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Abstract 

Objective:  The Sumatran rhinoceros is critically endangered, with fewer than 100 individuals surviving across its 
current range. Accurate census estimates of the remaining populations are essential for development and implemen-
tation of conservation plans. In order to enable molecular censusing, we here develop microsatellite markers with 
amplicon sizes of short length, appropriate for non-invasive fecal sampling.

Results:  Due to limited sample quantity and potential lack of genome-wide diversity, Illumina sequence reads were 
generated from two Sumatran rhinoceros samples. Genomic screening identified reads with short tandem repeats 
and loci that were polymorphic within the dataset. Twenty-nine novel polymorphic microsatellite markers were char-
acterized (A = 2.4; HO = 0.30). These were sufficient to distinguish among individuals (PID < 0.0001), and to distinguish 
among siblings (PID(sib) < 0.0001). Among rhinos in Indonesia, almost all markers were established as polymorphic 
and effective for genotyping DNA from fecal samples. Notably, the markers amplified and displayed microsatellite 
polymorphisms using DNA extracted from 11 fecal samples collected non-invasively from wild Sumatran rhinoceros. 
These microsatellite markers provide an important resource for a census and genetic studies of wild Sumatran rhinos.
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Introduction
In the past two decades the population of Sumatran 
rhinoceros (Dicerorhinus sumatrensis) has declined by 
more than 50% [1]; with less than one percent of its for-
mer geographic range occupied and < 100 individuals of 
this critically endangered species surviving in isolated 

populations in Sumatra and Borneo. Despite the need for 
an accurate census and determination of the remaining 
genetic diversity for the conservation and management of 
surviving populations, an accurate census of the remain-
ing populations has been elusive.

Molecular tools to amplify DNA from dung would be 
of great utility for a critical census of Sumatran rhinoc-
eros. With rigorous fecal collection protocols followed, 
DNA from dung samples has been used to estimate pop-
ulation sizes in wildlife [2, 3]. Microsatellite markers are 
ideal for genetic profiling of populations due to high rates 
of evolution leading to intra-species polymorphisms, 
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well-understood mutation dynamics, and proven utility 
in wildlife management and conservation of non-model 
taxa [4, 5]. Dung sample collection is relatively straight-
forward, may allow for a large proportion of the popula-
tion to be sampled, and involves no stress from handling 
or direct observation of individuals [6]. Further, dung 
sampling allows for real time monitoring of changes in 
genetic diversity and population dynamics [7].

The evaluation of microsatellite DNA profiles from 
dung samples poses two challenges. First, dung samples 
contain a low quantity and quality of host DNA, as well 
as inhibitors and contaminants [8–10]. Both of these lead 
to reduced microsatellite amplification success with DNA 
from dung when compared to DNA from blood or tissue 
samples. Second, there are a limited number of Sumatran 
rhinoceros microsatellite markers, and these were not 
optimized for use with dung DNA. More specifically, the 
amplicon length had not been minimized [11].

Main text
To generate more precise and accurate census estimates 
from in  situ Sumatran rhinoceros populations, here we 
report optimized new microsatellite markers that target 
short regions of Sumatran rhinoceros DNA. We provide 
evidence of the amplification reliability and the presence 
of polymorphisms in Sumatran rhinoceros genotypes 
from dung. Specifically, we report the (a) identification 
of 29 novel short amplicon polymorphic Sumatran rhi-
noceros microsatellite markers, (b) characterization of 
variability of these markers using high quality DNA, (c) 
optimization of amplification success and verification of 
polymorphisms of these markers using DNA from dung, 
and (d) first field results from use of these markers on 11 
dung samples from free-ranging Sumatran rhinoceros 
in Indonesia. Our results suggest that these new tools 
will be of value in the conservation and management of 
extant Sumatran rhinoceros.

Methods and materials
Sample collection and DNA extraction
We used several types of Sumatran rhino samples 
(Table 1): previously extracted high quality DNA (n = 6) 
from the San Diego Zoo Institute for Conservation 
Research (ICR) and the Royal Ontario Museum (ROM); 
blood samples from rhinos kept at the Cincinnati Zoo 
(n = 2) or at the Sumatran Rhino Sanctuary (SRS) within 
Way Kambas National Park (WK) in Sumatra (n = 3); 
fecal samples from captive rhinoceros at the Cincinnati 
Zoo (n = 2) and SRS (n = 3); and fecal samples (n = 11) 
from an unknown number of wild rhino individuals at 
the Burkit Barisan Selatan National Park (BBS) in Suma-
tra. Across these samples, there were paired blood-fecal 

samples (each pair from the same individual) for three of 
the rhinos (two at the Cincinnati Zoo and one at SRS).

At the University of Illinois at Urbana-Champaign 
(UIUC), high quality DNA was extracted from the Cin-
cinnati Zoo blood samples (n = 2) using the Qiagen 
DNeasy Blood and Tissue Kit. At the Eijkman Institute 
for Molecular Biology (EIMB), DNA was extracted from 
the SRS rhino blood samples (n = 3) using a salting out 
procedure [12]. At both UIUC and EIMB, fecal DNA was 
extracted from Cincinnati Zoo (n = 2), SRS (n = 3) and 
BBS (n = 11) using the QIAmp DNA Stool Kit (Qiagen) 
with a modified protocol [13].

Bioinformatic identification of polymorphic microsatellite 
loci
Whole genome sequences (Illumina MiSeq v3) were gen-
erated from two high quality DNA samples from Suma-
tran rhinoceros Dsu-33 and Dsu-35, both originally 
from Sumatra (Table  1). Reads from both rhinos were 
combined, and reads with short tandem repeat (STR) 
sequences that corresponded to the same locus were 
identified. Only those combined reads that exhibited 
polymorphism at an STR locus (across the four chromo-
somes sequenced) were used to design primers, using 
MsatCommander v1.0.8 [14]. To increase PCR success 
with the degraded Sumatran rhino DNA available from 
dung, primers were designed to amplify a short target 
product with a maximum length of 150 bp (inclusive of 
the primer lengths which total 36 to 44  bp). After run-
ning in silico PCR with the IPCRESS program [15], loci 
showing repetitive elements, monomorphism, a very 
broad allele size range, or sequences closely matching 
human were all excluded from consideration.

PCR amplification and locus polymorphism
Candidate primer pairs were evaluated at UIUC (Addi-
tional file  1) for amplification reliability and accuracy 
using available high quality (non-fecal) DNA from six 
Sumatran rhinos that had not been used in marker devel-
opment, from the ICR and ROM (Table  1). A standard 
PCR mix and amplification protocol (Additional file  1) 
were used to test each of the candidate primer pairs. An 
agarose gel was used to verify a single amplicon of the 
correct size.

Estimates of microsatellite variability
Variability at the loci was characterized using six high 
quality DNA extracts (rhinos Dsu-28, 29, 44, 63, 64 and 
66; Table  1). FSTAT, v2.9.3.2 [16] and GenAlEx, v6.1 
[17, 18] were used to calculate the number of alleles per 
locus (A), expected heterozygosity (HE), and observed 
heterozygosity (HO). CERVUS v3.0.7 [19] was used to 
calculate the probabilities of individual identity, i.e., PID 
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and PID(sib) values (for unrelated individuals and full sib-
lings, respectively) for each marker, and cumulative PID 
and PID(sib) across multiple markers, using the equations 
of Waits et al. 2001 [20]. Cumulative PID and PID(sib) were 
calculated by multiplying PID and PID(sib) across loci. 
Using GENEPOP (https://​genep​op.​curtin.​edu.​au/), sig-
nificant linkage disequilibrium was not detected among 
loci. Genome scaffolds were identified for loci (Addi-
tional file 1: Table S1).

Amplification and genotyping of DNA from fecal samples 
of rhinos in Indonesia
To ensure that reliable and accurate dung genotyping 
of wild Sumatran rhinoceros can be conducted in the 
range country of Sumatran rhinos, we completed simi-
lar evaluations of DNA extraction protocols and PCR 

optimization steps at UIUC and EIMB. At EIMB, the 
Qiagen Multiplex PCR kit proved useful for amplify-
ing low-quality DNA from dung samples collected at 
SRS and BBS (Additional file 1: Figure S1), with the PCR 
results evaluated for each marker for: shape of peaks, sec-
ondary peaks, DNA slippage bands, intensity in relative 
fluorescent units, and ease of allele identification. These 
observations were considered in compiling a set of mark-
ers that is more highly recommended for use, listed first 
in Table 2.

Results
Our bioinformatics pipeline saved time and resources, 
because the candidate microsatellite loci chosen for fur-
ther evaluation were polymorphic in two sequenced 
Sumatran rhinos. Of a total 30,556,224 Illumina 

Table 1  Sumatran rhinoceros sample information

Whole genome sequences were generated from Dsu-33 and Dsu-35
a  Indicates the year of birth. ICR is the Institute for Conservation Research. BBS is Burkit Barisan Selatan National Park. WK is Way Kambas National Park. NA is not 
applicable. Acquisition dates for the Sumatran Rhino Sanctuary (SRS) may be dates acquired from the wild or from another institution. Andalas was born in the 
Cincinnati Zoo in 2001 to Emi and Ipuh; Andatu is son of Andalas and Ratu. Bina was brought to the Safari Zoo in 1991 and moved to SRS in 1998. Sex of free-ranging 
rhinos was determined using molecular sexing (unpublished)

Sample Specimen Type Name Source Sex Acquisition Studbook 
Number

Geographic Origin

Samples tested at the University of Illinois

Dsu-33 DNA Rami San Diego Zoo (ICR) F 1991 33 Sumatra

Dsu-35 DNA Tanjung San Diego Zoo (ICR) M 1980 35 Sumatra

Dsu-28 Blood/fecal Ipuh Cincinnati Zoo M 1980 28 Sumatra

Dsu-29 DNA Emi Royal Ontario Museum F 1988 29 Sumatra

Dsu-63 DNA Merah Royal Ontario Museum F 1980 19 Malay Peninsula

Dsu-64 DNA Minah Royal Ontario Museum F 1987 15 Malay Peninsula

Dsu-66 DNA Panjang Royal Ontario Museum F 1983 13 Malay Peninsula

Dsu-44 Blood/fecal Harapan Cincinnati Zoo M 2007a 44 Captive born

Samples tested at the Eijkman Institute for Molecular Biology

Andalas-B Blood Andalas Sumatran Rhino Sanctuary M 2001a 42 Captive born

Andalas-D Fecal Andalas Sumatran Rhino Sanctuary M 2001a 42 Captive born

Rosa Blood Rosa Sumatran Rhino Sanctuary F 2005 45 BBS, Sumatra

Bina Blood Bina Sumatran Rhino Sanctuary F 1998 32 Bengkulu, Sumatra

Ratu Fecal Ratu Sumatran Rhino Sanctuary F 2005 46 WK, Sumatra

Andatu Fecal Andatu Sumatran Rhino Sanctuary M 2012a 50 Captive born

BBS1-1 Fecal BBS-1–001 Free-ranging F NA BBS, Sumatra

BBS1-15 Fecal BBS-1–015 Free-ranging F NA BBS, Sumatra

BBS1-17 Fecal BBS-1–017 Free-ranging F NA BBS, Sumatra

BBS3-5 Fecal BBS-3–005 Free-ranging M NA BBS, Sumatra

BBS3-6 Fecal BBS-3–006 Free-ranging F NA BBS, Sumatra

BBS3-10 Fecal BBS-3–010 Free-ranging F NA BBS, Sumatra

BBS3-13 Fecal BBS-3–013 Free-ranging F NA BBS, Sumatra

BBS3-17 Fecal BBS-3–017 Free-ranging F NA BBS, Sumatra

BBS3-19 Fecal BBS-3–019 Free-ranging M NA BBS, Sumatra

BBS3-25 Fecal BBS-3–025 Free-ranging F NA BBS, Sumatra

BBS3-29 Fecal BBS-3–029 Free-ranging F NA BBS, Sumatra

https://genepop.curtin.edu.au/
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Table 2  Characterization of 29 microsatellite markers in Sumatran rhinoceros

Locus Primer Sequence (5′–3′) A Size Range (bp) HE HO FIS PID PID(sib)

Highly recommended

Disu033 F: TCT​GGA​TAC​CTG​AGG​CTT​GAC​ 2 152–164 0.53 0.00 1.00 0.41 0.63

R: ACT​GGC​ATC​ACT​TCT​TTC​CC

Disu098 F: GCT​AGG​AGA​GGG​TGT​TGG​AC 4 98–126 0.78 0.20 0.76 0.14 0.44

R: TGG​TAG​CCT​TGC​CTC​TTT​CC

Disu100* F: TGT​GGA​CTT​GTC​ATA​TAT​GGGC​ 2 120–122 0.36 0.40 − 0.14 0.51 0.72

R: TTC​ATC​CAT​GCT​GTC​ACA​AATG​

Disu201‡ F: TGG​AGA​GAA​TTT​CAG​ACA​TGGG​ 2 156–158 0.53 0.00 1.00 0.39 0.61

R: CTA​GCC​CAA​GAT​CCA​TTG​GC

Disu261 F: AAA​CCA​TAC​GCG​GGA​GAA​GG 2 150–166 0.60 0.33 0.50 0.38 0.59

R: GAA​GGG​AAG​ATC​ATG​CAG​GAG​

Disu393 F: AGT​GAG​CAA​GGG​AAT​GTG​TG 2 155–157 0.36 0.40 − 0.14 0.51 0.72

R: GGG​TGC​TGT​CTC​TTG​ATT​GG

Disu448* F: CAG​GTT​TCG​TTA​CTG​CAG​GAC​ 2 154–156 0.20 0.20 – 0.69 0.83

R: TCT​GGT​GAC​CTG​AGA​TGC​AC

Disu476* F: AAA​CAG​GGA​AAC​AAG​GTG​CG 3 162–174 0.60 0.80 − 0.39 0.29 0.55

R: GAC​TGC​GCC​CTT​TCT​GTT​AG

Disu487*‡ F: TAT​CAT​GTC​ACA​AGC​ACG​CG 2 148–160 0.20 0.20 – 0.69 0.83

R: GTC​TTC​TTC​ACG​ACA​GCA​CC

Disu783* F: CCT​TGC​CTT​GCC​TTC​AAT​CC 3 126–134 0.51 0.60 − 0.20 0.34 0.61

R: CCA​TCC​TTT​CTC​CTA​CAC​AGAC​

Disu847 F: AAA​GTC​GCC​TCT​CAC​ACA​CC 2 138–140 0.20 0.20 – 0.69 0.83

R: TCA​GAG​CCT​CCT​TGT​AAG​CG

Recommended#

Disu050 F: CTC​CCA​CAT​TCA​GCA​AAC​TTTC​ 3 160–166 0.51 0.20 0.64 0.34 0.61

R: CCA​GGC​AGT​GAT​GAC​TCT​AC

Disu071‡ +  F: TTG​AGA​TGC​ATT​GCC​GTG​G 3 168–172 0.73 0.33 0.60 0.23 0.50

R: CCA​TGG​TTT​CTG​CAT​CGT​GG

Disu076 +  F: TTC​CAG​CCG​CTC​TTA​TGA​CC 2 125–129 0.53 0.00 1.00 0.41 0.63

R: TCA​TGT​GCT​TAT​TGG​CCA​TCTG​

Disu127 F: CCA​CCA​CCA​CCA​TGC​ATA​G 2 162–164 0.36 0.00 1.00 0.51 0.72

R: CAT​TTG​CTC​CCA​TGC​TGA​AG

Disu138 F: GGG​ACA​CAT​GAC​TCC​TCT​TATC​ 2 167–169 0.53 0.00 1.00 0.41 0.63

R: CCA​CTC​CAC​CTT​ATA​CTA​CCAC​

Disu149 F: GAG​CGT​GCA​TGG​TAG​TTT​CC 4 160–168 0.73 1.00 − 0.43 0.18 0.47

R: GGT​TCT​CAT​AGC​AGA​CGG​AG

Disu151‡ +  F: CAT​TGT​GCT​CGC​TAC​GCA​G 2 135–137 0.36 0.00 1.00 0.51 0.72

R: CTA​GGT​GTC​AAG​AGC​CAG​GG

Disu480 F: CCT​GCC​TTC​TAG​TCC​TGT​GG 2 112–116 0.47 0.20 0.60 0.42 0.65

R: AGC​AAG​CAG​GAT​CAG​GAA​GG

Disu501 F: TGG​CCA​CAT​CTT​CAG​CAT​TAAG​ 2 155–157 0.47 0.60 − 0.33 0.42 0.65

R: GCA​CCT​AAC​ACA​GTT​ACA​GGC​

Disu542‡ +  F: AAA​CTA​CAG​GCA​CGT​ACA​GC 2 128–130 0.20 0.20 – 0.69 0.83

R: TTG​AGA​GAT​GAG​GTG​CGG​TC

Disu545 F: TGT​TGT​CCA​AGC​TGT​GTC​TG 2 148–150 0.20 0.20 – 0.69 0.83

R: TGG​CAG​CTG​GTA​CCT​AAC​AG

Disu556 +  F: GCC​AAT​TAA​ATC​TAC​CTG​CCAC​ 2 168–174 0.25 0.25 – 0.63 0.80

R: GCC​AAG​ACT​CAA​ACC​CAG​G
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sequencing reads, 176,357 reads (2.4%) from rhino Dsu-
33 and 167,849 reads (2.8%) from Dsu-35 contained 
microsatellite motifs. Our bioinformatics method iden-
tified 861 polymorphic di-, tri-, and tetra-nucleotide 
repeat loci within the two sequenced Sumatran rhinos of 
which 229 had suitable priming regions. Loci were then 
excluded if they displayed < 6 tandem repeats, had too 
broad a size range, showed evidence of being in repetitive 
elements, or closely matched sequences of human DNA 
(a potential contaminating factor).

The above resulted in 55 polymorphic candidate loci 
for UIUC laboratory PCR optimization using six test 
samples (Dsu-28, 29, 44, 63, 64 and 66; Table 1). From the 
optimization efforts, 53/55 primer pairs produced ampli-
cons within the expected size range when tested using 
at least two samples; while 24/53 were excluded for hav-
ing secondary bands outside of the expected size range, 
for genotypes that were difficult to score, or for being 
monomorphic in the test samples. The monomorphic 
loci in the test samples suggest that some polymorphisms 
detected in the two Illumina-sequenced rhinos (different 
individuals from the six rhinos used to characterize vari-
ability) were due to low-frequency alleles. The polymor-
phism of the 29 remaining markers (Table 2; Additional 
file  1: Table  S2) was characterized across the test rhi-
nos: average allelic richness (A) = 2.4; number of alleles 
ranged from two to four; average expected heterozygo-
sity (HE) = 0.45; and average observed heterozygosity 
(HO) = 0.30. Overall, FIS = 0.44, likely due to population 

structure among geographically separated populations, 
or to inbreeding. Using the most informative markers, 
i.e., those with the lowest PID values, as few as seven loci 
could cumulatively distinguish individual identity (cumu-
lative PID < 0.0001 [20]) (Table 2). Using a more conserva-
tive standard, PID(sib), as few as 19 optimized loci could 
confidently distinguish individual identity among siblings 
(cumulative PID(sib) < 0.0001 [20]; Table 2).

DNA from the dung of the two rhinos at the Cincinnati 
Zoo was used at UIUC to optimize PCR mix and cycling 
conditions (Additional file  1). At EIMB additional opti-
mization was completed for the 29 markers (Additional 
file  1: Figure S1), with polymorphisms examined across 
three blood and three fecal samples from five SRS rhinos 
(for one SRS rhino, both types of sample were obtained). 
To conserve DNA resources, not all samples were used to 
test each marker. Yet 28/29 markers successfully ampli-
fied, and 27 of these were polymorphic in initial testing. 
For 13 markers randomly chosen among the 27, all 6 SRS 
samples were used to test marker quality and polymor-
phism. For some of these 13 markers, genotypes could 
be established for all of the SRS rhino samples (Addi-
tional file 1: Table S3). For 4/6 SRS samples, all 13 of the 
markers generated genotypes; for the other two (both 
fecal) samples, eight and twelve markers were successful 
(Additional file 1: Table S3). To examine the accuracy of 
genotypes from fecal samples, three paired blood-fecal 
samples were available (Table  1). While the number is 
low, comparing genotypes based on the two types of 

A is the number of alleles per locus, HE and HO are expected and observed heterozygosity, respectively. PID is the probability of identity and PID(sib) is the probability of 
identity between siblings. FIS reflects deviation from Hardy–Weinberg proportions. Results are based on samples of six individuals initially tested. Among the highly 
recommended markers, an asterisk (*) indicates those that produced exceptionally good results. A dagger (‡) indicates that primers amplify tapir amplicons (though 
with very different sizes than for rhino); species identity may be established with mtDNA. A plus sign ( +) indicates primers that may amplify human DNA (see Table S4 
for differences in size range). The primers listed as "recommended" (#) may be subject to further improvement with additional optimization. Reasons primers were not 
recommended: a-failed to amplify; b-lack polymorphism in Indonesian samples. The size range includes an M13 forward sequence (TGT​AAA​ACG​ACG​GCC​AGT​) added 
to the 5′ end of each forward primer (but not shown as part of the forward primer sequences above). The PID and PID(sib) are calculated by the method of Waits et al. 
2001 (reference 20)

Table 2  (continued)

Locus Primer Sequence (5′–3′) A Size Range (bp) HE HO FIS PID PID(sib)

Disu582 F: TCT​GTG​GTG​GTA​GCT​GTG​AC 2 144–152 0.36 0.00 1.00 0.51 0.72

R: TGG​CAC​AGA​GAC​ACC​CAT​G

Disu593‡ +  F: CCA​CGT​CCC​AGG​TCA​AGA​G 3 164–166 0.56 0.20 0.67 0.38 0.59

R: AGC​TGT​TCC​TGG​TGG​CTC​

Disu733 F: TGG​CAC​AGA​GAC​ACC​CAT​G 2 151–159 0.36 0.00 1.00 0.51 0.72

R: TCT​GTG​GTG​GTA​GCT​GTG​AC

Disu748‡ F: CCT​TGA​TTG​GTG​GGT​TCC​C 3 106–116 0.64 0.80 − 0.28 0.26 0.53

R: AGA​GAG​AGC​GCA​CGT​GTG​

Not recommended

Disu269‡ + a F: CAA​GAC​CAC​ACC​TGC​TTG​TC 3 115–152 0.60 0.33 0.50 0.30 0.58

R: ACT​CAC​TCA​TCA​CCC​AGC​C

Disu863‡ + b F: GAA​GCT​GTA​TGT​CCG​GAT​GC 2 162–166 0.36 0.40 − 0.14 0.51 0.72

R: GCT​AAA​CAG​ACC​TTC​CTC​AGAG​
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samples (Additional file  1) indicated that fecal samples 
yield accurate genotypes.

To further test their utility for a census using dung 
collected from wild Sumatran rhinos, the 13 randomly 
chosen new markers were tested on 11 fecal samples 
collected from an unknown number of wild rhinoceros 
in BBS (Table  1). Their identity as rhino samples was 
established by mtDNA sequencing because wild rhino 
and Asian tapir (Tapirus indicus) fecal samples are some-
times difficult to distinguish in the field. The specificity 
of primer pairs was tested using Asian tapir DNA and 
human DNA (a conceivable contaminant). One or both 
of these species amplified for 12/29 markers, although 
their amplicon sizes were almost always substantially dif-
ferent from those of rhino (Additional file 1: Table S4).

After species identity was established for 11 fecal sam-
ples from wild rhinos, the 13 randomly chosen markers 
were tested. For nine of the 13 markers, DNA from least 
nine of the 11 fecal samples amplified successfully and 
could be scored (Additional file  1: Table  S3). For DNA 
from nine of the 11 fecal samples from wild Sumatran 
rhinos, at least 9 of the markers amplified successfully. 
This survey thus established proof of principle for the 
utility of the markers for fecal censusing of wild Suma-
tran rhinoceros.

Discussion
Recent estimates suggest that fewer than 100 Sumatran 
rhinoceros individuals persist across Sumatra, with few 
in Borneo, although current census estimates have a 
large degree of uncertainty [21]. Since an accurate census 
could guide management decisions, it is crucial to have 
reliable methods for non-invasively estimating popula-
tion size. Overall, we generated a panel of polymorphic 
microsatellite markers useful for genetically distinguish-
ing among individuals. They are appropriate for fecal 
DNA given their specificity for rhinos and short ampli-
con lengths. As almost all markers successfully amplified 
DNA from fecal samples, they will be useful for inform-
ing conservation managers about the population size and 
genetic characteristics of wild Sumatran rhinoceros.

Limitations
As additional fecal samples are collected from wild rhi-
noceros, PCR conditions and marker choice may be fur-
ther optimized for some primer pairs (Table 2). Although 
initial results suggest that the genotyping error rate is 
low, further testing of these markers using a larger num-
ber of paired blood and fecal samples is required to bet-
ter estimate genotyping error (i.e., allelic dropout and 
false alleles) [22].
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