regardless of the ban on ivory trade (Jachmann &

Billiouw, 1997). Since 1997 two countries have been allowed to sell their stockpiles of ivory

twice (Fischer, 2004). Some scientists and conservationists argued that these stockpile

sales have led to an increase in elephant poaching rate (Hsiang & Sekar, 2019; Lemieux &

Clarke, 2009; Sekar et al., 2018; Thornton et al., 2000), while others claimed these legal

sales did not elicit a poaching response (Fischer, 2004). However, according to simple eco-

nomic theory poaching should have decreased due to an increased ivory supply if the legal

sales did not elicit a poaching response (Fischer, 2004). Furthermore, the lift of the ban

would likely not have a positive effect on the elephant population size when unregulated

domestic ivory markets exist nearby, because poached ivory can be smuggled abroad via

these domestic markets (Lemieux & Clarke, 2009). Moreover, elephant poaching rates

have increased substantially since 2003, with an estimated 50,000 poached elephants in

2013 out of an estimated 434,000 remaining individuals at the time (Wasser et al., 2015).

A DNA study that was performed on seized ivory shipments showed that there are two

poaching hotspots of African elephants since 1996: one in Tanzania / Mozambique and

the other in Gabon / Republic of Congo / Central African Republic (Wasser et al., 2015).

These countries are not allowed to sell their stockpiles of ivory themselves, but it demon-

strates that massive poaching rates can still occur despite having trade bans or other

regulations in place, likely facilitated by corruption and a lack of enforcement (Bennett,

2015; Wyatt et al., 2018).

A second case comparable to the partial elephant ivory trade ban lift, is the legal trade

in crocodilian skins. Before the 1975 trade ban, wild crocodiles were in severe decline

due to unsustainable harvesting of their skins (Hutton & Webb, 2002). This harvest rate

decreased after the trade ban, but since legal harvesting of crocodilian skins in ranches

was allowed since 1981 illegal harvesting came to a near-complete stop (Hutton & Webb,
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2002), with a notable exception in Thailand where crocodiles were poached to near ex-

tinction due to skin laundering after the implementation of crocodile farming (Damania &

Bulte, 2007). After the crocodilian skin trade legalization the demand remained robust for

the high-end products (alligator and crocodile skins) and increased substantially for the

lower-cost (caiman) products (MacGregor, 2002). Therefore the case of crocodilian skins

could potentially provide a case of a sustainable legal wildlife market that has been able

to displace unsustainable illegal harvesting (Hutton & Webb, 2002). Another explanation

for the decrease in poaching could be that crocodile numbers are globally so low (except

for saltwater crocodiles) that poaching is less profitable nowadays (Milman, 2015). Fur-

thermore, recent trends in Egypt show that crocodile poaching is increasing again, with

local Nile crocodile populations decreasing as a result (Schwartzstein, 2017). However,

this increase in crocodile poaching in Egypt is most likely the cause of human-wildlife

conflict where the skins are sold for a low price as a by-product (pers. comm. Mo-

hamed Ezeldein Abdalatef, Crocodile Management Unit, Egyptian Environmental Affairs

Agency, 23-11-2019). On the other hand, in the Classical antiquity, when the crocodile

population was likely much higher than today, hunting and breeding of crocodiles was

practiced simultaneously for the same purposes (Porcier et al., 2019; Van Uhm, 2018a).

This could suggest that the decrease in crocodile poaching of the past decades was not

necessarily a direct consequence of crocodile farming and that crocodile poaching could

potentially increase in the near future (Porcier et al., 2019; Schwartzstein, 2017), but this

cannot be concluded definitively at this stage.

The last case we highlight is the intertwined market of tiger and lion products. Stricter law

enforcement led to a shift in demand from illegal tiger parts to easier attainable (and in

part legal) lion products (Tensen, 2016). Consequently, the amount of lion bones exported

from South Africa to Asia increased from 59 skeletons in 2008 to 1500 in 2018 (Kollapen,

2019; Williams et al., 2015). Most of these bones originate from breeding farms, where

lions are kept under conditions that are considered by many as unacceptable (Ashcroft,

2019; Lindsey et al., 2012). When not butchered, these lions are often used for ‘canned

hunting’ (Ashcroft, 2019; Lindsey et al., 2012), which many consider morally questionable.

Due to the severe breaches of the South African animal welfare law, the South African

high court declared the lion bones exportations quota (800 skeletons in 2017 and 1500

skeletons in 2018) to be unlawful and constitutionally invalid (Kollapen, 2019). However,

if commercially bred lion bones could form a substitute for wild tiger bones, this market

could theoretically have a positive conservation impact for both species if the supply

would meet demand and part of the revenue would flow to lion and tiger conservation

(Tensen, 2016). This new market must be controlled with extreme caution (apart from

that it should shift to lion cruelty free ranching practices), because poaching of lions and

other large cats is now increasing as well to replace illegal tiger parts in Asian markets

(Bale, 2018; Fisher, 2018).
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Abstract

Hunting is a major driver of biodiversity loss, but a systematic large-scale estimate of

hunting-induced defaunation is lacking. We synthesized 176 studies to quantify hunting-

induced declines of mammal and bird populations across the tropics. Bird and mammal

abundances declined by 58% (25 to 76%) and by 83% (72 to 90%) in hunted compared

with unhunted areas. Bird and mammal populations were depleted within 7 and 40

kilometers from hunters’ access points (roads and settlements). Additionally, hunting

pressure was higher in areas with better accessibility to major towns where wild meat could

be traded. Mammal population densities were lower outside protected areas, particularly

because of commercial hunting. Strategies to sustainably manage wild meat hunting in

both protected and unprotected tropical ecosystems are urgently needed to avoid further

defaunation.
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3.1 Report

Global biodiversity loss is occurring at an unprecedented rate (Ceballos et al., 2015). Few

undisturbed areas remain in the tropics (Gibson et al., 2011), but these are threatened

by escalating road and infrastructure expansion, which promotes human accessibility to

otherwise remote areas and facilitates illegal colonization and hunting (Laurance & Balm-

ford, 2013; Laurance, Peletier-Jellema, et al., 2015; Peres & Lake, 2003). Hunting exerts

a major pressure on wildlife, which can result in large population declines and local extir-

pations of wildlife populations in forests that appear structurally undisturbed (Redford,

1992). Overhunted “half-empty” or “empty ecosystems” are becoming common across the

tropics (Milner-Gulland & Bennett, 2003). Indeed, the abundance of wildlife in natural

ecosystems is more closely related to patterns of hunting than to factors such as forest

type, habitat area, or habitat protection status (Harrison, 2011). A growing body of

research is focusing on defaunation and its far-reaching cascading effects, including dis-

ruptions in seed dispersal mutualisms and a decline in total biomass (Abernethy et al.,

2013; Dirzo et al., 2014). However, hunting-induced defaunation is a cryptic phenomenon

that is difficult to monitor and, to date, no large-scale estimates of the impact of hunting

on wildlife abundances are available.

Here, we analyze the impact of hunting on bird and mammal populations at a pantropical

scale, in terms of both magnitude (decline in abundance) and spatial extent (depletion

distances). We collated 176 studies, including 384 and 1938 effect sizes for 97 bird and

254 mammal species, respectively (see section 3.2; Figure 3.1), and estimated the overall

reduction in mammal and bird abundance in hunted compared with unhunted sites with a

mixed effects meta-analysis. As an effect size, we calculated response ratios (RR) between

the abundance of each species in hunted (Xh) and unhunted sites (Xc) within each study

(RR = log Xh
Xc

; (Hedges et al., 1999)). RR are therefore negative (RR < 0) or positive

(RR > 0) if abundance estimates are lower or higher, respectively, because of hunting

pressure. Based on the central-place foraging hypothesis, hunting intensity is generally

higher in the proximity of hunters’ access points (e.g., settlements and roads) (Abernethy

et al., 2013; Peres & Lake, 2003), generating gradients of increasing species densities up

to a distance where no effect is observed (i.e., species depletion distances). We used single

meta-regression models to estimate species-depletion distances and to quantify how the

impact of hunting varied depending on accessibility to urban markets for trade (travel time

to major towns (Nelson, 2008)), region, type of hunting (commercial versus subsistence

versus both), protection status (protected versus unprotected area), species body size,

and feeding guild. Finally, we tested the relative importance of these moderators using

an information-theoretic approach of several multiple meta-regression models including

first- and second-order interactions.
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Figure 3.1: Geographical location of the 176 studies included in the meta-analysis.

Locations as red dots. Countries that contain at least one study are in green color.

Red dots may represent multiple effect sizes.

Overall, bird and mammal abundances were reduced by 58% (95% confidence interval

(CI): 25, 76%) and 83% (95%CI: 72, 90%), respectively, in hunted areas (Figure 3.2).

Hunting pressure had a larger effect on mammals than on birds, probably because hunters

preferentially target larger species (Redford, 1992). Results were robust to potential pub-

lication bias for mammals and to Geary diagnostic tests and differences in study quality

for both groups (Figure 3.6; Figure 3.7). Hunting-induced abundance reductions varied

with distance to hunters’ access points (distance, hereafter), accessibility to urban mar-

kets, protected area status and type of hunting, with distance being the most important

moderator (Figure 3.3; Figure 3.4; Table 3.4). For birds, effect sizes were the lowest in

proximity to hunters’ access points (RRb = −3.17, 95%CI: −2.62, −3.71, ∼95% loss at

500 m) and approximated 0 at a distance of 7 km (Figure 3.3A). For mammals, effect sizes

first decreased from −0.76 (−1.30, −0.23) to −2.38 (−2.84, −1.78) within the first 700 m

(∼90% loss), and then increased steadily up to 0 at ∼40 km from hunters’ access points

(Figure 3.3B). This initial higher RR may reflect the replacement of large-bodied mam-

mals by smaller ones. Indeed, we found evidence of size-differential mammal defaunation

for frugivores, carnivores, herbivores, and insectivores (Table 3.5; Table 3.6). Smaller

mammals were consistently more abundant at higher hunting pressure than larger species

(Figure 3.8), probably owing to release from predation pressure and competition as a result

of (near) extirpation of medium- and large-sized mammals (Wright, 2003). Large-bodied

frugivores, herbivores, and insectivores - including chimpanzees (Pan troglodytes), Western

gorillas (Gorilla gorilla), and giant armadillos (Priodontes maximus) - are largely hunted

for wild meat consumption and trade (Ripple et al., 2016). In turn, large carnivores, such

as leopards (Panthera pardus) and jaguars (Panthera onca), are often persecuted because

of livestock-wildlife conflicts, or their populations are reduced because of hunting-induced

losses of prey species (Ripple et al., 2014).
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Figure 3.2: Forest plots of 384 and 1938 effect size estimates for birds and

mammals, respectively. (A) Birds and (B) mammals. RR, response ratios (effect

sizes), black dots with 95% confidence intervals (CI) as gray lines. Overall weighted

mean effect size estimate, black dashed line and red diamond. 95%CI of weighted

mean effect size, red line. RR = 0, dashed gray line. Extremely negative effect sizes

indicate local extirpations.

Bird and mammal population abundances were lower in hunted areas with higher accessi-

bility to urban markets (Figure 3.3C; Figure 3.3D). Effect sizes approached 0 within 1 to 2

days of travel time from the nearest major town. For mammals, this effect remained after

controlling for other factors (Table 3.5). Across the tropics, the majority of consumed and

traded wild meat and body parts comes from mammals, whereas birds are generally killed

for a hunter’s own consumption (Redford, 1992; Robinson & Bennett, 2000). However,

for both species groups, the transition from subsistence to commercial hunting is having a

massive impact on population densities (Figure 3.4). Current prospects of infrastructure

expansion in the Amazon, Africa, and Asia will facilitate accessibility to remote areas

(Clements et al., 2014; Laurance, Peletier-Jellema, et al., 2015; Laurance, Sloan, et al.,

2015), boosting wild meat harvest and trade to meet urban demands (Milner-Gulland &

Bennett, 2003) and, thus, increasing pressure on wildlife populations.
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Figure 3.3: Change in species abundance with distance to hunters’ access points

and travel time to major towns. (A and B) Distance to hunter’s access points and (C

and D) travel time to major towns; for birds (A and C) and mammals (B and D).

RR, response ratios. RR = 0, dashed gray line; predicted mean effect size (with

95%CI in gray), black lines. Size of data points (in blue) is proportional to the

sampling variance. Results obtained with single meta-regressions.

Mammal population densities were higher inside than outside protected areas (Figure 3.4).

However, hunting pressure reduced mammal abundances even within protected areas (Fig-

ure 3.4). Overhunting within protected areas is ubiquitous across the Amazon, Africa,

and Asia (Harrison, 2011; Laurance et al., 2012). Although our results suggest that the

effects within are less detrimental than outside reserves, gazettement of protected areas

seems insufficient to safeguard wildlife populations if not accompanied with improved re-

serve management, effective law enforcement, and on-ground protection efforts (Laurance

et al., 2012).
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Figure 3.4: Change in species abundance for different levels of protection, type of

hunting, regions, and feeding guilds. (A to H) Parameters as labeled for birds (left)

and mammals (right). Number of effect sizes is shown between brackets. RR,

response ratios. Mean weighted effect size, dashed black line; RR = 0, dashed gray

line; Unp, unprotected areas; Prot, protected areas; Subs, subsistence hunting; SuCo,

subsistence and commercial hunting; Com, commercial hunting; CeAm, Central

America; SoAm, South America; Her, herbivores; Car, carnivores; Fru, frugivores;

Ins, insectivores; and Omn, omnivores. Results obtained with single meta-regressions.

None of the studies reported on bird hunting for commercial purposes solely.

Effect sizes were similar across regions for both taxa, although slightly lower in South

America for birds (Figure 3.4). This indicates that overhunting affects mammal and bird

populations similarly across the tropics. However, we found more studies in South Amer-

ica and Africa than Asia or Central America (Figure 3.1), which implies that our findings

are more generalizable for the former two regions. It also points out an urgent need

to focus research efforts in less-studied areas before wildlife populations are completely

extirpated. Unfortunately, overhunting has already emptied most Asian forests (Milner-

Gulland & Bennett, 2003), leaving few unhunted control areas left for comparisons.
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The most important terms retained in our multiple meta-regression models were distance

for both groups (Table 3.5; Table 3.6) and the interactions between guild, body size,

and distance for mammals (see Figure 3.8 and explanations above). Our best models

were significant according to omnibus tests (birds: QM = 3157.5, p < 0.001, McFadden

pseudo-R2: 0.29; mammals: QM = 19207.3, p < 0.001, McFadden pseudo-R2: 0.18);

however, residual heterogeneity was large (Table 3.6), indicating that hunting is a multi-

faceted phenomenon influenced by additional factors, some of which were not included in

our models (e.g., food security). Additionally, confounding variables such as small-scale

habitat clearing and road disturbance are correlated with distance to settlements and

roads (Beńıtez-López et al., 2010). However, we minimized their influence as much as

possible by avoiding pairwise comparisons where disturbances other than hunting were

apparent.

Overexploitation is a long-established major driver of wildlife population declines and

extinctions in terrestrial ecosystems which, to date, has not been successfully mitigated

and rather shows an increasing trajectory in recent decades (Maxwell et al., 2016). Pleis-

tocene extinctions were triggered in part by human hunters (Sandom et al., 2014), and

ongoing wildlife population declines and (near) extinctions of large-bodied species seem

to share similar pathways. Consequently, defaunation is rendering tropical forests, sa-

vannas, and grasslands “empty” (Ripple et al., 2014), with populations so sparse that

the strength of species interactions is declining dramatically. The subtle nature of this

process makes it undetectable by remote-sensing techniques, which are key to monitor

deforestation but prove futile to track on-ground changes in biodiversity and ecological

functioning (Peres et al., 2006). Matching the findings of many regionally specific studies

(Abernethy et al., 2013; Peres & Lake, 2003), our meta-analysis shows that large verte-

brates of various functional groups are depleted in the vicinity of settlements and roads.

Our estimated hunting-depletion distances can be used to assess ecosystem degradation

as a result of current and future road developments and settlement establishment. Re-

cently, Peres et al., 2016 estimated that 32.4% of the remaining forest across the Brazilian

Amazon (∼1 million km2) is affected by hunting on the basis of hunting distances of 6

km from settlements. Our results, however, indicate that the Amazon forest area affected

by hunting-induced defaunation might be much larger. By 2050, with millions of kilome-

ters of roads planned in developing countries (Dulac, 2013), and human population and

associated demand for wild meat increasing steadily, it is likely that the term “remote-

ness” will be a ghost of the past, with the last remnant half-depleted mammal and bird

populations persisting in few protected areas. This can be ameliorated if we undertake

coordinated strategies to expand the current network of protected areas, limit human

encroachment around them, monitor hunting activities, and control overexploitation via

law enforcement, if needed, while implementing alternative livelihood programs for wild

meat–dependent communities.
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3.2 Materials and methods

3.2.1 Search strategy

The relationship between hunting intensity and species abundance was quantified using

data from peer-reviewed literature selected through a systematic literature search. Rele-

vant studies published between 1970 and August 2015 were identified through literature

searches in the ISI Web of Science and Google Scholar. The search was performed between

July-October 2015 using the following search terms: (road* OR settlement* OR village

OR infrastructure*) AND (access* OR transect OR distance OR *disturb* OR proxim-

ity) AND (hunt* OR bushmeat OR poach* OR game) AND (*diversity OR population

OR abundan* OR *density OR encounter*). We also used ProQuest Dissertations and

Theses repository (http://www.proquest.com/products-services/dissertations/) to access

relevant PhD and MSc dissertations (i.e.: grey literature), and reviewed the references

cited in relevant articles. Authors of relevant papers were also contacted for provision of

any unpublished material or missing data. Relevant studies in other languages, mostly in

Spanish and French, were also identified by cross-reference. Additionally, we obtained bib-

liographies from the OFFTAKE project (www.offtake.org) to complement our database

of studies. No geographical or taxonomic restrictions were applied. A flowchart of the

process and outcome of the literature search is provided in Figure 3.5.

3.2.2 Inclusion and exclusion criteria

We selected relevant studies according to title and abstract, and we finally selected studies

that met the following criteria: 1) evaluates effect of hunting on wildlife populations, 2)

contains abundance data on species or genus level, 3) reports abundance at increasing

distance from access points, or at least at one proximate hunted area and one distant

unhunted area (control), which in some cases included light hunting (Barrera Zambrano

et al., 2007). Studies with potential confounding effects due to other disturbances (i.e.:

hunted and logged area vs unhunted unlogged area) were discarded, unless all compared

sites had the same level of disturbance (i.e.: sites with forests logged ca. 20 years ago, but

with different hunting pressures and located at different distances from villages). Studies

that reported on hunting on managed wild populations (i.e.: with release of farm-reared

individuals) used for recreational hunting were not included.

3.2.3 Data extraction

We extracted and stored the following data: the mean abundance of each species at each

distance from hunters’ access points, the sample size, and, depending on the study, the

variance, standard deviation or standard error. These data were extracted from tables or

graphs using GetData Graph Digitizer 2.26 (http://getdata-graph-digitizer.com/). Data

extracted from graphs were plotted and visually inspected to verify that there were no

http://www.proquest.com/products-services/dissertations/
www.offtake.org
http://getdata-graph-digitizer.com/
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errors during data extraction. Abundance estimates per species were expressed as a variety

of metrics, including population density (individuals/km2), group density (groups/km2),

encounter rates of groups, subgroups or individuals (e.g., number of encounters per 10

km of census effort) and number of photographs/camera trap-day in case of camera-trap

surveys.

When species abundance was reported in distance intervals, we took the middle distance

point of the interval as input distance. When only the hunting catchment area around

the village was given, we calculated the hunting radius and took the middle of the radius

as hunting distance. The effect of hunting on species populations was usually assessed

in the core of the hunting catchment areas. In some cases hunting distances were not

recorded and we calculated them in ArcGIS 10.2 after georeferencing the study sites (see

below).

We also recorded data on the study characteristics: location (continent, country), biome

(tropical, subtropical and montane forests, dry and montane grasslands, savanna and xe-

rophilous deciduous forest), geographic coordinates, type of hunters’ access points (roads,

settlements, river networks, or roads and settlements), protected area status (protected,

unprotected) and type of hunting (subsistence, commercial, both) (see Table S1 in Beńıtez-

López et al., 2017). If coordinates were not available we retrieved them by georeferencing

maps in the papers using ArcGIS 10.2 (Environmental Systems Research Institute, 2011).

Additionally, we recorded data on the species’ body mass (kg) and diet composition (%)

from EltonTraits 1.0 (Wilman et al., 2014), and categorized species as frugivores (> 50%

of diet consists of fruits and seeds), carnivores (> 50% of diet consists of vertebrates),

insectivores (> 50% of diet consists of invertebrates), herbivores (> 50% of diet consists

of plants and leaves) or omnivores (none of the previous categories apply). Species are

defined here as single taxonomic species, or functional groups of ecologically analogous

congeners that were not distinguished at species level (e.g., Psophia spp., Dasyprocta

spp., Saimiri spp., Lagothrix spp., Aras spp., Amazonas spp.). When abundances were

reported for several species aggregated at genus level body mass and diet were averaged

for all species included in the abundance estimation. When possible, we averaged trait

data for species within the reported Genus known to occur in the area (according to

IUCN range maps). Finally, we overlaid all study sites with available global data sets

and extracted the following variables: human population density (1 km resolution, year

2000) (Center for International Earth Science Information Network et al., 2011), estimated

travel time to the nearest town greater than 50000 inhabitants (as a proxy for accessibility

to urban markets, 1 km resolution) (Nelson, 2008) and protected area status, from the

World Database of Protected Areas accessed in August 2016 (IUCN & UNEP-WCMC,

2016). These operations were performed in ArcGIS 10.2 using a Mollweide equal area

projection (Environmental Systems Research Institute, 2011). Prior to data analyses, we

assessed for collinearity between our explanatory variables. Because human population

density was correlated with travel time (Spearman rho = −0.38 and −0.55, for birds and
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mammals, respectively) we used only the latter in our models.

3.2.4 Data structure

The data was structured into Data Source, Study, and Species. A Data Source typically

represents a single published paper, a technical report published by NGOs or a PhD or

MSc thesis. In some cases a Data Source consists of both a published paper and a thesis

used to complement the data on the paper (see Table S1 in Beńıtez-López et al., 2017).

A single Data Source may contain one or more Studies, depending on whether data is

reported for more than one village, or more than one site. A Study contains one or more

Species for which abundance or density is reported at least at one hunted (although there

could be more) and one control distance. A single Species may be reported in several

Studies. All abundance measurements within a Study and for a Species must have been

collected using the same sampling method so that observations within a Study can be

reasonably compared and effect sizes calculated. For the same reason, observations among

Studies, even for the same Species, should not be compared if there are methodological

differences (line transect methods compared to camera traps).

3.2.5 Data availability and selected studies

The search string yielded 461 publications via ISI Web of Knowledge, which were comple-

mented with the 100 first hits from Google Scholar. We also included 2 MSc Theses and

8 PhD theses found through ProQuest, and 55 cross-referenced articles. After removing

duplicates, 603 publications were selected for abstract screening, out of which 285 fulfilled

the criteria for full text screening. Four authors provided their full database on request.

Additionally, we retrieved two databases from the A.P.E.S. database.

Finally we selected 101 data sources (among the peer-reviewed articles, theses and re-

ports), with publication dates ranging between 1984 and 2016 (Figure 3.5). Our meta-

analysis spanned 38 countries across the main tropical regions. Most data sources were

from Africa (49) and South America (32), with the rest being from Asia (8) and Central

America (12) (with Mexico included in the Central America category for analyses), with

a clear geographical bias towards (sub) tropical regions (22.25 N to 32.27 S, Figure 3.1).

In total we extracted 176 studies out of the 101 data sources, including 2322 effect sizes

for a total of 347 species (Birds: 97 species and 384 effect sizes, Mammals: 250 species

and 1938 effect sizes). Body mass of recorded species ranged from 0.06 kg to 3940.3 kg for

mammals (median: 7.9 kg), and from 0.035 kg to 111 kg for birds (median: 1.2 kg).
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3.2.6 Effect size metrics

We calculated log response ratios (RR, hereafter response ratios) as measure of effect size

(Hedges et al., 1999; Lajeunesse, 2011):

RR = ln
X̄ikh

X̄ikc

(3.1)

For each study k, response ratios (RR) were calculated between the mean abundance

X̄ of any individual species i at hunting distance h from the access point and the mean

abundance X̄ of individual species i at a control distance c from the access point (un-

hunted distance) (see Beńıtez-López et al., 2010 and Alkemade et al., 2013 for similar

approach). The control distance was either reported in the study as unhunted, in some

cases after assessing hunting pressure at increasing distances from the access point; or

was the most distant data point at which species abundance was estimated. Population

densities in unhunted areas were assumed to be in equilibrium and approximate the car-

rying capacity (Milner-Gulland, 2001). Response ratios (RR) for any given species are

therefore negative (RR < 0) if abundance estimates are lower due to hunting pressure

(i.e.: closer to hunters’ access points) and positive (RR > 0) if abundance estimates are

higher regardless the distance to hunters’ access points. Effect sizes close to zero (RR ≈ 0)

indicate little or no effect of hunting. Some ratios were zero for species completely extir-

pated in areas close to hunters’ access points (mean abundance equals zero), precluding

log-transformation. Therefore we transformed our effect sizes using a modification of the

transformation y′ = y(N−1)+0.5
N

proposed by Smithson and Verkuilen, 2006 to shrink [0,1]

into (0,1) open intervals avoiding thus zeroes and ones. Since we only wanted to avoid

zeroes, we used y′ = yN+0.5
N

, where y are unlogged ratios ( X̄ikh
X̄ikc

) and N is the number of

effect sizes (Nb = 384 and Nm = 1938 for birds and mammals, respectively) resulting in

a distribution of effect sizes slightly displaced towards larger values (mammals: before

transformation: [0.000, 118.246], after transformation [0.00026, 118.24597]; birds: before

transformation [0.00, 24.25], after transformation: [0.00133, 24.2513].

In all meta-analyses and meta-regressions, observed effect sizes (RRs) were weighed by

the inverse of the sampling variances, which were calculated as:

σ̂2 (RR) =
SD2

ikh

NikhX̄2
ikh

+
SD2

ikc

NikcX̄2
ikc

(3.2)

Where RR represent the log response ratio, SDikc and SDikh represent the standard

deviations of X̄ikc and X̄ikh, respectively, with Nikc and Nikh as sample sizes (Hedges et

al., 1999; Lajeunesse, 2011). Not all studies reported estimates of SD, variances or SE. In

such cases, SDikc and SDikh could be estimated by assuming that the data follow a Poisson

distribution, in which µ = σ2 and, therefore, X̄ikc = σ2
ikc (Sokal & Rohlf, 1981). Finally,

for studies in which some species had zero densities (X̄ikh = 0, and thus SDikh = 0),

a continuity correction factor (k = 0.5) was added to the numerator and denominator
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resulting in slightly higher variance estimates (Cox & Snell, 1970; J. Sweeting et al.,

2004). Alternatively, we used two other methods for imputing missing SD and compared

our results to our approach. We used “Bracken1992” approach to impute SD using the

coefficient of variation from all complete cases (Bracken, 1992). Additionally we used the

“HotDeckNN” approach, which applies Rubin and Schenker, 1991 resampling approach to

fill gaps of missing SD from the SDs with complete information with means that are similar

to missing SDs. For the “HotDeckNN” approach we imputed missing SD 100 times and

recalculated 100 sampling variances and 100 meta-analytical estimates. These analyses

were performed using metagear (Lajeunesse, 2016). The resulting estimates using these

two approaches were similar to those obtained with the “Poisson” approach (Table 3.1),

and therefore we used the latter in all our analyses.

Results are reported as RR and as percentage declines in abundance by back-transforming

RR to unlogged ratios and multiplying by 100 (Percentage decline = (1− eRR)100).

3.2.7 Data analyses

We ran multilevel mixed effects meta-analyses in metafor 1.9-8 (rma.mv, (Viechtbauer,

2010)) to control for non-independence in the data due to multiple effect sizes per study

and species. All analyses were run separately for bird and mammal species. Several candi-

date random-effects structures were compared using the full candidate fixed-effects struc-

ture (see complex multiple meta-regression models below). We specified study identity

and species identity as random effects in our models. Given that body mass is phyloge-

netically conserved at Order level in birds and mammals (Harvey & Pagel, 1991; McGill,

2008; Smith et al., 2004; Smith & Lyons, 2011), we assessed if model fit would improve

by using the following nested random effects structure (Order/Species). Random effects

were retained or discarded based on the models’ BIC (Bayesian Information Criterion,

which is more restrictive than AICc) (Burnham & Anderson, 2002). The final retained

random effects structure was (1|Study) + (1|Species) for both birds and mammals (Table

3.3).

Our analyses were separated in three steps: random-effects meta-analysis, single mixed-

effects meta-regression models and multiple mixed-effects meta-regression models. With

the multilevel random-effects meta-analysis we assessed overall reductions in bird and

mammal abundance in hunted vs unhunted sites. For these analyses we assessed het-

erogeneity by formal Cochran’s Q-test tests (QE), which test whether the variability in

the observed effect sizes or outcomes is larger than would be expected based on sampling

variability alone. As expected for a biological meta-analysis (Nakagawa & Santos, 2012),

there was significant residual heterogeneity in the random-effects meta-analysis for the

birds dataset (Q = 20256.1, p < 0.0001), and for the mammal dataset (Q = 441755.2,

p < 0.0001), which we tried to explain with different moderators (Table 3.2).

We ran single mixed-effects meta-regression models to assess the relationship between RR
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and distance to hunters’ access points (distance, hereafter), and variations in RR accord-

ing to several categorical (factors) and continuous moderators (Table 3.2). Continuous

variables were log-transformed and fitted as quadratic polynomials to account for non-

linear relationships. Models with categorical factors were also run without the intercept

to obtain the parameter estimates (mean effect sizes) of each level. The heterogeneity

captured by the moderators of each independent meta-regression was assessed with om-

nibus tests (QM) (Table 3.4). p-values were adjusted for multiple hypothesis testing using

Bonferroni corrections.

We also built multiple mixed-effects meta-regression models to examine variations in the

relationship between species abundance (RR) and distance while controlling for the effect

of guild, body mass, type of hunting, travel time and level of protection. Distance, body

mass and travel time to major towns were standardized before the analyses. We included

first-order and second-order interaction terms to account for variations in the slope of the

relationship between effect sizes (RR) and distance, for different functional guilds and

different body mass (Distance x Guild x BM), for different types of hunting (Distance x

TypeHunting) and per level of protection (Distance x Protected). Model selection was

done using the Bayesian information criterion (BIC) (Burnham & Anderson, 2002). If

the most supported model included interaction terms, we tested them using QM and then

we removed them to test main effects. We retained all main effects that were part of

significant interaction terms regardless of their significance as main effects. Fixed factor

estimates were considered statistically significant if the 95% confidence interval (CI) did

not overlap zero. We checked profile likelihood plots to ensure the identifiability of the

variance components in the model (σ2
1: study-level variability, σ2

2: species-level variabil-

ity) and to test whether our more complex models were overparameterized (Figure 3.9)

(Viechtbauer, 2010). Model fit was assessed with McFadden’s adjusted pseudo-R2. All

parameter estimates are reported for best models run with REML (Restricted maximum

likelihood). All analyses were performed in R 3.2.2 software (R Development Core Team,

2008).

3.2.8 Exploring potential publication bias and robustness of models

Publication bias was assessed using Funnel plots and Egger tests by including precision

(1/SE) as covariate in rma.mv function, and using meta-analytic residuals (Egger et al.,

1997). Rosenberg’s fail safe-numbers were calculated to assess the robustness of our

results to publication bias (Rosenberg, 2005). Egger tests suggest that the overall RR for

mammals is robust, whereas there is a slight potential publication bias for birds (Figure

3.6). Rosenberg’s fail safe-numbers were large enough for both mammals (54983163,

p < 0.0001) and birds (331975, p < 0.0001) to be confident about the reliability of the

estimates.

We used Geary diagnostic tests (Equation 3.3) to assess the accuracy of our RR (La-
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jeunesse, 2015). Effect sizes are deemed valid and accurate approximations when the

standardized mean of either the control or treatment group is ≥ 3.

X̄

SD

√
N ≥ 3 (3.3)

We performed a sensitivity analysis where the meta-analytic results from the complete

dataset were compared to those where problematic cases detected by Geary tests were

excluded. Effect sizes were still negative for both taxa even after excluding standardized

means < 3 for hunted, control and hunted and control sites (Figure 3.7).

We used six main criteria to assess study quality:

1. Control area. When the authors reported abundance estimates on a clear unhunted

area and/or unhunted distance (score 1). If the control area was unfrequently hunted

or was hunted > 5 years ago (score 1). When the control area was under low hunting

pressure or lightly hunted (score 0). Else the longest distance from hunters’ access

points is used as control (score 0).

2. When the authors assessed hunting pressure using metrics such as hunting signs

in relation to distance to access points, or in a specific hunted area (score 1). If

they specified a threshold distance up to which hunting occurs, or had evidence of

hunting from other studies performed in the same area (score 1). If hunting evidence

was not clearly assessed (score 0).

3. When the authors reported clear distance intervals or hunting distances (score 1).

If hunting catchments were reported the hunting distance was estimated as the mid-

distance of the hunting radius from the access point, or village (score 0). If distances

to access points were extracted using GIS after georeferencing transects and villages

or roads as access points (score 0).

4. When the authors reported the mean and the variance (or standard deviation, stan-

dard error, confidence interval) of the abundance estimates or these could be derived

from raw data (score 1). If the variances (or other measure of error/variation around

the abundance estimate) were not reported (score 0).

5. If species detectability was calculated and taken into account (e.g.: using DIS-

TANCE software, adjusting the effective strip width via other methods, or using

camera traps, for which detectability can be adjusted) (score 1). If detectability

was not calculated (score 0).

6. If the effect size can be calculated at species level (score 1). If effect sizes were

calculated for 2 or more species aggregated at genus level (due to difficulties of

distinguishing between closely related species during surveys, i.e.: indirect signs of

red duikers, or brocket deers) (score 0). This last criterion applies to individual

effect sizes, not to the study as a whole.

We used the sum of the scores of the six criteria as an overall measure of quality, ranging

from 1-2 (“low quality”) to 3-4 (“medium quality”) to 5-6 (“high quality”). Sensitivity
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analyses were done by rerunning the meta-analysis after subsequently excluding low qual-

ity studies, and then low and medium quality studies (i.e.: including only high quality

studies). Results of the meta-analyses based on different data subsets were compared to

evaluate the robustness of our results to differences in the quality of the studies included.

Results were highly robust to differences in data quality, as reflected by similar effect sizes

for different data subsets (Figure 3.7).
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3.3 Supplementary materials

Figure 3.5: PRISMA flow chart showing the procedure of selecting publications.
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Figure 3.6: Funnel plots for (a) birds and (b) mammals. Funnel plots show the

relationship between meta-analytic residuals and precision (SE−1). Dashed lines

indicates RR = 0 (zero line, black), and weighted mean effect size (gray). Egger test

for birds: intercept = −0.74 (95% CI: −1.42,−0.05, p = 0.0347). Egger test for

mammals: intercept = −0.05 (95% CI: −0.55, 0.44, p = 0.8374).
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Figure 3.7: Forest plots for (a,c) birds and (b,d) mammals showing mean weighted

effect sizes after exclusion of effect sizes with standardized means < 3, for hunted

(H), control (C) and hunted and control means (HC). Forest plots in c) and d) show

the robustness of our meta-analytical estimates to exclusion of studies with different

quality levels. Med-High: excluding low quality studies; High: excluding low and

medium quality studies. Number of effect sizes is shown between brackets. Dashed

lines indicates RR = 0 (zero line, gray), and weighted mean effect size (black).
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Figure 3.8: Relationship between RR and distance to hunters’ access points for

small and large mammal species representative of each feeding guild (a) frugivores

(small: Sciurus spp., ∼0.6kg, large: Pan troglodytes, 42.5 kg), (b) carnivores (small:

Genetta spp., ∼1.8 kg, large: Panthera pardus, 52 kg), (c) herbivores (small:

Sylvilagus brasiliensis, 0.95 kg, large: Gorilla gorilla, 130 kg), (d) insectivores (small:

Rhynchocyon udzungwensis, 0.71 kg, large: Priodontes maximus, 45 kg). Plots are

shown for median travel times (∼600 min), and baseline levels of the other factors

(subsistence hunting and no protected area, Table 3.5; Table 3.6). Colors as in Figure

3.3. Confidence intervals not shown. Point size is proportional to body mass.

Predicted lines are extrapolated (faded color) for carnivores and insectivores to allow

comparison with the other feeding guilds.
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Figure 3.9: Profile likelihood plots of the variance components in the model (σ2
1:

study-level variability, σ2
2: species-level variability) for birds (a,b) and mammals

(c,d). Plots show a peak at the corresponding REML estimate (Birds: σ2
1 = 7.08,

σ2
2 = 2.14; Mammals: σ2

1 = 4.02; σ2
2 = 8.29), indicating that our fitted models were

not overparameterized. When the profiled likelihood is flat (over the entire parameter

space or large portions of it), then this suggests that at least some of the parameters

of the model are not identifiable and the parameter estimates obtained are to some

extent arbitrary (Viechtbauer, 2010).

Table 3.1: Results of the meta-analysis under different SD imputation methods.

Class Imputation Weighted mean RR Lower CI Upper CI

Birds

Poisson -0.859 -1.433 -0.285

Bracken 1992 -0.773 -1.292 -0.255

HotDeckNN
-0.837 (median) -1.410 (median) -0.264 (median)

-0.835 (average) -1.402 (average) -0.268 (average)

Mammals

Poisson -1.775 -2.273 -1.278

Bracken 1992 -1.580 -2.062 -1.107

HotDeckNN
-1.806 (median) -2.312 (median) -1.293 (median)

-1.808 (average) -2.316 (average) -1.294 (average)
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Table 3.2: Moderators included in the analyses. For continuous moderators, units and

transformations are indicated; for categorical moderators (factors), levels of the factor are

indicated.

Moderators Variable Unit/levels Transf. Reason

Species-level

Guild

Factor n.a. 1

Carnivores

Frugivores 4 (birds);

Herbivores 5 (mammals)

Insectivores

Omnivores

Body mass Continuous kg Log transf. 2

Study site-level

Distance Continuous km Log transf. 3

Travel time Continuous min. Log transf. 4

Region

Factor 4 n.a. 5

Africa

Asia

CAmerica

SAmerica

Type of hunting

Factor n.a. 6Subsistence 2 (birds);

Commercial 3 (mammals)

Both

Protected areas

Factor 2 n.a. 7Unprotected

Protected

1Large-scale hunting may affect functional guilds differently, with different consequences for ecosystem

functioning (Peres et al., 2016).
2Large species are more heavily hunted.
3Species abundance increases with distance to hunters’ access points and levels off beyond a certain

threshold distance.
4Travel time to major towns is used as a proxy of accessibility to urban markets. Hunting pressure is

expected to be higher in areas more accessible (with less travel time) to urban markets.
5Hunting-induced defaunation may vary regionally. For example, regions with more human popu-

lation and historically more hunted (Africa) may be more defaunated (lower effect sizes) than regions

with historically less human population (South America). Not included in model selection because it is

confounded with “Type of hunting”, plus it is not well balanced for birds.
6Commercial or subsistence and commercial hunting (both) may have a larger effect on wildlife pop-

ulations than subsistence hunting.
7Hunting pressure is larger outside of protected areas.
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Table 3.3: Results of model selection for fitting the random effects structure for birds and

mammals. Models were run with a full fixed effects structure and compared using the Bayesian

Information Criterion (BIC). The final random effects structure used in the meta-analysis is

in bold: (1|Study + 1|Species). k : number of parameters.

Random effects
Birds Mammals

BIC k BIC k

(1|1) 16136.5 16 238433.6 37

(1|Study) 13161.0 17 142938.8 38

(1|Species) 9749.0 17 134129.6 38

(1|Order/Species) 9750.2 18 134137.2 39

(1|Study+1|Species) 7696.4 18 87904.2 39

(1|Study+1|Order/Species) 7699.3 19 87910.6 40

(1|Study+1|Order) 11722.9 18 134137.9 39

Table 3.4: Effect sizes (categorical moderators) and regression coefficients (continuous mod-

erators) for birds and mammals. Average random-model effect sizes (“Mean Effect size”) and

95% Confidence Intervals (“LCI” and “UCI”) were calculated by Region, Functional Guild,

Type of Hunting and Level of Protection, for birds and mammals separately. Average re-

gression coefficients and 95% CI are shown for continuous moderators (Distance: distance to

hunters’ access points, Travel Time, Body mass). Models for continuous moderators included

quadratic terms (Slope (q)). N: number of effect sizes, LRT: Likelihood ratio tests. QM : om-

nibus test (χ2 distributed). Significant results are highlighted in bold. p-values and p-values

corrected for multiple hypothesis testing using Bonferroni corrections are presented (p-adj).

Class
Fixed effects/ Mean eff. size/

LCI UCI N
Model omnibus

Moderators Regr. coeff. tests (QM,df)

Birds Distance 384

QM,2=1605.5,

p=0.0007

Intercept -2.10 -2.63 -1.58

Slope 1.43 1.29 1.56

Slope (q) -0.17 -0.21 -0.14

Body mass 384

QM,1=6.39,

p=0.0805

Intercept -0.90 -1.47 -0.32

Slope -0.37 -0.65 -0.08

Slope (q)

Travel time 384

QM,1=395.45,

p=0.0007

Intercept -6.14 -6.98 -5.30

Slope 0.81 0.73 0.89

Slope (q)

Region

QM,3=14.89,

p=0.0343

Africa 0.48 -1.13 2.09 39
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Table 3.4 continued from previous page

Class
Fixed effects/ Mean eff. size/

LCI UCI N
Model omnibus

Moderators Regr. coeff. tests (QM,df)

Asia -0.58 -2.60 1.43 10

CAmerica -0.21 -1.45 1.03 103

SAmerica -1.30 -1.98 -0.63 232

Guild

QM,3=9.81,

p=0.3066

Carn -0.98 -2.25 0.29 18

Frug -0.87 -1.47 -0.26 316

Herb

Insect -0.36 -1.58 0.86 19

Omn -1.06 -2.17 0.05 31

Hunting

QM,1=11.85,

p=0.0189

Subsistence -0.55 -1.21 0.11 297

Commercial

Both -1.48 -2.39 -0.57 87

Protection
QM,1=103.7,

p=0.0007
Unprotected -0.60 -1.21 -0.001 167

Protected -1.20 -1.80 -0.59 217

Mammals Distance 1938

QM,2=12741.88,

p=0.0007

Intercept -2.36 -2.86 -1.87

Slope 0.10 0.08 0.13

Slope (q) 0.14 0.14 0.15

Body mass 1938

QM,1=2.18,

p=0.9744

Intercept -1.54 -2.12 -0.95

Slope -0.13 -0.32 0.05

Slope (q)

Travel time 1938

QM,2=3497.42,

p=0.0007

Intercept -2.40 -3.02 -1.78

Slope -1.08 -1.21 -0.95

Slope (q) 0.18 0.16 0.19

Region

QM,3=57.18,

p=0.0007

Africa -2.00 -2.72 -1.29 792

Asia -2.02 -3.84 -0.20 105

CAmerica -2.87 -4.05 -1.68 251

SAmerica -1.27 -1.97 -0.58 790

Guild

QM,4=55.28,

p=0.0007

Carn -2.41 -3.49 -1.33 158

Frug -1.91 -2.73 -1.11 463

Herb -1.39 -2.08 -0.70 793
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Table 3.4 continued from previous page

Class
Fixed effects/ Mean eff. size/

LCI UCI N
Model omnibus

Moderators Regr. coeff. tests (QM,df)

Insect -3.11 -4.71 -1.51 85

Omn -1.59 -2.37 -0.81 439

Hunting

QM,2=76.47,

p=0.0007

Subsistence -0.83 -1.45 -0.22 823

Commercial -2.24 -3.20 -1.29 191

Both -2.63 -3.25 -2.01 924

Protection
QM,1=2836.12,

p=0.0007
Unprotected -2.37 -2.87 -1.87 754

Protected -1.10 -1.60 0.60 1184

Table 3.5: Model selection results for multiple meta-regression models relating RR to the fol-

lowing moderators: Distance: Distance to hunters’ access point, BM: Body mass, TypeHunt:

Type of Hunting, TravTime: Travel Time to the nearest major town, Guild, Prot: Protected

area status. The most supported model is the one with the lowest BIC (Bayesian Information

Criterion). Results are presented for birds and mammals. dBIC: Difference in BIC from the

most supported model; weights: Akaike weights; k : number of fitted parameters. Model se-

lection was applied to main effects first, and subsequently we assessed is model fit improved

by adding first- and second-order interactions between distance and some of the moderators.

Class Model BIC dBIC weights k

Birds Distance + Distance2 + BM x Distance

+ BM x Distance2 + TypeHunt x Dis-

tance +TypeHunt x Distance2 + Prot x

Distance + Prot x Distance2

7687.0 0.0 0.900 14

Distance + Distance2 + BM x Dis-

tance + BM x Distance2+ TravTime +

TypeHunt x Distance + TypeHunt x

Distance2 + Prot x Distance + Prot x

Distance2

7691.6 4.6 0.092 15

Distance + Distance2 + BM x Distance

+ BM x Distance2 + Guild + TravTime

+ Distance x TypeHunt + Distance2 x

TypeHunt + Prot x Distance + Prot x

Distance2

7696.4 9.4 0.008 18
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Table 3.5 continued from previous page

Class Model BIC dBIC weights k

Distance + Distance2 + BM x Dis-

tance + BM x Distance2 + TypeHunt

x Distance + Prot x Distance + Prot x

Distance2

7779.1 92.1 0.000 13

Distance + Distance2 + BM x Distance

+ TypeHunt x Distance + Prot x Dis-

tance + Prot x Distance2

7813.1 126.1 0.000 12

Distance + Distance2 + BM x Distance

+ BM x Distance2 + TypeHunt x Dis-

tance + TypeHunt x Distance2 + Prot

x Distance

7823.0 135.9 0.000 13

Distance + Distance2 + BM + Distance

x BM + BM x Distance2 + TravTime +

Guild + TypeHunt + Prot

8173.5 486.5 0.000 14

Distance + Distance2 + BM + Distance

x BM + TravTime + Guild + TypeHunt

+ Prot

8180.8 493.8 0.000 13

Distance + Distance2 + BM + Trav-

Time + Guild + TypeHunt + Prot x

Distance + Prot x Distance2

8465.9 778.9 0.000 14

Distance + Distance2 + BM + Trav-

Time + Guild + TypeHunt + Prot x

Distance

8606.6 919.6 0.000 13

Distance + Distance2 + BM + Trav-

Time + Guild + TypeHunt x Distance

+ TypeHunt x Distance2 + Prot

8972.2 1285.2 0.000 14

Distance + Distance2 + BM + Trav-

Time + TypeHunt + Prot

8979.3 1292.3 0.000 9

Distance + Distance2 + BM + Trav-

Time + TravTime2 + Guild + Type-

Hunt + Prot

8985.6 1298.6 0.000 12

Distance + Distance2 + BM + Trav-

Time + Guild + TypeHunt x Distance

+ Prot

8989.1 1302.1 0.000 13

Null 10779.64 3092.6 0.000 3
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Table 3.5 continued from previous page

Class Model BIC dBIC weights k

Mammals Distance + Distance2 + BM + BM x

Distance + BM x Distance2 + TravTime

+ TravTime2 + Guild + Guild x Dis-

tance + Guild x Distance2 + Guild x BM

+ Guild x Distance x BM + TypeHunt

+ TypeHunt x Distance + TypeHunt x

Distance2 + Prot + Prot x Distance +

Prot x Distance2

87904.2 0.0 1.000 39

Distance + Distance2 + BM + BM x

Distance + TravTime + TravTime2 +

Guild + Guild x Distance + Guild x

Distance2 + Guild x BM + Guild x Dis-

tance x BM + TypeHunt + Prot + Prot

x Distance + Prot x Distance2

88444.2 540.0 0.000 34

Distance + Distance2 + BM + BM x

Distance + TravTime + TravTime2 +

Guild + Guild x Distance + Guild x

Distance2 + Guild x BM + Guild x Dis-

tance x BM + TypeHunt + Prot + Prot

x Distance

88463.2 559.0 0.000 33

Distance + Distance2 + BM + BM x

Distance + TravTime + TravTime2 +

Guild + Guild x Distance + Guild x

Distance2 + Guild x BM + Guild x Dis-

tance x BM + TypeHunt + TypeHunt

x Distance +TypeHunt x Distance2 +

Prot

89612.5 1708.3 0.000 36

Distance + Distance2 + BM + BM x

Distance + TravTime + TravTime2 +

Guild + Guild x Distance + Guild x

Distance2 + Guild x BM + Guild x Dis-

tance x BM + TypeHunt + TypeHunt

x Distance + Prot

89691.9 1787.7 0.000 34

Distance + Distance2 + BM + BM x

Distance + TravTime + TravTime2 +

Guild + Guild x Distance + Guild x

Distance2 + Guild x BM + Guild x Dis-

tance x BM + TypeHunt + Prot

90218.5 2314.3 0.000 32
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Table 3.5 continued from previous page

Class Model BIC dBIC weights k

Distance + Distance2 + BM + BM x

Distance + TravTime + TravTime2 +

Guild + Guild x Distance + Guild x BM

+ Guild x Distance x BM + TypeHunt

+ Prot

90279.1 2374.9 0.000 28

Distance + Distance2 + BM + Trav-

Time + TravTime2 + Guild + Type-

Hunt + Prot + Prot x Distance

91689.3 3785.1 0.000 16

Distance + Distance2 + BM + Trav-

Time + TravTime2 + Guild + Type-

Hunt + Prot + Prot x Distance + Prot

x Distance2

91695.9 3791.7 0.000 17

Distance + Distance2 + BM + Trav-

Time + TravTime2 + Guild + Type-

Hunt + TypeHunt x Distance + Type-

Hunt x Distance2 + Prot

92013.8 4109.6 0.000 19

Distance + Distance2 + BM + Trav-

Time + TravTime2 + Guild + Type-

Hunt +TypeHunt x Distance + Prot

92094.6 4190.4 0.000 17

Distance + Distance2 + BM + Distance

x BM + Distance2 x BM + TravTime +

TravTime2 + Guild + TypeHunt + Prot

92477.9 4573.7 0.000 17

Distance + Distance2 + BM + Dis-

tance x BM + TravTime + TravTime2

+ Guild + TypeHunt + Prot

92483.4 4579.2 0.000 16

Distance + Distance2 + BM + Trav-

Time + TravTime2 + Guild + Type-

Hunt + Prot

92590.2 4686.0 0.000 15

Null 106903.6 18999.4 0.000 3
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Table 3.6: Standardized coefficients of retained terms in best meta-regression models for

birds and mammals. Distance: Distance to hunters’ access point, BM: Body mass, SC: Sub-

sistence and Commercial (both), C: Commercial. Main effects were tested after dropping

interactions. Birds: McFadden’s Pseudo R2 = 0.29; QM,11 = 3157.5 (p<0.0001), QE,372 =

16544.5 (p<0.0001). Mammals: McFadden’s Pseudo R2 = 0.18, QM,36 = 19208.0 (p<0.0001),

QE,1391 = 237350.6 (p<0.0001).

Class Moderators Estm. SE Z pestm Qm (df) pQ

Birds Intercept -0.61 0.58 -1.06 0.2913

Distance 3.91 0.20 19.49 <0.0001 1552.0 (2) <0.0001

Distance2 -2.42 0.19 -12.98 <0.0001

BM -0.14 0.16 -0.88 0.3799 0.8 (1) 0.3799

TypeHunt (SC) -1.63 0.97 -1.68 0.0920 2.8 (1) 0.0920

Protected (Yes) -0.07 0.08 -0.79 0.4271 0.6 (1) 0.4721

Distance x BM -0.12 0.09 -1.40 0.1608 690.8 (2) <0.0001

Distance2 x BM 0.77 0.08 9.76 <0.0001

Distance x Type-

Hunt (SC)

-4.53 0.42 -10.72 <0.0001 115.4 (2) <0.0001

Distance2 x Type-

Hunt (SC)

3.38 0.32 10.68 <0.0001

Distance x Prot

(Yes)

-3.24 0.20 -16.09 <0.0001 465.5 (2) <0.0001

Distance2 x Prot

(Yes)

2.29 0.19 12.37 <0.0001

Mammals Intercept -1.06 0.63 -1.69 0.0901

Distance 0.69 0.03 23.99 <0.0001 9123.7 (2) <0.0001

Distance2 -0.03 0.02 -1.42 0.1550

BM -0.13 0.56 -0.23 0.8218 3.8 (1) 0.0522

TravTime 1.34 0.08 16.76 <0.0001 399.8 (2) <0.0001

TravTime2 -1.25 0.09 -13.68 <0.0001

Guild (Carn) -1.04 0.82 -1.28 0.2019 8.4 (4) 0.0767

Guild (Herb) 0.38 0.67 0.57 0.5699

Guild (Invert) -1.93 1.09 -1.77 0.0769

Guild (Omn) -0.63 0.87 -0.73 0.4658

TypeHunt (C) -1.98 0.57 -3.45 0.0006 27.1 (2) <0.0001

TypeHunt (SC) -1.72 0.39 -4.38 <0.0001

Protected (Yes) 0.51 0.03 17.87 <0.0001 1004.3 (1) <0.0001

Distance x BM 1.12 0.03 32.26 <0.0001 1352.4 (2) <0.0001

Distance2 x BM -0.21 0.02 -12.55 <0.0001

Distance x Guild

(Carn)

-1.23 0.15 -8.15 <0.0001 944.8 (8) <0.0001
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Table 3.6 continued from previous page

Class Moderators Estm. SE Z pestm Qm (df) pQ

Distance x Guild

(Herb)

-0.59 0.04 -15.14 <0.0001

Distance x Guild

(Inver)

0.66 0.28 2.35 0.0189

Distance x Guild

(Omn)

-1.17 0.05 -21.51 <0.0001

Distance2 x Guild

(Carn)

0.81 0.11 7.10 <0.0001

Distance2 x Guild

(Herb)

0.17 0.03 5.32 <0.0001

Distance2 x Guild

(Inver)

-0.51 0.21 -2.38 0.0174

Distance2 x Guild

(Omn)

0.26 0.03 7.55 <0.0001

BM x Guild

(Carn)

-0.75 1.03 -0.72 0.4696 58.9 (4) <0.0001

BM x Guild

(Herb)

-0.58 0.55 -1.05 0.2953

BM x Guild (In-

ver)

-1.39 1.18 -1.18 0.2392

BM x Guild

(Omn)

-0.72 0.79 -0.91 0.3604

Distance x Type-

Hunt (C)

-0.29 0.05 -5.22 <0.0001 566.1 <0.0001

Distance x Type-

Hunt (SC)

-0.28 0.04 -6.43 <0.0001

Distance2 x Type-

Hunt (C)

0.84 0.05 16.88 <0.0001

Distance2 x Type-

Hunt (SC)

0.38 0.04 9.58 <0.0001

Distance x Prot

(Yes)

0.85 0.04 21.65 <0.0001 493.7 <0.0001

Distance2 x Prot

(Yes)

-0.18 0.03 -5.70 <0.0001

Distance x BM x

Guild (Carn)

1.02 0.11 9.51 <0.0001 1325.7 <0.0001

Distance x BM x

Guild (Herb)

-0.96 0.03 -30.36 <0.0001
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Table 3.6 continued from previous page

Class Moderators Estm. SE Z pestm Qm (df) pQ

Distance x BM x

Guild (Inver)

0.87 0.24 3.62 0.0003

Distance x BM x

Guild (Omn)

-0.79 0.04 -19.49 <0.0001
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Abstract

Grouping behaviour of prey animals is thought to be mainly driven by fear of predation

and resource scarcity. Fear of predation often leads to small inter-individual distances,

while resource scarcity leads to the opposite. Consequently, it is believed that the number

of individuals in a group (group size) is an emergent property of the trade-off between

acquiring scarce resources and preventing predation. We analysed whether group size can

be reliably used as a proxy for this trade-off, using a deterministic attraction-repulsion

agent-based model in a homogeneous area. In our model, each individual experiences

distance-dependent attraction and repulsion to all others in the area, where varying de-

grees of grouping behaviour emerge from the number and distance of intersections between

the attraction and repulsion functions. We show that the coefficient of variation of group

size generally lies between 50 and 150%, depending on both animal density and the trade-

off between resource scarcity and predation. Given that the variations of group size are

already this large in homogeneous and deterministic scenarios, we urge researchers to be

cautious in using group size as a proxy for the resources/predation trade-off and consider

inter-individual distance as a more direct and potentially more reliable alternative.
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4.1 Background

In order to survive, the movement of animals is for a large part driven by two factors:

resource availability (e.g., food) and fear of threats (e.g., predation) (Brown et al., 1999;

Nathan et al., 2008). Resource scarcity induces animals to prioritize foraging behaviour

and high predation risk induces animals to prioritize vigilance behaviour (Laundré et al.,

2001). Given that these two behaviours often cannot be performed efficiently simultane-

ously, a trade-off exists between food acquisition and predator avoidance regarding optimal

fitness (Lima, 1995). Emerging from individual movement, collective animal movement

(e.g., group formation) is to a large extent also shaped by both resources and predation

(Alexander, 1974; Couzin & Krause, 2003; Krause & Ruxton, 2002). In general, when

the chance of predation is high it benefits an individual to live in a group with many

individuals, through both the dilution (i.e., less chance to be chosen by a predator dur-

ing an attack (Hamilton, 1971)) and the “many eyes” effect (i.e., benefiting from the

vigilance of group members (Lima, 1995)). And although there are animal species that

benefit from a sizeable group for resource acquisition (e.g., in order to defend territories

with resources (Krause & Ruxton, 2002): contest competition), when resources are ac-

cessible to all competitors (i.e., scramble competition) it benefits an individual to live

solitary in the absence of predators by having the monopoly on resources in its direct

vicinity (Isbell, 1991). Considering prey species that are in scramble competition with

their conspecifics, there is thus an apparent trade-off between resource availability and

fear of predation regarding an ‘optimal’ group size (Couzin & Krause, 2003; Krause &

Ruxton, 2002).

The proposed mechanisms by which individuals form groups of a certain size are derived

from two main theories: 1) individuals selecting groups of a certain size (Krause & Godin,

2010), and 2) individuals forming groups through self-organizing processes of individual

movement decisions (Couzin & Krause, 2003; Hoare et al., 2004). Both mechanisms

are credible to occur in nature, possibly even occurring simultaneously for some species

(Krause & Ruxton, 2002). However, the first of these two mechanisms is cognitively the

most complex by assuming that animals are able to count conspecifics within a group,

which is unlikely for large groups and/or species with lower cognitive abilities such as

shoaling fish, swarming insects and flocking birds (Couzin & Krause, 2003). Furthermore,

with the first mechanism, optimal group sizes are generally exceeded because solitary

individuals continue to join already large groups (Hoare et al., 2004). Self-organization

is thus the most parsimonious of these two mechanisms through which to explain the

formation of group sizes that may appear optimal given the trade-off between searching

for scarce resources and reducing predation risk (Couzin & Krause, 2003). These self-

organizing models of collective behaviour have been build around individual movement

decisions, in which often the radius of interaction with conspecifics and/or the magnitude

of attraction and repulsion between individuals is a function of variables such as resource
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availability and fear of predation (Couzin et al., 2002; Couzin & Krause, 2003; Hoare

et al., 2004).

In many studies the concept of optimal group size has been used to draw conclusions

about resource availability (Isbell, 1991; Sinclair, 1977), predation risk (Fryxell et al.,

2007; Sorato et al., 2012) or both (Brouwer et al., 2020; Hoare et al., 2004) by monitoring

group sizes in the field. However, group sizes are often highly variable, resulting in broad

frequency distributions when recording the sizes of groups (Hoare et al., 2004; Sinclair,

1977). This variability is not an issue in laboratory settings or during experiments where

resource availability and fear perception can be controlled (Hoare et al., 2004), but it does

become problematic under field conditions where resource availability and predation risk

are largely unknown and which are often the actual variables of interest for which group

size serves as a proxy (Fryxell et al., 2007; Sinclair, 1977). To substantiate this, a large

variance in field-monitored group sizes can be caused by 1) heterogeneity in resource avail-

ability or predation risk across the study area, 2) complexity in animal behaviour (which

is obviously driven by many more factors), as well as 3) a large inherent variability in the

emergent properties of the group formation process even in the absence of environmental

and behavioural heterogeneity. To draw reliable conclusions about resource availability

and predation risk from monitored group sizes it is thus important to investigate the rel-

ative importance of each of these three aspects in their shaping of the variation in group

sizes.

The inherent variability of group sizes caused by the group formation process itself can

be studied with a minimal agent-based model with two types of forces: attraction (driven

by predation risk) and repulsion (driven by resource scarcity). In a hypothetical situation

with fear of predation and unlimited resources it is most beneficial for animals to all stack

in the same location (attraction-only), and in the situation without fear of predation and

with limited resources it is most beneficial for animals to distribute themselves perfectly

overdispersed across the area (repulsion-only). Attraction-repulsion agent-based models

have been used widely in biology, mathematics and physics research to study clustering,

both to investigate equilibria (Bernoff & Topaz, 2011; Gazi & Passino, 2004; Leverentz et

al., 2009; Liu & Xi, 2019; Sciortino et al., 2004) and collective movement patterns (Chen &

Kolokolnikov, 2014; Eftimie et al., 2007; Romanczuk & Schimansky-Geier, 2012). From

these modelling efforts it has become apparent that groups with alternate stable sizes

can form in a single simulation from random initial locations, deterministic movement

and homogeneous areas (Sciortino et al., 2004). How the variation in stable group sizes

exactly relates to the underlying model parameters is of interest for this study.

Here we aim to investigate the inherent variability of group sizes that result from a

deterministic and homogeneous self-organizing group formation process driven only by

resources and fear. Using this approach we can measure the variance in group sizes

that are caused solely by the group formation process, thereby avoiding the effects of
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environmental heterogeneity and other factors that influence animal behaviour. Our aim

is thus not to provide a single realistic model for group size variation, but a simple model to

gauge the effect of the inherent variability in the group formation process. To this end we

have built an agent-based model in which each individual experiences distance-dependent

forces to all other individuals: attraction (driven by predation risk) and repulsion (driven

by resource scarcity), each force modelled with only one parameter. From the converged

simulations of these models we computed the variances in group size and linked these

to the different values of attraction, repulsion and animal density. To sample the entire

probability distribution of stable group sizes, we ran multiple iterations of each unique

model with random initial locations of the individuals.

4.2 Modelling

Full details about the modelling are in the Methods section.

We modelled various numbers of individuals in one, two and three dimensions in areas of

different sizes with an agent-based model. Each individual experienced both an attraction

and a repulsion force to each other individual, for which the magnitude varied determin-

istically based on inter-individual distances. The net resultant vector of all these forces

resulted in the movement of the individual. For every simulation the locations of the indi-

viduals were initiated with complete spatial randomness and the simulations ran until the

locations converged to a stable position. The single-parameter function of the attraction

force versus distance was chosen to be hump-shaped with a long tail: being low at close

distances, high at intermediate distances and low at far distances. The single-parameter

repulsion force function was chosen to decrease exponentially with distance: being high

at close distances and low at far distances. These distance-dependent forces simulate the

tendency of group-living prey animals to group together with conspecifics in the vicinity

and to maintain a certain inter-individual distance (Gazi & Passino, 2004). We used the

attraction parameter a as a proxy for predation risk and the repulsion parameter r as

a proxy for resource scarcity and did not make assumptions about the functional rela-

tionship between predation risk versus a and resource scarcity versus r (other than being

monotonically positive).

We chose our functions and underlying a and r parameters in such a way that the combi-

nation of the attraction and repulsion forces in a net attraction force (through subtracting

the one from the other) led to three distinct scenarios of relationships (Figure 4.1): 1)

when r had the upper hand over a, with the net attraction being negative for all possible

distances; 2) when r and a were closer together in their influence on the system, with the

net attraction being positive for a certain distance range and negative both before and

after this range; and 3) when the balance between r and a is shifted even further, the net

attraction being positive for all distances beyond a certain range. Based on the results of

previous studies done on clustering with attraction-repulsion agent-based models (Gazi
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& Passino, 2004; Liu & Xi, 2019; Sciortino et al., 2004), we expected the first scenario to

result in overdispersed systems without group formation, the second scenario to result in

systems where multiple groups can form, and the third scenario to result in systems that

have the capacity to form one group with all individuals.
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Figure 4.1: Net attraction f̃nj (x̃j) = ax̃je
−x̃j − e−

x̃j
r versus distance x̃j , for values

of attraction a and repulsion r between 0.5 and 2.

We simulated all parameter combinations of the model 100 times with different random ini-

tial locations of the individuals. In order to retrieve the group sizes of the converged states

of the simulations, we first tried various clustering algorithms (e.g., k -means, k -medoids,

hierarchical clustering and brute-force packages that applied many different clustering

algorithms at the same time) to differentiate the individuals into different groups. Unfor-

tunately this proved to be too error-sensitive for our data, especially for situations where

the distances between clusters were not much larger than the distances between individuals

within the same cluster. Therefore we computed the distance matrices of the individuals

and scaled the inter-individual distances based on the expected inter-individuals distances

under complete spatial randomness (see Clustering subsection). From these transformed

distance matrices we then identified the values that were substantially lower than expected

and used these to derive an accurate estimation of the distributions of group sizes.
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4.3 Results

By visualizing the end locations of the simulations (e.g., see Figure 4.2), we noticed

that group formation was as expected largely influenced by both the balance in a and

r as well as the density of individuals. Unexpectedly though, many simulations formed

separate multi-individual groups instead of the expected single “supergroup” when the

net attraction relationship did not became negative again after a certain distance range.

Furthermore, there were simulations which were completely overdispersed into solely 1-

individual groups, even when the net attraction was positive for a certain distance range.

This is likely because the size of the simulated area extends on purpose far beyond the ef-

fective distance range of the net attraction function to resemble realistic natural scenarios

and because the density of individuals is for certain simulations relatively low.
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Figure 4.2: Converged states of 1 initialization of our model with 200 random

initially distributed individuals inside a 3D toroidal landscape with a size s of 100,

two different values of attraction a in the top panels and of repulsion r in the side

panels. The two top visualizations display no clustering, the bottom left some

clustering and the bottom right even more.
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The transformed distance matrices allowed us to easily identify the individuals which

were closer together than expected under complete spatial randomness (Figure 4.3), from

which the distributions of kth neighbours within the same group and subsequently the

probability distribution of an individual being in a group of a certain size could be de-

rived.
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Figure 4.3: Average transformed distance matrices M̃ of the converged states of all

100 3D initializations as displayed in Figure 4.2, with the kth neighbour (until the

25th) on the x-axis, the ascending order o of distances on the y-axis, two different

values of a in the top panels and of r in the side panels. The expected distance under

complete spatial randomness is indicated with a dashed line. See Clustering

subsection for details on the construction and use of these matrices.

After retrieving the distribution of group sizes for all parameter combinations of the model,

we noticed that group size was as expected largely influenced by the difference between

the distances for which the net attraction was zero (Figure 4.4, where the Lambert’s W

value is a mathematical proxy for the difference between these distances).
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Figure 4.4: Group size versus attraction a (x-axis) and repulsion r (y-axis), for 1

dimension, 200 individuals and torus size 800. Coefficient of variation (σµ) in Figure

4.4a, mean (µ) in Figure 4.4b and standard deviation (σ) in Figure 4.4c. The contour

lines of 4.4b and 4.4c seem to follow the contour lines of the Lambert’s W value for

the intersections between the attraction and repulsion functions (Figure 4.6), of

which the dashed (indicating the threshold between 1 and 2 intersections) and the

dotted line (threshold between 2 and 0 intersections) are visualized here as well. This

indicates a relationship between the mean and standard deviation of group size with

the distance between the intersections of the attraction and repulsion functions.
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Given all unique combinations of the parameters of our simulations, the same relative

patterns as in Figure 4.4 were produced, but with differences in absolute values of group

size. We then aimed to combine the balance between a and r (as expressed in Figure

4.4) with all other simulated variables into two interpretable variables: 1) the mean

proportion of the total number of individuals within the attraction range (defined as zero

for a repulsion-only model and otherwise defined as the largest distance with a value one-

tenth of the value of the peak of net attraction) of each individual during initialization,

and 2) the ratio between the mean proportion of the total number of individuals within the

repulsion range (defined as the distance where the net attraction first becomes positive) of

each individual during initialization and the former variable. These two variables seemed

to describe the mean group size relative to the total number of individuals well (Figure

4.5b), but for the variation in group size the total number of simulated individuals also

had a large influence (Figure 4.5a and 4.5c). Overall, the mean group size increases

linearly with the proportion of individuals within the attraction range and increases even

further when the proportion of individuals within the repulsion range is low relative to

the proportion of individuals within the attraction range (Figure 4.5b). The same applies

to the standard deviation of group size, although this relationship does not seem to be

increasing linearly, but seemed to increase quicker for lower values of the proportion within

the attraction range (Figure 4.5c). Furthermore, with smaller numbers of individuals the

standard deviation of group size is noticeably larger. Dividing the standard deviation

by the mean value of relative group size results in the coefficient of variation (Figure

4.5c), which appears to be hump-shaped and leveling off for larger larger values of the

proportion within the attraction range. The coefficient of variation of relative group size

lies approximately between 50 and 150% for the various parameter combinations.
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Figure 4.5: Group size proportional to number of individuals l (y-axis) versus

average proportion of individuals under initial random distribution within every

attraction range (x-axis), relative proportion within every repulsion range (color) and

number of individuals l (shape). Coefficient of variation (σµ) in Figure 4.5a, mean

(µ−1
l−1 ) in Figure 4.5b and standard deviation ( σ

l−1) in Figure 4.5c. Trend lines

computed independently of relative proportion within repulsion range and only when

clustering occurred, using local polynomial regression fitting.

4.4 Discussion

In our study we have used an attraction-repulsion agent-based model to investigate the

relationship between resource availability and predation risk versus animal group size.

Using a single attraction parameter as a measure for predation risk and a single repulsion

parameter as a measure for resource scarcity, we found that the mean relative group size

increased with predation risk and resource availability, after having scaled the parameters

for animal density. The standard deviation of relative group size behaved the same,
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but was noticeably larger for a smaller total number of animals and displayed a quicker

increase for lower values of predation risk. As a result, the coefficient of variation of

group size was highest for intermediate values of predation risk and depended on both

the predation/resources trade-off and animal density. Overall, the coefficient of variation

of group size generally lied between 50 and 150% in our simulations.

Our results show that mean animal group sizes increase with population density, predation

risk and resource availability. Increased resource availability obviously allows for larger

groups rather than causing it, as there is only a reason to cluster when there is a certain

predation risk. Our results match well with empirical data, e.g., it has been shown

that the mean group size increases with population density for fish (Niwa, 1998), with

predation risk for birds (Sorato et al., 2012), resource availability for mammals (Sinclair,

1977), and all three factors for other taxa as well (Couzin & Krause, 2003; Krause &

Ruxton, 2002). Furthermore, an increase in predation risk translated to an increased

range of attraction in our model, while a decrease in resource availability translated to an

increased range of repulsion. This approach of interaction ranges has been used directly

in other modelling studies, which yielded comparable results to our study regarding the

probability distributions of group size. For example, a decrease in the local interaction

radius of modelled fish resulted in a smaller mean group size as well as a smaller spread

of the group size distribution (Hoare et al., 2004).

The coefficient of variation of our modelled group sizes lies between 50 to 150% in ho-

mogeneous and deterministic scenarios, where the random initializations facilitated the

observed variation. Given that there is such a large difference between the confidence

limits of these group sizes, it is plausible that researchers who encounter such large dif-

ferences in the field may actually interpret these as being caused by a difference in the

predation/resources trade-off. There have for example been studies on ungulates (Thaker

et al., 2010), rodents (Ebensperger & Wallem, 2002) and monkeys (Gillespie & Chapman,

2001) that have reported effects of a predation/resources trade-off on group sizes, while

the variation in all group sizes was close to our reported variance here. This is poten-

tially problematic, as the reported group sizes may thus have actually come from a single

distribution (viz., with equal predation risk and resource availability).

Group compactness is a more direct proxy for grouping tendency than group size in situ-

ations where group formation is driven by local interaction rules, given that the distance

between individuals follows directly from the interaction rules and group size is an emer-

gent property of this self-organizing process (Couzin & Krause, 2003). For example, it

has been shown that fish groups become more compact with increased predation risk

(Herbert-Read et al., 2017). Furthermore, group compactness seemed to be more im-

portant than group size in the preference of certain fish species (Frommen et al., 2009),

and group compactness also seemed more important than group size in the reduction of

predation risk through a “confusion effect” (Scott-Samuel et al., 2015). However, group
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compactness has generally been used far less in the literature than group size to gauge the

predation/resources trade-off, especially for terrestrial animals (Fryxell et al., 2007; Isbell,

1991; Sinclair, 1977; Sorato et al., 2012; Thaker et al., 2010). This is of course not surpris-

ing, given that it is easier to measure group size than group compactness, as compactness

must preferably be monitored over a longer period of time and often requires equipment

like cameras and tracking software while a single count suffices for group size. However,

given the large inherent variability in group size given the same predation/resources trade-

off, the usefulness and reliability of group compactness as a field proxy for this trade-off

should be investigated for multiple species and study areas.

In this study we focused on purpose solely on the inherent variability of group sizes that

result from a deterministic and homogeneous self-organizing group formation process,

thereby leaving out other processes. Extra complexity in more realistic models can fur-

ther amplify the variation in group sizes that we found (e.g., through local environmental

heterogeneity or animal movement being dependent on more factors) or dampen it (e.g.,

forward persistence in movement that could lead to fission and fusion dynamics, which

potentially leads to group sizes that become more ‘averaged out’ over time). It would

therefore be recommendable for future research to also investigate the relative impor-

tance regarding the variability in group sizes of environmental heterogeneity and animal

behaviour complexity in interaction with this simple group formation process.

4.5 Conclusion

We demonstrate self-organizing animal group formation with an attraction-repulsion

agent-based model, for which the group sizes increase with predation risk, resource avail-

ability and population density. Even though this process is deterministic and homoge-

neous, the group sizes have a coefficient of variation between 50 and 150% depending on

the aforementioned parameters. Such large variations in a single process are problem-

atic when group sizes in the field are gauged on having resulted from differences in the

predation/resources trade-off. We therefore urge researcher to investigate the usefulness

and reliability of group compactness as a more direct proxy for the predation/resources

trade-off.
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4.6 Methods

4.6.1 Agent-based Model

Our agent-based model is composed of l individuals of which each individual experiences

attraction
# »

faj and repulsion
#»

f rj forces to all other conspecifics j based on their distance

xj. For each point in time these forces sum up to one vector per individual
# »

fn, which

determines the movement of that individual at that point in time.

# »

fn (xj) =
l−1∑
j=1

# »

fnj (xj)

# »

fnj (xj) =
# »

faj (xj)−
#»

f rj (xj)

# »

faj (xj) = αβxje
−βxj

#»

f rj (xj) = γe−δxj

# »

fn ∈ (−∞,∞), movement vector

# »

fnj ∈ (−∞,∞), net attraction to conspecific j of l individuals

# »

faj ∈ (−∞,∞), gross attraction to conspecific j of l individuals

#»

f rj ∈ (−∞,∞), repulsion from conspecific j of l individuals

xj ∈ [0,∞), distance from conspecific j of l individuals

α ∈ (0,∞), attraction height parameter

β ∈ (0,∞), attraction rate parameter

γ ∈ (0,∞), repulsion height parameter

δ ∈ (0,∞), repulsion rate parameter

4.6.2 Nondimensionalization

Given that our model is not specifically designed for a certain animal species, the absolute

values of xj and
# »

fn have no inherent meaning. Therefore, both dimensions of the net

attraction function
# »

fnj can be scaled to relative dimensions. This results in a simpler

scaled net attraction function f̃nj with two instead of four parameters.

# »

fnj (xj) = αβxje
−βxj − γe−δxj

f̃nj (x̃j) =
αβxcx̃je

−βxcx̃j − γe−δxcx̃j
wnc

⇐ f̃nj =

# »

fnj
wnc

, x̃j =
xj
xc
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wnc = γ, xc = β−1 ⇒ f̃nj (x̃j) =
α

γ
x̃je
−x̃j − e−

δ
β
x̃j

f̃nj (x̃j) = ax̃je
−x̃j − e−

x̃j
r ⇐ a =

α

γ
, r =

β

δ

f̃nj ∈ [−1,∞), scaled net attraction to conspecific j

x̃j ∈ [0,∞), scaled distance from conspecific j

a ∈ (0,∞), scaled attraction parameter

r ∈ (0,∞), scaled repulsion parameter

4.6.3 Intersections

The intersections between the attraction and repulsion functions, i.e., when f̃nj = 0, deter-

mine at which distances to a conspecific an individual remains stationary in the absence

of other conspecifics. With multiple conspecifics, these intersections will determine the

distances between conspecifics within the same group and the distances between groups.

Note that the solution is a Lambert’s W function, which can have zero, one or two solu-

tions (Figure 4.6).

f̃nj (x̃j) = 0

ax̃je
−x̃j − e−

x̃j
r = 0

ax̃je
−x̃j − e(1− 1

r )x̃je−x̃j = 0

e−x̃j
(
ax̃j − e(1− 1

r )x̃j
)

= 0

e−x̃j = 0, ax̃j − e(1− 1
r )x̃j = 0

x̃j /∈ IR, e(1− 1
r )x̃j = ax̃j

e(1− 1
r )x̃j

x̃j
= a

x̃je
( 1
r
−1)x̃j = a−1

r = 1⇒ x̃j = a−1

eu
u

1
r
− 1

= a−1 ⇐ u =

(
1

r
− 1

)
x̃j

euu =
1
r
− 1

a

u = W

(
1− r
ar

)
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r 6= 1⇒ x̃j = −
rW

(
1−r
ar

)
r − 1
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Figure 4.6: w (a, r) = 1−r
ar , the input value of Lambert’s W function for

intersections. w higher than 0 (dashed line) gives 1 intersection, w between 0 and

−e−1 (dotted line) gives 2 intersections, and w lower than −e−1 gives 0 intersections.

4.6.4 Peaks

Following the same equation solving techniques as for the intersections, the peaks of f̃nj
can also be derived.
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df̃nj
dx̃j

= 0

e−
x̃j
r

r
− ae−x̃j (x̃j − 1) = 0

r = 1⇒ x̃j = a−1 + 1

r 6= 1⇒ x̃j = 1−
rW

(
− e1−

1
r (r−1)
ar2

)
r − 1

4.6.5 Simulations

We simulated l individuals 100 times with random initial locations inside a d dimensional

torus of size s with scaled attraction a and scaled repulsion r. We used a torus to prevent

edge effects of the simulation area and chose the size of the torus to be an order of mag-

nitude larger than the effective interaction range of the individuals to limit the effects of

the torus on the movement process. We simulated our model using Euler integration with

a custom-build adaptive step size routine until all movements converged. We performed

these simulations for all combinations of:

l ∈ {50, 100, 200}

d ∈ {1, 2, 3}

s ∈ 23−d {100, 200, 400}

a ∈
{
l
4

}8

l=1

r ∈
{
l
4

}8

l=1

Given that in a d-dimensional torus there are 2d straight paths between two points, we

computed at each time step in the simulations the sum of all 2d (l − 1) scaled net attraction

vectors f̃nj (x̃j) over toroidal distances x̃j per individual j.

4.6.6 Clustering

Unfortunately it proved to be too error-sensitive to directly determine the number of clus-

ters and their sizes for each converged simulation. Therefore we computed for each simula-

tion the minimum toroidal Euclidian distance matrix M and averaged it out element-wise

for the 100 iterations of each parameter combination of the simulation. Finally, we trans-

formed M to M̃ so that it quantifies the deviation from the expected distance to the kth

neighbour under complete spatial randomness, by:

1. Sorting the rows per column in ascending order.
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2. Sorting the columns per row in ascending order, to retrieve a matrix of columns

with ascending distances to the kth neighbour.

3. Removing all columns larger than

(l − 1)
ψ
(
s
2

)d
sd

= (l − 1)
ψ

2d
,

where ψ is the volume of a d dimensional ball with unit size

ψ =
π
d
2

Γ
(
d
2

+ 1
) ,

to include only the k neighbours that with complete spatial randomness are inside

a d dimensional ball of diameter s within a d dimensional cube of size s.

4. Scaling every column by the expected average distance to the kth neighbour under

complete spatial randomness (Bhattacharyya & Chakrabarti, 2008)(
Γ
(
d
2

+ 1
)) 1

d

√
π

Γ
(
k + 1

d

)
Γ (k)

Γ (l)

Γ
(
l + 1

d

)s =

(
1

ψ

) 1
d Γ
(
k + 1

d

)
Γ (k)

Γ (l)

Γ
(
l + 1

d

)s,
which (given that l is rather large) can be reduced with Stirling’s approximation to(

1

ψ

) 1
d Γ
(
k + 1

d

)
Γ (k)

(
1

l

) 1
d

s,

which can be approximated for large values of k with(
1

ψ

) 1
d

k
1
d

(
1

l

) 1
d

s = s

(
k

ψl

) 1
d

.

4.6.7 Point Process Model

From M̃ the number of clusters with a certain size were derived by identifying the ma-

trix cells with a substantially lower value than 1 (see Figure 4.3, bottom row). After

having identified these cells with a lower value, the probability distribution of each in-

dividual being in a cluster of a certain size could easily be determined. To verify that

this procedure matched the actual group size distribution, we computed M̃ for a custom-

build Point Process Model with known group sizes and (based on the known group sizes)

marked the matrix cells that signified distances within a cluster (Figure 4.7). We per-

formed this procedure with Point Process Models using all combinations of the following

parameters:

1. Mean µ
(
Ñ
)

of the Beta distribution of the number of clusters N , where N =[
1 + Ñ (l − 1)

]
, ∈ {0.5, 0.7, 0.9}
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2. Standard deviation σ
(
Ñ
)

of the Beta distribution of N relative to the maximum

possible standard deviation (µ (1− µ)), ∈ {0.5, 0.7, 0.9}

3. Concentration λ (κ̃) of the symmetric Dirichlet distribution of the number of indi-

viduals κ per cluster (with the number of categories of the distribution being fixed

at N), where κ = [κ̃l], ∈ {1, 10, 100}

4. Repulsion coefficient ω of the clusters as a function of cluster size κ, where the

location of all cluster centres g are simulated in a single ABM using f̃ng (x̃g) =

−x̃g − (ω (κg − 1)− ε)
√
d
(
s
2

)2
, with ε = minlκg=1 (ω (κg − 1))− 1, ∈ {−2, 0, 2}

5. Inter-individual distance θ within each cluster, simulated with a separate ABM for

each cluster using f̃nm (x̃m) = 1

1+e−
5
θ

(x̃m−θ) −
1
2
, ∈ {0.5, 1, 2}

6. Number of individuals l, ∈ {50, 100, 200}

7. Number of dimensions d, ∈ {1, 2, 3}

8. Torus size s, ∈ 23−d {100, 200, 400}



88 Animal group size variation

l : 1 l : 10 l : 100

m : 0.5

m : 0.7

m : 0.9

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

25

50

75

100

25

50

75

100

25

50

75

100

k

o

-4

-3

-2

-1

0

1

log(distance)

cluster probability

0.00

0.25

0.50

0.75

1.00

Figure 4.7: Average transformed distance matrices M̃ of the converged states of all

100 Point Process Model initializations, with the kth neighbour (until the 25th) on

the x-axis, the ascending order o of distances on the y-axis, all values of group size

concentration λ in the top panels and all values of mean number of clusters µ in the

side panels. All other parameters of the model are set at the median value for this

figure. The black dots signify the distances that are known to be from within a

cluster, which matches accurately with the low values of M̃ .
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Abstract

Animals respond to environmental variation by changing their movement in a multifaceted

way. Recent advancements in biologging increasingly allow for detailed measurements of

the multifaceted nature of movement, from descriptors of animal movement trajectories

(e.g., using GPS) to descriptors of body part movements (e.g., using tri-axial accelerom-

eters). Because this multivariate richness of movement data complicates inference on the

environmental influence on animal movement, studies generally use simplified movement

descriptors in statistical analyses. However, doing so limits the inference on the environ-

mental influence on movement, as this requires that the multivariate richness of movement

data can be fully considered in an analysis. We propose a data-driven analytic framework,

based on existing methods, to quantify the environmental influence on animal movement

that can accommodate the multifaceted nature of animal movement. Instead of fitting a

simplified movement descriptor to a suite of environmental variables, our proposed frame-

work centres on predicting an environmental variable from the full set of multivariate

movement data. The measure of fit of this prediction is taken to be the metric that

quantifies how much of the environmental variation relates to the multivariate variation

in animal movement. We demonstrate the usefulness of this framework through a case

study about the influence of grass availability and time since milking on cow movements

using machine learning algorithms. We show that on a one-hour timescale 37% of the

variation in grass availability and 33% of time since milking influenced cow movements.

Grass availability mostly influenced the cows’ neck movement during grazing, while time

since milking mostly influenced the movement through the landscape and the shared varia-

tion of accelerometer and GPS data (e.g., activity patterns). Furthermore, this framework

proved to be insensitive to spurious correlations between environmental variables in quan-

tifying the influence on animal movement. Not only is our proposed framework well-suited

to study the environmental influence on animal movement; we argue that it can also be

applied in any field that uses multivariate biologging data, e.g., animal physiology, to

study the relationships between animals and their environment.
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5.1 Background

Analysing animal movement is fundamental to ecology, because movement is arguably the

most important way for animals to respond to their environment (Nathan et al., 2008).

Quantifying the environmental influence on animal movement is therefore an important

practice in ecology (Avgar et al., 2013; Signer & Ovaskainen, 2017). As animal movement

is inherently multifaceted, with aspects related to the movement of the animal through the

landscape and aspects related to the movement of body parts, the movement process can-

not be described with simplified descriptors without loss of information. On the contrary,

a plethora of emergent patterns can be identified through these multifaceted movement

descriptors, e.g., activity types (such as walking, foraging or resting) and collective move-

ment properties (Benaissa et al., 2017; Sumpter et al., 2018). Technological advancements

in the field of biologging currently allow for data on animal movement to be acquired at

finer temporal and spatial scales and in increasing volumes, e.g., data on animal move-

ment speed, movement path tortuosity, tri-axial acceleration of body parts, and heart

rate patterns can now relatively easily be acquired (Cooke et al., 2004; McClintock et al.,

2017; Wilmers et al., 2015). These technological advancements provide opportunities to

increase ecological understanding by analysing the full multivariate complexity of animal

movement (McClintock et al., 2017; Wilmers et al., 2015). This multivariate complexity

of movement is not fully used in recent studies to infer the environmental influence on

animal movement. Instead, quantifying the environmental influence on animal movement

is currently often done through relating simplified movement descriptors, e.g., animal dis-

tributions, net displacements, diffusion rates, or distributions of step lengths and turning

angles, to a suite of environmental variables, e.g., through canonical analyses, linear mixed

models, semivariance approaches, diffusion approximations, step-selection functions, hid-

den Markov models, or state-space models (Avgar et al., 2013; Patterson et al., 2009;

Patterson et al., 2008; Peres-Neto et al., 2006; Signer & Ovaskainen, 2017; Thurfjell et

al., 2014; Turchin, 1998). Many of these approaches were not designed specifically for

animal movement data, but are approaches that function generally well in quantifying

the relationship of independent variables with one or several dependent variables. Al-

though the simplification of movement descriptors prior to analyses is a useful practice to

acquire ecological understanding, it almost necessarily leads to a reduction in the quanti-

fied environmental influence on multivariate animal movement as this influence may not

become fully apparent in the simplified movement descriptors. Even more so considering

that there are often multiple behavioural phenotypes that individuals of the same species

can produce in a given set of environments (Dingemanse et al., 2010), which can also

be influenced by different internal states between individuals (Nathan et al., 2008). This

consequently challenges the way that the analysis should be approached, as a multivariate

analytic framework is required to quantify the overall influence of environmental variables

on fine-scale multivariate animal movement data.
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Data-driven machine learning methods provide a toolset to be able to model multivariate

animal movement data and have been adopted by many animal ecologists over the past

years (Hughey et al., 2018; Wang, 2019). These machine learning methods have been

used to automatically detect and classify animal species in images (Eikelboom et al.,

2019), to track moving animals in videos (Risse et al., 2017), to follow animal body

postures and track body parts in videos (Hughey et al., 2018), to flag when animals

become sick using animal-mounted biologging sensors and videos (Van Hertem et al.,

2014), and to classify animal activities from biologging sensors (Wang, 2019). Although

machine learning has proven to be useful for movement ecology, it is often only used as a

tool to transform raw data (e.g., images, videos, accelerometer readings) into informative

data (e.g., species labels, animal locations, animal activity labels) (Hughey et al., 2018;

Wang, 2019). After these informative data have been generated, ecologists often use more

traditional statistical methods to relate these data to environmental variables (Avgar et

al., 2013; Signer & Ovaskainen, 2017; Wilmers et al., 2015). Machine learning has certainly

generated ecological understanding via this way, but we posit that machine learning can

also be used to acquire ecological understanding by directly relating animal movement

data to environmental variables.

Here we propose a machine learning-based analytic framework, based on existing meth-

ods, to quantify the overall influence of an environmental variable on multivariate animal

movement. After introducing the general framework, we demonstrate the usefulness of

this framework with a case study about the influence of grass availability, time since milk-

ing, and wind speed on cow movements. Apart from quantifying the degree of coupling

between the environment and cow movements, this case study shows that applying this

framework can yield ecological insights. Finally, we discuss possible usages and constraints

of this analytic framework. We contend that this framework contributes to the toolbox

of ecologists studying the relationship between the environment and animal movement,

behaviour, and physiology.

5.2 Methods

Our analytic framework quantifies the influence of an environmental variable on animal

movement by utilizing the multivariate richness of movement data. Instead of building

a model to predict a simplified animal movement descriptor from a set of environmental

predictors, i.e., the route of causal inference, we turn this around and build a model to

predict an environmental variable from a large number of animal movement variables. By

using animal movement variables, the model of this framework predicts a perceived envi-

ronmental variable by the animal (Cooke et al., 2004; Manning et al., 2004). Although

predicting an environmental variable from movement data is the goal of the model, it is

an intermediate step of the framework in order to quantify environmental influence on

animal movement. In this framework it is key to use as many informative movement vari-
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ables as possible, which could be meaningful human-constructed ecological (e.g., variables

related to multiple classified animal activities), mathematical and/or physical variables,

or abstract variables from an automated (deep learning) feature extraction algorithm.

When effort is made to extract as many informative variables as possible from the animal

movement data, chances are maximized that most of the variation of the environmental

variable under scrutiny that is present in the data is captured. Furthermore, instead of

creating the model as the end product during the analysis, the environmental variable

should be predicted on a separate test dataset as the final step of the analysis. This fol-

lows from a data-driven and machine learning philosophy, in which complex multivariate

models can be built that are not overfitted and therefore generalize better to new datasets.

When distinguishing the train and test dataset, the test set used in the prediction of the

environmental variable needs to be from a different temporal range than the train set that

is used in the model building phase, due to autocorrelation in animal movement data that

can otherwise cause the model to overfit (Arlot & Celisse, 2010). The range of values in

the test set of environmental variables (whether or not these are under scrutiny) should

be comparable to the range of values in the train set, to prevent incorrect extrapolation.

After generating model predictions on the test set, the coefficient of determination (R2)

quantifies the fit of this predicted environmental variable from animal movement data to

the measured environmental variable on a known scale and can thus be considered a metric

on how much of the variation in the environmental variable influenced animal movement

in a multivariate fashion (Figure 5.8) (Nakagawa & Schielzeth, 2013). The measure of fit

of the null model (i.e., no environmental influence) should be chosen depending on the

algorithm that is used, which is R2 = 0 for algorithms that are able to always predict

the mean of the response variable (e.g., Support Vector Regression and Random Forest

Regression), even when the input variables are white noise. The measure of fit of this null

model will then form the baseline value for which there is a 0% environmental influence

and an R2 of 1 can always be interpreted as 100% environmental influence. Of course

R2 should only be used as the measure of fit when modelling a continuous environmen-

tal response variable. With a discrete environmental variable, a classification approach

should be undertaken, which is outside the scope of this study. However, to compare the

influence of different environmental variables with each other fairly, the same measure of

fit should be used.

In order to demonstrate the usefulness of the proposed analytic framework, we applied

this framework to a case study about the influence of resource availability (here grass

biomass), time since milking, and wind speed on the movement of eight dairy cows in a

pasture (Figure 5.1). When animals are facing resource depletion, movement characteris-

tics (through the landscape and of body parts), and emergent patterns like group (herd)

characteristics, and time allocated to specific activities (e.g., foraging) often change, be-

cause animals need to invest more time and/or energy in searching for and acquiring

resources (De Knegt et al., 2007; Emlen, 1966). Cows in a pasture are a good model for
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such a case study, because this provides a relatively homogenous foraging arena. Time

since milking is another variable that could substantially influence the movement of dairy

cows, because it has been shown that the lactation stage of cows (a variable that is intu-

itively linked to time since milking regarding its effect on cow behaviour) influences the

relative distribution of their activity patterns (Bewley et al., 2010; Nielsen et al., 2000).

Wind speed provided a good test case for our framework, because it was moderately cor-

related (r = 0.37) with grass biomass. We expected this correlation to be spurious and

the effect of wind speed on cow movement to be negligible, because conditions were mild

during the experiment (0-9 m/s).

Figure 5.1: Flow chart of the summarized methodological approach for the case

study.

The exact methodological approach that we describe for this case study is one possi-

ble implementation of our proposed analytical framework (Figure 5.1). However, there

are numerous possible implementations of this framework for other studies, which may

be influenced by the problem statement, experimental setup, animal movement sensors,

environmental data types, data quantity, etc. However, the property that all implemen-

tations should have in common is that the environmental influence on animal movement

is quantified by predicting environmental variables from movement descriptors in a data-

driven (viz., machine learning) approach, which uses the coefficient of determination as

a measure to quantify this influence. This framework is fully based on existing machine
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learning methods that are already widely used in movement ecology (Hughey et al., 2018;

Wang, 2019). For example, the classification of animal activities from biologging data

are often performed in a similar way, where movement features are extracted from the

data and linked to known (supervised) or unknown (unsupervised) output values via a

data-driven algorithm (Benaissa et al., 2017; Martiskainen et al., 2009; Vázquez Dios-

dado et al., 2015; Wang, 2019). In this framework we apply the same principle, but in

a different setting, to predict the environment from multivariate animal movement. Fur-

thermore, the interpretation of the coefficient of determination is atypical as well, where

this measure is often used in movement ecology as solely a measure of model fit without

an ecological meaning.

5.2.1 Data collection

For this case study eight adult female Holstein-Friesian dairy cows were kept in controlled

pastures that were small enough so that foraging lead to resource depletion over the

course of several days. The experiment ran from 25 April until 11 May 2017. During the

experiment, the cows’ movements were recorded continuously with e-Track neck collars

(Noldus InnovationWorks, Wageningen, Netherlands), containing an EGNOS-augmented

GPS receiver and a tri-axial accelerometer sensor. The cows were continuously kept on

pasture at Carus animal facility in Wageningen, Netherlands (51°59’8” N, 5°39’11” E),

and could move freely around as a single group during the experiment. Over the course

of this period, we relocated the cows between three 0.32 ha pasture plots (sequentially

five, six and six consecutive days in each plot). At every pasture switch the cows were

housed inside the Carus facility for one night where they were offered fodder, so that

they were not hungry at the start of a new pasture plot session. Furthermore, the cows

were taken inside for milking and feeding every morning between 7:30 and 8:30 CEST

and solely for milking every afternoon between 16:30 and 17:00 CEST. The time the cows

spent on pasture was short enough to assume that the pasture did not increase in grass

quality because of re-growth after grazing and only decreased in grass availability (Ferraro

& Oesterheld, 2002). The short duration of the pasture sessions (approximately one day

longer than when a commercial farmer would have moved the cows, as judged by the farm

manager) ensured that the cows were not hungry, but only had to put more effort into

foraging when time progressed. Furthermore, the collaring process did not put the cows

under noticeable stress, more so because they were accustomed to continuously wearing

a neck collar.

The sensors in the cows’ neck collars recorded GPS and accelerometer data during the

experiment. The data were stored with a millisecond-accurate timestamp on a local SD

memory card, which was replaced every one to five days together with the battery. GPS

data were stored on the SD card with a one second interval. The accelerometer data

were sampled with a variable frequency of 25-500 Hz, which were later down-sampled and

linearly interpolated to a constant 32 Hz signal. Both the GPS and the accelerometer
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did not record data during some hardcoded multi-hour periods of inactivity, which were

variable in duration and time of day, to save battery power. However, the time between

GPS fixes was exactly 1 second in more than 99% of the cases. The precision of the GPS

fixes was high, with 98% of the fixes having a Horizontal Dilution of Precision (HDOP)

of less than two (a dimensionless unit; two is considered “excellent” precision). All GPS

fixes with an HDOP of more than five, which were 0.5% of all fixes, were considered to

be untrustworthy and filtered out of the final dataset. We also tested the accelerometer

data for precision by placing the sensor on a stable, non-moving surface while it recorded

for several minutes. The fluctuations in the recorded signal of all three accelerometer

axes were small, 0.06 m/s2 between the lowest and highest value, and were considered

negligible and thus ignored.

Activity (or behaviour) observations were conducted on work days from 25 April to 9 May

2017. A single person visually classified the activities using focal-animal sampling with

a pre-defined ethogram (Table 5.1). All activity types in the ethogram (grazing, walk-

ing, standing, standing while ruminating, lying, lying while ruminating) were mutually

exclusive. Each individual cow was observed continuously for ten minutes in the morning

(10:00-13:00 CEST) and ten minutes in the afternoon (13:00-17:00 CEST), in random

order, resulting in a total observation time of 1760 minutes. During the observations, the

start and end times of each displayed activity type from the ethogram were recorded. We

conducted these observations to acquire annotations for an activity classification model.

Representative acceleration plots of the three axes for the different activity types are

provided (Figure 5.9).
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Table 5.1: Ethogram. Descriptions of the recorded, mutually exclusive activity types.

Activity Description

Grazing Foraging behaviour by chewing grass from

the pasture whilst standing still or slowly

moving with the head down

Walking Taking at least two steps without grazing,

either with the head up or down

Standing without ruminating Standing on all four legs with head erect,

without swinging its head from side to side

and without ruminating

Lying down without ruminating All four legs tucked underneath the torso or

lying down on one side of its body without

ruminating

Ruminating while standing Masticating regurgitated feed, swallowing

masticated feed or regurgitating feed while

standing with head erect

Ruminating while lying down Masticating regurgitated feed, swallowing

masticated feed or regurgitating feed while

lying down

We measured resource availability as dry matter grass biomass in kilograms per hectare,

excluding stubble biomass. We determined time-varying biomass levels using a combi-

nation of field-measured biomass levels at specific time points, satellite-based biomass

estimates derived from the Normalized Difference Vegetation Index (NDVI), and mod-

elling of grass dynamics (see section 5.6). Wind speed (m/s, mean speed 10 m above

ground) were recorded at 10 minute resolution during the experiments with a weather

station on a grass pasture at the Veenkampen, Wageningen, Netherlands. This weather

station is located one kilometre west of the pasture plots used for the experiments.

5.2.2 Data processing

We used the pre-processed 32 Hz, tri-axial accelerometer signal as input for the accelerom-

eter feature extraction. First, we converted all the records in the three-dimensional ac-

celerometer dataset to 21 dimensions using multiple geometric transformations, i.e., re-

sultant vectors, angles, solid angles, volumes and areas (Table 5.2). These dimensions

constitute all geometric transformations of angles and distances in one, two and three di-

mensions. Considering that tri-axial accelerometer readings describe the movement forces

in three dimensions, geometric transformations make sense from a physics perspective.

More transformations could be considered, but these may lack to provide additional in-

formation to the feature set. Second, we divided the resulting dataset into non-overlapping
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time windows. We tried all window sizes in the range of 1 until 30 seconds and optimized

this window size as a hyperparameter regarding the activity classification performance,

where 3 s turned out to be the optimal window size (Table 5.8). For every time window we

computed multiple statistics per accelerometer dimension per cow, e.g., mean, standard

deviation, quantiles and Fast Discrete Fourier Transform (FFT) parameters (Figure 5.2).

These statistics were chosen to provide summary statistics about both the time-invariant

and sequential aspects of the data, given that accelerometer data also includes patterns

in the frequency domain regarding animal activity (e.g., head movement of cows during

grazing has a strong cyclic behaviour). We computed the FFT with the base R 3.6.2 stats

package (R Development Core Team, 2008), of which we used the maximum FFT value

as the dominant amplitude, the corresponding period of the dominant amplitude as the

dominant period, and finally the sum of all squared FFT values as the spectral energy.

Our list of computed statistics is not all-encompassing and more statistics can be thought

of to describe patterns in the data, but these statistics are similar to the ones that are

often used in activity classification with accelerometers (Bao & Intille, 2004; Shoaib et

al., 2015). Furthermore, as these statistics were mainly used in the activity classification

part of the analysis, we deemed the computed statistics sufficient when it resulted in a

high performance during activity classification. Overall, computing all statistics for each

dimension resulted in 210 accelerometer features per time window per cow.

Table 5.2: Dimensions extracted from the accelerometer data.

Name Formula Description

x x raw accelerometer reading in the x axis

y y raw accelerometer reading in the y axis

z z raw accelerometer reading in the z axis

rxyz

∥∥∥∥∥∥
x

y

z

∥∥∥∥∥∥ magnitude of resultant vector

rxy

∥∥∥∥xy
∥∥∥∥ magnitude of resultant vector in x,y plane

rxz

∥∥∥∥xz
∥∥∥∥ magnitude of resultant vector in x,z plane

ryz

∥∥∥∥yz
∥∥∥∥ magnitude of resultant vector in y,z plane

θxy arctan y
x

angle of resultant vector in x,y plane

θxz arctan z
x

angle of resultant vector in x,z plane

θyz arctan z
y

angle of resultant vector in y,z plane

θz arctan z∥∥∥∥∥∥xy
∥∥∥∥∥∥

angle of resultant vector with x,y plane collapsed to 1 line
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Table 5.2 continued from previous page

Name Formula Description

θy arctan y∥∥∥∥∥∥xz
∥∥∥∥∥∥

angle of resultant vector with x,z plane collapsed to 1 line

θx arctan x∥∥∥∥∥∥yz
∥∥∥∥∥∥

angle of resultant vector with y,z plane collapsed to 1 line

Ωx arcsin yz∥∥∥∥∥∥∥∥∥
x

y

0

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥
x

0

z

∥∥∥∥∥∥∥∥∥

solid angle of resultant pyramid base projected along x axis

Ωy arcsin xz∥∥∥∥∥∥∥∥∥
x

y

0

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥
0

y

z

∥∥∥∥∥∥∥∥∥

solid angle of resultant pyramid base projected along y axis

Ωz arcsin xy∥∥∥∥∥∥∥∥∥
x

0

z

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥
0

y

z

∥∥∥∥∥∥∥∥∥

solid angle of resultant pyramid base projected along z axis

Vxyz xyz volume of resultant cuboid

Ax yz area of resultant pyramid base projected along x axis

Ay xz area of resultant pyramid base projected along y axis

Az xy area of resultant pyramid base projected along z axis

Axyz
1
2

∥∥∥∥∥∥
xy

0

×
x0
z

∥∥∥∥∥∥ area of resultant triangle
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Figure 5.2: Statistics calculated per time window, cow and accelerometer

dimension. FFT stands for Fast Fourier Transform.

We used the filtered 1 Hz GPS data as input for the GPS feature extraction. First, we

transformed all the latitude, longitude coordinates to Cartesian coordinates by projecting

them to zone 31N of the UTM system (EPSG 32631). Second, we extracted a number

of individual GPS features from the projected GPS coordinates per time window per

cow, related to speed, turning angle, tangential velocity, mean squared displacement, and

first passage time (Table 5.3), which are widely used metrics for path-level analyses in

movement ecology (Seidel et al., 2018). The time windows were exactly the same as the

time windows used in the extraction of the accelerometer features. Third, we extracted

a number of group GPS features from the projected GPS data per time window per cow,

related to group shape, group area, and distances and directions to other cows (Table

5.4), which are low-level geometric metrics similar to those used for 2D point clouds in

computational geometry (Weinmann et al., 2017). We determined which individual and

group GPS features to compute by drawing fake GPS trajectories and animal clusters,

after which we discussed which geometrical properties (e.g., tangential velocity: the linear

speed of an animal moving along a circular path) could be extracted from these patterns.

Furthermore, we computed ecological properties of animal trajectories that were known

to us (e.g., Mean Squared Displacement: a measure of the deviation of the position of

an animal with respect to a reference position over time) and searched the literature and

animal movement related R packages for other ecological properties (e.g., First Passage

Time: the time required for an animal to cross a circle with a given radius). We do

not suggest that the provided list of computed features is all-encompassing, but we do

suggest that spending time and effort in the engineering of features (or optimizing the

architecture of a neural network in a deep learning approach) is an important part of
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our suggested framework. The more informative variation that is extracted from the raw

data, the better the model could potentially perform and thus the better the quantified

environmental influence on animal movement matches reality. Overall, computing both

the individual and group GPS features resulted in 38 GPS features per time window per

cow.

Table 5.3: Individual GPS features extracted per time window and cow.

Dimension Statistic Description

Distance Net gross ratio Distance between first and last position

divided by sum of distances of all seg-

ments

Speed Mean -

Standard deviation -

Median -

Minimum -

Maximum -

First quartile -

Third quartile -

Autocorrelation function

index

Autocorrelation value at a lag of 1 sec-

ond

Brownian motion scaling

parameter

See Equation 5.1

Turning

angle

ρ Length of the mean resultant vector

Autocorrelation function

index of the absolute

turning angles

Autocorrelation value at a lag of 1 sec-

ond

Absolute

tangential

velocity

Mean -

Standard deviation -

Median -

Minimum -

Maximum -

First quartile -

Third quartile -

Autocorrelation function

index

Autocorrelation value at a lag of 1 sec-

ond

Mean

Squared

Displacement

Diffusion coefficient The value of a in the fitted model

MSD = aτ b on MSD values for τ from 1

to 6
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Table 5.3 continued from previous page

Dimension Statistic Description

Diffusion power coefficient The value of b in the fitted model

MSD = aτ b on MSD values for τ from 1

to 6

First Passage

Time

Mean, 5m radius -

Variance of log, 5m radius -

Autocorrelation function

index, 5m radius

Autocorrelation value at a lag of 1 sec-

ond

Radius with maximum

variance of log (integers

from 1 to 10m)

-

Linear regression coeffi-

cient log radius vs. log

mean FPT

-

B =

√√√√√√√√√√√∑



(
∆x(t=1)√

∆t
−
∑ ∆x

∆t

n

)
· · ·

(
∆x(t=n)√

∆t
−
∑ ∆x

∆t

n

)
(

∆y(t=1)√
∆t
−
∑ ∆y

∆t

n

)
· · ·

(
∆y(t=n)√

∆t
−
∑ ∆y

∆t

n

)




(
∆x(t=1)√

∆t
−
∑ ∆x

∆t

n

) (
∆y(t=1)√

∆t
−
∑ ∆y

∆t

n

)
...

...(
∆x(t=n)√

∆t
−
∑ ∆x

∆t

n

) (
∆y(t=n)√

∆t
−
∑ ∆y

∆t

n

)


n

1 0

0 1


2

(5.1)

In which B is the Brownian motion scaling parameter and n the number of records.

Table 5.4: Group GPS features extracted per time window and cow.

Dimension Statistic Description

Net

distances to

other cows

Mean -

Median -

Minimum -

# cows within 2m radius -

# cows within 4m radius -

# cows within 8m radius -

# cows within 16m radius -
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Table 5.4 continued from previous page

Dimension Statistic Description

All mean

cow

coordinates

Group elongation index, φ Variance explained by the first principal

component through the mean x and y

coordinates of all cows. Value lies by

definition between 0.5 (when completely

non-elongated, e.g., an exact circle) and

1 (when all coordinates lie on a straight

line). Afterwards scaled between 0 and

1, by subtracting 0.5 and multiplying by

2.

Group area proxy πσ2 (1− φ); where σ is the standard de-

viation of the first principal component

values. This measure assumes that the

area can be estimated by considering the

group as an ellipse. When completely

non-elongated the area is πσ2 (where the

variance σ2 is a proxy for the extent of

the direction of elongation) and when

fully elongated the area is 0.

Directions to

other cows

ρ Length of the mean resultant vector

Periphery index Maximum difference between consecu-

tive directions, minus 2π
#cows−1

and di-

vided by 2π

5.2.3 Data analysis

We used the accelerometer features and individual GPS features per time window per cow

for which activity observations were undertaken as input data for the activity classification

models (Figure 5.2; Table 5.3), which we first converted to principal components. We

linked the time-matched activity observations to these input data and used the activity

type as output variable for the classification models. We trained a multi-class classification

model for the activity types: grazing, walking, standing and lying down. As a second

step after the main activity classification we also trained a binary classification model for

ruminating, with an extra input variable that indicated standing versus lying down. We

tried for both classification models a Support Vector Machine (SVM) with a Radial Basis

Function (RBF) kernel and a one-against-one approach, implemented in the e1071 package

for R 3.6.2 (Meyer et al., 2017; R Development Core Team, 2008), and a Random Forest

(RF) with 500 trees, implemented in the randomForest package (Liaw & Wiener, 2002).

To prevent overfitting due to autocorrelation in the data we randomly assigned each hour
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of the dataset into a train (80%) or test set (20%) and performed 5-fold cross-validation

on the train set, which was also split per hour at each of the 5 cross-validation iterations

(Arlot & Celisse, 2010). To find the optimal hyperparameters for the models (number

of principal components and time window size for both SVM and RF; cost, gamma and

class weights for SVM; and mtry, sample size and node size for RF), we used an extensive

grid search on a High Performance Cluster of Wageningen University, Netherlands (Table

5.8). We started the grid search with a coarse resolution search that covered a large range

of all hyperparameters, to make sure that the global optimum was covered and to get a

feel for the performance landscape. We zoomed in with a finer resolution during a second

grid search and finished with an even more zoomed in and finer resolution during a final

grid search. We determined the optimal classification model and hyperparameters by

selecting for the highest mean balanced accuracy during cross-validation (Equation 5.2).

The classification models with the highest performance during cross-validation were then

evaluated for performance on the test dataset. Finally, we used the models to predict the

displayed activity type (grazing, walking, standing or lying down) and whether or not the

cows were ruminating, for all the time windows and cows with available sensor data.

mean balanced accuracy =

∑n
x=1

1
2

(
TPx
Px

+ TNx

Nx

)
n

(5.2)

Where x is a class; n is the number of classes; TP is the number of true positives; P is

the number of positives; TN is the number of true negatives; and N is the number of

negatives.

We computed the dataset for the environmental variable predictions per cow over one-hour

time windows. The window size that is chosen has of course an influence on the results,

as the effect of an environmental variable on animal movement data varies with temporal

scales (McClintock et al., 2014). In short, the window size that is chosen represents the

scale at which the animals’ behavioural decisions are made (McClintock et al., 2014).

The choice of this temporal scale should therefore be chosen in line with the study’s aim

and based upon ecological considerations, which are different for every study. We chose

a window size of one hour for a combination of two reasons: 1) it makes sense from an

ecological point of view, as the considered environmental variables likely influence cow

behaviour on this temporal scale, and 2) because it traded off the number of resulting

data records (number of rows in the dataset after applying the one hour window) and

the convergence of variables well; meaning that the resulting dataset consists of hundreds

of records (thereby being enough for a data-driven machine learning approach) and each

record was based on 1200 (one hour divided by 3 seconds) underlying records or more

(thereby making sure that the inherent heterogeneity of animal movement is taken into

account by averaging it out over a large enough period). The calculated variables con-

sisted of multiple variable sets, based on the source of the data (GPS or accelerometer),

organizational level (group or individual), transformation type, and variables conditional
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on foraging (Table 5.5). We did not consider variables conditional on other activity types

than foraging, because the cows sometimes did not display one of the other activity types

during a one hour time window. This resulted in a total of 548 variables per cow per one-

hour time window. We standardized these variables (to zero mean and unit variance) per

combination of day/night and cow ID to account for differences in nocturnal and diurnal

activities of cows and individual differences in movement characteristics, group charac-

teristics, and activities. These standardized variables were used as input for a principal

component analysis, but were first one by one visually checked for symmetric unimodality

by inspecting the histograms and normal Q-Q plots. Two of the 548 variables displayed

signs of bimodality and eight variables appeared to be somewhat heavy-tailed. Due to the

low number of variables that showed these deviations and due to the small severity of these

deviations, we decided not to correct these ten variables and thus left all standardized

variables untransformed. Moreover, symmetric unimodality is not an actual requirement

of a principal component analysis, but it does result in a better centring and scaling of

the principal components. After that we converted the standardized variables to principal

components separately for the GPS and accelerometer variables and linked these principal

components to the mean grass biomass, time since milking, and wind speed values per

hour (Table 5.7; Figure 5.10; Figure 5.11). To prevent overfitting of the model due to

autocorrelation of the time series, we trained the model on the data of all cows from two

of the three pasture plot sessions (n = 600, viz., number of rows in the train set) and

tested the model on the data of all cows from the other pasture plot session (n = 259,

viz., number of rows in the test set). We used the second pasture plot session as our test

set, because its range of biomass values fell within the range of biomass values of the first

and third pasture plot session.

Table 5.5: Calculated variable sets per cow over one-hour time windows.

Variable set Statistic Transformed data

Individual GPS All statistics from Ta-

ble 5.3

1 Hz GPS data

Proportion activity Proportion Predicted activity per three-seconds

window (Table 5.1)

Individual GPS dis-

tribution parameters

while grazing

Mean and stan-

dard deviation of

log-transformed data

Median speed and median abso-

lute tangential velocity per three-

seconds window while grazing (Ta-

ble 5.3)

Median group GPS Median Group GPS features per three-

seconds window (Table 5.4)

SD group GPS Standard deviation Group GPS features per three-

seconds window (Table 5.4)
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Table 5.5 continued from previous page

Variable set Statistic Transformed data

Median individual

GPS while grazing

Median Individual GPS features per three-

seconds window while grazing (Ta-

ble 5.3)

SD individual GPS

while grazing

Standard deviation Individual GPS features per three-

seconds window while grazing (Ta-

ble 5.3)

Median group GPS

while grazing

Median Group GPS features per three-

seconds window while grazing (Ta-

ble 5.4)

SD group GPS while

grazing

Standard deviation Group GPS features per three-

seconds window while grazing (Ta-

ble 5.4)

Median accelerometer

while grazing

Median Accelerometer features per three-

seconds window while grazing (Fig-

ure 5.2)

SD accelerometer

while grazing

Standard deviation Accelerometer features per three-

seconds window while grazing (Fig-

ure 5.2)

To predict the environmental variables we built a Support Vector Regression (SVR) model

with a RBF kernel and a Random Forest Regression (RFR) with 1000 trees on the train set

with both GPS and accelerometer principal components, with only GPS components, and

with only accelerometer components. These models are time-invariant, as they assume

independence between the data records, and are particularly well-suited to model complex

interactions between a large number of variables. To find the optimal hyperparameters

for the models (number of principal components for both SVR and RFR; and cost, gamma

and epsilon for SVR), we used a grid search (following the same procedure as during the

grid search of the activity classification) on a High Performance Cluster of Wageningen

University, Netherlands (Table 5.7). We did not optimize any other RFR hyperparameter,

because the performance improved barely compared to the default values during a trial

analysis. We determined the optimal hyperparameters by selecting for the highest R2

on the test set (Equation 5.3). Ideally, (cross-)validation is performed before a test set

evaluation to prevent overfitting in hyperparameter space, but the limited quantity of

data records in our case study prevented us from setting aside more data from the train

set. However, we prevented overfitting in hyperparameter space by not optimizing the

hyperparameters of the RFR and by limiting the amount of hyperparameter values that

were tested for the SVR.
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R2 = 1−
∑

i (yi − fi)
2∑

i (yi − ȳ)2 (5.3)

Where y is the vector of actual values and f is the vector of predicted values.

5.3 Results

The general cline of grass biomass is predicted by both models, but the steepness is not

entirely captured (Figure 5.3). The time since milking cline is quite accurately matched

from 0.5 to 6.5 hours, but after 6.5 hours it levels off for both models (Figure 5.3). For

wind speed both models were not able to make accurate predictions (Figure 5.3). Overall

the SVR models outperformed RFR in predicting the environmental variables from cow

movement data (Table 5.7). When analysing the explained variation of the models with

only accelerometer or GPS datasets, the qualitative differences between the explained

variation of the different response variables for both algorithms are comparable (Figure

5.4). However, SVRs are apparently better capable of using the interaction between

variables in the mixed-sensor dataset to increase the explained variation, while RFRs are

hardly able to do so with our data (Figure 5.4; Figure 5.5). Both models indicate that

grass biomass influences accelerometer data substantially more than GPS data, while the

reverse is true for time since milking (Figure 5.4; Figure 5.5). Furthermore, for time since

milking the explained variation by accelerometer data is largely shared with GPS data

(Figure 5.5). Finally, the optimization of the hyperparameters was also done on datasets

of each cow separately, which resulted into approximately the same hyperparameters

and performance when compared to the model for all cows combined. Therefore, we

concluded that cows responded to changes in resource availability and time since milking

in approximately the same manner and we thus decided to use the models for all cows

combined.
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Figure 5.3: Left to right: measured versus predicted grass biomass, time since

milking and wind speed using GPS and accelerometer data. Top: Support Vector

Regression predictions. Bottom: Random Forest Regression predictions.
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Figure 5.4: Explained grass biomass and time since milking variation using Support

Vector Regression models (SVR) and Random Forest Regression Models (RFR) with

a GPS, accelerometer (ACC) and combined dataset.
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Figure 5.5: Variation partitioning of accelerometer (ACC) and GPS data with

Support Vector Regression models (SVR) and Random Forest Regression models

(RFR) for grass biomass and time since milking.
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Some of the variables used in our model were based on the automated activity classifica-

tions of the cows’ sensor data and visual observations. SVMs outperformed RFs for all

these activity classification tasks with our data, so we only used the predictions of the

SVMs. The best performing SVM classification model of the main activity types achieved

91.7% mean balanced accuracy on the test set and the best performing SVM model of

rumination 90.9% (Table 5.8). While we maximized the mean balanced accuracy during

cross-validation, also kappa, Matthews Correlation Coefficient, mean F1 and mean True

Skill Statistic were maximized at the same time (Table 5.6). Moreover, the confusion

matrices of both models show that, in addition to a high accuracy, the relative frequency

of misclassification of each activity type was approximately equal (Table 5.9). This means

that the models were not overclassifying a specific activity type over another. Further-

more, we have found no substantial inter- or intra-cow activity classification performance

differences. We thus considered the SVM activity classification models good enough to

reliable predict the activity types based on the movement sensor data, even more so

because the classification performance was higher or comparable to other cow activity

classification studies (Benaissa et al., 2017; Martiskainen et al., 2009; Vázquez Diosdado

et al., 2015).

Table 5.6: Performance measures on the test set of the best performing SVM activity clas-

sification models (g = grazing; w = walking; s = standing; l = lying) (Kuhn, 2020).

Main activity types Rumination

Balanced accuracy µ = 91.7% (g=94.2%; w=84.5%;

s=90.2%; l=97.9% )

90.9%

Accuracy 94.2% 90.9%

Kappa 88.0% 79.8%

Matthews Correlation Coefficient 88.0% 80.0%

True Skill Statistic µ = 83.4% (g=88.3%; w=69.0%;

s=80.4%; l=95.8% )

81.8%

F1 µ = 88.0% (g=96.6%; w=76.6%;

s=83.4%; l=95.6% )

86.6%

Precision µ = 90.0% (g=95.9%; w=84.9%;

s=85.1%; l=94.2% )

82.8%

Recall µ = 86.5% (g=97.3%; w=69.8%;

s=81.7%; l=97.0% )

90.9%

Negative predictive value µ = 97.4% (g=93.9%; w=98.0%;

s=98.3%; l=99.4% )

95.4%

True negative rate µ = 96.9% (g=91.0%; w=99.2%;

s=98.6%; l=98.8% )

90.9%
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5.4 Discussion

In the case study we quantified (on a one-hour resolution) that 37% of the variation

in resource availability influenced cow movements (consisting of movement through the

landscape, body part movement, and emergent patterns like group characteristics, and

displayed activities) and time since milking influenced it for 33%, while wind speed did

not influence it noticeably (Figure 5.3; Figure 5.4; Figure 5.5). These results support

our expectations that both resource availability and time since milking are important in

shaping the movement of cows, but that wind speed (during relatively mild conditions)

is not. Furthermore, it seems that the moderate correlation between resource availability

and wind speed was indeed spurious. This framework proved to be insensitive to this spu-

rious correlation, as it did quantify the influence of wind speed on cow movement to be

0%. Furthermore, the Support Vector Regression (SVR) models performed overall better

than the Random Forest Regression (RFR), especially when confronted with a dataset

with both GPS and accelerometer variables, but the qualitative patterns when compar-

ing the three different environmental influences to single-sensor movement datasets were

the same for both algorithms. Due to the SVRs higher performance, we do consider it

to be the better alternative over RFR for this analytical framework when dealing with

hyperdimensional datasets, especially when variables from multiple sensors are mixed.

Moreover, we found that resource availability influenced accelerometer variables (29%)

more than GPS variables (8%), but this influence on GPS variables still was largely in-

dependent from accelerometer variables (less than 1% of the total variation was shared).

This indicates that, at this temporal scale and with these computed movement variables,

the individual movement of cows through the landscape and the spatial group character-

istics hardly contained any signature of resource availability and that almost all of the

influence of resource availability on cow movements became apparent from the accelerom-

eter variables of the cows’ neck during grazing. The accelerometer variables of the cows’

neck during grazing, being descriptive for bite frequency and bite force (Table 5.2; Figure

5.2; Table 5.5), probably link more explicitly to grazing behaviour than GPS variables

do. These accelerometer variables are probably influenced more by resource availabil-

ity than GPS variables, because grazing behaviour in cows is closely linked to resource

availability (Drescher et al., 2003). The opposite was found for time since milking, which

influenced GPS variables (29%) more than accelerometer variables (21%), with a lot of

their explained variation being shared (17% of the total variation). This links well to our

previous argument about that the accelerometer variables are shaped for a large part by

the cows’ neck movement during grazing, which is intuitively more heavily influenced by

grass biomass than by time since milking. Previous studies also found that the lactation

stage, a variable that we expected to be linked to time since milking regarding its effect

on cow behaviour, influences the relative distribution of cow activity patterns and cow

movement through the landscape (Bewley et al., 2010; Nielsen et al., 2000). This sup-

ports our finding about a higher influence on GPS variables with a large shared influence
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with accelerometer variables, because the movement through the landscape is measured

by GPS variables and the activity patterns are measured by both GPS and accelerometer

variables. Finally, the estimated model parameters were similar for all cows, indicating

that the cows responded to changes in resource availability and time since milking in the

same way. However, it should be noted that all the results that are presented above are

of course context dependent. With a different experimental setup, e.g., indoor instead of

pasture housing or different ranges of environmental variable values, the quantified influ-

ences can change. As is the case with nearly all modelling efforts, this framework is also

only able to provide sensible results about the system for which data is available.

Our case study illustrates how the proposed analytic framework can quantify the influ-

ence of an ecological variable on animal movement. Having this quantification as the goal

of the analytic framework, human interpretation and understanding of the correlative

relationships within the model is initially of lesser importance. The goal is to build a

model that can predict as much of the variation in the measured environmental variable

as possible, by not limiting the model’s complexity to facilitate human interpretation.

Only then the aim is to quantify the overall influence of the environmental variable on

animal movement. This analysis could be followed by a stage where the researcher is

selective in the choice of movement variables, to study which movement variables are

mainly influenced by the environmental variable. Due to the way the framework is set up,

the environmental influence on multivariate animal movement will by definition always

be higher or equal to the environmental influence on a subset of the animal movement

variables. Thus, using this framework to first determine the environmental influence on

multivariate animal movement and afterwards determine the influence on specific subsets

of movement variables, allows for an analysis that shows in which movement variables the

environmental influence is most or least visible. This is demonstrated in our case study,

where resource availability mainly influenced accelerometer variables and much less GPS

variables, indicating that resource availability was more tightly linked to the cows’ move-

ment of body parts than to their movement through the landscape. The opposite was true

for time since milking, where also the explained variation by the accelerometer data was

largely shared with GPS data. Furthermore, this framework allows for a comparison be-

tween the influences of multiple environmental variables to animal movement whilst being

insensitive to moderate spurious correlations between environmental variables, which is

also shown in our case study with regards to the influence of wind speed. Therefore, this

framework could be well suited for exploratory analyses of the link between environment

and animal movement.

In our framework the influence of the environment on animal movement is quantified,

but the difference with previous studies (using low-dimensional movement descriptors

(Avgar et al., 2013; Signer & Ovaskainen, 2017)) is that our result is quantified by how

much of the variation in the environment can be predicted by observing the movement

(instead of the other way around). Terming this quantified measure “environmental con-
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tribution”, it should be noted that the environmental contribution to animal movement

(i.e., the variation in an environmental variable that is traceable in animal movement

data) is not the same as the environmental dependency of animal movement (i.e., the

variation in animal movement that is dependent on an environmental variable), where

potentially the environmental contribution can be large but the dependency small or vice

versa. To accommodate for a multivariate analysis of animal movement we determine

environmental contribution instead of the easier interpretable environmental dependency.

In movement ecology usually the environmental dependency of animal movement is the

focus of analyses, as this allows for the determination of the direction and strength of the

environmental influence on an animal movement variable. Therefore, post hoc analyses

that link environmental variables to a simplified animal movement descriptor can supple-

ment our proposed multivariate analytic framework in order to study the route of causal

inference (Avgar et al., 2013; Signer & Ovaskainen, 2017).

Various factors in the relationship between the environment and animal movement in-

fluence the quantification of the environmental influence on animal movement (Figure

5.6). First, many environmental variables are correlated and interact with each other

in their influence on the animal’s decision making and, thus, movement (Nathan et al.,

2008). When the influence of a single environmental variable on animal movement is un-

der scrutiny, these correlations and interactions with other environmental variables need

to be taken into consideration. In the proposed analytic framework we do not distinguish

between the independent, shared, and interaction influences of environmental variables

on animal movement (Peres-Neto et al., 2006), which is different from the independent

and shared influence on multiple subsets of the movement variables as described in our

case study. As a consequence, both the direct and indirect influences of an environmental

variable on animal movement are combined into a single metric. Future research could

potentially be aimed at the distinction between these influence types of multiple environ-

mental variables on multivariate animal movement, e.g., by using multi-target (Support

Vector) regression and variation partitioning procedures (Borchani et al., 2015; Melki

et al., 2017). Furthermore, when the influence of an environmental variable on animal

movement is quantified, it is important that the movement itself does not influence the

environmental variable directly at that point in space and time as well. Social proxim-

ity is for example an important variable in the shaping of individual animal movement,

but individual movement parameters also directly shape collective movement patterns

(Couzin et al., 2002). The fit of a model with social proximity as response variable and

individual movement variables as input data would then not be solely the influence of

an environmental variable anymore. This could consequently yield unrealistically large

values of the explained variance, which should be prevented.
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Figure 5.6: Conceptual model of the relationship between an environmental

variable, animal movement and a predictive model to determine the influence of an

environmental variable on multivariate animal movement. Dotted blocks are latent

variables, rounded blocks are measurable variables, greyed out blocks are unmeasured

variables, and straight blocks are known variables, values, or objects. The dotted

arrow displays the predictive analysis following up on the model building phase.

In the relationship between the environment and animal movement, the animal’s inter-

nal state (“why move?”), motion capacity (“how to move?”), and navigation capacity

(“where to move?”) are also involved (Nathan et al., 2008). The animal’s internal state is

composed of many different factors, e.g., physiological “need” (hunger, fear, etc.), phys-

ical characteristics (age, sex, body condition, etc.), and personality differences (laziness,

level of sociality, etc.), that combined result in a certain response by the animal when

confronted with a set of environmental variables at certain moment in time (Nathan et

al., 2008). We translate this combined net effect of the internal state factors into the

willingness of the animal to respond to the environment (Figure 5.6). The motion and

navigation capacity can be translated into the ability of the animal to respond. Another

factor that is involved, even before the animal can decide whether it is willing and able to

respond, is the animal’s perception of the environment (Manning et al., 2004). Only when
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an animal can observe changes or differences in an environmental variable can it decide

to respond in a certain way. Because of the aforementioned latent variables - percep-

tion, willingness, and ability - the movement of the animal is not purely a deterministic

function of a fixed set of environmental variables (Nathan et al., 2008). These latent

variables can thus cause a partial environmental influence on animal movement. Further-

more, these latent variables are in part individual-specific (Nathan et al., 2008), which is

why differences between individuals should be taken into consideration by standardizing

the movement variables per individual and/or adding individual identifiers as variables to

the model.

Other factors, which are more data-related, also influence the quantification of the en-

vironmental influence on animal movement (Figure 5.6). First, environment and animal

movement are linked through sensor measurements, which influence the outcome of the

analysis through varying sensor types, resolution, extent, and precision. Second, the

movement variables that are computed from the animal movement data to describe the

movement process determine how much of the environmental influence on animal move-

ment is traceable in the data. Therefore it is key to extract as many informative movement

variables from the animal movement data as possible in this proposed framework (or op-

timize the architecture of a neural network in a deep learning approach), because ideally

all inherent variation needs to be extracted from the movement data to quantify the total

environmental influence and to compare the influence of different environmental variables

fairly. In our case study, the best performing models had a selected number of principal

components with a relatively low cumulative proportion of variance, especially for the

GPS variables (Table 5.7; Figure 5.10; Figure 5.11), which suggests that enough variation

had been extracted from the raw data to make a good prediction about the environmental

influence on animal movement. Although the best performing model does not necessarily

equate a good model, so it could theoretically also be that we missed to extract some

extra informative variables from the raw data, which could otherwise have resulted in

an even better performing model. Third, the temporal scale at which these variables

are computed determine the temporal scale for which the influence of the environmental

variable on animal movement is quantified. As the effect of an environmental variable on

animal movement data varies with temporal scales, the choice of the temporal scale of

the variables is relevant (McClintock et al., 2014). Finally, the algorithm that is used to

predict an environmental variable from animal movement data influences the level of fit

that can be attained, which is demonstrated in our case study with SVR outperforming

RFR on all occasions. Algorithms that can model complex interactions between variables

are often able to make better predictions of the response variable, e.g., RFR, SVR, and

Neural Network Regression, likewise are algorithms that take into account the sequence

of time series data, e.g., Recurrent Neural Network. Quantitative comparisons between

the influences of different environmental variables on animal movement can thus only be

done reliably when the same algorithm is used on the same underlying animal movement
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dataset.

Apart from only using the R2 of the model predictions to acquire ecological insights,

the patterns of the observed vs. predicted plots can also potentially generate insight.

For an environmental variable to influence animal movement, the animal’s perception,

willingness, and ability are conditionalities (Figure 5.6). Therefore, certain parts of the

environmental variable’s range might be better predicted by the model than other parts.

It could be argued that this could be an explanation for the better SVR predictions during

intermediate grass biomass compared to low and high biomass levels, thereby creating a

lower overall slope of the predictions compared to the observations (Figure 5.3). However,

apart from animal perception, willingness, and ability, other factors might also influence

patterns of the observed vs. predicted plot Figure 5.6). In this case the algorithm might

be the underlying cause for the lower overall slope of the SVR biomass predictions, due

to a “regression toward the mean” characteristic (Figure 5.12). Furthermore, the overall

gradient of the time since milking predictions follows the measurements quite accurately

for both models from 0.5 to 6.5 hours, but after 6.5 hours it levels off (Figure 5.3). This

suggests that until 6.5 hours cows continue to change their movement in response to the

time since they were last milked, but after 6.5 hours there is no noticeable change in

movement anymore. Besides a potential behavioural ecological cause for this pattern,

it could also be (partially) caused by correlations with other time variables due to our

experimental setup where the cows were milked two times a day around the same time

of day. Follow-up studies could focus on these predicted time since milking patterns,

where the experimental setup should contain multiple groups of cows that are milked at

different times of the day. Finally, apart from concluding that wind speed probably has

no noticeable effect on cow movement in this study (Figure 5.3), it becomes clear that the

model performance suffered from some higher wind speed values in the test set compared

to the train set (thereby generating an R2 lower than 0).

5.5 Conclusions

We developed an analytical framework from existing methods that can quantify the en-

vironmental influence on animal movement while preserving the multifaceted nature of

the movement process. Apart from providing a measure of the tightness of coupling

between an environmental variable and animal movement, the prediction of an environ-

mental variable from animal movement data can be a useful application in itself as the

unique property of this predicted variable is that it represents the perceived environmen-

tal variable by the animals. This framework demonstrates that the possible applications

of machine learning methods extend beyond the ability to transform raw into informative

data to acquire ecological understanding, and that machine learning can also be used to

directly relate movement data to environmental variables.

The applicability of our multivariate analytic framework extends beyond animal move-
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ment. With the recent increase in biologging practices, more and more variables of animal

data are acquired (Cooke et al., 2004; McClintock et al., 2017; Wilmers et al., 2015). These

data do not only encompass animal movement, but for example also animal physiology,

which can be related to environmental variables as well using the same framework as

presented in this study (Cooke et al., 2004; McClintock et al., 2017; Wilmers et al., 2015),

e.g., by relating heart rate patterns to terrain characteristics or physical fitness metrics to

climate conditions. Apart from using this analytic framework to quantify environmental

influence on animal biologging data, the computation of perceived environmental variables

can allow researchers and managers to monitor the perceived habitat of animal species

(Cooke et al., 2004; Manning et al., 2004). This way, the habitat quality in natural areas,

e.g., in terms of resources, can be assessed more precisely regarding the needs of specific,

sensor-equipped, focal animals (Cooke et al., 2004; Rosenzweig, 2007). Furthermore, with

the results presented here, the management of pasture-fed cattle can be optimized by de-

tecting the appropriate time to move cattle to a more resource-rich area or towards a

milking machine, without measuring resource availability or milk content in the udder

directly. Finally, we argue that our proposed data-driven analytic framework to quantify

environmental influence on animal biologging data is a valuable tool for explorative and

comparative analyses on the relationship between the environment and animal movement,

behaviour, and physiology.
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5.6 Supplementary materials

We measured resource availability as dry matter grass biomass in kilograms per hectare,

excluding stubble biomass. We determined time-varying biomass levels using a combi-

nation of field-measured biomass levels at specific time points, satellite-based biomass

estimates derived from the Normalized Difference Vegetation Index (NDVI), and mod-

elling of grass dynamics. The biomass field-measure was determined directly with an

EC-09 electronic rising plate pasture meter (JenQuip, Feilding, New Zealand) by using

the mean of 16 measurements spread equally across a pasture plot. These measurements

were done roughly halfway each pasture session. For the satellite-measures, we used the

Sentinel-2A (10m resolution), PlanetScope (3.125m resolution) and RapidEye (5m reso-

lution) satellite image data to determine the NDVI inside the three pasture plots. The

days for which satellite images were acquired aligned roughly with the beginning and the

end of each pasture session. NDVI was calibrated against biomass using ground-truth

pasture plots in and around Wageningen, Netherlands, 2016 (Wageningen University &

Research & Noldus, 2017).

To estimate the biomass value at any point in time during the experiment and to account

for uncertainties in the measurements, we fitted an exponential decay function through

the biomass measurements using numerical optimization for the decay rate coefficient

(Equation 5.4). For this we combined the biomass measurements of the plate pasture

meter and the satellite images.

r =
2000

an
e−bx + 800 (5.4)

Where r is biomass in kilogram dry matter per hectare, excluding stubble; an is a coef-

ficient that determines the intercept of the function, which has a unique value for each

pasture plot session; b is a coefficient that determines the rate of the exponential decay,

which has the same value for all pasture plot sessions; and x is the time in days starting at

zero on 12:00 PM CEST of the first day of each pasture plot session. We first determined

an for each of the three plots separately by dividing 2000 by the biomass measurement

for x = 0. Then we multiplied all measurements from plot n by an and afterwards pooled

all converted measurements into one dataset. Optimizing the decay rate coefficient in the

aforementioned function for this combined dataset resulted in an acceptable fit of the es-

timated data to the measured data (R2 = 0.69; Figure 5.7). These estimated data do not

perfectly fit true absolute biomass levels, but nonetheless capture the trend in biomass

over time.
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Figure 5.7: Measured versus estimated grass biomass (kilogram dry matter per

hectare, excluding stubble) during the experiment.



122 Quantifying environmental influence on animal movement

Figure 5.8: Boxplots of the explained variation (using separate train, validation and

test sets) of 10 repeated simulations per combination of: algorithm (Random Forest

Regression and Support Vector Regression); number of variables with a linear

relationship to the response variable and number of noise variables (1/1, 1/10, 5/5,

5/50); and percentage of noise versus signal added around response variable (10%,

50%, 90%). It becomes clear that (especially SVRs) are accurately capable to predict

the percentage of the response variable that contributed to the input variables until

very high noise levels.
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Figure 5.9: Representative acceleration plots of the three axes vs time in seconds

for the different activity types.
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Table 5.7: Hyperparameters and performance of the best performing SVR and RFR models.

Model Response Data #PCACC #PCGPS c γ ε R2

SVR Biomass ACC 29 n.a. 102.25 10−2.25 0 .29

SVR Biomass GPS n.a. 6 102.25 10−1.5 10−9 .08

SVR Biomass ACC+GPS 29 9 102.25 10−2.25 1 .37

SVR Milk time ACC 21 n.a. 100.5 10−1.5 1 .21

SVR Milk time GPS n.a. 7 100 10−1 1 .29

SVR Milk time ACC+GPS 10 29 100.5 10−1.75 1 .33

SVR Wind speed ACC 3 n.a. 101.75 10−1.25 1 -.10

SVR Wind speed GPS n.a. 31 103.5 100 1 -.12

SVR Wind speed ACC+GPS 3 0 101.75 10−1.25 1 -.10

RFR Biomass ACC 33 n.a. n.a. n.a. n.a. .18

RFR Biomass GPS n.a. 11 n.a. n.a. n.a. .05

RFR Biomass ACC+GPS 33 9 n.a. n.a. n.a. .19

RFR Milk time ACC 49 n.a. n.a. n.a. n.a. .16

RFR Milk time GPS n.a. 11 n.a. n.a. n.a. .29

RFR Milk time ACC+GPS 0 11 n.a. n.a. n.a. .29

RFR Wind speed ACC 122 n.a. n.a. n.a. n.a. -.13

RFR Wind speed GPS n.a. 92 n.a. n.a. n.a. -.26

RFR Wind speed ACC+GPS 3 1 n.a. n.a. n.a. -.12

Figure 5.10: Accelerometer principal components versus cumulative proportion of

variance.
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Figure 5.11: GPS principal components versus cumulative proportion of variance.

Table 5.8: Hyperparameters of the best performing SVM activity classification models.

Main activity types Rumination

window size 3 s

principal components 210 (0.999990 cum. expl. var.) 5 (0.765970 cum. expl. var.)

gamma 10−4.7 10−2.2

cost 103.3 106

class weights 1:1:1:1 1:1

Table 5.9: Confusion matrices of the best performing SVM activity classification models on

the test set, for a) main activity types (g = grazing; w = walking; s = standing; l = lying);

and b) rumination (0 = not ruminating; 1 = ruminating).

actual

predicted

a) g w s l

g 1769 46 25 4 b) 0 1

w 12 118 5 4 0 560 27

s 23 5 188 5 1 56 269

l 14 0 12 422
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Figure 5.12: Simulated data vector
(
y = [0..200]

200

)
versus the quantiles

(p = {0.05, 0.2, 0.35, 0.5, 0.65, 0.8, 0.95}) of 106 predicted data vectors by the best

performing Support Vector Regression models (a: cost = 104, gamma = 10−3,

epsilon = 10−5; b: cost = 102, gamma = 10−1, epsilon = 10−1; c: cost = 101,

gamma = 10−5, epsilon = 10−5). The models were trained on the odd elements of

106 different sets of two simulated input data vectors (a: x1 ∼ N (µ = y, σ = 0.025),

x2 ∼ N (µ = y, σ = 0.05); b: x1 ∼ N (µ = y, σ = 0.25), x2 ∼ N (µ = y, σ = 0.5); c:

x1 ∼ N (µ = y, σ = 2.5), x2 ∼ N (µ = y, σ = 5)), and afterwards the predictions were

made using the even elements of the input vectors. From these simulations it

becomes clear that with a decreasing signature of the response variable in the input

variables (a to c), the predictions increasingly get regressed toward the mean. In

other words, the smaller the signature of the response variable in the input variables

is, the more the model predictions will be located around the mean of the response

variable instead of around the gradient of the response variable.
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Abstract

Wildlife crime is one of the most profitable illegal industries worldwide. Current actions

to reduce it are far from effective and fail to prevent population declines of many endan-

gered species, pressing the need for innovative anti-poaching solutions. Here, we propose

and test a poacher early warning system that is based on the movement responses of

non-targeted sentinel animals, which naturally respond to threats by fleeing and chang-

ing herd topology. We analyzed human-evasive movement patterns of 135 mammalian

savanna herbivores of four different species, using an internet-of-things architecture with

wearable sensors, wireless data transmission and machine learning algorithms. We show

that the presence of human intruders can be accurately detected (86.1% accuracy) and

localized (less than 500m error in 54.2% of the experimentally staged intrusions) by al-

gorithmically identifying characteristic changes in sentinel movement. These behavioral

signatures include, among others, an increase in movement speed, energy expenditure,

body acceleration, directional persistence and herd coherence, and a decrease in suit-

ability of selected habitat. The key to successful identification of these signatures lies

in identifying systematic deviations from normal behavior under similar conditions, such

as season, time of day and habitat. We also show that the indirect costs of predation

are not limited to vigilance, but also include 1) long, high-speed flights; 2) energetically

costly flight paths; and 3) suboptimal habitat selection during flights. The combination of

wireless biologging, predictive analytics and sentinel animal behavior can benefit wildlife

conservation via early poacher detection, but also solve challenges related to surveillance,

safety and health.
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6.1 Introduction

Wildlife trade is a low-risk, yet high-profit crime, ranking fourth in terms of revenue after

trade in drugs, humans and arms (Scheffers et al., 2019). Wildlife crime is driven by a

rapidly expanding wealthy class in some cultures that views animal parts as medicine or

status-enhancing luxury goods (Felbab-Brown, 2017). The demand for animal parts has

led to escalating prices (Chen, 2016), which consequently fuels poaching. As one of the

main causes for biodiversity decline (Ceballos et al., 2017), poaching increasingly threatens

the existence of wildlife, notably pangolins, rhinos, elephants and tigers. Ultimately, losses

of these and other species can reshape entire ecosystems via cascading effects.

Although the ultimate solution is to reduce the global demand for wildlife products,

efforts to do so have not been successful enough (Veŕıssimo & Wan, 2019). Local efforts

thus often aim at deterring poachers, mainly through ranger patrols. Deadly force used

by poachers incites conservation authorities into intensified ‘militarized conservation’,

resulting in frequent shootouts between poachers and conservation officers (Duffy, 2014).

Sadly, poaching of wildlife still continues to be a threat to the preservation of many

wildlife species (Scheffers et al., 2019), as anti-poaching rangers often arrive too late at

crime scenes (O’Donoghue & Rutz, 2016). An effective method for early poacher detection

and localization is thus urgently needed, so that preventive action can be taken. With

situational awareness, law enforcers can operate under safer conditions with reduced risk

of fatalities and potential to de-escalate conflicts. An effective poacher early warning

system (EWS) thus contributes to preventing lethal violence, not only against wildlife,

but also against conservation officers and poachers (Duffy, 2014).

Animal sentinels, especially those that are abundant and no targets themselves, may pro-

vide an early warning that poachers are en route. Prey species may be good sentinels as

these species have evolved a suite of traits aimed at preventing them from being killed,

e.g., via early predator detection and escape (Cooper & Blumstein, 2015). This often

extrapolates to humans as well, since many prey species evolved together with human

hunters, leading to anthropogenic disturbance stimuli triggering similar, or often even

stronger, evasive responses (Frid & Dill, 2002; Zbyryt et al., 2018). Until now, practical

constraints have hampered the development of a sentinel-based EWS (Katzner & Arlettaz,

2020). Although wireless sensors can generate large volumes of data, the areas in which

poaching occurs often lack infrastructure that allows real-time wireless communication of

sufficient bandwidth (O’Donoghue & Rutz, 2016). Moreover, animal behavior is known to

be complex and context-dependent, thus an EWS needs to be able to handle rich contex-

tual data when identifying behavioral abnormalities linked to anthropogenic disturbances.

Fortunately, advances in technology, computing and analytics have now alleviated these

constraints (Williams et al., 2020). We therefore tested the concept of whether the behav-

ior of sentinel animals can be used to detect and localize human intrusions using wearable

biologging sensors and predictive algorithms (Figure 6.4).
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We tested the sentinel-based EWS in an African savanna, home to several targeted species

(e.g., pangolin, elephant, rhino and lion) that coexist with an assemblage of mammalian

prey species that could be potential sentinels. We deployed wearable GPS and tri-axial

accelerometer sensors on 138 animals equally over four species (plains zebra, blue wilde-

beest, common eland and impala) in a 1200ha fenced, predator-free area inside Welgevon-

den Game Reserve (WGR), South Africa (Figure 6.1). These sensors transmitted data

wirelessly via a LoRa network connected to a backhaul. During a period of seven months,

WGR park officials executed 57 intrusions mimicking poachers (referred to as ‘experi-

mental intrusions’). Data collected in the absence of experimental intrusions were used to

characterize undisturbed behavior, allowing quantification of the degree of abnormality

of movement behavior at any point in time. During all these experimental intrusions and

matched controls, a median of 47 sensors yielded data for further analyses.

Figure 6.1: Overview of the study area with three examples of how normal

behavior varies spatially: (a) topography and tree cover in the study area (white to

green with increasing tree cover); (b) movement speed (third quartile) and

directionality of wildebeest during the afternoon (blue to red with increasing speed;

length and darkness of line segments indicates the degree of directional preference

and orientation indicates the preferred movement direction); and (c) modelled

habitat suitability of wildebeest during the afternoon as function of habitat

characteristics (white to green with increasing suitability). The inset figures

exemplify the importance of considering environmental context in the early warning

system, since fast, straight and directional movements through low suitability areas

are part of the sentinels’ normal behavior. Thus, solely detecting fast and straight

movements may not suffice as early warning indicators. All maps were generated in

R3.5.0 using GIS, location and modelled data (R Core Team, 2020).

We engineered a large set of potentially meaningful and ecologically relevant features,

describing the geometry of individual trajectories as well as emergent herd topologies

and various characteristics of the animal-environment interplay (split into 4 main classes:

individual geometry, accelerometer-based, collective movement features, and indices of
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space usage; and 12 sub-classes; and various standardizations of features to capture devi-

ations from normal behavior, see Table 6.2). Then, we applied a multi-step dimensionality

reduction approach (first across a subset of features within sub-classes to collapse the eco-

logically related features into a low-dimensional characterization, then across the set of

selected principal components from all classes to reduce multicollinearity; see section 6.4)

and segmented the dataset into experimental intrusions and controls. Data during exper-

imental intrusions were randomly matched with control data of the same period, one or

two days earlier or later, when no intrusion took place. To generate predictive signatures

for the EWS, we followed a three-step process: (1) behavioral response classification fo-

cusing on detecting evasive anti-predator behavior by each individual separately, followed

by (2) intrusion detection focusing on a system classification through integrating signals

over all individuals, and (3) intrusion localization. We allocated each experimental intru-

sion or control segment to either the training phase or the evaluation phase, applying a

leave-one-group-out cross-validation approach on these segments to make the best use of

all data (see section 6.4 for details).

6.2 Results

Exploration of the animals’ reaction to the experimental intrusions highlighted several

broad characterizations of their response. First, the experimental intrusions triggered

nearby sentinels to divert their movement away from the perceived treat while increasing

their speed, body acceleration and directional persistence (Figure 6.2). This, together with

elevated variation in such features, resulted in more directional, brisk, straight and erratic

movements. These evasive flights lasted on average 47 minutes per fleeing group of zebra

(SD=28, n=29), 39 minutes for wildebeest (SD=33, n=15), 46 minutes for eland (SD=18,

n=15), and 43 minutes for impala (SD=14, n=14). Second, the difference between the

sentinels’ response behavior and their normal behavior was larger when comparing the

individuals’ movement in the same spatial (location and habitat) and temporal (seasonal

and diurnal) context. Third, the sentinels selected sub-optimal habitat and chose flight

paths that incurred higher energetic costs via faster and uncommon uphill movement

in response to the experimental intrusions, possibly in an effort to find refuge (Figure

6.2; Figure 6.3). Fourth, apart from alterations in the geometry of individual movement

trajectories, patterns of collective geometry changed in the vicinity of the experimental

intrusions. Generally, nearby individuals tended to form groups with more synchronized

and aligned movements (Figure 6.2f).
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Figure 6.2: A sample of the 2117 computed animal movement features

characterizing the sentinels’ behavior near experimental intrusions, shown here as

function of the time since the annotated start of their response behavior (i.e., ‘flight’

and ‘regroup’ as described in the main text). All y-axes show standardized values

(zero-mean and unit-variance when undisturbed), and the shaded area around each

line (i.e., sentinel species) depicts pointwise 95% CI of a General Additive Model.

When encountering the experimental intrusions, the sentinels moved faster (a),

straighter (b), away from the intrusion (c), and with higher body acceleration (d).

The sentinel species that prefer more grass-dominated habitats (i.e., lower tree cover)

tended to move towards areas with higher tree cover (e) and thus lower habitat

suitability. Moreover, encountering the intrusions induced more aligned collective

movement (f).

We trained a Support Vector Machine (SVM) to algorithmically classify the animal’s re-

sponse behavior as either undisturbed (i.e., calm or normal) or disturbed (a summary

label for the above-described responses). We were able to achieve an average precision of

classification (i.e., the area under the precision-recall curve) of 46%. Depending on the

chosen value of the response probability decision boundary, the classification performance

achieved up to 100% precision, or 100% recall, with a maximum F1-score of 47% (Figure

6.5). Comparing the SVM’s average precision on various subsets of the data resulted

in three noteworthy variations in predictability of response behavior: (1) intrusion type

(on foot 52%, by vehicle 14%), (2) species (eland 47%, impala 17%, wildebeest 29%,

zebra 57%), and (3) time of day (morning 48%, noon 26%, afternoon 53%). A higher

predictability near humans on foot compared to motorized vehicles suggests a stronger

behavioral response to the former and is in line with other findings (Cooper & Blumstein,
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2015; Stankowich, 2008). A lower predictability for impala and wildebeest may imply

that these animals exhibit a broader suite of response behaviors, possibly including an-

tipredator responses not included here (e.g., ‘freezing’ or ‘threat inspection’ behavior). For

impala, being the smallest of our sentinel species, it may furthermore be caused by a high-

quality food requirement inducing them to delay escape and hence reduce the associated

opportunity costs (Cooper & Blumstein, 2015). The lower predictability around noon

could be due to the midday heat inducing animals to accept a higher risk and lower their

energy expenditure of costly risk-avoidance behavior, thereby creating less pronounced

signatures in the data.

Following animal behavior classification, we were able to distinguish intrusions from con-

trols with 86.1% accuracy (82.6% precision, 89.2% recall) using logistic regression, exclu-

sively using the movement data of the sentinels (Table 6.1). The odds of an intrusion

increased considerably with higher SVM-predicted probabilities of response behavior, the

degree of local spatial autocorrelation therein, and a decrease in spatial clustering of sen-

tinels that were predicted to be undisturbed. Including more features in the detection

classifier boosted its predictive accuracy to 91% (Figure 6.7), but also increased the risk of

lowering its generalizability to other areas due to potential overfitting. The true positive

rate was 84.2%, and there was no apparent positive relationship between the probabil-

ity that an intrusion was correctly detected and the number of working sensors (logistic

regression, p=0.260).

Table 6.1: Confusion matrix of the poacher detection algorithm. Bold numbers indicate

correct predictions.

Truth

Control Intrusion

Prediction
Control 52 10

Intrusion 5 47

Following detection, we predicted the location of the intrusion relative to the position,

movement direction and SVM-predicted response probabilities of the sentinels. We sum-

marized the performance of the localization prediction through the Euclidian distance

between the peak prediction and the true location of the intrusion, followed by comput-

ing the spatial error of the 10 most dense probability surfaces per experimental intrusion.

In 20.8% of them the predictions were highly accurate, namely within 100m from the true

location, increasing to 41.7% and 54.2% respectively, for distances up 300m and 500m

(Figure 6.3b).
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Figure 6.3: Spatial performance of our early warning system. Panel (a) shows the

predicted spatial probability surface for the intrusion’s location (based on data from

the sentinel animals only) for one of the experimental intrusions. For all experiments

where the intrusion was algorithmically detected (82.5%), the spatial localization

accuracy as function of threshold distance (b) shows that 54.2% of these correctly

detected intrusions could be localized with a spatial error of less than 500m and

20.8% within 100m. The dashed focal area shown in panel (a) is highlighted in panels

(c-e), where the sentinels’ (here: wildebeest) movements in the next 10 minutes is

indicated with dashed lines. Panel (c) shows the spatial localization prediction of the

intrusion. The evasive movements of the fleeing wildebeest are fast compared to their

normal movement at that location (Figure 6.1b), and highly aligned. While fleeing,

the wildebeest move through habitat with a low suitability (d, see Figure 6.1c), and

towards areas that are energetically costly to reach (e, movement costs are computed

based on topography and relative to their current position, where the cost of

movement is assumed to be inversely proportional to movement speed on an incline

as computed using Tobler’s hiking function). All maps were generated in R3.5.0

using GIS, location and modelled data (R Core Team, 2020).

6.3 Discussion

Our study thus clearly demonstrates that sentinel animal behavior can be used to detect

poachers, since predictable signatures in behavioral responses to disturbance stimuli can
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be used to detect and locate human intrusions. Indeed, the sentinels took systematic and

detectable evasive action when experimental intruders came near.

The sentinels increased their movement speed and body acceleration as they generally

do during anti-predator responses (Cooper & Blumstein, 2015), whilst moving away from

the perceived threat with higher directional persistence (Figure 6.2). They did so for

a considerable amount of time per flight response (45 minutes on average), longer than

only instantaneously running away, thereby substantially trading off energy for safety

(Gallagher et al., 2017). This signal became even more pronounced in the context of

the individuals’ normal behavior given the prevailing conditions (season, time of day and

habitat), since a systematic deviation from normality is key to successful identification

of disturbed behavior. It thus proved to be important to explicitly consider the spatial-

temporal context of the movement-environment interplay when using sentinel movement

metrics as early warning indicators. Solely using movement speed as indicator (Ihwagi et

al., 2018) without incorporating environmental conditions is therefore not very informative

(Figure 6.1).

These findings suggest that the sentinels elevated their energy expenditure while fleeing,

in line with theory on energy landscapes and the landscape of fear (Cooper & Blumstein,

2015; Gallagher et al., 2017; Halsey, 2016; Wilson et al., 2012). However, not only did ex-

perimental intrusions trigger faster-than-normal movement, but the sentinels also tended

to utilize the terrain by moving uphill, thereby increasing their energy expenditure (Figure

6.3). Moreover, the sentinels seemed to alter their decision-making during evasive actions,

selecting less optimal habitat than they would do when undisturbed (Figure 6.2e; Figure

6.3d). This suggests that anti-predator trade-offs relates to energy trade-offs and that

perceived threats can induce resource avoidance (Gaynor et al., 2019). Together, these

consequences of anti-predator behavior can incur significant energetic and opportunity

costs (Gaynor et al., 2019). These energetic costs are generally not considered in the indi-

rect costs of predation within the landscape of fear framework, but are now increasingly

being recognized (Gallagher et al., 2017; Gaynor et al., 2019). Our findings suggest that

anti-predator behavior not only incur costs in terms of trading off foraging and resting

for vigilance, but also in terms of increased costs due to 1) performing long, high-speed

flights; 2) choosing energetically costly flight paths; and 3) selecting suboptimal habitats

during flights.

Although the study of collective behavior of animals within groups has predominantly re-

lied on controlled laboratory-based studies and theoretical models (Calabrese et al., 2018;

Westley et al., 2018), our high-resolution data on manifold large terrestrial mammals al-

lowed the detailed computation of collective movement properties in their natural habitat

in relation to perceived threats. The sentinels increased group coherence when intruders

were near (Figure 6.2f), presumably in an effort to find safety in numbers (Hamilton,

1971), whilst at the same time avoiding the likelihood of collisions by increasing align-
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ment during escape (Evans et al., 2019). These findings support predictions from theo-

retical studies (Bode et al., 2010) and controlled laboratory experiments (Ioannou et al.,

2017).

Central to these findings is that the responsive and evasive behavior of animal sentinels

can be used to algorithmically detect and localize poachers. A sentinel-based EWS is

robust against adaptive behavior of poachers, as an abundance of sentinels cannot easily be

manipulated and fooled (Berdahl et al., 2013; Lima, 1995). Additionally, shooting sentinel

animals would give away the poacher’s position, both via its acoustic signal (O’Donoghue

& Rutz, 2016) as well as through the sensor data of the shot animal. Moreover, if hackers

were to tap into the dataflow, only the locations of the sentinels may be revealed, but not

those of targeted species. Applying biologging technology directly to targeted species is

risky, and will rule out preventive intervention as it only enables the post hoc identification

of mortalities (O’Donoghue & Rutz, 2016). Instead, the responsive behavior of untargeted

sentinels crossing path with poachers en route provides an early warning and situational

awareness to anti-poaching personnel.

Our proposed sentinel-based EWS critically hinges on the premise that sentinel animals

respond reactively to human intrusions. This requires that these sentinels have evolved

with natural and human predators, and that they have maintained their anti-predator

behavior (Charuvi et al., 2020). In African savannas, apex predators like lion and leopard

are generally present and fear of the human “super-predator” (Darimont et al., 2015;

Suraci et al., 2019) is pervasive throughout mammal communities in Africa (Zanette &

Clinchy, 2020). However, empirical evidence shows that response to natural predators

and humans varies across contexts and with predator mode: sit-and-wait ambush preda-

tors induce different responses than cursorial predators (Miller et al., 2014; Thaker et al.,

2011), and humans on foot are generally more evocative than other anthropogenic stimuli

(e.g., motorized vehicles) (Cooper & Blumstein, 2015; Stankowich, 2008). To prey, illicit

human activity in conservation areas may be rarer and less predictable than encounters

with natural predators. Human encounters could therefore be more stressful, since lack

of predictability is a well-established trigger of reactive responses like flight (Creel, 2018).

Several studies suggest that free-roaming animals not only respond differently to human

presence than to natural predators, but also that human presence evokes stronger re-

sponses (Ciuti et al., 2012; Proffitt et al., 2009; Zbyryt et al., 2018). Since our study

was intentionally conducted in a predator-free environment, the next logical step is to

include the sentinels’ responses to their natural predators in the EWS. Although we cur-

rently lack the knowledge and data to separate human-induced from predator-induced

behavioral shifts in wild-living animals (Goumas et al., 2020; Montgomery et al., 2020),

the behavior and approach movements of natural predators is expected to be sufficiently

different from that of humans to successfully do so.

The main advantage of our proposed sentinel-based EWS is its ability to filter out periods
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without poaching activity, thereby prioritizing model sensitivity over specificity. However,

in African savannas it is generally a rare event for a sentinel to encounter a human.

Therefore, given our current false positive rate of 8.8%, many false positives will be

generated over time when an EWS is actually deployed. The poacher detections by the

EWS will thus require an extra layer of verification by, e.g., visually inspecting the patterns

in localizations generated by the EWS or dispatching an Unmanned Aerial Vehicle to

the detected poacher location. Known locations of legal human activity should then be

taken into account as well, e.g., roads or camps with tourists who could trigger responses

by animals. The role of this EWS is not that of a fully automatic system to directly

dispatch an anti-poaching unit, but to help wildlife reserves make informed decisions

about managing their anti-poaching resources.

Using animal sentinels as a lens to the environment is in itself not new, as they have long

been employed to detect human exposure to biological and chemical hazards (e.g., canaries

in coal mines) (Rabinowitz et al., 2008; Reif, 2011), and more recently to detect the onset

of natural disasters (Wikelski et al., 2020; Woith et al., 2018), epileptic seizures (Catala

et al., 2019) or outbursts of violence (Bakeman et al., 2019). Elucidating the hitherto

hidden information in the behavior of animals with cutting-edge technology can help us

gauge the conditions of life on Earth (Wikelski & Tertitski, 2016). More specifically,

this approach can expose illicit human activities, such as illegal fishing (Weimerskirch

et al., 2020) and, as shown here, poaching. Our study is the first to document the use of

untargeted sentinel behavior as an early warning against wildlife crime, yet our approach

is generalizable beyond animals as sentinels. Similar methods could be utilized to detect

anomalous behavior of people in crowds in response to a perceived threat (Mehran et al.,

2009). Harnessing the collective sensing capacities of sentinels will thus not only innovate

wildlife conservation and help turn protected areas into safe havens, it has the potential

to advance many other applications as well.
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6.4 Methods

6.4.1 Study system and species

This study was performed in Welgevonden Game Reserve (WGR), a privately owned game

reserve in the Limpopo province, South Africa (24°10’S; 27°45’E to 24°25’S; 27°56’E).

The reserve is located in the mountainous Waterberg region. WGR was established on

former agricultural lands in the early 1980s and the main occurring vegetation types

are Waterberg Mountain Bushveld and Sour Bushveld. The Waterberg region has a

temperate climate, with two distinct seasons, characterized by the rainfall regime: a dry

season ranging from April to September and a wet season ranging from October to March,

with an average annual precipitation in WGR of 634 mm. Our study area is an enclosed

breeding camp within WGR, with a size of approximately 1200 ha. Main predator species

such as lion, cheetah and spotted hyena were excluded from this study area, as well as

elephant and rhino.

WGR equipped 35 impala (Aepyceros melampus), 34 blue wildebeest (Connochaetes tau-

rinus), 35 plains zebra (Equus burchellii) and 34 common eland (Taurotragus oryx ) with

a GPS and accelerometer sensor equipped custom made collar; an estimated 23% of the

individual impalas present in the area, 48% of the eland, 40% of the wildebeest and 40%

of the zebra. However, due to malfunctioning and errors made in the sensor development

process, only 83 of the sensors yielded data at any point in time, thus lowering the ef-

fective density of sentinel animals. During the experimental intrusions (see below), the

median number of data-yielding sensors was 47, and minimally 30. The animal move-

ment data were recorded day and night and transmitted wirelessly in near real-time to

five long-range low-power LoRa radiocommunication gateways in the study area, from

where data packages were routed to an on-line data warehouse via a 3G/4G backhaul.

The deployment of these sentinel animals were approved by the board and CEO of WGR

as a management action and was performed in accordance with relevant guidelines and

regulations.

6.4.2 Experimental intrusions

Between September 2017 and March 2018, WGR employees performed experimental in-

trusions (lasting ca. 2 hours) on foot and by car through the study area, at varying

locations and movement routes through the study area, independent from the locations

of the sentinel animals. The movement of the intrusions were tracked by GPS, and the

relevant metadata for each intrusion recorded (mode of transport, group size, start time,

end time). The intrusions were distributed in a stratified way over the mornings, middays

and afternoons (with time slots relative to specific solar positions: sunrise, solar noon and

sunset). Furthermore, the intrusions were temporally spread in such a way to avoid a dis-

turbance overflow for the sentinel animals, by performing a maximum of five experiments
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per week and a maximum of two experiments per day (and then only with one intrusion

in the morning and one in the afternoon).

6.4.3 Data gathering

The animal sensors gathered location data via GPS and overall dynamic body acceler-

ations (Gleiss et al., 2011) (ODBA) via a tri-axial accelerometer (range ±2g; sampling

frequency 100Hz, down-sampled to 10Hz prior to analysis). The GPS was scheduled to

record spatial position at irregular intervals depending on the level of activity as gauged by

ODBA. All sensors were scheduled to record locations every 15 minutes in the absence of

sufficient activity (given that successive fixes were further than 5m apart, else a geofence

was applied and the new coordinate was omitted to save bandwidth and battery power,

thereby assuming that the animal still was at its previous location). The GPS fix rate

was increased up to 2- or 10-minute intervals (depending on two different sensor settings)

when ODBA indicated sufficient activity (after checking for the geofence). ODBA data

were sampled continuously and summarized per 15 second window in a mean, maximum

and variance value.

The experimentally intruding groups were outfitted with handheld GPS devices that

recorded their location every 5 seconds and these groups logged and timestamped all their

pre-defined activities and metadata on a tablet using CyberTracker during their intrusion

(CyberTracker, 2017). Most cars traveling through the study area were tracked by GPS

as well to filter the animal data for disturbances by cars unrelated to the experimental

intrusions.

Weather data (temperature, radiation, precipitation and wind) in the study area were

recorded on a 3-minute resolution with a weather station in the north of the study area.

We assumed the 1200 ha study area to be sufficiently small to assume the weather station

data to be representable for the prevailing weather conditions throughout the study area.

GIS data of the study area (summarized in Table 6.2) consisted of information on topogra-

phy, infrastructure (e.g., fences, roads, powerlines, etc.) and vegetation cover (supervised

classification of 25cm resolution aerial imagery into four classes: trees, herbaceous/grass,

sand/soil and other/built-up area).

All further data processing and algorithm development was done in the software R3.5.0

(R Core Team, 2020).

6.4.4 Data pre-processing

To link the animal location data with the intrusion location data, as well as to correct for

the substantial level of positional noise present in the animal location data, we modelled

the animal location data to regular 1-minute resolution trajectories using the following

five steps. First, we filtered out large obvious errors (e.g., obvious outliers and irregular-
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ities such as locations far outside the study area) from the data. Second, we corrected

systematic medium-scale outliers: ‘spikes’ that occurred due to positional outliers. Such

spike-like outliers were visible during sensor testing while following known straight-line

trajectories along an airstrip, thereby confirming that these spike-like geometries most

likely resulted from positional error rather than true animal movement. Points were clas-

sified as anomalous spike points when (a) the displacement to and away from this point

was high (>500m), (b) when the distance between the locations before and after this

point was small, and (c) when the turning angle at this point approached 180 degrees.

Therefore, we corrected the locations that were classified as spike-like anomalies by shift-

ing them closer to the straight line between the neighboring points. The extent of this

shift was set relative to the degree of spikiness of the points (the spikier the pattern, the

larger the shift towards the midpoint of the adjacent coordinates). Third, after filtering

and correcting the original locations we smoothed the timeseries of x/y coordinates at

each original timepoint with a Kalman smoother using a dynamic linear model. Fourth,

we linearly interpolated the locations to a 10 second resolution based on ODBA, where we

considered the animal to be stationary between multiple timepoints if the accelerometer

signal suggested the animal was not moving. Fifth, we fitted an X-spline through the data,

where we gave the linearly ODBA-interpolated locations a smaller weight, and sampled

the fitted spline on a regular 1-minute resolution. These pre-processing steps resulted

in the modelled animal trajectory data, composed of spatial locations every minute, and

averaged ODBA statistics per step (i.e., the segments between consecutive coordinates).

These data were used as input for the next steps in the analyses. In contrast to the

animal data, the raw intrusion data were of a high temporal resolution and spatial accu-

racy so that we only needed to subset the data in order to acquire 1-minute resolution

time-synchronized intrusion trajectories.

The first three parts of the data pre-processing were only needed because of firmware

issues in our custom-made sensors. Without these issues, a simple denoising technique

like a Kalman filter will suffice.

6.4.5 Feature engineering and processing

We computed a plethora of human-engineered features from the animal trajectories,

ODBA data, weather data and several GIS layers with environmental data from the study

area (summarized in Table 6.2). All features were computed such that they could not

directly be linked to specific points in space or time (by computing movement features rel-

ative to the environmental variables), so that only behavioral patterns and abnormalities

therein could be linked to intrusion presence. After engineering these base features, we

transformed certain features (after visual inspection of the histograms) to approximately

symmetric distributions using logarithms. Then we truncated the distributions to the

lower and upper 0.001 percentile to correct possible outliers. After that, we standardized

all computed features to zero mean and unit variance per species. We also computed
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scaled versions of selected features by subtracting the mean and dividing by the variance

of the selected features per reference set to capture deviations from normal behavior: (1)

per area (characterized by a 30 by 30 m neighborhood around each grid cell), (2) per time

of day (morning, midday, afternoon) in a period of five weeks around each intrusion or

control, (3) per area per time of day per five weeks, and (4) per individual sentinel per

time of day per five weeks (Table 6.2). Furthermore, after computing and standardizing

the features, we computed more features by applying moving window computations (5

minutes centered, 10 and 20 minutes lagging, and the difference between these: 5 minutes

centered minus 10 and 20 minutes lagging) on the standardized features to capture (the

change in) the recent history of animal movement descriptors (mean and standard devia-

tion of all features, fitted Mean Squared Displacement exponential function parameters,

net-gross distance ratio and variance of log First Passage Times). Finally, we discretized

all features to ordinal values to avoid odd-, fat- and heavy-tailed distributions. In total we

computed 2117 features describing different aspects of movement geometry of individual

trajectories, herd topology and the interactions with landscape variation.

6.4.6 Subsetting and dimensionality reduction

Before analyzing the computed animal movement features, we applied some filtering on

the data. We removed all periods with an experimental intrusion during which there

were less than 30 active animal sensors in total. We also removed data of both animals

and intrusion when they were close to the reserve’s main gate in order to avoid dilution

of the data with other known disturbances. This resulted in 57 intrusions that were

selected for further analyses. For every intrusion we selected control data of the same

period one or two days earlier or later during which no intrusion took place, resulting

in an approximately balanced intrusion-control dataset. Furthermore, we removed data

from animals that were located within 250 m and within 20 minutes of a vehicle moving

through the area that was not part of our experiment.

For each feature, we computed 4 importance metrics based on binary labelled data:

records associated to locations within 1 km from the intrusion (subscript 1) versus an

equally-sized random selection of data points during control periods (subscript 0): Ma-

halanobis distance, marginality (computed as µ1−µ0

σ0
, for sample mean µ and sample stan-

dard deviation σ), specialization (computed as σ1

σ0
) and the Mean Decrease Accuracy of

a Random Forest classifier (with default hyperparameters). We then ranked the features

according to their importance and selected a feature for further analyses if it occurred in

the top 125 features for any of the 4 importance measures described above (resulting in a

total of 361 selected features). Subsequently, we converted the selected features per main

feature class (Table 6.2) to principal components, keeping those principal components

that capture the most variation (in total 95%), which resulted in 99 selected components

in total. Finally, we transformed these components again via a second principal compo-

nent analysis, now across all the selected 99 components. In subsequent training of the
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animal behavior classifier, we optimized the total number of included components as a

hyperparameter, which resulted in the first 8 principal components in the best performing

classifier.

6.4.7 Labelling

We labelled the sentinel movement data through visual inspection of the animal and in-

truder trajectories, where we considered the animals’ behavior to be undisturbed when

the animal was not near an intrusion, or when the animal was close to an intrusion yet

did not visually display a change in behavior. However, when the animal was near the

intrusion and displayed a sudden or gradual behavioral change in response to intrusion

proximity, we labelled the data as ‘flight’ (changing the movement direction away from

the intrusion, possibly with increased speed) or ‘regroup’ (when individuals clustered to-

gether). In total, only ca. 1% of the animal data were associated to either flight or regroup

behavior (which we will refer to as ‘response’ behavior). A few animals also appeared to

exhibit behavior we could label as ‘freeze’, i.e., halting movement in the proximity of the

intrusion, yet this class was too underrepresented to be accurately predicted and hence

dropped from the final dataset. Furthermore, we assigned a qualitative measure of inten-

sity to each labelled behavioral response (‘low’, ‘medium’, ‘high’) to describe how visually

pronounced this response was. Besides the supervised labelling based on visual inspection

of behavioral responses via video animations of the trajectories, we also labelled data using

an unsupervised k -means nearest neighbor classifier, where we clustered the feature space

consisting of the 99 features selected as described above into 25 clusters per species.

6.4.8 Animal behavior classification

We trained an RBF kernel C-classification Support Vector Machine (SVM) with a sub-

sequent moving window over the outputted probabilities to distinguish undisturbed vs.

response behavior. In the training datasets we only included the data separated by more

than 1 km from the intrusion and labelled as ‘undisturbed’, and removed 90% thereof

to train algorithms with a more balanced dataset. Furthermore, we only trained and

validated on data with intrusions present in the area. We trained another SVM to dis-

tinguish the flight response from the regroup response. All computations were done in R

3.5.0 with the e1071 package on the Linux High Performance Cluster of Wageningen Uni-

versity and Research. We optimized the following hyperparameters and model settings

during the training phase for the Average Precision via a grid search (with the selected

values between brackets):

• gamma (undisturbed-response: 10−3.2; flight-regroup: 10−2.0);

• cost (undisturbed-response: 10−2.2; flight-regroup: 10−1.5);

• number of principal components to include as features (undisturbed-response: 8;

flight-regroup: 12);
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• species-specific models vs. one model with species dummy variables included in the

features (species-specific models);

• specific models for the different times of day vs. one model with time of day dummy

variables (one model);

• response intensities to include in the training data (only medium and high intensi-

ties);

• weights to assign to the classes (equal weights);

• the quantile to be computed of the SVM probabilities by the moving window (100%,

i.e., maximum value);

• the alignment of the moving window (centered);

• the size of the moving window (15 minutes on both sides).

The best model was selected via a leave-one-intrusion-out cross-validation approach. We

summarized the predictive performance by computing the Average Precision of the least

occurring class (i.e., ‘response’ for the undisturbed-response model: 46%, Figure 6.5;

and ‘regroup’ for the flight-regroup model: 80%, Figure 6.6). After having computed

these probabilities with an SVM and a temporal window smoother, we tried to improve

the predicted performance by including the predicted animal response probabilities of

nearby animals. However, this spatial explicit approach hardly improved the predictive

performance, indicating that the spatial contextualization of behavioral response was

sufficiently captured by the computed features. We therefore did not include this spatial

contagion effect of predicted animal response probabilities in the final analysis.

6.4.9 System classification - detection

Based on the predicted SVM response probabilities and feature cluster analysis, we com-

puted summary features per 15 minutes of each intrusion and control period. These

summary features related to the odds ratios of the probability of association of unsuper-

vised clusters with intrusions vs. controls, the SVM predicted probabilities of behavioral

response, and several features describing the values (and its spatial structure, e.g., cluster-

ing or autocorrelation) of these SVM predicted response probabilities. After computing

summary features per 15 minutes, we summarized them even further for the intrusions

vs. controls using the following eight statistics: mean, standard deviation, minimum,

maximum, mean of the lagged differences, standard deviation of the lagged differences,

minimum of the lagged differences and maximum of the lagged differences.

After computing the summary features, we build a logistic regression classifier to dis-

tinguish intrusions from controls. To create a parsimonious model, we iteratively added

features to the model and evaluated its performance after each iteration. We evaluated

the performance based on the model accuracy and performed validation through 25 times

2-fold cross-validation in a stratified way (by 25 times choosing a balanced random sample

of intrusions and controls). We determined the sequence of adding features to the model
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by performing an independent two-sample t-test for each feature between the intrusions

and controls. The feature with the largest t-value was then added to the model. After

each feature addition, we removed its correlation with the remaining features using linear

regressions with the added feature as independent variable and the remaining features as

dependent variables, from which we extracted the residuals, standardized them to zero

mean and unit variance, and applied the t-tests again. The (original) feature with the

largest t-value was then added to the model again. This procedure was repeated until

all features were ordered corresponding to their “importance”. We then performed lo-

gistic regressions without interactions between the features for an increasing number of

features (Figure 6.7). The model already performed quite accurately with only 7 features

(86.1% accuracy ± SD 3.3%, precision 82.6% ± SD 6.9%, recall 89.2% ± SD 5.1%). How-

ever, with 20 features and 2-way interactions the model achieved the maximum accuracy

(90.9%).

6.4.10 System classification - localization

The data gathered during intrusions that were correctly predicted as such by the detection

classifier were used to train the intrusion localization algorithm. The probability surface of

the location of the intrusion was fitted relative to that of the sentinel animals using:

Oi,j ∼
pj (fwn (θi,j, µj, ρ1) fln (γi,j, µ1, σ1)) (1− pj) (fwn (θi,j, µj, σ0) fln (γi,j, µ0, σ0))

fwn (θi,j, µj, ρ0) fln (γi,j, µ0, σ0)

where Oi,j is the odds ratio of intrusion presence at location i evaluated for individual j,

pj is the SVM-predicted probability that individual j is exhibiting response behavior. The

function fwn is the wrapped normal probability density function, θi,j is the direction from

location i to the location of the focal animal j, µj is the movement direction of individual

j, ρ1 and ρ0 are the standard deviations of the unwrapped distributions. The function fln
is the lognormal probability density function, where γi,j is the distance of location i to j,

µ1 and µ0 as well as σ1 and σ0 are the log-normal distribution parameters (respectively

log-mean and log-sd).

The parameters µ1, σ1 and ρ1 capture the geometry of intrusion-animal topology for an-

imals that exhibited a predicted behavioral response to the intrusion. Similarly, µ0, σ0

and ρ0 are the corresponding parameters for animals that were predicted to be undis-

turbed. The parameters µ1, log (σ1) and log (ρ1) were fitted to the data assuming a 3rd

order polynomial relationship to ts: the time (in minutes) since the start of the predicted

behavioral response (using the maximum F1 classification score). Since the behavioral

response signature is lost over time, we truncated ts to 45 minutes (thus ts > 45 minutes

was set to ts = 45). The parameters µ0, σ0 and ρ0 were estimated using the data of the

controls and with randomly generated intrusion locations in the study area, in order to

correct for the effects of geometry of the study area on the predicted response surfaces.
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The probability surface Pi was then calculated as:

Pi = α
∑
j

Oi,j

where α is a normalization constant so that Pi integrates to 1 over the area covered by

the rectangular axis-aligned bounding box around the study area.

To measure the prediction accuracy of each localization surface, we simplified each surface

to a point coordinate located at the location of maximum probability, and computed the

Euclidian distance to the known true position of the intrusion. We then summarized each

experimental intrusion by selecting the 10 prediction surfaces with the most condense

highest probability density, i.e., those in which the top 5% probability density is contained

in the smallest, most condense, area. The spatial error of the localization prediction

associated with these selected predictions was further summarized by taking the average

Euclidian distance over the 10 selected predictions.
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6.5 Supplementary materials

Figure 6.4: Schematic diagram of our proposed sentinel-based poacher early

warning system.
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Figure 6.5: Precision-recall curve for ‘response’ of the undisturbed-response model.

The dotted line indicates the maximum harmonic mean of precision and recall

(F1-score).
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Figure 6.6: Precision-recall curve for ‘regroup’ of the flight-regroup model. The

dotted line indicates the maximum harmonic mean of precision and recall (F1-score).
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Figure 6.7: Accuracy vs. the number of features of the intrusion classification

logistic regressions.
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Table 6.2: Computed features per record. To capture deviations from normal behavior,

features were scaled 0) per species and selected features were also scaled 1) per area (a 30 x 30

m neighborhood centered on each grid cell), 2) per time of day (morning, midday, afternoon)

in the five weeks around each experimental intrusion or control, 3) per area per time of day

per five weeks, and 4) per individual per time of day per five weeks. The means and variances

used for scaling were computed from data in the absence of experimental intrusions. In total,

this resulted in 2117 computed features (the set below, plus species identification and time of

day; morning, midday or afternoon).

Main class Sub class Feature Scaling

Individual

movement

geometry

Speed Speed 0,2,3,4

Scale parameter of a fitted SSM for

speed1

0,1,3

Shape parameter of a fitted SSM for

speed1

0,1,3

Value of the cumulative distribu-

tion function given a fitted SSM for

speed1

0,1,3

Log-likelihood of a fitted SSM for

speed1

0

Scaled deviation from maximum

value of the pdf of a fitted SSM for

speed1 (with negative values when

speed < mode)

0

Relative headings Absolute turning angle (TA) 0,2,3,4

Cosine TA 0,2,3,4

Concentration parameter of a fitted

SSM for TA2

0,1,3

Log-likelihood of a fitted SSM for

TA2

0

Scaled deviation from maximum

value of the pdf of a fitted SSM for

TA2

0

Absolute centripetal turning angle 0,2,3,4

Cosine centripetal turning angle 0,2,3,4

Cosine relative angle to terrain as-

pect

0

Cosine relative angle to feeding site 0

Cosine relative angle to average

movement direction

0,1,3



6.5 Supplementary materials 153

Table 6.2 continued from previous page

Main class Sub class Feature Scaling

Cosine relative angle to nearest

track

0

Cosine relative angle to nearest road 0

Cosine relative angle to wind direc-

tion

0

Cosine relative angle to terrain as-

pect, weighted for slope

0

Cosine relative angle to feeding site,

weighted for distance to feeding site

0

Cosine relative angle to average

movement direction, weighted for

rho of movement directions

0,1,3

Cosine relative angle to nearest

track, weighted for distance to track

0

Cosine relative angle to nearest

road, weighted for distance to road

0

Cosine relative angle to wind direc-

tion, weighted for wind speed

0

Acceleration Acceleration 0,2,3,4

Angular acceleration 0,2,3,4

Centripetal acceleration 0,2,3,4

Centripetal angular acceleration 0,2,3,4

Tangential acceleration 0,2,3,4

Velocity Absolute tangential velocity 0,2,3,4

Centripetal velocity 0,2,3,4

Compound

features

First Passage Time (FPT) at 3m ra-

dius

0,2,3,4

FPT at 9m radius 0,2,3,4

FPT at 27m radius 0,2,3,4

Slope of the radius vs FPT relation-

ship

0,2,3,4

Rate of exponential decay of the

Velocity Autocorrelation Function

(VAF) up to 15-minute time lag

0,2,3,4

Rate of exponential decay of the

VAF up to 30-minute time lag

0,2,3,4
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Table 6.2 continued from previous page

Main class Sub class Feature Scaling

Accelerometer-

based

features

Fraction moved Estimated fraction of time moving 0,1,2,3,4

Mean Mean mean acceleration 0,2,3,4

Mean standard deviation accelera-

tion

0,2,3,4

Mean peak acceleration 0,2,3,4

Standard

deviation

Standard deviation average acceler-

ation

0,2,3,4

Standard deviation standard devia-

tion acceleration

0,2,3,4

Standard deviation peak accelera-

tion

0,2,3,4

Collective

movement

features (both

computed across

species, as well as

for conspecifics

only)

Relative angles Cosine of relative heading compared

to the weighted mean of headings of

surrounding animals3

0,2,3,4

Length of the weighted resultant

vector of headings of surrounding

animals3

0,2,3,4

Cosine of relative heading compared

to the weighted mean of headings of

surrounding animals3, multiplied by

the weighted resultant vector length

0

Cosine of relative heading compared

to the weighted mean of headings of

surrounding animals, multiplied by

the weighted resultant vector length

and sum of weights3

0

Cosine of the relative heading to-

wards the herd-center (the distance

weighted mean coordinate of nearby

animals3)

0,2,3,4

Distance Distance towards the herd-center 0,2,3,4

Distance towards the nearest ani-

mal

0,2,3,4

Sum of distance-based weights3 0,2,3,4

Indices of space

usage (at both

the individual

and species level)

Index of Habitat

Suitability4 (HSI)

HSI value at location of next record

(‘used’)

0
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Table 6.2 continued from previous page

Main class Sub class Feature Scaling

Mean and sd of HSI value in neigh-

boring grid cells

0

Measure of step selection: (used -

mean) / sd

0

Utilization

distribution via

Kernel Density

Estimation5

(KDE)

KDE value at location of next

record (‘used’)

0

Mean and sd of KDE value in neigh-

boring grid cells

0

Measure of step selection: (used -

mean) / sd

0

1Fitted state-space model (SSM) for speed using a lognormal distribution, where the scale parameter

and the logarithm of the shape parameter are related to environmental predictors via a linear predictor.
2Fitted SSM for turning angle using a wrapped Cauchy distribution where the expectation is 0 (i.e. no

change of direction) and the concentration parameter (via logit link) related to environmental predictors

via a linear predictor.
3The weight of surrounding animals decays with distance from the focal individual proportional to a

normal distribution with mean 0 and standard deviation of 100m (scaled to have weight 1 at distance 0).
4MaxEnt habitat suitability prediction based on environmental predictors fitted per species per time

of day in a window of 5 weeks around an experiment/control.
5Using an isotropic bivariate gaussian kernel with a bandwidth of 10m.
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Abstract

Animal population sizes are often estimated using aerial sample counts by human ob-

servers, both for wildlife and livestock. The associated methods of counting remained

more or less the same since the 1970s, but suffer from low precision and low accuracy

of population estimates. Aerial counts using cost-efficient Unmanned Aerial Vehicles or

microlight aircrafts with cameras and an automated animal detection algorithm can po-

tentially improve this precision and accuracy. Therefore, we evaluated the performance

of the multi-class convolutional neural network RetinaNet in detecting elephants, giraffes

and zebras in aerial images from two Kenyan animal counts. The algorithm detected 95%

of the number of elephants, 91% of giraffes, and 90% of zebras that were found by four

layers of human annotation, of which it correctly detected an extra 2.8% of elephants,

3.8% giraffes, and 4.0% zebras that were missed by all humans, whilst detecting only 1.6

to 5.0 false positives per true positive. Furthermore, the animal detections by the algo-

rithm were less sensitive to the sighting distance than humans were. With such a high

recall and precision we posit it is feasible to replace manual aerial animal count methods

(from images and/or directly) by only the manual identification of image bounding boxes

selected by the algorithm and then use a correction factor equal to the inverse of the

undercounting bias in the calculation of the population estimates. This correction factor

causes the standard error of the population estimate to increase slightly compared to a

manual method, but this increase can be compensated for when the sampling effort would

increase by 23%. However, an increase in sampling effort of 160 to 1050% can be attained

with the same expenses for equipment and personnel using our proposed semi-automatic

method compared to a manual method. Therefore, we conclude that our proposed aerial

count method will improve the accuracy of population estimates and will decrease the

standard error of population estimates by 31 to 67%. Most importantly, this animal de-

tection algorithm has the potential to outperform humans in detecting animals from the

air when supplied with images taken at a fixed rate.
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7.1 Introduction

Estimating population sizes of animals is key in nature conservation (Davis & Winstead,

1980; Norton-Griffiths, 1978; Van Lavieren, 1982) and large-scale animal husbandry (An-

drew et al., 2017; Chamoso et al., 2014). Accurate animal population estimates are

important for farmers to determine the value of their companies and for game managers

to optimize hunting strategies (Hearne et al., 2000; Mwakiwa et al., 2016; Van Lavieren,

1982), while precise estimates are important to follow population trends of rare and/or

valuable wildlife species (Van Lavieren, 1982). Most of the animal population estimates

are based on sample counts, where animals are only counted in a part of the area and

the counts are afterwards extrapolated, which is cheaper and less time-consuming than

total counts (Jachmann, 2001; Norton-Griffiths, 1978; Van Lavieren, 1982). Very often

aerial counts are performed, which are the only practical way to estimate the population

sizes of some animal species (Davis & Winstead, 1980; Jachmann, 2001; Norton-Griffiths,

1978; Van Lavieren, 1982). Although aerial counts are recommended for open landscapes

without too much vegetation or terrain features blocking the view of the observers, many

animal counts in forested areas are also performed from the air (LeResche & Rausch,

1974; Van Lavieren, 1982). The present-day method of estimating animal populations

from aerial counts has not changed substantially since the 1970s (Jachmann, 2001; Nichols

et al., 1996; Redfern et al., 2002), and suffers from imprecise and inaccurate population

estimates (Davis & Winstead, 1980; Fleming & Tracey, 2008; Jachmann, 2001; LeResche

& Rausch, 1974; Rabe et al., 2002; Stott & Olson, 1972; Van Lavieren, 1982). Low sam-

pling efforts, e.g., sampled kilometres, are more rule than exception in aerial counts due

to the high associated costs (De Bie & Kessler, 1983; DHV Consulting Engineers, 1980;

Norton-Griffiths, 1978; Redfern et al., 2002). Decreasing the costs of aerial counts could

lead to an increase in sampling effort and an increase in the precision and accuracy of

population estimates (Davis & Winstead, 1980; Jolly, 1969a; Van Lavieren, 1982).

Achieving accurate and precise population estimates from aerial sample counts is no-

toriously difficult. When comparing aerial counts to the actual population size (often

estimated using multiple and/or thorough ground counts) in environments that are not

completely open, aerial counts generally underestimate the number of animals by 8 to

80% (Davis & Winstead, 1980; De Bie & Kessler, 1983; Dunn et al., 2002; Fleming &

Tracey, 2008; LeResche & Rausch, 1974; Stott & Olson, 1972). This underestimation

bias in aerial sample counts can be corrected by multiplying population estimates with

a correction factor per species per stratum, viz., vegetation or terrain type, often based

on a comparison of a subsample with thorough ground counts or a double-observer ap-

proach (Cook & Jacobson, 1979; Jachmann, 2002; Jolly, 1969b; Nichols et al., 2000;

Norton-Griffiths, 1978; Van Lavieren, 1982). More elaborate methodological designs, i.e.,

distance sampling methods, make these correction factors also dependent on the animal

sighting distance (Buckland et al., 2004). The correction factors that are used can be
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extremely large, even for very open savanna ecosystems factors as large as 13 have been

reported (De Bie & Kessler, 1983), which have a large impact on the precision of popu-

lation estimates (Jolly, 1969b). Sampling effort should ideally be based on preliminary

surveys, but is in practice often dictated by logistics and financial considerations (Van

Lavieren, 1982). Consequently, most population estimates from aerial sample counts have

such low precision that only large changes of the population can be detected (Davis &

Winstead, 1980). The underestimation bias depends not only on the animal species and

environmental characteristics of a certain stratum, but also on sampling effort and human

skill related factors (Caughley et al., 1976; Van Lavieren, 1982). Increasing the sampling

effort by flying slower, lower, with narrower transects, and/or more transects, should re-

sult in an increase in accuracy and precision (Jolly, 1969a, 1969b; Norton-Griffiths, 1978;

Van Lavieren, 1982). On the other hand, having a method that would not depend so

much on the skill, fitness, and visual responses of different observers and pilots, could

also increase the accuracy and precision of population estimates (Christie et al., 2016;

Norton-Griffiths, 1978; Sirmacek et al., 2012; Van Lavieren, 1982).

An increase in sampling effort can most easily be obtained by an increase in sampling

efficiency, which can be realized by a decrease in financial costs per sampling unit (Norton-

Griffiths, 1978). To simultaneously increase the sampling efficiency and standardize the

animal detection system, Unmanned Aerial Vehicles (UAVs) or microlight aircrafts with

cameras and an automated image object detection algorithm are considered an alternative

to manned aircrafts with human observers (Colefax et al., 2018; Linchant et al., 2015;

Rey et al., 2017; Sirmacek et al., 2012). In the past decade this proposed method has

been explored and tested in various studies (Hodgson et al., 2018; Kellenberger et al.,

2018; Rey et al., 2017; Van Gemert et al., 2014). At first this method seemed too far-

fetched to apply in practice (Van Gemert et al., 2014), but lately, due to developments

in deep learning image recognition, the performance of this method increased enough to

accurately and fully automatically count animals in homogeneous and open landscapes

(Andrew et al., 2017; Chamoso et al., 2014; Hodgson et al., 2018), or semi-automatically

in more challenging landscapes (Kellenberger et al., 2018; Rey et al., 2017). At present,

semi-automatic aerial counts with UAVs or microlights and an image object detection

algorithm supplemented by human verification of the algorithm’s output, could be a fea-

sible alternative to manual aerial counts (from images and/or directly) in any area where

these manual aerial counts are appropriate (Kellenberger et al., 2018; Rey et al., 2017).

The current challenges for this semi-automatic method are the small animals (in terms

of pixel dimensions) in large images and the algorithms’ ability to distinguish between

species. However, the recent rapid development of Convolutional Neural Networks (CNNs)

in image object detection has the potential to solve these issues (He et al., 2016; Lin et al.,

2017; Lin et al., 2018).

Replacing manual aerial sample counts by the proposed semi-automatic method thus has

the potential to improve the accuracy and precision of animal population estimates due
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to an increased sampling efficiency and a standardized animal detection system. In this

study we evaluate the performance of a fully convolutional multi-class one-stage detector,

called RetinaNet (Lin et al., 2018), to detect elephants (Loxodonta africana), giraffes

(Giraffa camelopardalis), and plains zebras (Equus quagga) in aerial images from two

savanna animal counts in Kenya, 2014 and 2015. The performance of this algorithm is

then used to compute the difference in sampling effort that is required to compensate

for the gain or loss of precision due to the over- or undercounting bias of the algorithm

compared to human counts. Moreover, we compare the accuracy of population estimates

using manual versus semi-automatic aerial counts by comparing the human and algorithm

detections of animals versus the distance to the aircraft, because most factors that cause

animal counts to be biased are dependent on the sighting distance (Van Lavieren, 1982).

Furthermore, we evaluate the costs of manual versus semi-automatic aerial counts and

determine how much the sampling efficiency will improve when manual aerial counts are

replaced with semi-automatic counts for the same total expenditure. Finally, we combine

both the cost analysis and the animal detection algorithm to compute how much the

precision of population estimates can improve when manual aerial counts are replaced

with semi-automatic aerial counts.

7.2 Materials and methods

7.2.1 Data collection

All 561 images used in this study were collected by Kenya Wildlife Service during aerial

sample animal counts with plane-mounted cameras in the Tsavo National Parks (Kenya,

March 2014) and in the Laikipia-Samburu Ecosystem (Kenya, May 2015). These nature

reserves are savanna ecosystems with varying tree-grass ratios. During the animal counts

the images were manually taken by human observers upon spotting animal groups that

were too large to count accurately while in the air, typically groups larger than five

animals. The images were taken at speeds of 170 to 200 km/h between 90 and 120 m above

the ground, facing both the left and right sides of the plane, and tilted slightly towards the

ground creating strip widths of on average 200 m per camera. This resulted in the animals

being small in the images, on average 50 by 50 pixels in images of 5000 by 3000 pixels,

often poorly visible for the human eye. The images were pre-selected by Kenya Wildlife

Service for the presence of elephant, giraffe and/or zebra, not excluding the presence of

other animal species (e.g., impala (Aepyceros melampus), eland antelope (Taurotragus

oryx ), cattle (Bos taurus), and Cape buffalo (Syncerus caffer)), and annotated on an

image-level detailing the number of individuals per species in the image. These numbers

were estimated based upon human inspection of the images after the actual aerial animal

count. We annotated the images on an animal-level by defining rectangular bounding

boxes around the animals. These bounding boxes were finally checked and corrected

by another author. Due to varying aircraft altitude and tilt, and various landscape,
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vegetation and animal characteristics, the animals in the images have different sizes,

orientations, and body postures, and are possibly close to or behind each other, or partly

visible because of vegetation and terrain (Figure 7.1).

Figure 7.1: Example of an image containing giraffe and zebra. Top: entire image;

Middle: part of image zoomed in, with annotated bounding boxes (red for giraffe and

blue for zebra). Bottom: annotated animals from left to right.
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7.2.2 Detection algorithm

We used the fully convolutional multi-class one-stage detector RetinaNet to detect ani-

mals in the aerial images (Lin et al., 2018). The architecture of RetinaNet is composed

of a backbone network and two task-specific subnetworks (Figure 7.2). This algorithm

takes entire images as input, constructs feature maps at different scale levels, generates

region proposals at each scale level by means of “anchors”, and performs classification and

bounding box regression for each anchor to predict the presence and location of objects

in the input images. By using the Focal Loss function, training focusses on cases that are

hard to classify, leading to high detection accuracy. For details about RetinaNet we refer

to the study that proposed this algorithm (Lin et al., 2018).

Figure 7.2: The architecture of RetinaNet, figure from Lin et al., 2018: a backbone

network that consists of a feedforward ResNet (He et al., 2016) (a), connected to a

Feature Pyramid Network (Lin et al., 2017) (b), computes a convolutional feature

map over the entire input image at different scales. These feature maps are then

input for two subnetworks: the first subnetwork computes the object classification (c)

and the second subnetwork performs the bounding box regression (d).

We specifically used keras-retinanet 0.5.0 (Fizyr, 2018), an implementation of RetinaNet

in Python 3.6.5 (Anaconda custom 64-bit) using Keras 2.2.4 with OpenCV 3.4.1, Tensor-

Flow 1.11.0, GCC 7.2.0, pip 18.1, and numpy 1.14.5. Training and detection was done

with a NVIDIA Tesla V100 16GB Graphics Processing Unit of an Amazon instance type

p3.2xlarge (Amazon Web Services, 2018), running on Ubuntu 16.04.5 LTS (Linux 4.4.0-

1069-aws) with CUDA 9.0.176. ResNet-50 was used as the backbone and the algorithm

was initialized with pre-trained weights on ImageNet (Deng et al., 2009). The algorithm

was trained for 50 epochs with a batch size of 1 image and again for 50 epochs with a

batch size of 2 images, which took on average 7 minutes per epoch for a batch size of 1

and 5 minutes for a batch size of 2. Batch sizes up to 7 were possible within the memory

constraints of the system, but to limit the total computation time we stopped training at

the batch size that performed less than the smaller batch size.

The 561 images were randomly divided into a training (70%), validation (10%), and test

(20%) set (Table 7.1). The division of sets is thus based solely on the number of images,

while some images contained many examples of a species, others contained only one
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example. However, the number of examples for each separate species closely approaches

the 70/10/20 ratio that was used for the division of images. The original annotations in

the images consisted of 1319 elephant, 1109 giraffe, and 1877 zebra in total. The images

could not be used in their entirety as training input for the algorithm due to memory

limitations. Therefore, the training images were first divided into 42 (7 by 6) equal-sized

“tiles” each with 200 pixels overlap on all sides, resulting in tiles of on average 900 by 700

pixels. The overlap between tiles sometimes resulted in the same animal being present in

several tiles, but made sure that every annotated animal was at least once fully present in

a tile. Sometimes animals were only partly covered in a tile, but then we cut off a part of

the tile to remove as much of this partly covered animal without removing the fully covered

animals in the tile. We only trained the algorithm with the annotations from animals of

which the bounding box were entirely covered in the tile, all partly covered animals were

considered background. Also all the animals of species other than our three focal species

were considered background. Furthermore, all training tiles were horizontally mirrored to

be used as extra training data. We only used the tiles that contained at least one fully

covered animal as training input for the algorithm, which resulted in approximately 10%

of all the generated tiles. As the same example of an individual animal was sometimes

present in several overlapping training tiles and because the total amount of training tiles

was doubled due to the mirroring, the total number of training examples was 300% larger

than the number of unique animal examples in the training images. For every 18 animals

in the training set there was on average one partly covered animal.

Table 7.1: Number of images, tiles, and animal examples of each species per training, vali-

dation, and test set.

Set Images Tiles Species Animals

Training 393 3200

Elephant 2640

Giraffe 2160

Zebra 4182

Validation 56 n.a.

Elephant 140

Giraffe 93

Zebra 219

Test 112 n.a.

Elephant 288

Giraffe 261

Zebra 301

7.2.3 Algorithm evaluation

After each epoch during training, the resulting algorithm was saved and evaluated on

a validation set. Detection was done on whole images and took on average 1.5 seconds

per image, during which the images simply had to be forwarded through the trained
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algorithm. The algorithm that performed the best on the validation set was eventually

evaluated on a test set, which also consisted of whole images.

The annotated bounding boxes were compared with the predicted bounding boxes per

species using the Intersection over Union (IoU) measure, defined as the area of overlap

divided by the area of union. A combination of an annotated box and a predicted box

was potentially considered a True Positive (TP) when the IoU was equal to or larger

than a certain threshold. However, every annotation and every prediction could only be

used once to generate a TP, where priority was given to the combination with the largest

IoU. Every prediction that was not coupled with an annotation after this process was

considered a potential False Positive (FP) and every annotation that was not coupled

with a prediction a False Negative (FN). Finally, we checked if the FPs were not actually

TPs that were missed by the four layers of human annotation: 1, taking a photograph from

the air upon spotting a group of animals; 2, counting the individual animals per species

per image; 3, defining rectangular bounding boxes around the animals; and 4, checking

and correcting the annotations. We chose a relatively low IoU threshold of 0.3, because

the accurate positions of animals in the image is often of no importance for animal counts

and the annotation of the bounding boxes around the animals was often ambiguous due

to occlusions.

To evaluate the algorithm performance over all bounding boxes in all images, preci-

sion/recall curves per species were used (Equation 7.1; Equation 7.2). These curves were

computed by varying the threshold for the class prediction probability (score confidence

threshold) that was given by the algorithm to each bounding box. The Average Precision

(AP), defined as the area below the precision/recall curve, was used to quantify the algo-

rithm’s performance in detecting a specific animal species. The mean Average Precision

(mAP) of all three animal species was used to quantify the overall algorithm’s perfor-

mance. The algorithm with the highest mAP on the validation set was then evaluated on

the test set.

Precision =
#TP

#TP + #FP
(7.1)

Recall =
#TP

#TP + #FN
(7.2)

Where #TP is the number of True Positives, #FP the number of False Positives, and

#FN the number of False Negatives.

Furthermore, to provide a comparison of the difference in accuracy between human ob-

servers and the algorithm, the proportion of detections were visualized versus the hor-

izontal distance to the aircraft for both the humans (annotations) and the algorithm

(predictions). As the visual field on the ground of both humans and cameras from the

air is a trapezoid, the ground area per pixel at the top of the image is larger than at the

bottom of the image. This area is proportional to the distance from the aircraft to the

ground, so a geometric expectation of the animal detections versus the distance to the
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aircraft can be formulated as more animals are expected to be present in a larger area.

Therefore, the animal detection method that is more accurate and thus less influenced

by the distance to the aircraft, should have a detection curve that is more similar to the

geometric expectation.

7.2.4 Population estimate precision

The over- or undercounting bias by the algorithm compared to the manually annotated an-

imals requires an extra correction factor for the population estimate on top of the regularly

used correction factor for manual counts. The extrapolation of population sizes based on

insight gathered in previously undertaken surveys, for example using aerial/ground count

comparisons, distance sampling methods, and/or double-observer approaches, can thus

still be used but should now be supplemented with this extra correction factor. This

counting bias can be computed by dividing the algorithm’s recall with the humans’ recall,

with the inverse of this counting bias to be used as the correction factor. This should be

done per species and ideally per stratum, viz., vegetation or terrain type, as well. This

correction factor can be larger or smaller than one, depending on whether the algorithm

counts less or more animals than humans did. When the population estimate is multiplied

with a constant correction factor, the standard error of the population estimate changes

with the same factor. To compensate for the change in standard error of the estimate,

a change in sampling effort of the area is needed. Equation 7.3 summarizes the solution

about how much the sampling effort needs to change to achieve a standard error of the

(semi-)automatic method that is equal to the manual method (see section 7.5):

N = r−2 (7.3)

Where N is the index detailing how much the number of sampling units needs to change,

and r is the counting bias.

To compute to what extent the standard error of the population estimate can decrease

by spending the same amount of finances on our proposed semi-automatic aerial count

method as on a manual aerial count method, first the costs per sampled kilometre were

compared (see section 7.5). Using the sampled kilometres as a unit to calculate the costs

of an aerial count is a common practice in wildlife management (Norton-Griffiths, 1978).

A difference in costs of a factor k in favour of the semi-automatic method can be translated

to an increase in sampled kilometres by k when the same total amount of finances are

spent. An increase in sampled kilometres by k would result on average, either with equal-

or unequal sized sampling units, in an increase in sampling units by k when the same

strip width is sampled. The decrease in a population estimate’s standard error with an

increase in sampling units by k can be computed, thereby taking into account the initial

change in standard error by r−1 (see section 7.5):

S =
(
r
√
k
)−1

(7.4)
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Where S is the index detailing what the standard error of the population estimate from

semi-automatic counts will be compared to manual counts by spending the same amount

of finances on the semi-automatic method as on the manual method, and k is the increase

in sampling units.

7.3 Results

7.3.1 Algorithm evaluation

The algorithms trained with a batch size of 1 performed overall better than the algorithms

with a batch size of 2 (Figure 7.3), with the algorithm from epoch 36 of a batch size of 1

having achieved the largest mAP (0.81) on the validation set (Figure 7.8).
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Figure 7.3: Mean Average Precision (mAP) obtained on the validation set for the

algorithms of the 50 epochs from both a batch size of 1 (solid line with dots) and 2

(dashed lined with crosses). The solid dot marks the algorithm that performed the

best on the validation set (mAP ≈ 0.81).

The best performing algorithm on the validation set was applied to the test set and

achieved a mAP of 0.77, with an AP of 0.81 on elephant, 0.79 on giraffe, and 0.72 on
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zebra (Figure 7.4). When applied to the training images, this algorithm achieved a mAP

of 0.86, with an AP of 0.87 on elephant, 0.92 on giraffe, and 0.80 on zebra (Figure 7.9).

This suggests that the training set size is acceptable, but possibly the detection of giraffe

(the least occurring species in our dataset) would improve with more training data (Table

7.1). The maximum recall reached was 0.92 for elephant, 0.87 for giraffe, and 0.86 for

zebra, with elephant having an accompanying precision of 0.26, giraffe of 0.38, and zebra

of 0.17 (Figure 7.4). The maximum F1-score, i.e., the harmonic mean of the recall and

precision, was 0.76 for elephant, 0.78 for giraffe, and 0.71 for zebra (Figure 7.4). F1-scores

are good performance indicators when the algorithm is considered to be used in a fully

automatic animal detection system. The predicted bounding boxes with a score above

the mean of the score thresholds corresponding to the maximum F1-scores detect many

of the annotated animals, but miss the inconspicuous ones to prevent predicting many

FPs (Figure 7.5). There was little confusion between species at this score threshold,

for elephant 4% of the predictions were on other species, for giraffe 5%, and for zebra

1%.
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Figure 7.4: Precision/recall curves of the animal detection algorithm for elephant

(AP ≈ 0.81), giraffe (AP ≈ 0.79), and zebra (AP ≈ 0.72) on the test set

(mAP ≈ 0.77). The precision/recall combinations with the highest F1-scores (0.76

for elephant, 0.78 for giraffe, and 0.71 for zebra) are marked with dashed lines.
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Figure 7.5: Predicted bounding boxes using a score confidence threshold

corresponding to the mean of the scores with the maximum F1-score. The presented

image is the same as Figure 7.1, including the annotated bounding boxes. The

predicted bounding boxes have lighter colour than the annotated bounding boxes

(red for giraffe and blue for zebra). Top: entire image; Middle: part of image zoomed

in. Bottom: predicted bounding boxes from left to right.
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The top 17% of the FPs with the highest score confidences (361 bounding boxes, with a

score confidence between 1 and 0.4) were visually checked to determine if they were not

actually TPs that were missed by the four layers of human annotation. It turned out that

20 of these detected bounding boxes (4 elephants, 8 giraffes, and 8 zebras) were actually

correctly predicted, but missed during annotations (Figure 7.6a; Figure 7.6b; Figure 7.6c).

Furthermore, 25 other detected bounding boxes (10 elephants, 6 giraffes, and 9 zebras)

could potentially also be TPs but were too vague to be determined with certainty (Figure

7.6d; Figure 7.6e; Figure 7.6f). We considered this task of verifying detected bounding

boxes comparable to verifying human-annotated bounding boxes and also considerably

easier and quicker than when scanning entire images for the presence of animals, with the

effect of fatigue and visual context being far less important as it was near impossible for

a human to overlook an animal within a small bounding box.

(a) (b) (c)

(d) (e) (f)

Figure 7.6: Examples of (a,d) an elephant, (b,e) giraffe, and (c,f) zebra that were

missed by four layers of human annotation, but detected by the algorithm. Top

examples (a-c) are clear TPs, bottom examples (d-f) are potential TPs.

We estimated that the algorithm found 30 animals in total (8 elephants, 10 giraffes, and

12 zebras) that were not found by the four layers of human annotation. When plotting

the cumulative number of FPs, clear TPs and potential TPs versus the score threshold,
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30 animals is clearly a conservative estimate when assuming that all the FPs until the

minimum score would have been evaluated (Figure 7.11). To compute the counting bias of

the algorithm compared to humans, we divided the algorithm’s maximum recall with the

recall of the humans (using all the TPs found by both the humans and the algorithm as

the total). This resulted in an undercounting bias of
TPmodel
TP total
TPhuman
TP total

=
265+8
288+8

288
288+8

≈ 0.95 for elephant,

228+10
261+10

261
261+10

≈ 0.91 for giraffe, and
258+12
301+12

301
301+12

≈ 0.90 for zebra.

The cumulative proportions of detections by both the human annotators and the algorithm

were compared versus the horizontal distance to the aircraft (Figure 7.7). The cumulative

algorithm detections were more in line with the geometric expectation of animal detections

(R2 = 0.97) than the human detections were (R2 = 0.85), with the algorithm detections

following the pattern of the expectation well. The human detections display a clear

optimum between 125 and 200 m from the aircraft (where the slope of the cumulative

human detections is substantially larger than the slope of the geometric expectation and

the cumulative model detections), but perform less well below and above this distance

range.



172 Animal population estimates with image detection

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cu
m

ul
at

iv
e 

pr
op

or
tio

n 
of

 d
et

ec
tio

ns

model detections

human detections

geometric expectation

50 100 150 200

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

horizontal distance to aircraft (m)

de
vi

at
io

n 
of

 c
um

ul
at

iv
e 

de
te

ct
io

ns
 v

s 
ex

pe
ct

at
io

n

R2
model = 0.97

R2
human = 0.85

Figure 7.7: Top: the cumulative proportion of animal detections by both the

algorithm and human observers versus horizontal distance to the aircraft (m). The

geometric expectation is computed based on the trapezoid shape of the visual field on

the ground from the air of a human eye and a camera. Bottom: the deviation from

the geometric expectation of both the cumulative proportion of animal detections by

the algorithm and human observers.
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7.3.2 Population estimate precision

Using the minimum of the three aforementioned values of the algorithm’s undercounting

bias compared to human annotations (r = 0.9), it follows from Equation 7.3 that the

increase (N) in sampling units that is needed to achieve a decrease in standard error of

the population estimate (SY ) equal to r is:

N =
nautomatic

nmanual

= r−2 = 0.9−2 ≈ 1.23

The costs per sampled kilometre of various helicopter and fixed-wing manual count meth-

ods, using direct observations, manual image verification, and a combination, were com-

pared with the expected costs of our proposed semi-automatic method using UAVs and

microlights with an animal detection algorithm (see section 7.5), from which follows that

the costs can be reduced by a factor 2.6 to 11.5. Using these factors (k = 2.6 to k = 11.5)

and the undercounting bias (r = 0.9), it follows from Equation 7.4 that the factor by

which the standard error of the population estimate will change (S) is:

S =
SY,automatic

SY,manual

=
(
r
√
k
)−1

=
(

0.9
√

2.6
)−1

≈ 0.69

to

S =
(

0.9
√

11.5
)−1

≈ 0.33

7.4 Discussion

Our animal detection algorithm detected 92% of all the human-identified elephants, 87%

of the human-identified giraffes, and 86% of the human-identified zebras in the aerial

imagery from two Kenyan savanna animal counts. Furthermore, the algorithm correctly

detected an extra 2.8% of elephants, 3.8% giraffes, and 4.0% zebras that were missed by

four layers of human annotation. Having an algorithm that has a minimum undercounting

bias of 90% compared to humans, will result in a correction factor of 0.9-1 for the animal

population estimates and thus an increase of 11% in the standard error of the population

estimates. This increase in standard error can be compensated for with an increase in

sampling effort, e.g., sampled kilometres, of 23%. However, we conclude that the costs

per sampled kilometre can be reduced with 160 to 1050% when manual aerial counts are

replaced by counts with UAVs or microlights and image object detection software, where

detected bounding boxes have to be verified by humans. Moreover, with our algorithm

there will be only 2.9 false positive bounding boxes per true positive for elephant, 1.6 for

giraffe, and 5.0 for zebra, when the maximum number of animals are correctly detected by

the algorithm. With this semi-automatic aerial animal count method it is thus possible

to sample 160 to 1050% more units, e.g., kilometres, for the same costs, which will result

in an increase of the accuracy of animal population estimates and an overall decrease of
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the standard error of 31 to 67%. Furthermore, this standard error will likely decrease

even more in practice, because UAVs or microlights carrying cameras with zoom lenses

can probably fly higher than manned aircrafts whilst still being able to count the animals.

This will increase the sampling efficiency further. Finally, the animal detections by the

algorithm were less sensitive to the sighting distance than the human detections were.

This highlights the fact that an animal detection algorithm is less sensitive to factors

like the speed the landscape is passing by, the angle of vision to the ground, the “size”

of the animals, and visual cues triggering a focus. This indicates that a semi-automatic

method will result in more accurate population estimates than a manual method, as

human observers had a clear optimum in animal detections between 125 and 200 m from

the aircraft.

Our animal detection algorithm performed better than previously published algorithms

for aerial imagery of mammals in similar habitats (Kellenberger et al., 2018; Rey et

al., 2017; Sirmacek et al., 2012), whilst also being able to differentiate between animal

species. Furthermore, this is likely the first evidence of an algorithm detecting animals

that multiple layers of humans were not able to detect. Therefore, we posit that this

algorithm is likely to outperform humans in the detection of animals from an aircraft

when images are taken at a fixed interval, instead of only when animals are spotted by

human observers.

As with many new technological developments, implementing this semi-automatic method

requires some initial work and potentially schooling of personnel. An animal detection

algorithm should first be trained for a new area and animal species and verified with man-

ual count data to compute performance measures. However, previously collected aerial

image footage can potentially be used as input data for this task. Annotating the im-

ages by drawing bounding boxes around the animals is the most time-consuming part of

this process, which took us on average two minutes per image per person. Training and

validating the algorithm is a matter of hours when running the analysis on a dedicated

server with pre-installed software. As with all deep learning applications, performance

improves with more training data, which implicates that rare species will be more difficult

to distinguish from other species. In a semi-automatic approach this can be dealt with by

merging for example all medium-sized antelopes into one class for the algorithm, with hu-

mans doing afterwards the species determination. Moreover, as cameras can be equipped

with zoom lenses and can generate high-resolution images, the potential can be explored

to count smaller animal species as well than done in manual aerial counts. Furthermore,

some argued that UAVs are less suited for animal counts compared to manned aircrafts

because of their smaller action radius (Christie et al., 2016). We concur that UAV flying

can be restricted to the pilot’s line of sight due to national legislations, which causes mi-

crolights to be more ideal for semi-automatic game counts in large, hilly and/or densely

vegetated areas. However, because of the low costs of UAV equipment versus manned

aircrafts, it is possible for a single UAV pilot to transport multiple batteries, mobile bat-
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tery chargers, and/or UAVs for a single animal count and therefore still cover a large area

per day. Moreover, factors that influence animal visibility still impact the semi-automatic

counts, just like they impact manual aerial animal counts. However, practices that can

be employed to correct manual aerial counts for varying animal visibility, e.g., detection

curves in distance sampling methods (probability of spotting an animal vs. distance to

aircraft), sighting-probability models (probability of spotting an animal vs. various ex-

ternal factors), area division in strata, and ground count comparisons (Buckland et al.,

2004; Norton-Griffiths, 1978), can still be applied to semi-automatic counts. In this study

we computed a single correction factor in order to derive the potential increase in popula-

tion estimates’ precision, but this should in practice be done per species per stratum and

can be a function of sighting distance and external factors as well. With semi-automatic

counts there is also the potential to estimate the fraction of animals that are missed by

both humans and the algorithm together by using the double-observer approach during

the model building phase (where one observer is now the algorithm), which could give

extra information about the actual population sizes (Cook & Jacobson, 1979; Nichols

et al., 2000). Furthermore, as UAVs and microlights can carry on-board sensors that

accurately monitor and record speed, altitude and tilt, and the aerial imagery allows all

kind of landscape, terrain and vegetation characteristics to be recorded for every part of

the count, it is now possible to further modernize aerial animal count practices. All these

external data can be used to create detection curves that are not fixed for a certain area

or stratum, but dynamic over the whole count. Therefore, the computation of population

estimates can potentially be done in a more continuous fashion without the need to choose

a discrete set of strata.

Using our proposed semi-automatic aerial animal count method, instead of manual aerial

counts, with the same total expenditure will result in a better accuracy and precision

of animal population estimates. This semi-automatic method is influenced far less by

factors such as animal group size, aircraft speed, and observer fatigue, experience, and

skill, because it is far less dependent on human observations. This causes the counts

of the semi-automatic method to be more consistent over a variety of conditions than

manual counts. As the performance of image object detection algorithms and the action

radius and autonomy of UAVs improve rapidly (Christie et al., 2016; Lin et al., 2018),

we contend that the population estimates of this semi-automatic aerial animal count

method will improve even further over time and that aerial animal counts can become

fully automatic in the near future.
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7.5 Supplementary materials

7.5.1 Population estimate calculations

The change in sampling effort that is needed depends on the chosen sampling method

(Jolly, 1969a): 1, equal-sized units; 2, unequal-sized units using the ratio method; or 3,

equal- or unequal-sized units selecting with probability proportional to size. Here the

third method is considered, as this is the most generally applicable of the three methods

and the other two methods can be translated into this method. Moreover, the standard

error of this method can be calculated in a straightforward way without having to include

variables for the standard error of the sample unit areas:

SY =

√
Z2

n
sd2, with sd

2 =
1

n− 1

((∑
i

di
2

)
− (
∑

i di)
2

n

)
(7.5)

Where SY is the standard error of the population estimate in the stratum, Z the total

area of the stratum, n the number of sampled units (e.g., transects) in the stratum, sd
the standard error of the densities of counted animals over the sampled units, and di the

density of counted animals in unit i (Jolly, 1969a). Only sample counts with a census

area consisting of a single stratum are considered here, to be able to give one value for

the change in sampling effort that is required. The procedure to compute the standard

error of the population estimate with stratification of the census area is the same as for a

non-stratified sample count, but then the procedure needs to be applied on each stratum

separately and the square root of the sum of variances taken to get the standard error for

the total area (Norton-Griffiths, 1978).

Using Equation 7.5 combined with the algorithm’s counting bias results in the population

estimate’s standard error of the (semi-)automatic method:

SY,automatic = r−1SY,manual (7.6)

Where r is the counting bias.

When sd is assumed to be known or converged to an approximately constant value before

all the planned units have been sampled, then sd can be considered independent of n.

Equation 7.5 could therefore be rewritten to get a function for n:

SY =

√
z2

n
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Z√
n
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Because of Equation 7.6 SY,automatic needs to be multiplied by r to compensate for its

change by r−1 compared to SY,manual. The change in n that is needed to compensate for

this can then be computed:

N =
nautomatic

nmanual

=
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(rSY )2 sd
2
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r2SY
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2
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Where N is the index detailing how much the number of sampling units needs to change

to achieve a SY,automatic that equals SY,manual.

The decrease in a population estimate’s standard error with an increase in sampling units

by k can be computed, thereby taking into account the initial change in standard error

by r−1:

S =
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Where S is the index detailing what the standard error of the population estimate from

semi-automatic counts will be compared to manual counts by spending the same amount

of finances on the semi-automatic method as on the manual method, and k is the increase

in sampling units.

7.5.2 Operating costs

The costs per sampled kilometre were compared for five different count methods (Table

7.2): 1, manned aerial counts without images; 2, manned aerial counts with manual image

verification for large groups; 3, manned aerial counts with fully manual image verification;

4, microlight aerial counts with semi-automatic image verification; 5, and Unmanned

Aerial Vehicle (UAV) counts with semi-automatic image verification. These manual count

methods are often advised and employed (Jachmann, 2001; Norton-Griffiths, 1978; Rabe

et al., 2002; Redfern et al., 2002), with the first two being most prevalent. The first

manual method has been compared for both helicopter and fixed-wing counts, while the

other manual methods are only compared for fixed-wing counts. The costs for manual

image verification assume that small animals (50 by 50 pixels) have to be searched by

humans in large images (5000 by 3000 pixels). For the second method the images are

taken by two human observers from the plane, and for the third method the images are

taken automatically at a fixed interval. The costs for semi-automatic counts are based

on a pre-trained animal detection algorithm for which four bounding boxes have to be

manually verified per TP (the mean performance of the algorithm with the three species

considered in this study).
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Table 7.2: The costs breakdown per sampled kilometre of five different count methods.

Manual 1: Manned, no images / manual air counts (both for helicopter and fixed-wing).

Manual 2: Manned, manual air counts with image verification only for large groups. Manual

3: Manned, manual image verification. Semi-automatic 1: Microlight, semi-automatic image

verification. Semi-automatic 2: UAV, semi-automatic image verification.

Manual

1: heli-

copter

Manual

1:

fixed-

wing

Manual

2:

fixed-

wing

Manual

3:

fixed-

wing

Semi-

automatic

1: micro-

light

Semi-

automatic

2: UAV

Aircraft,

equipment

$ 9.44 $ 1.09 $ 1.09 $ 1.09 $ 0.21 $ 0.48

Pilot $ 3.39 $ 0.47 $ 0.47 $ 0.47 $ 0.47 $ 1.15

Recorder $ 0.91 $ 0.38 $ 0.38 n.a. n.a. n.a.

Observer 1 $ 0.17 $ 0.38 $ 0.38 n.a. n.a. n.a.

Observer 2 $ 0.17 $ 0.38 $ 0.38 n.a. n.a. n.a.

Images veri-

fier

n.a. n.a. $ 0.77 $ 14.91 $ 0.01 $ 0.01

Ground

team, fuel,

catering

$ 0.57 $ 1.69 $ 1.69 $ 0.56 $ 0.56 $ 0.28

Aircraft fuel $ 0.67 $ 0.69 $ 0.69 $ 0.69 $ 0.29 n.a.

Total $ 15.32 $ 5.08 $ 5.85 $ 17.72 $ 1.54 $ 1.92

The costs of the fixed-wing manual method were obtained from the Kenya Wildlife Service

as the average costs per kilometre of the May 2015 aerial game count in the Laikipia-

Samburu Ecosystem, Kenya (Table 7.4). The costs of the helicopter manual method

were obtained from the August 2017 aerial game count in Welgevonden Game Reserve,

South Africa (Table 7.3). We converted the local currencies to US dollars to compare the

costs equally between countries. No correction was applied to account for international

differences between average costs for services and goods, because the cost of living for

both countries was comparable at that time (NUMBEO, 2016). The costs of the semi-

automatic method were obtained by using the costs breakdown of the manual game counts,

thereby leaving out or reducing the costs that were not needed for this method (Table

7.4). Furthermore, microlight fuel and operating costs were based on South African hourly

rates of an Aquilla 582 and an average flying speed of 50 km/h (Microlighters, 2012). UAV

operating costs were based on standard South African daily rates of 6000 to 8500 ZAR

(J. Swart 2018-12-06, pers. comm.) and an average flying speed of 50 km/h.
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Table 7.3: The cost breakdown of method manual 1, with helicopter (using a Bell Jet Ranger).

The costs were determined using the 2017 Welgevonden Game Reserve aerial census. Costs are

excl. VAT. Calculation is based on a total sampled area of 380 km2 with a 300 m inter-transect

distance. The USD-ZAR exchange rate of 28-08-2017 was used (XE, 2017).

Manual 1: helicopter Total area km−2 km−1 km−1

Aircraft, equipment R 156,000.00 R 410.53 R 123.16 $ 9.44

Pilot R 56,022.00 R 147.43 R 44.23 $ 3.39

Recorder R 15,120.00 R 39.79 R 11.94 $ 0.91

Observer 1 R 2,760.00 R 7.26 R 2.18 $ 0.17

Observer 2 R 2,760.00 R 7.26 R 2.18 $ 0.17

Ground team, fuel, catering R 9,420.00 R 24.79 R 7.43 $ 0.57

Aircraft fuel R 11,037.60 R 29.05 R 8.71 $ 0.67

Total R 253,119.60 R 666.10 R 199.83 $ 15.32
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Table 7.4: The cost breakdown of method manual 2, with fixed-wing (using a Cessna 182

and Cessna 206). The costs were determined using the 2015 Laikipia-Samburu Ecosystem

aerial census. Costs are excl. VAT. Calculation is based on a total transect length of 6871 km.

The USD-KES exchange rate of 10-05-2015 was used (XE, 2015). The costs for the fixed-wing

manual 1 method were determined by leaving out the costs for the images verifier, for the

fixed-wing manual 3 method they were determined by leaving out the costs for the recorder

and the two observers (also regarding the ground team costs) and by increasing the costs for

the images verifier with a factor 19.37 (equal to the increase in the number of images when

the same game count was done with images at a 2 second fixed interval, resulting in 10 images

per km when flying at 180 km/h), and for the automatic methods they were determined by

leaving out the costs for the recorder and the two observers (also regarding the ground team

costs) and by decreasing the costs for the images verifier of method 3 with a factor 1500 (equal

to the decrease in pixels when on average 4 bounding boxes of 50 by 50 pixels per image of

5000 by 3000 pixels are detected by the algorithm, the number of detected bounding boxes

will in practice be probably much lower and thereby decreasing the costs even more).

Manual 2: fixed-wing Total area km−1 km−1

Aircraft, equipment K 716,458.59 K 104.27 $ 1.09

Pilot K 309,575.76 K 45.06 $ 0.47

Recorder K 252,000.00 K 36.68 $ 0.38

Observer 1 K 252,000.00 K 36.68 $ 0.38

Observer 2 K 252,000.00 K 36.68 $ 0.38

Images verifier K 504,000.00 K 73.35 $ 0.77

Ground team, fuel, catering K 1,108,229.60 K 161.29 $ 1.69

Aircraft fuel K 449,912.20 K 65.48 $ 0.69

Total K 3,844,176.14 K 559.48 $ 5.85
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7.5.3 Model performance figures
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Figure 7.8: Precision/recall curves of the animal detection algorithm for elephant

(AP ≈ 0.79), giraffe (AP ≈ 0.85), and zebra (AP ≈ 0.77) on the validation set

(mAP ≈ 0.81). The precision/recall combinations with the highest F1-scores (0.75

for elephant, 0.83 for giraffe, and 0.74 for zebra) are marked with dashed lines.
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Figure 7.9: Precision/recall curves of the animal detection algorithm for elephant

(AP ≈ 0.87), giraffe (AP ≈ 0.92), and zebra (AP ≈ 0.80) on the training images

(mAP ≈ 0.86). These images were not directly used in the training process, but from

these images the training tiles were extracted. The precision/recall combinations

with the highest F1-scores (0.83 for elephant, 0.88 for giraffe, and 0.77 for zebra) are

marked with dashed lines.
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Figure 7.10: Precision/recall curves of the animal detection algorithm for elephant

(AP ≈ 0.94), giraffe (AP ≈ 0.98), and zebra (AP ≈ 0.88) on the training tiles

(mAP ≈ 0.94). The precision/recall combinations with the highest F1-scores (0.93

for elephant, 0.98 for giraffe, and 0.89 for zebra) are marked with dashed lines.
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Figure 7.11: Cumulative number of false positives and the cumulative number of

true positives that were not annotated by humans, versus the score threshold. We

stopped evaluating the false positives below a score threshold of 0.4, due to time

constraints. The dotted horizontal line indicates 30 animals, which is the number

that we chose as an estimate for the total number of animals that the algorithm

detected and the humans did not.
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8.1 Introduction

The survival of both African rhino species is currently under threat due to large-scale

poaching (Biggs et al., 2013; Ferreira & Pienaar, 2020; Haas & Ferreira, 2016). These

poaching efforts are driven by a demand for rhino horn in Southeast Asia, which is at

an all-time high due to recent population and economic growth (Milliken & Shaw, 2012).

This demand for rhino horn comes mainly from a desire to use horns as a status sym-

bol and in traditional medicine (USAID Vietnam, 2018; USAID Wildlife Asia, 2018),

for which the efficacy of the latter has not been scientifically demonstrated (Cyranoski,

2018). Unfortunately the market for traditional (Chinese) medicine continues to increase,

especially due to global promotions by the Chinese government and with the support of

the World Health Organization (Cyranoski, 2018; WHO, 2013). Protection efforts aimed

at the short-term survival of the African rhino species seem thus to be urgently needed

(Ferreira & Pienaar, 2020).

The South African authorities and conservation managers have responded extensively to

the increase in rhino poaching. Probably the most important and costly of the numerous

rhino protection efforts that have been undertaken is the large-scale deployment of anti-

poaching patrols (Duffy, 2014). Given that most conservation officers have to patrol very

large areas, they often arrive too late to save a rhino from being poached (O’Donoghue

& Rutz, 2016). Furthermore, deadly force used by poachers incites the authorities into

intensified “militarized conservation”, resulting in frequent shootouts between poachers

and conservation officers (Duffy, 2014). It would therefore be beneficial for rhinos, con-

servation officers and poachers if the authorities have more situational awareness, as the

risk of fatalities in all three groups would decrease.

In this thesis I aimed to develop a system that can give conservation authorities more

situational awareness to detect poachers, so that the loss of both animal and human life

can be reduced. I proposed a “sentinel-based poacher early warning system” for this goal,

for which I envision nature reserves where abundant savanna prey animals are tracked

and where the movement responses of these animals are automatically used to detect the

presence and infer the location of poachers. Hence the term: “sentinel”, as the animals

themselves will take the role of game wardens.

Apart from the obvious wildlife conservation challenge this thesis poses, it also tackles a

major scientific challenge: to be able to detect abrupt changes in an environmental variable

based on animal movement. In order to solve this challenge, a myriad of environmental and

animal movement variables needed to be considered in interaction in a single model. This

premise lead me to the use of a non-traditional statistical approach for animal ecologists:

artificial intelligence.

This thesis brings together a number of coherent papers about wildlife conservation, move-

ment ecology and artificial intelligence, aimed at investigating the necessity, analytics and
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applicability of a sentinel-based poacher early warning system. Consequently, this thesis

has both a major conservation as well as a major scientific component to it. Furthermore,

having undertaken this research at the Wildlife Ecology and Conservation group of Wa-

geningen University, I also consider both components to be important to discuss in further

detail. Therefore, I aim to give substantial attention to both the wildlife conservation as

well as the wildlife ecology component in the rest of this synthesis. First, I will discuss

each of my research chapters in relation to both or either of these components (section

8.2). The findings of the first two chapters (section 8.2.1; section 8.2.2) relate mostly

to the societal challenge of poaching, the findings of the next three chapters mostly to

the scientific challenge of predicting an environmental variable from animal movement

(section 8.2.3; section 8.2.4; section 8.2.5) and the findings of the final chapter mostly to

the applied scientific challenge of implementing en masse animal tracking needed for the

sentinel-based poacher early warning system (section 8.2.6). While discussing the findings

of these chapters, I will base my discussions on my own research as well as on studies

done by others. The discussion of the findings of each separate chapter is followed by

a general conclusion of this thesis about the necessity, analytics and applicability of a

sentinel-based poacher early warning system (section 8.3). After that I will look ahead

to the future of both wildlife conservation (section 8.4.1) and wildlife ecology (section

8.4.2). Here I will present my view on how this thesis relates to the broader fields of

wildlife conservation and ecology. I will discuss the potential and role of a sentinel-based

poacher early warning system within wildlife conservation and will set forth my vision

on the future of wildlife conservation. Furthermore, I will discuss both the benefits that

artificial intelligence has provided wildlife ecology, as well as its shortcomings. I will then

continue with suggestions on how artificial intelligence can advance the field of wildlife

ecology further, after which I will conclude with my ideas on how this advancement will

impact the general process of scientific inquiry.

8.2 Findings

8.2.1 Legal international rhino horn trade

In Chapter 2 I investigated the potential of a legal international rhino horn trade to

help save wild rhino populations from extinction. In Western countries the most often

heard ultimate solution for rhino poaching is the reduction of demand for rhino horn

(Litchfield, 2013). Given that this solution likely takes a substantial amount of time (if to

be successful at all of course), it makes sense to focus on rhino protection efforts to bridge

the period of high demand and poaching pressure. However, especially in South Africa,

there is an other often-heard ultimate solution for rhino poaching: international rhino

horn trade legalization (Rubino & Pienaar, 2020). This solution does not necessarily

require a substantial amount of time to implement, so this would reduce the need for

protection efforts to save rhinos from extinction. The argument for trade legalization is
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that the production through non-lethal horn harvesting from farmed rhinos could offset

the market for poached horns (Biggs et al., 2013).

I demonstrated with an integrative literature review that the success of a legal interna-

tional rhino horn trade regarding the preservation of wild rhino populations will mostly

depend on four mechanisms: 1) financial viability for private rhino owners, 2) rhino horn

demand, 3) laundering of rhino horns, and 4) behaviour of rhino horn consumers. Of these

four mechanisms only the first will likely have a positive impact on rhino conservation,

but primarily for the captive rhino populations in countries that allow private wildlife

ownership. However, a legal rhino horn trade will most likely not be able to satisfy de-

mand in the near future and will likely even lead to an increase in demand. Omnipresent

corruption in countries along the rhino horn trade routes will, together with demand for

illegal (‘wild’) horns, facilitate the co-existence of legal and illegal markets. In addition,

legalization will remove the stigma associated with the consumption of illegal products

and will therefore counteract long-term behavioural change programmes targeted at con-

sumers. Therefore, I argue that international rhino horn trade legalization will likely not

benefit wild rhino populations.

After having concluded this, it thus makes sense to continue to focus on the long-term

strategy of reducing consumer demand for rhino horn and the short-term strategy to

improve the protection of rhinos, of which this thesis focuses on the latter. This conclusion

is not only applicable to African rhinos, but applies to other important target species as

well: e.g., African elephants (Lusseau & Lee, 2016) and pangolins (Challender et al.,

2019).

8.2.2 The impact of hunting

In Chapter 3 I analysed both the magnitude and spatial extent of the impact of hunting

on tropical mammal and bird populations. The use of this study for the overall goal of this

thesis is two-fold: 1) to determine how much animals in general (apart from solely consid-

ering African rhinos) are impacted by hunting, and 2) to determine how animals change

their distribution in response to human hunters. Through an extensive meta-analysis I

demonstrated that bird and mammal abundances declined on average respectively by 58%

and 83% in hunted compared with unhunted areas and their populations were significantly

depleted respectively within 7 and 40 kilometers from hunters’ access points. Mammal

population densities were higher inside than outside protected areas, but hunting pressure

reduced mammal abundances even within protected areas. This makes clear that the im-

pact of hunting on tropical animal populations in general is very large, which is echoed by

other studies (Harrison, 2011; Maxwell et al., 2016). The extent over which populations

have been depleted also clarifies that the animals’ distributions have been severely im-

pacted. Although these results suggest that the effect of hunting within protected areas is

less detrimental than outside reserves, gazettement of protected areas seems insufficient
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to safeguard wildlife populations if not accompanied with improved reserve management,

effective law enforcement and on-ground protection efforts.

From these results it does not become apparent yet whether animals actively avoid dan-

gerous areas or that these areas are continuously being depleted of animals. However,

mammal abundances decreased on average until 700 meters from hunters’ access points

until they started to increase again. This is counter-intuitive when based solely on hunting

pressure, as you would expect prey abundances to be lowest at the centre of a central-place

predator (which a human hunter is (Abernethy et al., 2013)). This initial higher mammal

abundance may reflect the replacement of large bodied mammals by smaller ones, as I

also found evidence that larger mammals were more heavily impacted by hunting than

smaller ones. Given that it does not make sense that hunting pressure on smaller mam-

mals increases until a certain distance from hunters’ access points, the initial population

increase of smaller mammals is probably due to their release from predation pressure and

competition as a result of the (near) extirpation of large mammals (Wright, 2003).

This hypothesised phenomenon still does not differentiate between the two possible ex-

planations of either the mammals’ active avoidance of dangerous areas or the continuous

depletion of mammals due to the combination of both hunting and natural predation.

Although many studies demonstrated that the indirect effects of predation are often more

important than its direct (lethal) effect regarding animal behaviour, fitness and distri-

bution (Brown et al., 1999; Laundré et al., 2001), I do hypothesize here that the direct

effect of hunting by humans (viz., animal population depletion) is more important than

the indirect effect (viz., the active avoidance of the hunted region by animals). I base

my hypothesis on the observation that the animal abundances do not seem to increase

substantially above the baseline abundance in unhunted regions after being away more

than 7 (for birds) and 40 (for mammals) kilometers from the hunters’ access points. The

animal abundances tend to level off at their baseline level, indicating an actual depletion

of animals near roads instead of a migration of animals to areas further away. Especially

for mammals this also ecologically makes sense, as an area with a radius of 40 kilome-

ters is much larger than most tropical mammals’ home ranges are, making it unlikely

that mammals have this hunting area inside their home range that they actively have to

avoid.

8.2.3 Animal group size variation

In Chapter 4 I simulated the effect of fear and resource availability on animal group size.

I did this using a minimal agent based model in which groups formed through a self-

organizing process driven solely by two inter-individual movement rules: attraction and

repulsion. From this study it became apparent that both fear and resource availability, as

well as the total density of animals in an area, have a very clear positive effect on group

size. So even in the case when individual animals do not consciously and actively select
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for groups with a certain size, fear and resources still have a prominent effect on group

size through self-organization (Couzin & Krause, 2003; Krause & Ruxton, 2002).

This observation is very useful when trying to infer environmental conditions from ob-

serving animal movement, as the collective patterns are more pronounced than the subtle

individual movement changes that underlie them (Couzin et al., 2002). However, from the

modelling results it also became apparent that there is an important drawback of relying

on animal group size to infer environmental conditions. Even in this simple, determinis-

tic and homogeneous movement model, there was a large variance in animal group size

(resulting in a coefficient of variation of 50 to 150%) solely because of the random ini-

tial locations of the animals. This large inherent variability in the self-organizing group

formation process could even be amplified in field conditions due to environmental het-

erogeneity and more complex animal behaviour (Nathan et al., 2008). Furthermore, when

aiming to detect abrupt changes in environmental conditions (e.g., an encounter with a

predator) group size will likely not be a reliable proxy to detect this, as group formation is

dependent on the presence of other animals in the neighborhood. So even if a group will

get certain properties after an abrupt environmental change that could cause it to merge

with other groups, it can only do so after it encounters other animals (Couzin & Krause,

2003). This time lag in animal group size from environmental changes even applies to the

situation of when a group ‘wants’ to become smaller (Couzin & Krause, 2003; Krause &

Ruxton, 2002).

Group size will thus only be an accurate proxy for long-term prevailing environmental con-

ditions (e.g., landscape of fear), but not for abrupt environmental changes (e.g., predator

encounter). However, although group size is an accurate proxy for prevailing environmen-

tal conditions, it certainly is not a precise estimate given its large coefficient of variation.

Concluding from this, I consider group compactness (viz., the distance between individuals

within the same group) a more reliable proxy for both prevailing environmental conditions

as well as abrupt environmental changes, because this follows directly from changes in net

attraction between individuals. When developing a system based on animal movement

that aims to provide insight in perceived prevailing environmental conditions, group size

could still be an insightful proxy, but the recent history of the size of the groups should

then be taken into account as well. In other words, a change in group size likely tells

more about environmental conditions than the absolute number of animals in a group at

a specific point in time. Also for other collective metrics such as group compactness (and

possibly for individual movement metrics as well) the relative changes are likely more

important than their absolute values. However, when aiming for a system that detects

abrupt environmental changes (e.g., detecting poachers from animal movement), group

size will likely not be a reliable proxy even when relative changes in recent history are

taken into account, given the time-lag in the group formation process.
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8.2.4 Quantifying environmental influence on animal movement

In Chapter 5 I developed a data-driven analytical framework to study environmental in-

fluence on animal movement. This framework makes use of the performance metrics of

machine learning regression algorithms to quantify the influence of environmental vari-

ables on animal movement. Depending on the chosen time window of feature engineering,

the influence of environmental variables on different time scales can be studied. Further-

more, different types of animal movement features (e.g., individual- and collective-based,

or GPS- and accelerometer-based) can be included separately or in combination in the

framework.

Even though the aim of this framework is to quantify the overall contribution of environ-

mental variables on the total variation in animal movement, the core of this framework

can be used to accurately predict environmental variation from animal movement as well.

This does require a slight adaptation of the framework in which the time-component

is explicitly used to make predictions about the environment, which is in line with my

earlier observation about the importance of relative changes in movement metrics over

time (Chapter 4). To be more specific, a moving-window approach (e.g., using a filter

or smoother) or a prediction model that uses previous predictions for the next prediction

(e.g., a Recurrent Neural Network or a 1-dimensional Convolutional Neural Network)

could boost the prediction of the environmental variable from animal movement data to a

level that is higher than the actual contribution of this environmental variable to animal

movement.

This adaptation could make this framework also a good tool to infer environmental con-

ditions from animal movement data. However, even though the time scale of the analysis

can be chosen to be small, I do not think this regression-based approach will work well to

detect abrupt changes in environmental conditions from animal movement, especially not

when these abrupt changes are rare occurrences. This is in part because the model fitting

will likely be flooded with data from baseline conditions, because the framework is aimed

at deriving accurate predictions along the entire gradient of the environmental variable.

This capability of the framework is of less interest when trying to detect abrupt changes in

environmental conditions, which makes a classification approach more appropriate than a

regression approach. Furthermore, when trying to make accurate predictions about both

prevailing environmental conditions and abrupt changes in environmental conditions, it

could benefit model performance to incorporate data on other environmental variables to

be able to better interpret the variation in animal movement data. This last requirement

has (on purpose) not been incorporated in the analytical framework of this chapter, as

it won’t allow for quantitative comparisons between the influences of different environ-

mental variables on animal movement. However, in the next chapter I actually aimed to

accurately detect abrupt changes in the animals’ environment, which led me to implement

the aforementioned changes in the analytical framework.
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8.2.5 Poacher detection using sentinel animal movement

In Chapter 6 I algorithmically detected and localized poachers using animal movement

data, which demonstrates the feasibility of the main theme of this thesis. I used a three-

step analytical process to achieve this, namely: 1) animal behaviour classification, 2)

poacher detection, and 3) poacher localization. In the first step I achieved an average

precision of 46% to classify animal movement responses to humans versus all other move-

ment. Even though this performance is quite an achievement (given the class imbalance

of 1 versus 100, the inherent variability in animal movement, and heterogeneity in the

environment of the study area), it still leads to a substantial amount of misclassifica-

tion. However, given that in the next two steps of the analytical process I considered

the classified responses of all animals collectively in a spatiotemporal context, I man-

aged to drastically improve upon this performance in the detection and localization of

‘poachers’. Periods with humans present in the area could be distinguished from periods

without humans with 86% accuracy in a balanced validation design, and these humans

were localized with less than 500m error in 54.2% of the experimentally staged poaching

intrusions.

Here I would like to discuss three learned lessons that are relevant when trying to infer con-

text from animal movement algorithmically, which are unfortunately not always correctly

executed in peer-reviewed ecological research. First, the engineering of features relative to

‘normal’ behaviour. Although I acknowledge that areas with certain environmental char-

acteristics have a higher probability to harbor poachers, e.g., areas with low visibility, I

intentionally wanted to create an algorithm that could reliably detect animal responses to

poachers in all types of environment. Therefore I wanted to make sure that the prediction

of disturbed animal behaviour is not a direct consequence of the environment. Conse-

quently, I avoided the use of explicit environmental features in my model. For example,

although the experimental intrusions took place every time at different locations in the

study area, it could be that certain areas were used more often by the ‘poachers’ than

others. If I had included environmental features in my model directly, the model could

have learned mostly from these environmental features (independent of an interaction

with animal movement features) to increase the probability of disturbed movement. This

is why I only included animal movement features in my model, but made sure that these

features were computed so that these were relative to ‘normal’ animal behaviour. In the

definition of ‘normal’ animal behaviour is where the environmental variables were used.

Using this approach, it can for example be computed that an impala moved twice as fast

as expected given the surrounding tree cover and slope, without using the values for tree

cover and slope directly as features in the poacher detection algorithm. An added benefit

of this approach compared to directly including environmental features with movement

features in the model, is that in the same way the recent history of (individual) animal

movement can be taken into account in the definition of ‘normal’ animal behaviour. This

observation of how to correctly include environmental features in my model is part of
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a growing awareness in the artificial intelligence community about the generalization of

machine learning models (DeepLearning.AI, 2021). Not including features that could de-

scribe patterns that are specific to a study area or experimental design is important in

order to avoid model biases, especially because these biases cannot be tested for with the

acquired data.

Second, unbiased model validation approaches of animal movement. Given that move-

ment data are time series, the data have inherent autocorrelation. The actual amount of

autocorrelation is dependent on for example the GPS frequency and the consistency of the

animals’ behaviour, but nonetheless a certain amount of autocorrelation is always present.

Due to this autocorrelation, a random split of movement data for model validation will

cause the validation set to not be independent of the train set (Arlot & Celisse, 2010).

This leads to misleading model performance values and potentially model overfitting (Ar-

lot & Celisse, 2010). A stratified dataset splitting design is therefore recommended for

movement data (Arlot & Celisse, 2010), e.g., per individual animal or per large blocks of

time.

Third, the use of meaningful performance metrics. Accuracy is very often used as a clas-

sification model performance metric, likely because of its simple interpretation. Also in

studies about animal activity classification from sensor data, accuracy is often used as the

main performance metric when presenting the study’s results (Chakravarty et al., 2019;

de Weerd et al., 2015; Gerencsér et al., 2013; Homburger et al., 2014; Ladds et al., 2016;

Shamoun-Baranes et al., 2012; Tatler et al., 2018). However, when there is a class imbal-

ance (which is often the case when classifying animal activity, such as in the studies cited

in the previous sentence), accuracy gives a distorted impression of model performance

(Thabtah et al., 2020). For example, the accuracy of my animal behaviour classification

model that I presented in this chapter is higher than 99%, which implies a near-perfect

model. Obviously the reason for this high accuracy is that 99% of the data is of a single

class, so having a model predict only that class will already result in an accuracy of 99%.

Using accuracy as a performance metric for classification models is thus only appropriate

for a balanced class design, or possibly when specifically mentioning a ‘baseline’ value for

the accuracy given the class imbalance. Other classification performance metrics give a

better impression about model performance in the case of class imbalance, e.g., F1-score

(the harmonic mean between precision and recall) or area-under-the-curve metrics such

as average precision (which are also independent of the decision boundary). Therefore I

urge ecologists to use class-balance-independent metrics in the evaluation of their models

and presentation of their results, given that the classes and states of natural phenomena

are rarely balanced.
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8.2.6 Animal population estimates with image detection

In Chapter 7 I used deep learning computer vision techniques to automatically detect large

savanna herbivores in aerial images. With this approach I managed to detect 90-95% of

the number of individual animals that were found by four layers of human annotation,

of which I correctly detected 2.8-4.0% extra animals that were missed by all humans.

The model did result in 1.6-5.0 false positives per true positive, which emphasizes the

importance of manual verification of automatic animal counts from aerial images. In this

chapter I demonstrated the potential of semi-automatic aerial animal counts to improve

the precision and accuracy of animal population estimates. Furthermore, the results

from this study indicated that automated animal detections from aerial images have the

potential to find more animals than humans can from both the air and images, especially

when the algorithm is supplied with images taken at a fixed rate. The implication of this

is rather important, because it will result in larger and more precise population estimates

of animal species. Moreover, this effect will be even more pronounced for cryptic and rare

animal species (Norton-Griffiths, 1978), which could lead to more favourable population

estimates for endangered animal species.

Being that as it is, this result was actually not the reason why I performed this study. Mon-

itoring animal movement en masse (for example to monitor their perceived environment,

e.g., the presence of poachers, such as in this thesis) is an expensive and often intrusive

undertaking. Technological advancements that were made during the last decades did

already decrease the severity of these two issues by developing smaller and cheaper sensor

tags that are solar-powered, but I expect it will nonetheless still be a costly and intrusive

undertaking to tag a large enough number of sentinels in for example Kruger National

Park (South Africa) to safeguard all their rhinos. However, technology continues to de-

velop, which will likely make animal tracking even less expensive and less intrusive in the

near future. A possible technological development (one that you hear often when talking

to people who are laymen regarding sensor technology) are implantable trackers, but to

the best of my knowledge there currently is not yet a technological solution in sight that

will overcome the problem of in vivo power supply for long-term tracking. Therefore I ex-

plored the potential of an alternative way to track animals in this chapter, using imagery

from aerial platforms to supplement or possibly replace tracking with sensor tags.

Recent studies have also demonstrated, just like I did, promising results to detect animals

from the air (Kellenberger et al., 2018) and even from space (Duporge et al., 2020).

Granted, animal detection in images is not the same as animal tracking, but the step that

is needed to achieve this is not that substantial, given that object tracking can ‘simply’ be

performed by using subsequent object detections over the video frames (Bochinski et al.,

2017). Moreover, the required methods that are needed to achieve image-based animal

tracking in natural environments have recently been almost fully developed (Haalck et

al., 2020). Considering the aforementioned, I thus acknowledge the potential of aerial
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imagery to track wildlife continuously in the near future and to potentially supplement

en masse tracking with sensor tags. However, I also found in this chapter that the

detection chance of animals in images decreases substantially when the horizontal distance

to the camera increases, likely because of occlusions, animals’ smaller pixel dimensions

and unfavorable angles (Buckland et al., 2004). This is why I expect animal tracking with

cameras from for examples Unmanned Aerial Vehicles, blimps or elevated terrain to be

only suitable for relatively small areas. Obviously, horizontal distances from the camera

become less problematic with higher altitudes of the camera, but then other problems

start to take effect. For example, being further away from the Earth’s surface makes

the pixel dimensions of the animals smaller and cloud cover will block line of sight (for

cameras in both the visual and thermal infrared spectrum) for extended periods of time.

Furthermore, when cameras from satellites would be used for this goal, then obviously

geosynchronous satellites are needed as image snapshots from non-synchronous satellites

will likely be temporally too far apart to infer accurate and reliable movement trajectories.

However, current cameras from geosynchronous satellites (which are primarily used for

weather monitoring) have a pixel resolution of approximately 1 km for visual and 4 km

for infrared cameras (Bureau of Meteorology, 2011), which is way too coarse to detect

and track animals. All in all, I expect that en masse animal tracking will still be heavily

reliant on sensor tags in the near future.

8.3 Conclusion

All in all, I can conclude that improved protection efforts are very much needed in order

to safeguard the survival of African rhinos (Chapter 2) and tropical animal populations

in general (Chapter 3). A sentinel-based poacher early warning system can help fulfil

this task (Chapter 6). I demonstrate that both individual and collective animal move-

ment features (Chapter 4; Chapter 5; Chapter 6), as well as animal body movement and

movement through the landscape (Chapter 5; Chapter 6), provide information about the

animals’ environment that is needed for a sentinel-based poacher early warning system

to function. I also show that it is possible to automatically predict the animals’ environ-

ment and abrupt changes therein with an artificial intelligence framework using feature

engineering techniques that are rooted in domain knowledge of animal ecology (Chapter

5; Chapter 6). Given the complex relationship between the animals’ heterogeneous envi-

ronment and movement, I demonstrate the importance of interpreting animal movement

as deviations from expectations given recent movement history and similar environmen-

tal conditions (Chapter 4; Chapter 5; Chapter 6) and provide the analytical framework

to do so (Chapter 5; Chapter 6). Finally, I show the potential of deep learning image

detection to automatically track sentinel animals en masse with aerial imagery of small

poaching-critical areas (Chapter 7).
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8.4 Outlook

8.4.1 Wildlife conservation

With this thesis I have provided proof of concept of a sentinel-based poacher early warn-

ing system, which could lead to more situational awareness for conservation officers and

subsequently less poaching incidents. However, a few more developments are needed to

provide proof of production and successfully use this early warning system in practice.

First, as discussed in section 8.2.6 about Chapter 7, tracking animals en masse is a costly

and intrusive undertaking. Given that wildlife conservation is often needed most in de-

veloping countries (Cincotta et al., 2000), the financial aspect could be a limiting factor.

Luckily there has been a trend towards cheaper, less intrusive and longer-lasting animal

sensors over the past decades, but it will nonetheless be beneficial to limit the amount

of tagged sentinels as much as possible. Therefore, future research should be aimed at

investigating the trade-off between sentinel density and poacher detectibility, in order to

determine a minimum sentinel density for which poachers can still be localized timely and

accurately. Next to solely investigating sentinel density, the division of sentinel species

should also be investigated. Some animal species simply perform better as sentinels com-

pared to others (Chapter 6), but animal species also occupy different habitats. A good

division between sentinel species could thus assure adequate spatial coverage with a good

performance. Second, Chapter 6 has on purpose been performed in a predator-free area,

in order to prevent unknown disturbances to the monitored animals. Because of this, I

have not yet been able to demonstrate that sentinel movement can be used to differen-

tiate between the presence of poachers and predators. Research aimed at making this

distinction should therefore be a priority in order to make this early warning system ap-

plicable in areas with predators. Several studies have already suggested that free-roaming

animals respond differently and more strongly to humans compared to natural predators

(Ciuti et al., 2012; Proffitt et al., 2009; Zbyryt et al., 2018), which suggests that it should

be possible to algorithmically classify sentinel movement as a response to either humans

or predators. If not, sequential disturbance localizations by the model could potentially

also be used to make inferences about the type of disturbance. Third, the poacher early

warning system should in practice be able to operate in real-time, but I have not yet

demonstrated this. The steps that are currently taken by the system (feature engineer-

ing, dimension reduction and prediction) will result in delay piling up. I chose the setup of

feature engineering and subsequent dimension reduction, because a priori I did not know

the most useful features to compute for the task. For future research this approach should

be optimized, ideally by directly computing a limited number of features without dimen-

sion reduction, so that the classification can be performed in real-time. Given that only

8 principal components were used down the line to classify disturbed animal movement,

I expect that it should be computationally possible to build a real-time sentinel-based

poacher early warning system. Fourth, although not a necessity, there are possibilities
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to further improve the performance of the system. Deep learning could for example be

employed to improve the classification of disturbed sentinel behaviour, given that deep

learning has in recent years demonstrated to yield superior performance over standard

machine learning techniques for many different classification tasks (Chapter 5; Chapter

7). I especially expect sequential deep learning models (e.g., 1-dimensional Convolutional

Neural Networks and Recurrent Neural Networks) to be promising for these time series

data. Furthermore, due to faulty sensor firmware, Chapter 6 has been build around very

noisy data, which required substantial amounts of preprocessing before I could reliably

use the data for the classification and localization task. When using location data with

more common spatial errors, I expect the performance of the sentinel-based poacher early

warning system to be better. Finally, (on-board) animal activity classification with ac-

celerometers could potentially improve the classification of disturbed sentinel behaviour

as well.

Although improving the performance of the sentinel-based poacher early warning system

is obviously beneficial for its efficacy, care should be taken here. The way this poacher

early warning system has been envisioned from the start was that it could be used as an

extra layer of information to provide conservation officers with more situational awareness

in the field. This way it will hopefully lead to less fatalities of animals, conservation officers

and poachers. However, it has never been the ultimate aim to develop an autonomous

poacher arresting system, nor should it in my opinion be. Human decision-making is

essential to make sure that law enforcement is conducted ethically (Peny, 2012), which is

thus important to consider when it could for example be possible to make arrests (or even

kills) with Unmanned Aerial Vehicles. As such, I argue that a certain amount of false

positives in the poacher early warning system is useful in the sense that it requires humans

to evaluate the system’s predictions, e.g., by visually inspecting the predictions behind

a computer or by scouting areas on foot or from the air. This way, human involvement

in poacher law enforcement is a prerequisite in order for the early warning system to

function. Admittedly, there are downsides to false positives as well, e.g., that it could

lead to a certain amount of distrust in the system by conservation officers. Nonetheless,

the chance of achieving a false positive rate of zero for this system is probably not that

large for the near future, given that the focus lies first and foremost on developing a false

negative rate (which is by definition in trade-off with false positive rate) of zero in order

to detect all poachers (Chapter 6). However, even if at some point a perfectly performing

poacher early warning system would be developed, it remains imperative that humans

keep involved in evaluating the system’s predictions: a ‘human-in-the-loop’ deployment

(DeepLearning.AI, 2021). Not only for ethical reasons, but also to keep the system failure-

free in case mistakes creep in over time, which would otherwise propagate indefinitely

(Kellenberger, 2020).

Although this thesis is centered around the preservation of African rhino species, the devel-

oped sentinel-based poacher early warning system is obviously not restricted solely to rhino
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poachers. As such, this system is a new example of multiple technological developments

that have been deployed to safeguard wildlife reserves. Other examples include ‘smart’

fences with acoustic fibre surveillance (Hernandez, 2019), scouting Unmanned Aerial Vehi-

cles (SANParks, 2015), information intelligence with cameras and license plate recognition

(Welgevonden Game Reserve, 2021), and direct poacher localization with radar (Martin,

2017). Wildlife reserves, especially the ones harboring target animals, are thus slowly

being converted to intensively monitored fortresses with the help of technology (Duffy,

2014). This development, which thus also includes my sentinel-based poacher early warn-

ing system, is viewed by some as part of the growing ‘militarized conservation’ approach

to protect wildlife and is often concurrently viewed as a worrying development (Duffy

et al., 2019). In short, the three main points of critique against militarized conservation

are human rights violations, questionable efficacy and the potential to hamper long-term

conservation (Duffy, 2014; Duffy et al., 2019; Shrestha & Lapeyre, 2018).

I posit that it is incorrect to attribute the same negative consequences that are assigned

to militarized conservation in general, to all anti-poaching technology. It is certainly true

that the use of technology coincides with (and often results from) the increasingly military

approach to wildlife conservation, especially in sub-Saharan Africa (Duffy et al., 2019).

However, this does not mean that it can be logically concluded that these technological

developments will have the same negative consequences. It is stated that anti-poaching

technologies can be a large financial sink and can broaden the gap between local com-

munities and conservation agencies (Duffy, 2014; Duffy et al., 2019; Shrestha & Lapeyre,

2018), but at the same time it can also provide positive effects that could counteract major

negative effects of militarized conservation. For example, the (arguably) most prominent

point of critique against militarized conservation are human rights violations (Duffy, 2014;

Duffy et al., 2019), which most notably comes from the large number of poachers who

have been killed by conservation officers (Duffy, 2014). On the other hand, technological

tools that help track down poachers more accurately (e.g., this sentinel-based poacher

early warning system) will reduce the number of surprise encounters between poachers

and conservation officers. Moreover, from a more suspicious viewpoint, it also means that

there will be less opportunities to stage fake defensive poacher casualties. If poachers can

be arrested safely, there will be arguably no other argument to defend a shoot-on-sight

policy than the acknowledgment of a poor judicial system. So when there are technolog-

ical systems in place that can provide early indicators about the poachers’ whereabouts,

it will consequently become more difficult to justify shoot-on-sight policies.

To address the other two main points of critique against militarized conservation strate-

gies: first, protecting target animals from poachers directly is indeed a short-term strat-

egy focused on symptom relief, which I also stated myself at the start of this thesis

(Chapter 1). Conversely, the conservation strategies that are advocated for by oppo-

nents of militarized conservation (i.e., solving the issue of corruption, reducing demand

for wildlife products, increasing regional stability, and reevaluating human-nature rela-
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tionships (Büscher & Fletcher, 2019; Duffy, 2014; Duffy et al., 2019)) are all long-term

conservation strategies. Many target animals (e.g., rhino, elephant, gorilla) are so en-

dangered and their products so in demand that there simply is too little time to solely

wait for these long-term strategies to take effect. Therefore, I see anti-poacher protections

efforts (which is not necessarily the same as militarized conservation) as a strategy that

is needed to bridge the current precarious period until long-term strategies can take their

full effect. Perhaps these long-term effects will never be sufficient to make anti-poacher

protection efforts superfluous, but hopefully it will significantly reduce the need for it.

Second, broadening the gap between local communities and conservation agencies should

indeed be avoided in order not to jeopardize conservation in the long run. As stated in

the previous paragraph, I posit that poacher tracking technologies can help to reduce the

fatalities of poachers (who are often from neighbouring communities) and incentivize a

better-functioning judicial process, which would actually counteract the main negative

consequence of militarized conservation as well (Duffy, 2014). However, I do acknowledge

that the way a new anti-poaching technology is implemented will have an important ef-

fect on the efficacy of long-term conservation, especially related to the inclusion of local

communities (Duffy, 2014). There are certainly examples of how technology has been

implemented in the wrong way regarding community-conservation relationships (Duffy

et al., 2019; Shrestha & Lapeyre, 2018), but this does not mean that technology cannot

be implemented to the benefit of both parties (Jordan et al., 2013), nor does it necessarily

mean that anti-poacher protection efforts (with or without technology) are motivated by

neo-colonial or even racial politics (Duffy et al., 2019).

The discussion about anti-poaching technology and militarized conservation ties in with

a larger debate about the future of wildlife conservation through ‘new conservationism’

(i.e., accepting the Anthropocene to let nature ‘evolve’ and use it to support human

development (Marris, 2011)) versus ‘neoprotectionism’ (i.e., putting nature back in charge

by separating humans and nature on an unprecedented global scale (Wilson, 2016)), which

is also referred to as ‘social conservationism versus nature protectionism’ or ‘sharing versus

sparing’ (Büscher & Fletcher, 2019; Miller et al., 2011). The risk of polarization due to

a debate about such conflicting views is high, especially within a small community of

conservationists who are up against a daunting task of ‘saving nature’ in our current

human-dominated world. Therefore I applaud initiatives that aim to bring these two

opposing views closer together (Marris, 2014; Marvier, 2014; Miller et al., 2011), or even

aim to transcend this division of views (Büscher & Fletcher, 2019).

Approaching conservation in the Anthropocene from a ‘neoprotectionism’ versus a ‘new

conservationism’ viewpoint is fundamentally different regarding an ethical values perspec-

tive (Büscher & Fletcher, 2019; Miller et al., 2011), although some new conservationists

do argue that it’s not (Marris, 2014; Marvier, 2014). This difference primarily boils down

to whether or not the ultimate aim is to preserve ‘pristine’, ‘untouched’ or ‘wild’ na-

ture. However, I fear that if conservationists are hellbent on either of these two aims
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that there can be no satisfactory outcome. First, regarding neoprotectionism, I argue

that it is impossible to preserve true natural wilderness and that wild places are possibly

already a ghost of the past. For example, in this thesis I’ve shown that human infras-

tructure negatively impacts mammal populations up to 40 kilometers away, due to the

infrastructure’s function as an access point for hunters into natural areas (Chapter 3).

Given this large spatial extent, there are hardly any unimpacted places left and it won’t

be long until all are gone given the ongoing human population expansions in the tropics

(Chapter 3). Moreover, it may seem that solutions such as the ‘Half-Earth Project’ or the

‘One Planet Summit’ could remedy this impact by protecting massive amounts of land

and water (Wilson, 2016), but even if these areas are to be implemented then this im-

plementation will inherently impact the nature within it as well. If our society continues

to function mostly in a capitalistic way, then these proposed natural areas will also need

protection against humans who aim to exploit its resources. This will likely mean fencing,

monitoring, intensive management and technological solutions aimed at reducing these

exploitations (Chapter 2; Chapter 6), which will almost by definition make these areas

managed instead of wild. Second, regarding new conservationism, it will mean that ani-

mals that do not ‘fit’ into our Anthropocene world will not be allowed by us to survive as

a species. These ‘incompatible’ species include for example species of megaherbivores and

predators, species with valuable body parts, species that get outcompeted or annihilated

by invasive species, and shy species that do not tolerate human presence well. Taking

this a step further, according to some it is actually even only meaningful to save animal

species within broader social, cultural and environmental contexts (Büscher & Fletcher,

2019; Dawson, 2016; Heatherington, 2012; Sodikoff, 2012). However, our current contexts

will likely not remain the same in the future (just like they haven’t been in the past),

but animal species can (often) go extinct only once. This premise will thus mean that

we should at this point in time brand certain animal species as remnants of the Holo-

or Pleistocene and deny these species a future in which it could potentially be possible

to coexist sustainably with humans again (Figure 8.1). This way we could end up with

only a small selection of surviving animal (and plant) species, as our changing social,

cultural and environmental contexts will possibly continue to become incompatible for

other species over the course of time.
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Figure 8.1: Farmer ploughing his fields with a harnessed rhinoceros, said to

illustrate a scene in lower Egypt, but the rhino looks distinctly Indian (Rookmaaker,

2020). First published by Jacolliot, 1884.

So it is admirable and arguably visionary to aim to transcend this polarizing debate by

proposing a new system of ethical values that will make nature conservation future-proof

regarding our current and emerging political, economical and social climate (Büscher &

Fletcher, 2019). However, the proposed approach of ‘convivial conservation’ does unfor-
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tunately not provide solutions or methods on how to practice nature conservation in the

Anthropocene (Büscher & Fletcher, 2019). Simply put, if convivial conservation were to

be fully implemented then there would not be an Anthropocene anymore. If the human

nature would have moved away from the stereotypical ‘homo economicus ’ towards a state

in which it lives in harmony with nature (Büscher & Fletcher, 2019), then humans would

only have the capacity to be the dominant force on Earth instead of actually being it.

This means that convivial conservation, how commendable it may be as a long-term con-

servation strategy, is not a solution to the predicament of how to conserve nature during

the time that the Earth is still in the Anthropocene. Within this time period I envi-

sion my sentinel-based poacher early warning system as a necessary tool to safeguard the

survival of endangered target animals, just as I acknowledge the importance of heavily

and technologically monitored protected areas that are well-managed. Moreover, ‘shar-

ing’ conservation strategies will also be useful for certain species, for example to ensure

the survival of pollinators with nature-inclusive agricultural practices. However, bridging

the Anthropocene with as many animal species as possible should not be an excuse for

hampering the implementation of long-term conservation strategies such as convivial con-

servation (Büscher & Fletcher, 2019). Ultimately it would benefit nature the most if we

were indeed to transcend from the Anthropocene, which signifies that we should divide

our focus over both short- and long-term conservation goals. Perhaps counterintuitively,

this does not mean we should divide conservation approaches as well, but rather cooperate

more so that both short- and long-term conservation approaches work most efficiently as a

whole (Büscher & Fletcher, 2019; Marris, 2014; Marvier, 2014; Miller et al., 2011). Hope-

fully this will result in my sentinel-based poacher early warning system to be superfluous

in the next century.

8.4.2 Wildlife ecology and artificial intelligence

Artificial intelligence (AI) has been a central theme and tool in this thesis (Chapter

1; Chapter 5; Chapter 6; Chapter 7), mainly because of its ability to provide accurate

predictions in the analyses of big data within wildlife ecology research. I have used AI to

predict environmental variables from animal trajectories (Chapter 5; Chapter 6), classify

activity from animal body acceleration patterns (Chapter 5) and detect various animal

species in images (Chapter 7). Other examples include the tracking of moving animals in

videos (Risse et al., 2017), the following of animal body postures and body parts in videos

(Hughey et al., 2018), the detection of when animals become sick using animal sensors

and videos (Van Hertem et al., 2014), and the classification of animal calls from sound

data (Xie et al., 2019). These developments have provided ecologists with unprecedented

amounts of useful and interpretable information to help answer their research questions,

which would otherwise not have been possible to acquire or would have taken years of

tedious and invasive field observations (Hughey et al., 2018; Wang, 2019)

The algorithms that are used in the aforementioned studies are often referred to by ecolo-
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gists and other domain scientists as being “black boxes”, mainly in a slightly disapproving

way (Lucas, 2020). A black box signifies in this context an algorithm with high predic-

tive power, but with little ability to provide understanding of how the prediction came

to be. Actually there exists a trade-off between predictive power and interpretability

for AI algorithms (Kuhn & Johnson, 2013; Lundberg & Lee, 2017), but it is true that

mainly the algorithms with high predictive power (and thus often low interpretability)

have spurred recent developments in “big data ecology” and consequently gained most

attention by wildlife ecologists (Hughey et al., 2018; Lucas, 2020). So although these

algorithms have provided ecologists with useful interpretable information, by themselves

these algorithms have not often directly provided understanding about the studied ecolog-

ical processes (Chapter 5). This is in contrast to traditional (often frequentist) statistics,

which are mostly employed for the task of directly gaining understanding of an ecological

phenomenon by testing hypotheses. The lack of fully grasping or appreciating this con-

trast could very well be a contributing factor to the widespread critique amongst ecologists

on the predictive focus of AI (Lucas, 2020).

So AI has generally been used in wildlife ecology to acquire informative data from raw

data, while traditional statistics are often used to acquire understanding from these infor-

mative data (Chapter 5; Lucas, 2020). However, there is also a large potential to harness

the predictive power of AI to directly provide ecological understanding (Lucas, 2020).

This potential includes techniques that are relatively unknown to ecologists as well as

techniques that are still in development. First, model performance metrics can be used

as a proxy to draw inferences about how well the input variables relate to the response

variable (Chapter 5; Lucas, 2020). Second, variable importance metrics can be used to

draw inferences about the importance of each included variable on the performance of

the model, in which the effect of interactions with other variables can be included as well

(Lucas, 2020; Molnar, 2019). Third, sensitivity analyses can be performed on subsets of

the data to get a feeling of how the various input variables influence the response variable

(Lucas, 2020; Molnar, 2019). Fourth, an actively ongoing area of research is Explainable

Artificial Intelligence (XAI) that aims to make fitted black box AI algorithms under-

standable by humans (Bastani et al., 2017; Doshi-Velez & Kim, 2017; Jain & Wallace,

2019; Lipton, 2016; Lundberg & Lee, 2017; Lyddon et al., 2018; Miller, 2019; Mittelstadt

et al., 2019; Ribeiro et al., 2016; Samek et al., 2017). Fifth, another ongoing area of re-

search is Causal Representation Learning (CRL) that aims to develop AI algorithms that

can capture causal relationships instead of focusing fully on correlation (Bengio et al.,

2019; Mitrovic et al., 2020; Pearl, 2000, 2009; Pearl & Mackenzie, 2019; Schölkopf, 2019;

Schölkopf et al., 2021; Sgaier et al., 2020; Zhao & Hastie, 2021).

Both XAI and CRL techniques are currently being developed mostly solely by computer

scientists, which is potentially problematic for domain scientists, e.g., wildlife ecologists.

The nature of automated explanations and causality is far from clear, with their definitions

being actively debated subjects in both the cognitive and computer sciences (Confalonieri
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et al., 2019; Miller, 2019; Mittelstadt et al., 2019; Pearl & Mackenzie, 2019; Zhao & Hastie,

2021). The criteria of what constitutes good model explainability, understanding and in-

sight can even differ per scientific discipline, application and data type (Confalonieri et al.,

2019). Moreover, the different ultimate aims that domain scientists have for considering

the use of XAI and CRL techniques will also impact the implementation of explainability

and causality in these techniques (Mittelstadt et al., 2019; Sgaier et al., 2020). As such, it

will benefit wildlife ecologists to actively work together with computer scientists by devel-

oping XAI and CRL techniques that are most useful to them, regarding their data types

and their research questions (Sutherland et al., 2013). For example, a large part of XAI

research focuses on explaining which image parts contributed to a certain classification

(Jain & Wallace, 2019; Samek et al., 2017), which may be of interest to (for example)

medicine and engineering research but not so much to wildlife ecology. In wildlife ecology

the interest lies mainly in the relationship of animals with their environment (Nathan

et al., 2008; Sutherland et al., 2013), which thus makes the focus of XAI more on sen-

sor data by relating a variety of monitored environmental variables to animal behaviour

and emergent properties (e.g., Chapter 5; Chapter 6). However, most ecological findings

from explorative data-driven studies are still obtained by manual feature engineering (e.g.,

Chapter 6), while there is a large potential for automated pattern recognition. Also re-

garding CRL techniques there are clear aims for wildlife ecologists. These aims boil down

primarily to filtering out spurious correlations in the complex web of interactions between

animals and their environment (Sutherland et al., 2013), which is especially important

when a constant environmental process influences animal behaviour with a large variance

(e.g., Chapter 4). This aim is certainly also one of the pillars of current CRL research,

but it is not the only aim and its implementation is likely not universal for all scientific

disciplines and data types (Bengio et al., 2019; Schölkopf et al., 2021).

So what will be the consequence for the process of scientific inquiry in wildlife ecology

if AI can be used to directly provide understanding from big multivariate datasets in

the near future? Will the golden standard of the scientific method (i.e., making observa-

tions, forming hypotheses and testing these hypotheses) be replaced by automated pattern

recognition, like some have claimed or considered (Appenzeller, 2017; Falk, 2019)? The

main argument of people who claim that AI will change scientific inquiry is that under-

standing will become obsolete if correlations can provide perfect predictions (Anderson,

2008). However, this is actually only an opinion about the value or relevance of scientific

inquiry, which is a separate debate and does not consider the potential of AI to change

the process of scientific inquiry to provide understanding. Although my thoughts have

gone back and forth on this topic for a while, I posit that the method of scientific in-

quiry will not and should not change if AI can directly provide understanding. Clearly

the potential of automated pattern recognition is huge for wildlife ecologists, given the

complex and multifaceted interactions of animals with their heterogeneous environment,

but it can simply be considered a more advanced technique of making observations (Forde
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& Paganini, 2019; Lucas, 2020; The Royal Society & The Alan Turing Institute, 2018).

The aforementioned XAI and CRL developments will not automate the formulation and

testing of hypotheses, nor does it formulate a complete alternative process for scientific

inquiry. Developing and testing hypotheses will thus remain an integral part of research

in wildlife ecology, which is up to researchers to perform (Forde & Paganini, 2019; Lucas,

2020). On the other hand, I also posit that not all studies should adhere to the full process

of scientific inquiry. For example, an explorative study of a new and large dataset (e.g.,

using automated data-driven pattern recognition) without formal hypothesis testing could

potentially be more informative to readers who aim to draft their own hypotheses than a

study that aims to draft and test an hypothesis on the same dataset. Moreover, I think

it is important to emphasize that hypothesis testing is not necessarily the same as sig-

nificance testing. Sometimes it seems that ecologists consider significance testing (rather

than hypothesis testing) the golden standard of scientific inquiry, but this view greatly

limits the potential analyses that can be performed to test hypotheses (e.g., Bayesian

inference and model selection techniques (Burnham & Anderson, 2002; Nickerson, 2000))

and increases the risk of viewing hypotheses as statements that can be accepted or rejected

instead of having a probability of not being true (Kruschke, 2013).

8.5 Summarizing remarks

With this thesis I hope to have demonstrated the potential of artificial intelligence for both

wildlife conservation and wildlife ecology. I hope that sometime in the near future the

Earth will have transcended from the Anthropocene due to a sustainable transformation

of the global human society, but until then wildlife continues to deserve our protection

from ourselves. I also foresee a large role for artificial intelligence in wildlife ecology

research, which may drastically change the way scientific understanding is acquired in the

near future. Exciting developments related to explainability and causality within artificial

intelligence are currently being undertaken by computer scientists, but they do require the

input of ecologists to make these developments truly insightful and applicable to the real

world. Let’s embrace these new ways of data analysis and spur ecological discovery.
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