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A B S T R A C T

Zooarchaeological data offer a unique opportunity to examine both palaeoenvironmental and behavioural trends
using single datasets. In this study, we combine taphonomic and palaeoecological analyses of the faunal remains
from recent excavations from the Still Bay layers at Blombos Cave to explore subsistence behaviour during this
significant period in behavioural modernity. The c. 77-72 ka Still Bay is linked to innovative technology and the
expression of complex cognition but is often lumped together as a homogenous entity. Here, we assess sub-
sistence strategies within the Still Bay at Blombos Cave by examining zooarchaeological data from each layer.
We investigate temporal changes during this techno-complex in an attempt to place subsistence behaviour
within a paleoecological context. Our results show significant differences in surface modification frequencies
between the early and middle/later Still Bay phases. Large and medium-sized ungulates were processed dif-
ferently and filleting was probably an important activity. The data show that changes in shellfish density from
the early to later Still Bay correspond to changes in ungulate representation. This may be due to changing
environmental conditions around Blombos or shifting foraging strategies. This shift may also be associated with
transport decisions for larger mammals. We discuss mobility patterns and the connection between subsistence
strategies, environmental change and occupational intensity during the Still Bay levels at Blombos Cave.

1. Introduction

The Middle Stone Age (MSA), between∼ 320 000 years ago (ka)
to∼ 30 ka, was a significant period in the anatomical and behavioural
evolution of Homo sapiens (Deino et al., 2018; Wadley, 2015). An im-
portant focus of MSA research is the development of modern human
behaviour – a suite of traits such as enhanced working memory, sym-
bolism and sophisticated technology that define modern people
(Henshilwood and Marean, 2003; Henshilwood and Dubreuil, 2011;
Wynn and Coolidge, 2011). Two techno-complexes in the southern
African record were probably key periods in this development: the Still
Bay (SB) and Howiesons Poort occurring from Marine Isotope Stage
(MIS) 5a through 4. The Howiesons Poort is associated with innovative
technology such as the possible use of bow-and-arrows (Lombard and
Phillipson, 2010), insecticides (Lennox and Bamford, 2015) and bed-
ding (Wadley et al., 2011). The SB is generally dated to earlier than the
Howiesons Poort and is also linked to complex behaviour (Jacobs et al.,
2008). One of the most notable SB sites is Blombos Cave (BBC) along
the southern Cape coast of South Africa, where this period has been

dated to between c. 77-72 ka (Jacobs et al., 2012). Shell-beads, en-
graved ochre, possible abstract ochre drawings, pressure-flaked bifacial
points and finely crafted bone tools recovered in the SB layers at BBC
suggest that modern human behaviour occurred in that region well
before humans moved out of Africa between c. 60 and 50 ka
(Henshilwood et al., 2002, 2004; 2018; d’Errico and Henshilwood,
2007; Mourre et al., 2010; Henn et al., 2012). The SB is thus an im-
portant marker in human development and a useful period through
which to explore complex behavioural change in the Pleistocene.

An important means of understanding complex behaviour is
through zooarchaeological analyses. Faunal remains are often used to
infer environmental conditions (e.g., Klein, 1980, 1983; Klein and Cruz-
Uribe, 2000; Clark and Plug, 2008; Clark, 2013) and taphonomic stu-
dies can yield critical information on subsistence behaviour by in-
forming on transport decisions, exploitation strategies and processing
patterns. However, relatively few faunal assemblages recovered from
Late Pleistocene sites in southern Africa have been taphonomically
analysed (but see Thompson, 2010; Thompson and Henshilwood, 2011;
Faith, 2013a; Reynard et al., 2016a) which means that, at many sites,
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we are unable, confidently, to deconstruct subsistence strategies.
Zooarchaeology is therefore an essential component in examining both
palaeoecology and past human behaviour. By exploring subsistence
strategies through taphonomic analyses we are better able to situate
behaviour within a palaeoenvironmental context.

The relationship between environment and behaviour has framed
much of the research concerning the Pleistocene (Butzer, 1964; Deacon,
1989; Foley, 1995; Klein, 2000; McBrearty and Brooks, 2000; Ash and
Gallup, 2007; Compton, 2011; Faith, 2011; Weaver et al., 2011; McCall
and Thomas, 2012; Saltré et al., 2016; Hillestad-Nel and Henshilwood,
2016; Reynard et al., 2016b). While some studies suggest that the
prevailing environment played a key role in subsistence and beha-
vioural trends (Ambrose and Lorenz, 1990; Wroe et al., 2013; Faith,
2011; Ziegler et al., 2013; Chase et al., 2018), other research suggests
that other factors were more significant (Klein, 1995; Laland and
Brown, 2006; Rector and Verrelli, 2010; Roberts et al., 2016; Saltré
et al., 2016). Indeed, the links between modern human behaviour and
the environment in which it evolved is complex. For example, as cog-
nition developed and working memory improved, humans employed
more innovative subsistence strategies – such as remote capture – that
involved long-term planning and complex technology (Wadley, 2010).
Yet, while remote capture involves sophisticated technology such as the
use of snares and the ability to predict long-term animal behaviour, its
effectiveness is probably linked to suitable environmental conditions
that favour a prevalence of small mammals and small, size class 1 bo-
vids. This is particularly relevant in the scrubland environment of the
southern Cape with its predominance of small fauna.

The Cape Floristic Region (CFR) in the southwestern Cape of South
Africa is a distinctive ecosystem encompassing a diverse array of en-
demic plants (Cowling, 1992; Cowling and Lombard, 2002; Bergh et al.,
2014). Vegetation is dominated by fynbos – an evergreen, scler-
ophyllous shrub – and mean annual precipitation in the vicinity BBC is
∼380mm (Mucina and Rutherford, 2006). Its temperate climate and
the availability of ample food resources such as geophytes (Deacon,
1993; Proches et al., 2005), shellfish (Jerardino and Marean, 2010;
Langejans et al., 2012; Kyriacou et al., 2014), and small and large fauna
(Klein, 1980; Skinner and Chimimba, 2005; Faith, 2011; Thompson and
Henshilwood, 2014a) has led some researchers to suggests that the CFR
may be linked to the development of complex behaviour in southern
Africa during the Late Pleistocene (Marean, 2010; Parkington, 2010;
Compton, 2011). Because of the broad, gentle slope of the Agulhas Bank
– the continental shelf off the southern Cape coast – sea level fluctua-
tions would have had significant effects on the southern Cape en-
vironment during glacial and interglacial periods (Van Andel, 1989;
Fisher et al., 2010). Shifts in land availability in the southern Cape may
have influenced prey selection patterns and the exposed terrain of the
Agulhas Bank would have formed a southern coastal plain (SCP;
Compton, 2011) which could have acted as a possible refugium for
hominin and ungulate populations during periods of shoreline regres-
sion (Fisher et al., 2010; Compton, 2011; Faith and Behrensmeyer,
2013; Marean et al., 2014). Questions therefore arise as to the extent
that temporal environmental conditions in the CFR played in in-
centivizing foraging patterns during the SB in the southern Cape.

Our understanding of subsistence patterns during the SB is almost
exclusively derived from BBC fauna. Previous research has shown that
larger bovids are more common than smaller, size 1 bovids in the SB
layers at BBC (Thompson and Henshilwood, 2011). Thompson and
Henshilwood (2014a, 2014b) also show that, although large-bodied
ungulates are prevalent in the SB, tortoises were a common resource
then. They argue, further, that there was a shift in subsistence patterns
from a focus on small bovids in the M3 phase and earlier SB, to one that
emphasised high-return large bovid hunting in the later SB. We are still
uncertain of the extent (and causes) of these changes. Much of this
could be related to how we assess the SB. With the exception of
Discamps and Henshilwood (2015), our understanding of subsistence
behaviour in the SB is based on lumped data for the entire SB sequence.

The implication of this is that the SB is an unchanging, consistent
period. The idea of the SB as a homogenous entity has been re-assessed
by some researchers (Villa et al., 2009; Porraz et al., 2013; Wurz, 2013;
Soriano et al., 2015) and recent studies have highlighted both regional
and temporal variation within the SB (e.g., Archer et al., 2015). Bifa-
cials points, for example, were shaped and used differently at various
sites (Lombard et al., 2010; Soriano et al., 2015). Soriano et al. (2015,
pp. 40) argue that SB assemblages show extensive discontinuity and
cannot be considered a homogenous set. It is reasonable to assume that
variability in technology may be linked to changes in subsistence pat-
terns. In fact, variation in the lithic technology of the SB may be re-
flected in subsistence behaviour (Lombard and Clark, 2008; Kandel
et al., 2016). Discamps and Henshilwood (2015) argue that grouping
faunal data in the SB can result in a loss of detailed information and
they show a range of variability both temporally and spatially during
the SB period. Furthermore, given that the SB may have occurred
during the transition from MIS 5a to 4, it is likely that environmental
conditions changed through the SB. We thus still need to explore if or
how these changing environments affected subsistence behaviour at
that time. Environmental conditions may also affect prey selection
patterns and it is feasible that both would influence mobility. It is
therefore necessary to investigate the SB at the refined, layer-specific
level to address these issues and to unpack the complex links between
behaviour and environment.

This study explores whether such patterns exist and if temporal
changes through the SB could be related to subsistence variability. The
aim of this research is threefold. First, on a broad level, it seeks to add
to our knowledge of subsistence behaviour and environmental condi-
tions during the SB at BBC. Second, our aim is to explore zooarchaeo-
logical changes in the SB based on refined analysis of the layers within
this techno-complex. We must note, however, that small samples sizes
can sometimes render that objective unattainable. Third, we wish to
examine the relationship between environmental conditions and sub-
sistence behaviour. Are they linked, and if so, to what extent? By as-
sessing both taphonomic and palaeoenvironmental indicators using the
same faunal sample, we are better able to link data at a more explicit
level and explore variability through time to investigate the connection
between foraging behaviour and environmental conditions.

2. Blombos Cave

2.1. Site background

BBC is ∼300 km east of Cape Town and 25 km west of the town of
Still Bay (Fig. 1). It is located at 34˚25′S, 21˚13′E ∼100m from the
shore of the Indian Ocean and 34.5m above sea level. The entrance to
the cave occurs in a wave-cut cliff formed in calcified sediments of the
Bredasdorp Group geological formation. Table Mountain Sandstone of
the Cape Supergroup forms the basal layer of the caves about 4–6m
below the surface deposits under Bredasdorp Group sediments
(Henshilwood et al., 2001a). These sediments consist of shelly con-
glomerate and marine sands of the De Hoopvlei Formation which is
overlain by the aeolian sands of the Pliocene-aged Wankoe Formation
that represents the volumetric bulk of the Bredasdorp Group (Malan,
1989). Sediments within the cave lie on large blocks of calcarenite
rockfall that have caused the deposits to undulate from back to front. A
‘wrapping effect’ has occurred as sediments slump and drape in re-
sponse to the basal rockfall (Henshilwood et al., 2001a). Ground waters
rich in CaCO3 (calcium carbonate) percolate through the cave roof and
walls, creating an environment suited to the preservation of bone and
shell, particularly near hearths and ash deposits (Henshilwood, 2005).
The surface area of BBC is divided into metre squares and 0.5 m
quadrates. Compared to other MSA cave sites in the southern Cape such
as Pinnacle Point and Klasies River, the interior of the cave is relatively
small: the surface area of the cave floor is ∼55m2 behind the drip line.
The mouth of the cave was virtually sealed off by dune sand when

J.P. Reynard, C.S. Henshilwood Quaternary International 500 (2019) 159–171

160



excavations began. Excavations started in 1991 with regular seasonal
excavations continuing to the present.

2.2. Stratigraphy

The stratigraphic sequence consists of three Later Stone Age and
four MSA occupation phases. The MSA layers are divided into four
phases: the M1 just below BBC Hiatus; the upper and lower M2; and the
M3 at the bottom (Fig. 2). The M1 phase consist of medium brown
sands containing lenses of shell, stone and bone, and many small, basin-
shaped hearths (Henshilwood et al., 2001b; Henshilwood, 2005). The
M1 and upper M2 phases contain SB points, and end and side scrapers
(Goodwin and Van Riet Lowe, 1929; Henshilwood et al., 2001a). These
phases also contain engraved ochre plaques, perforated shell beads,
formal bone tools and an engraved bone fragment and a possible ochre
drawing (Henshilwood and Sealy, 1997; Henshilwood et al., 2001a,
2001b; 2002, 2004, 2018; d’Errico et al., 2005, d’Errico and
Henshilwood, 2007). Three human teeth were also recovered (Grine
et al., 2000; Grine and Henshilwood, 2002). These are the layers that
encompass the SB period and that are analysed in this study. The lower
M2 phase is generally less dense than the M1 or upper M2 and contains
small amounts of flakes, blades and cores, a few pieces of ochre and
hearths. No shell beads, SB points or bone tools were recovered from
this phase (Henshilwood et al., 2001a).

The M1 phase consists of Layers CA, CB, CC, CCC, CD, CDA and
CDB. The upper M2 phase consists of Layer CF, CFA, CFB/CFC and CFD.
In this paper, layers are combined for statistical purposes. Thus, Layers
CFA, CFB/CFC and CFD are grouped into Layer CF, CDA and CDB are
grouped as CD, and CC and CCC are combined as Layer CC. We define
the ‘early’ SB as Layer CF (or the upper M2 phase), the ‘middle’ SB as CD
and CC (the lower M1 phase) and the ‘later’ SB as CB and CA (the upper
M1 phase).

2.3. Dating

The SB levels at Blombos Cave have been dated using various
methods, including optically stimulated luminescence (OSL), thermo-
luminescence (TL) and electron spin resonance (ESR) (Henshilwood
et al., 2002; Jones, 2001; Jacobs et al., 2003a, 2003b, 2006; Tribolo
et al., 2005, 2006). BBC hiatus overlaying the M1 phase was dated by
OSL to 69 ± 5 and 70 ± 5 ka (Henshilwood et al., 2002; Jacobs et al.,
2003a, b, 2006). An OSL age of 72.7 ± 3.1 ka was obtained for the

Fig. 1. Blombos Cave (BBC) along the southern Cape coast of South Africa.

Fig. 2. Stratigraphy and optically stimulated luminescence (OSL) dates for
Blombos Cave. The Still Bay consists of the M1 Phase and Upper M2 Phase.
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upper part of the M1 phase (Jacobs et al., 2003a, b). TL ages for the M1
phase are 74 ± 5 and 78 ± 6 ka (Tribolo et al., 2006). The OSL age
for the upper M2 layers is 76.8 ± 3.1 ka (Jacobs et al., 2006). The SB
levels were resampled for OSL dating in 2010 with the new ages dated
from 75 to 72 ka (Jacobs et al., 2012). Based on these dating results and
those obtained using the TL method, we suggest that 76 ka should be
regarded as the terminus post quem for the SB levels at BBC.

3. Materials and methods

Faunal remains were assessed following Driver (2005) and Klein
and Cruz-Uribe (1984) using the comparative faunal collections of the
Ditsong National Museum of Natural History (formerly the Transvaal
Museum) in Pretoria. We analysed identified faunal remains, and long-
bone fragments not identified to element, recovered from the 2011 and
2013 excavation seasons (Fig. 3). Out of the 6673 mammalian and
tortoise specimens identified, a total of 656 specimens (9.8%) could be
assigned at least to the class level. Taxa, element, skeletal portion, side,
state of epiphyseal fusion and types of surface modification were re-
corded for all specimens. Faunal specimens were assessed for surface
modification following standard criteria (Behrensmeyer, 1978;
Blumenschine and Selvaggio, 1988; Fisher, 1995; Blumenschine et al.,
1996) using a Nikon binocular light microscope (10–40× magnifica-
tion) under oblique, unidirectional, incandescent lighting. Following
Thompson et al. (2017), we use only midshafts of long bones when
documenting surface modification. Our study also includes unidentified
long bone midshafts (cf. Reynard et al., 2016a). The lengths of all
faunal specimens were classed as code 1 (0–0.9 cm), code 2 (1–1.9 cm),
code 3 (2–2.9 cm), etc.

Teeth, astragali and distal phalanges were used to identify speci-
mens to genus or species. Bovid post-cranial remains are categorised to
size class based on Brain (1974). Indeterminate mammal remains that
could only be consigned to element (e.g., cranial and vertebral frag-
ments) were assigned to ‘very small’, ‘small’, ‘medium’ or ‘large’ in-
determinate mammal size classes. Very small mammal are species

smaller than the Cape dune molerat (Bathyergus suillus), small mammals
ranging in size from the Cape dune molerat up to and including size 1
bovids, medium mammals correspond to size 2 bovids, large mammals
to size 3 bovids and larger. We differentiate between ‘Large mammal’
and ‘Large ungulate’. Large mammal includes all specimens identified
to element (including taxonomically indeterminate elements), while
‘Large ungulate’ remains comprise identified size 3, 4 and 5 bovids, and
perissodactyls and exclude indeterminate large mammal elements such
as cranial, rib and vertebral specimens. Because of the general lack of
large carnivore remains in our sample (cf. Henshilwood et al., 2001a),
most ‘medium mammal’ specimens probably belong to size 2 bovids.
Tortoise remains were tallied but not included in our analysis. We
‘normalize’ the number of identified specimens (NISP) to adjust for the
expected frequency that a particular skeletal element should occur in
the complete carcass of an ungulate (see Reynard et al., 2016a). Ske-
letal-parts of ungulates are categorised into five skeletal groups: the
head, forelimb, hindlimb, distal limbs and extremities (Table 1). Where
density mediated attrition has affected element representation, only
high-survival elements (skulls and long-bones) are used in our classi-
fication of skeletal-groups (cf. Marean and Cleghorn, 2003). Because
skull bones and long bones occur in pairs (cf. Clark, 2013), we use raw
NISP values to demonstrate whether skeletal-groups in ungulates were
affected by density-mediated attrition.

We also measure ungulate richness and diversity. Ungulate diversity
is associated with environmental productivity and may be linked to
precipitation and/or moisture availability (Thackeray, 1980; Faith,
2013b). Richness is usually described by the number of ungulate taxa
(NTAXA) within an assemblage. Because NTAXA is affected by sample
size, residual analyses were also conducted. This was then compared to
Fisher's alpha (α), a measure of diversity relatively insensitive to
sample size discrepancies (Magurran, 2004; Faith, 2013b). Due to a lack
of assessable teeth, specimens with epiphyseal plates such as phalanges,
long-bones and vertebrae fragments were examined for indicators of
age. Bone with fused epiphyses are categorised as adult, while those
that were ‘unfused’ or ‘recently-fused’ are classed as juvenile. For a
specimen to be examined, at least one end should have an epiphysis. We
were able to assess 205 specimens for epiphyseal fusion.

4. Results

4.1. Taphonomic history

4.1.1. Fragmentation
The extent of the fragmentation of bone assemblages relate to site

preservation or anthropogenic processes. Bone density-mediated attri-
tion is therefore critical when evaluating the taphonomic history of an
assemblage. Generally, both medium-sized and large ungulates at BBC
are affected by bone density-mediated attrition (Table 2). Size 1 bovids
are not affected, probably due to a combination of taphonomic influ-
ences (e.g., larger ungulate elements are more likely to fragment be-
cause long bones with narrower diameters, such as those from smaller
elements or species, tend to resist fragmentation better than those with
larger diameters [Johnson, 1985; Marean, 1991]) or behavioural pat-
terns such as transport strategies (entire carcasses were transported
back to the home-base). Following Marean and Cleghorn (2003), if only

Fig. 3. Site map of Blombos Cave. Lowercase letters represent squares ex-
amined in this study.

Table 1
Classification of skeletal groups.

Skeletal group All elements High survival only

Head Cranium, mandible, hyoid,
horncores

Cranium, mandible,
horncores

Forelimb Scapula, humerus, radius, ulna Humerus, radius, ulna
Hindlimb Innominate, femur, patella, tibia Femur, tibia
Distal limb Carpals, tarsals, metapodia Metapodia
Extremities Phalanges, sesamoids –
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high-survival elements – i.e., the skull and long-bones – are included in
the analysis, taphonomic attrition is less likely to affect skeletal-part
profiles.

Fragment lengths for unidentified long-bone fragments are rela-
tively small (mean code= 3.2). Fragment lengths for all faunal speci-
mens through the sequence – including unidentified faunal specimens –
indicate that the majority of specimens (n= 997; 43%) are length code
3 (2–2.9 cm long), with 31% (n= 722) of specimens code 2. There is no
significant difference in the frequencies of lengths between CA and CB
(χ2= 6.613; df= 3; p=0.0853), and CB and CC (χ2= 1.163; df= 3;
p=0.7618) (Fig. 4). However, there are significant differences be-
tween CC and CD (χ2= 81.056; df= 3; p < 0.0001) and CD and CF
(χ2= 22.856; df= 3; p < 0.0001). Layer CD has, proportionally, the
smallest fragments, followed by CF.

4.1.2. Surface modification
Percussion marks occur on 15.2% (n=76) of specimens and are

most common in Layer CB (20.2%, n=17) (Table 3). Cut marks (8%;
n=40) are slightly more prevalent than tooth marks (6.2%; n= 31)
but not significantly so (χ2= 1.228; df= 1; p=0.2678) while gnaw
marks are rare (0.6%; n=3). Cut marks are proportionally more
common in CB (n= 12; 14.3%) with one cut-marked specimen in CF.
Only two specimens – in CA – display gastric-acid etching (n=2, 2%)
and one specimen in CF was weathered.

4.2. Processing activities

On the whole, ungulates were extensively processed at BBC. Cut
marks are significantly more common on larger mammals than size 2
bovids (Fig. S1 χ2= 5.065; df= 1; p=0.0244). Cut marks on pha-
langes may be indicative of skinning but few phalanges at BBC display
these marks (n=3; 5.8% of all phalanges). Only three metapodial
fragments display cut marks (4.7% of metapodia of all taxa). Overall,
evidence of skinning is not common at BBC but this probably related to
sample sizes. Previous research by Thompson (2008) suggests that fil-
leting was common at BBC. Filleting is often implied when cut marks
are prevalent on the mid-shafts of long-bones (Dominguez-Rodrigo,
1999; Thompson, 2008; Galán and Domínguez-Rodrigo, 2013). Our
study indicates that the mid-shafts of ungulate long-bone are the most
common region to exhibit cut marks (7.7% [4/52] of proximal ends,
13.8% [13/94] of shafts and 2.5% [1/40] of distal ends display cut
marks). Percussion marks shown in Table 3 may indicate bone marrow
extraction. Percussion marks are more likely to occur on ungulate fe-
mora (NISP=10; 40%) and tibiae (NISP=9; 36%) with no crania,
humeri or radio-ulnae displaying evidence of impact marks.

4.2.1. Utility indices
Utility data are influenced by numerous factors: small sample sizes,

equifinality in element abundance and/or the use of caribou to extra-
polate information on African bovids or other factors such as bone tool
manufacturing. Although bone tool production is outside of the scope of
this study, 20% (n=98) of long-bone specimens in our sample were
probably bone tools or fragments thereof (Table 3; see also
Henshilwood et al., 2001b and d’Errico and Henshilwood, 2007). De-
spite this, theoretical modelling of nutritional utility is a useful means
of inferring transport decisions and understanding foraging behaviour
(Morin and Ready, 2013).

We compare utility indices and skeletal-abundance for all elements
and high-survival elements (Marean and Cleghorn, 2003). Table 4
shows a range of relationships between element abundance and nutri-
tional utility for small, medium and large ungulates. Because size 1
bovids have not been significantly affected by taphonomic destruction,
we did not restrict our analysis to only their high-survival elements.
Size 1 bovids are positively correlated with marrow utility. Interest-
ingly, the only significant relationships between medium-size and large
mammal abundance and utility indices are when all elements are in-
cluded in the analysis, and not just high-survival bones. For both
medium-size and large mammals, there are inversely proportional
correlations between skeletal abundance and meat-drying utility.
Evenness index for large mammals at BBC points to a ‘bulk’ element
transport strategy according to Faith and Gordons’ (2007) model for a
MNE of 50 elements. Medium mammal (size 2) element evenness data
are inconclusive. In any case, the correlation between high-survival
element abundance and SFUI for both medium and large bovid samples
is not significant, militating against any strong evidence for a particular
transport strategy (Table 5).

4.3. Mortality profiles

For all identified taxa, slightly more specimens at BBC were noted as
juveniles (number of unfused/recently-fused ends [n]= 125; 30.5%)
compared to fragments with fused ends or adults (n= 122; 29.8%).
There is a significant decrease in juveniles from the upper M2 through
the M1 phase (χ2= 8.579; df= 2; p=0.0137) (Fig. 5). There is no
significant difference between small mammals and bovid (for adult vs.
juvenile: χ2= 0.0192; df= 1; p=0.8898) (Fig. 6a). Carnivores consist
of significantly more adult remains compared to bovids (χ2= 6.353;
df= 2; p= 0.0417) or small mammals (χ2= 5.211; df= 2;
p=0.0224).

With regard to bovids, size 2 bovids have the highest proportion of
juveniles (n= 23; 56.1%) while size 1 bovids have the most adults

Table 2
Spearmans' rank-order correlation between skeletal-element abundance
(normed NISP) of medium and large ungulates and ‘high survival’ element bone
densities (caribou and wildebeest data in Lam et al., 1999). Medium mammal
and Size 2 bovids compared to caribou data. Large mammals compared to
wildebeest data. Significant values emboldened.

Sample Blombos Cave

rs p

Medium mammala (all elements) 0.376 0.045
Size 2 bovida (high survival) 0.437 0.103
Larger mammalb (all elements) 0.353 0.038
Larger mammalb (high survival) 0.282 0.256

a Medium mammal comprises size 2 bovids and indeterminate ‘medium
mammal’ remains.

b Larger mammal equals size 3, 4 & 5 bovids, perissodactyls and in-
determinate ‘large mammal’ remains. See Table 2 for the definition of high-
survival elements. BMD values were assigned to proximal, medial & distal
portions of long-bone & rib, and to the densest portions of vertebrae, scapulae,
pelves & mandibles.

Fig. 4. Fragment lengths through the Still Bay. Code 5+ = Codes 5 and above.
Number of specimens in columns.
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(n= 50; 53.2%) (Fig. 6b). There are significant differences in neonates,
juveniles and adults between size 1 and 2 bovids (χ2= 17.749; df= 2;
p=0.00014). Large mammals have equal proportions of juveniles and
adults (for both: n=13; 40.6%) and there is no significant difference in
age classes between size 2 bovids and large mammals (χ2= 2.381;

df= 2; p= 0.304). There are no significant differences in adults and
juveniles between small mammals and size 1 bovids (χ2= 0.381;
df= 2; p= 0.5369) or between small mammals and size 2 bovids
(χ2= 2.988; df= 2; p= 0.0839).

4.4. Skeletal-part profiles

To assess skeletal-part profiles, we only use high-survival elements
since ungulates are affected by density-mediated attrition (Table 2).
The data presented in Fig. 7 are raw NISP values because all high-
survival elements – including crania and mandibles – are paired (see
Reynard et al., 2016a).

Medium mammals (Fig. 7a) and size 1 bovids (Fig. S2) are domi-
nated by skull remains. Skulls are significantly more common than
long-bones for medium mammals compared to size 1 bovids (Fig. S3;
χ2= 14.83; df= 1; p=0.0001). Generally, large mammal crania are
rare (Fig. S4) with skulls from medium mammals significantly more
common than those of large mammals (χ2= 27.940; df= 1;
p < 0.0001 for skulls and high-survival post-cranial elements between
medium and large mammals). The proportion of crania and mandibles
is also significantly different between medium and large mammals
(χ2= 18.910; df= 1; p < 0.0001).

The prevalence of large mammal long bones is probably because
large mammals yield more meat and marrow. On the whole, fewer
elements of medium mammals were recovered than either large
mammals or size 1 bovids. There are proportionally more skull remains
of size 2 than size 1 bovids. This may be the result of identification bias:
skull fragments were easier to categorise as size 2 than size 1 bovids due
to the difficulty in discerning hyrax and other small mammals from
some small bovids. Size 1 skull specimens may therefore be under-es-
timated. Layer CD generally has few post-cranial remains relative to the
other layers. Fisher's exact tests show no significant differences between
skulls and long-bones through the layers. The variability in skeletal-
parts may be the result of the general lack of medium mammal remains

Table 3
Surface modifications on long bones in the Still Bay at Blombos Cave.

Layer N Percussion Marks Cut Marks Tooth Marks Gnaw Marks Acid-etching Root etching Weathering Worked bonea

n % n % n % n % n % n % n % n %

CA 100 8 8.0 9 9.0 9 9.0 0 0 2 2 6 6.0 0 0 14 14.0
CB 84 17 20.2 12 14.3 4 4.8 0 0 0 0 7 8.3 0 0 11 13.1
CC 114 22 19.3 9 7.9 6 5.3 0 0 0 0 6 5.3 0 0 34 29.8
CD 97 14 14.4 9 9.3 0 0 0 0 0 0 7 7.2 0 0 11 11.3
CF 106 15 14.2 1 0.9 12 11.3 3 2.8 0 0 6 5.7 1 0.9 28 26.4
Total 501 76 15.2 40 8.0 31 6.2 3 0.6 2 0.4 32 6.4 1 0.2 98 19.6

a Worked bone are abraded specimens that have possibly been intentionally polished (based on Reynard, 2014).

Table 4
Spearmans’ rank-order correlation between skeletal-abundance (nNISP) and
Standardised Food Utility Indices (SFUI), Meat Utility Indices (MUI),
Unsaturated Marrow Indices (UMI) and Meat Drying Indices (MDI) for all ele-
ments and high-survival elements. Indices data from Metcalfe and Jones (1988)
and Morin and Ready (2013). Size 1 bovids compared to sheep data, medium
mammal and size 2 bovids compared to caribou, and large mammal compared
to bison data. Emboldened values are significant (p < 0.05).

Samples UMI MDI

r p-value r p-value

Size 1 bovid (all elements) 0.688 0.0134 −0.452 0.0518
Medium mammal (all elements) 0.643 0.1194 −0.732 0.0068
Size 2 bovid (high survival) 0.427 0.3390 −0.340 0.3702
Large mammal (all elements) 0.857 0.0015 −0.625 0.0043
Large mammal (high survival) 0.493 0.3333 0.029 0.9833

Samples MUI SFUI
r p-value r p-value

Size 1 bovid (all elements) −0.155 0.5274 −0.226 0.1997
Medium mammal (all elements) −0.556 0.0604 −0.357 0.1914
Size 2 bovid (high survival) 0.021 0.9572 −0.366 0.3333
Large mammal (all elements) 0.171 0.4836 −0.093 0.7124
Large mammal (high survival) 0.232 0.6722 0.422 0.3456

Medium mammals comprise size 2 bovids and indeterminate ‘medium mammal’
remains. Larger mammal comprise size 3, 4 & 5 bovids, perissodactyls and
indeterminate ‘larger mammal’ remains.

Table 5
Skeletal element evenness (embolden) for size 2 bovid and large mammals at
Blombos Cave.

Elements Size 2 bovid Large mammal

Crania 39 1
Mandibles 10 11
Humerus 2 5
Radius 7 7
Ulna 2 5
Metacarpal 4.5 7
Femur 3 11
Tibia 4 10
Metatarsal 5.5 8
Total 77 65
Element evenness 0.751 0.949
Spearman's rho −0.366 0.422
Transport strategy Inconclusive Bulk?

Larger mammal comprise size 3, 4 & 5 bovids, perissodactyls and indeterminate
‘large mammal’ remains.

Fig. 5. Faunal mortality profiles in the Still Bay at Blombos Cave.
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mentioned earlier. Size 2 elements are especially lacking in CA and CB
(Fig. 7a).

For large mammals, skull remains are generally not common
throughout the SB sequence and post-cranials are proportionally more
prevalent (Fig. S4). Proximal limbs are more common than distal limbs
(Fig. 7b) probably because these are more meat and marrow-bearing
elements than the extremities. As with medium mammals, few large
mammal remains occur in CD. Fisher's exact tests suggest no significant
differences between skeletal regions of large mammals between most
layers.

4.5. Taxonomic and palaeoenvironmental assessment

Tortoise is the most prevalent taxon (cf. Thompson and
Henshilwood, 2014b) but small mammals are also relatively common at
(NISP=79; 46.8% of taxa identified to genus) (Table 6). Size 1 bovids
such as steenbok/Cape grysbok (Raphicerus sp.) are the most common
ungulates. Large ungulates such as eland (Tragelaphus oryx) and the
long-horned buffalo (Syncerus antiquus) were also identified. Due to the
relatively small sample size of identified taxa, the mammalian fauna
identified by Klein and Cruz-Uribe in Henshilwood et al. (2001a) is also
presented (Table 6). Cape fur seal are noticeably more common in their
assemblage, as are eland and rhinoceros. Other taxa identified by Klein
and Cruz-Uribe but not in our sample include hippopotamus (Hippo-
potamus amphibious) and bluebuck (Hippotragus leucophaeus) (see
Henshilwood et al., 2001a for a detailed list of fauna identified).

In terms of mammals, size 1 bovids are the most numerous taxa
followed by small mammals. Large ungulates dominate CB while size 1
bovids are more common in CF (Fig. 8a). Small mammals are relatively
common in CD. There are significant difference in the proportion of

taxa between CC and CD (χ2= 16.818; df= 4; p=0.0021) and be-
tween CD and CF (χ2= 28.710; df= 4; p < 0.00001) which probably
relate to the substantial decrease in size 1 bovids from CF to CD and the
increase in large ungulates from CD to CC. Browsers are prevalent
throughout the sequence but are significantly more common in CF (CF
vs. all other layers for browers and mixed-feeders/grazers: Fisher's
exact test, p= 0.0037) (Fig. 8b). Mixed-feeders/grazers become more
common in the later SB (CC-CA).

There is generally an exponential relationship between the number
of taxa in an assemblage and sample size: as sample sizes increase, taxa
become more abundance (Lyman, 2008). In our dataset, ungulate
NTAXA is significantly correlated to log transformed ungulate NISP
(rs= 0.85714; p= 0.0137). To account for sample size discrepancies,
we conduct a residual analysis. Positive residual values indicate more
taxa than predicted by the regression, while negative residuals indicate
fewer species than expected. Fisher's alpha is significantly correlated to
residuals, which suggest that both metrics have similar estimates of
richness and diversity. Residual values are the most positive in CC and
lowest in CF (Table 7). Fisher's alpha, likewise, reflects this trend.

5. Discussion

In the following sections, we first discuss how the data relate to the
Still Bay assemblage as a whole and then, where possible, explore
diachronic changes within the Still Bay based on layers or phases.

5.1. Subsistence behaviour

Taphonomic data from our sample and that analysed by Thompson
(2008; Thompson and Henshilwood, 2011) suggest that, although hu-
mans were the dominant accumulators, carnivores had a significant
effect on the BBC assemblage. The SB at BBC was thus likely a ‘human

Fig. 6. Mortality profiles for (a) mammalian taxonomic groups, and (b) un-
gulate size classes in the Still Bay at Blombos Cave. Small mammals comprise
identified lagomorphs, Cape dune mole rat and hyrax remains and excludes
small carnivores. Carnivore excludes seal. Large ungulate comprise identified
size 3, 4 & 5 bovids, and perissodactyls. Number of assessed ends in columns.

Fig. 7. Distribution of (a) medium mammal, and (b) large mammal skeletal-
parts in the Still Bay at Blombos Cave.
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first’ faunal assemblage where humans were the primary collectors of
the remains, followed by animal scavenging (Fig. S4; Blumenschine,
1988). In the early SB (Layer CF), we see evidence of more animal in-
volvement in the assemblage compared to the middle and later SB.
Fragmentation data show that CD and CF have the smallest specimens.
The data in Fig. 4 suggest that CF and CD are different to the later SB
(CC-CA) and these differences may represent changes in site formation
history. Layer CD is an especially interesting layer given the fragmen-
tation data and the lack of ungulate remains there, but the particulars of
CD will be discussed later.

Skeletal element evenness data indicate that the bulk of large
mammal remains were likely transported back to the BBC home-base.
Evenness values also suggest that medium-sized mammals were treated
differently from large mammals implying that most size 2 mammals
were processed in the field. This could also be related to filleting. If
filleting was an important activity at BBC – and cut mark data indicate
it was – then this may suggest a subsistence strategy reliant on meat-
storage. The likely drying of mussel meat on the south-western Cape
coast in the Late Holocene also attests to the importance of storage by
hunter gatherers (Henshilwood et al., 1994). Filleting is an important
phase in meat-storage and in equatorial and subequatorial regions,

drying meat is essential to meat storage. In fact, we may see evidence of
meat drying in our utility data. The data for all elements indicate sig-
nificant inverse correlations between skeletal abundance and meat-
drying indices (MDI) which may occur when skeletal-parts are left be-
hind after high-utility elements are transported to other locations
(Friesen, 2001, pp. 329). However, the significantly correlated utility
values in Table 5 are derived from all elements and not high-survival
elements. It is therefore likely that taphonomic destruction would have
had a major effect on these data and it would be problematic to use it to
infer transport decisions (Faith and Thompson, 2018). Still, other data
also point to evidence of meat-drying. Indeed, what the evenness and
cut mark data may suggest is that meat – especially from size 2 bovids –
may have been taken from BBC to be consumed elsewhere. Since BBC
was probably not a kill-site (Henshilwood et al., 2001a), it could mean
that prey was first transported to the cave, processed, and then moved
to other locales.

5.2. Mortality profiles

Neonate and juveniles are generally more common for size 2 bovids
and large ungulates than for size 1 bovids. The similarity in age profiles

Table 6
Number of identified specimens (NISP) at Blombos Cave (BBC). ‘Total Identified’ include tortoise. ULBF=unidentified long-bone fragments.

Order Taxa Common Name CA CB CC CD CF Total KC M1a KC M2a

Chelonii Testudinidae Tortoise 1397 539 899 756 1665 5256
Chersina angulata Angulate tortoise 97 65 127 63 127 479

Lagomorpha Lepus sp. Hare 2 – – – 1 3 25 15
Lepus capensis Cape hare – – – 1 – 1 11 4

Rodentia Bathyergus suillus Cape dune molerat 3 – 8 6 3 20 419 303
Hystrix sp. Porcupine – 1 – – – 1 1 –

Carnivora Herpestes sp. Mongoose – – 1 – 1 2 3 4
Arctocephalus cf. pusillus Cape fur seal 2 – 13 1 5 21 126 32
Felis lybica African wildcat 1 – – – – 1 16 1
Felis caracal/serval Caracal/serval – – 1 1 1 3 – –
Vulpes chama Cape fox – – – – 5 5 – –

Hyracoidea Procavia capensis Rock hyrax 1 4 7 11 25 48 169 190
Perissodactyla Rhinicerotidae indet. Rhinoceros 1 1 – – – 2 16 6

Equus sp. Zebra 1 – – – – – – –
Ruminantia Tragelaphus oryx Eland – 3 1 – – 4 48 8

Syncerus caffer African buffalo – – 2 – 1 1 2 –
Syncerus antiquus Giant buffalo – – 1 1 – 2 – –
Pelea capreolus Grey (Vaal) rhebok – – 1 – 1 2 6 2
Raphicerus sp. Steenbok/grysbok 8 2 5 3 34 52 111 51
Oreotragus oreotragus Klipspringer 1 – 2 – 2 5 – –
Sylvicapra grimmia Grey duiker 1 – 1 – – 2 – 2
Alcelaphini indet. Hartebeest or wildebeest – – – – 1 1 5 –

Taxa Common Name CA CB CC CD CF Total KC M1a KC M2a

Bovidae indet. Bov I 12 8 26 13 62 121 382 360
Bov I/II – – 1 1 4 6
Bov II 12 5 17 17 13 64 74 51
Bov II/III 2 – 2 1 – 5
Bov III 8 5 10 2 11 36 91 50
Bov III/IV 5 7 9 4 7 32
Bov IV 5 5 6 2 10 28 183 58
Bov IV/V 1 – – 3 – 4
Bov V – 2 2 – – 4
Large ungulate – 2 2 – 4 8

Carnivora indet. Small carnivore – – 1 – 3 4
Medium carnivore 2 – – 2 2 6

Mammal indet. Very small mammal 3 6 19 8 21 57
Small mammal 17 18 47 23 57 162
Medium mammal 27 21 75 16 30 169
Large mammal 4 16 16 3 14 53
Very large mammal – 1 1 – – 2

Total Identified 1613 711 1301 938 2110 6673 1729 1167
Total ULBF 76 70 88 85 71 390
Total Unidentified 4350 3541 8887 3516 5703 25997
Grand Total 5942 4257 10149 4476 7757 32581

a KC M1 & KC M2=BBC M1 & M2 layers analysed by Klein& Cruz-Uribe (Henshilwood et al., 2001a).
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between large ungulates and size 2 bovids, and the difference between
these and size 1 bovids may point to different accumulation techniques
(Fig. 6b). The mortality data from BBC may indicate that medium and
large bovids were hunted along similar lines, or at least during similar
seasons. In contrast to size 2 and large ungulates, small mammals and
size 1 bovids have a very few neonate remains, and their age profiles
appear very similar (Fig. 6). This may imply either different hunting
techniques or that non-human bone collectors played a role in their
accumulation. It is possible that small mammal and size 1 bovid ac-
cumulation may have occurred through remote capture techniques such
as trapping or snaring. The presence of carnivores in the assemblage
may reinforce this possibility since these animals are more likely to be
captured in traps than through encounter hunting (Wadley, 2010).
Given the relative prevalence of tooth marks at BBC, it is also feasible
the small mammal/size 1 bovid mortality profiles may be the result of
scavengers. In all likelihood, it may have been a combination of both.

The significant difference in mortality profiles between carnivores
on the one hand, and bovids and small mammals on the other, suggest
different strategies in their accumulation. Generally, small mammals
and bovids have a similar mortality distribution consisting of a rela-
tively large number of juveniles (Fig. 6a). Some studies have suggested
that the significant number of bovid and seal juvenile remains at BBC
may be due to seasonality (e.g., Faith and Thompson, 2013; Dusseldorp
and Langejans, 2015). The decrease in juveniles from the early SB (CF)
through the later SB (M1 phase), for example, could be linked to sea-
sonal occupations driven by bovid calving. Carnivore remains, on the
other hand, are generally adult-dominated which could point to a dif-
ferent strategy. If these carnivore bones were the remains of scavengers
using BBC as lairs then we would expect to find more juvenile and
neonate remains (Kuhn et al., 2010). Even though no cut marks were
observed on them, the prevalence of matured specimens makes it pos-
sible that these carnivore remains are the result of hunting for skins.

5.3. Transport decisions

Skeletal parts profiles are useful in exploring transport distances. To
investigate variation in transport distances, we examine the proportions
of skulls to post-cranial remains of ungulates. Research on modern
foragers suggests that the proportion of ungulate skulls to post-cranials
decline as foraging distances increases (O’Connell et al., 1988). Simi-
larly, the ratio of crania to mandibles may also depend on transport
distances (Speth and Clark, 2006). Mandibles – which contain some
marrow and the tongue – are more likely to be removed from the skull
at the kill-site with increasing foraging distances while the heavier
cranium is left behind. If the proportion of skulls/crania is a function of
foraging range then the lack of skull bones at BBC – and crania in
particular – is indicative of increased transport distances for larger
bovids during the SB. In our sample, 19.7% (n= 13) of high-survival
elements in the large mammal assemblage are skull specimens. Fur-
thermore, cranial specimens are also substantially less common than
mandibular remains in the large mammal assemblage compared to the
medium mammal collection (Figs. S3 and S4). The distributions of large
mammal skeletal-parts are not significantly different through the SB
layers, with the exception of layer CD. Very few large ungulate ele-
ments were recovered in this layer and it is possible this may relate to
lower occupational intensity at that time (Reynard and Henshilwood,
2018) but this will be discussed later.

5.4. Palaeoenvironment

Research suggests that marine regressions from the early to the later
SB coincided with a changing environment (Fisher et al., 2010;
Hillestad-Nel and Henshilwood, 2016). Fisher et al. (2010) show that,
from ∼85 to 75 ka (likely during the upper and lower M2), the
shoreline off BBC averages between 2 and 4 km away from the site.
Their model indicates that, by c. 72 ka, (the M1 phase) the sea retreated
to over 15 km which suggests a gradual marine regression through the
SB. Yet our data show shellfish density dropping significantly from CF
to CD, then increasing gradually to CB (Fig. 9). Shellfish data are
sometimes used as a proxy for distances to shorelines with lower
shellfish densities signifying regressed shorelines at coastal sites (Fisher
et al., 2010; Marean, 2010; Reynard et al., 2016b). Optimal foraging
models also propose that lower sea levels would result in a drop in
shellfish density (Dusseldorp and Langejans, 2013). The discrepancy
between Fisher et al.’s model and our shellfish data suggests one of two
things. Either marine regression through the SB may not have been a
gradual but rather a punctuated process and other geomorphological or
environmental factors may have affected short-term sea level fluctua-
tions during that time (Caputo, 2007), or the shellfish densities reflect
the influence of additional factors such as taphonomic processes or site-
use intensity (see Reynard and Henshilwood, 2018).

If these shellfish data correspond to shoreline fluctuations then it

Fig. 8. (a) Distribution of taxonomic groups in the Still Bay at Blombos Cave.
Large ungulate comprise identified size 3, 4 & 5 bovids, and perissodactyls.
Small mammals comprise identified lagomorphs, Cape dune mole rat and hyrax
remains and excludes small carnivores. (b) Ungulate dietary preference in the
Still Bay at Blombos Cave. Br= browsers; MF=mixed-feeders; Gr= grazers.

Table 7
Richness (NTAXA), residuals and diversity values for the Still Bay at Blombos.
BBC=our Blombos Cave data; KC BBC= fauna from M1 and M2 Phases
analysed by Klein and Cruze-Uribe in Henshilwood et al.(2001a).

Dataset NTAXA NISP Residuals Fishers α

CA 5 12 0.413 3.217
CB 3 6 −0.152 2.387
CC 6 11 1.594 5.401
CD 2 4 −0.313 1.592
CF 4 33 −2.685 1.192
BBC 9 66 0.881 2.815
KC BBC 12 379 0.263 2.359
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may raise important paleoenvironment considerations. There is a sig-
nificant inverse correlation between grazers and shellfish density
during the SB (rs=−0.900; p=0.0374). If this reflects marine re-
gression then it suggests that as sea levels retreated, the area sur-
rounding BBC became more grass-dominated (Figs. 8band 9). This
implies that cooler temperatures associated with glacial periods (and
receding sea levels) are linked to an increase in grasslands during the
SB. If shellfish density per layer does not correspond to shoreline re-
gression then it may reflect changing mobility patterns during the SB.
The correlation between grazers and shellfish density could be a func-
tion of foraging decisions where increased mobility is linked to less
shellfishing and an increase in the exploitation of larger, more gregar-
ious ungulates. Given that taphonomic processes, depositional rates,
and environmental factors all affect shellfish density volumes
(Jerardino, 1995, 2016; Ricciardi and Bourget, 1999), it is likely that
the changing shellfish densities through the SB sequence are, at least in
part, a result of environmental trends, site formation processes and
occupational patterns.

The increase in larger ungulates from the early to later SB and the
corresponding decrease in size 1 bovids and smaller mammals may
reflect ungulate communities’ reaction to the changing availability of
the exposed SCP. Fluctuating shorelines would have affected ungulate
populations and human access to large, grazing herds (Faith and
Behrensmeyer, 2013). Changing vegetation would also result in shifts in
species compositions and bovid communities. In the area surrounding
BBC, the vegetation of the immediate coastal belt generally consists of
typical lowland fynbos with grassier renosterveld further inland (Bergh
et al., 2014). As sea levels fluctuate, and dependent on the soil type, this
band of fynbos may track the coastline. The result could be that the area
surrounding near-coastal MSA sites may switch from bushy to grassy
and vice versa (Faith and Behrensmeyer, 2013). This may be what is
documented at BBC. Taphonomic data also point to different foraging –
and possibly mobility – strategies in the early SB (Reynard and
Henshilwood, 2018). This could be related to the influence shellfish had
on subsistence strategies and may speak to seasonality (Jew et al.,
2013). For example, Haliotis midae and Scutellastra argenvillei occur
more frequently at BBC than predicted by foraging models and their
exploitation may be the result of seasonal visits to the site (Langejans
et al., 2012).

Ungulate diversity and/or richness may be associated to primary
environmental productivity and precipitation (Coe et al., 1976;
Thackeray, 1980; Radloff, 2008; Faith, 2011, 2013b). There is generally
more ungulate diversity as precipitation increases in low to medium-
rainfall environments with precipitation up to ∼750ml/year, declining
thereafter (Olff et al., 2002). Residual and diversity values in Table 7
suggest that precipitation may have been lower in the early SB (CF) and

relatively higher in the middle period (CC). What this could mean is
that periods of marine regression coincided with more rainfall, which
would suggest that glacial periods were wetter in the southern Cape.
This supports research by Chase (2010) who has argued that the cooler
MIS 4 is linked to more humid conditions in the southwestern Cape
brought about by a shift in subtropical circulatory systems. However,
the contrasting diversity values between CC and CF could also be linked
to the availability of land on the SCP. Researchers have suggested that
large grazing ungulate communities would likely migrate to the ex-
posed areas of the SCP as sea levels retreat (Compton, 2011; Faith,
2011). A decline in ungulate richness could therefore be linked to a loss
of suitable grassy habitats resulting from rising sea levels (Brink and
Lee-Thorp, 1992; Marean, 2010; Faith, 2011).

5.5. Temporal trends during the Still Bay

The significant differences in surface modification frequencies be-
tween the early SB (CF) and later SB phases (CA-CB) probably relates to
occupational patterns. Our research suggests that, although CC and CF
were both probably high occupational phases, these periods reflected
different occupational trends with one being a more intense, longer-
term phase and the other showing evidence of more frequent, multiple
occupations (Reynard and Henshilwood, 2018). Changes in occupa-
tional patterns during the SB may also be linked to mobility patterns.
Residential mobility occurs when groups move between different re-
sidential camps whereas logistical mobility describes groups, based at a
central home-base, who embark on logistical trips to outlying camps
(Binford, 1980). Binford (1980) also suggests that dispersed solitary
resources are best exploited through residential mobility, while gre-
garious, predictable resources (occurring in relatively low densities)
may best be exploited using logistical mobility (see also Dusseldorp,
2014). We may therefore be seeing changes in mobility patterns from
the early to the middle/later SB at BBC. This, in turn, may reflect
shifting foraging strategies possibly based on changing availability of
faunal resources.

The significantly different subsistence trends evident in CD may be
when these changes occurred. CD yields the most fragmented faunal
specimens (Fig. 4). This could indicate evidence of increase processing
and imply that CD was a high occupation period. However, CD has
significantly more small mammals and size 1 bovid remains than other
layers, so smaller fragments could be a result of smaller fauna. Fur-
thermore, both macro-taphonomic data (Reynard and Henshilwood,
2018), and micromorphological and geoarchaeological research
(Haaland, 2017) show that CD was a low-intensity occupational phase
with occupations becoming more intense in a later period (CC). This is
interesting since, if CD was a low-occupational period, we would expect
higher frequencies of tooth marked bone there, yet it has no tooth-
marked long bone fragments. What may be at play here are depositional
issues and changes in site formation processes. Discamps and
Henshilwood (2015) note that lateral variability is relative extensive in
the SB layers and, given the small number of ungulate long bones re-
covered in CD, tooth mark frequencies would vary. It is also possible
that environmental conditions played a role and CD represents a period
of resource stress resulting from environmental change. This is also the
layer that yields the least shellfish densities which suggest either lower
occupational intensity or increased marine regressions. Less intense
occupations may have, in turn, encouraged changes in foraging and
mobility patterns. Whatever the case, Layer CD represents a change
between the early and later SB phase and more work needs to be done
in exploring this period.

The data show significant differences in environmental conditions
between the browse-dominated early (Layer CF) and the grassier
middle/later SB (CA-CD) (Hillestad-Nel and Henshilwood, 2016). This
may be related to the shift from MIS 5a to 4 since the SB at BBC seems
to have occurred during this transition (Hillestad-Nel and Henshilwood,
2016 but see Chase, 2010 who argues that the SB encompassed MIS 4).

Fig. 9. Shellfish density per volume in the Still Bay at Blombos Cave. Data
courtesy of Karen van Niekerk and from Henshilwood et al. (2001a).
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Prey selection would have been affected by this changing environment
and may be linked to raw material procurement strategies. Silcrete
sources are not found in the near vicinity of BBC (Villa et al., 2009). Yet
silcrete is more common in the later than the earlier SB which suggests
shifting mobility patterns as the environment changes (Henshilwood
et al., 2001a; Reynard and Henshilwood, 2017, pp. 124). Indeed,
foraging distances may have been affected by environmental condi-
tions. There is a significant inverse correlation between the proportion
of grazers present in the assemblage and the proportion of large
mammal skulls (rs=−0.900; p=0.0374; Figs. 7band 8b) which also
suggests that, as the terrain became more grass-dominated, the dis-
tances embarked on to hunt these large mammals increased. Increasing
transport distances could be a product of the expanding SCP during
periods of marine regression. The early SB probably coincided with a
closer shoreline and occupations at BBC may have been influence by
shoreline regressions. In fact, visits to BBC – especially during the early
SB period – may have been seasonal and influenced by bovid calving.
Thompson and Henshilwood (2014b) suggest that site abandonment at
BBC may be associated with a marine regression and the resultant over-
exploitation of key local resources such as tortoise. They also argue that
increasing evidence for symbolically-mediated ornamentation and SB
hunting-tools may be connected to resource stress linked in part to
environmental change.

6. Conclusion

In this paper we explore subsistence patterns during the SB at BBC
and examine the links between subsistence behaviour and the pa-
laeoenvironment. We find significant differences in surface modifica-
tion frequencies between the early SB (Layer CF) and middle and later
SB phases (Layers CD-CA) which is probably associated with occupa-
tional patterns. Large mammals were processed differently to size 2
mammals which may be related to the availability of ungulate size
classes near BBC during the SB but is possibly a reflection of specific
subsistence strategies. Filleting was likely an important activity at BBC
(cf. Thompson, 2008) and may be linked to expansive mobility patterns.
Mortality data suggest that small mammals and size 1 bovids may have
been accumulated along similar lines through remote capture, or by
scavengers or both. Our faunal sample complements other studies (e.g.,
Henshilwood et al., 2001a; Thompson and Henshilwood, 2014b;
Hillestad-Nel and Henshilwood, 2016) which suggests a change from
bushy habitats in the early SB (Layer CF) to probably more grassy en-
vironments in the later SB (CC – CA). This is documented by a shift from
smaller animals such as size 1 bovids and small mammals in CF to larger
bovids in CA.

Our research also suggests that marine regressions from the early to
later SB correspond to shifting vegetative zones. Ungulate richness and
diversity is lowest in the early SB (CF) and highest in the middle period
(CC) which may also reflect a change in environmental conditions. A
shift to grass-dominated conditions may be linked to possible increases
in transport distance for large mammals from the early to late SB. Prey
selection is therefore probably associated with the prevailing environ-
ment. These shifts in human prey selection and, possibly, mobility
patterns, however, may be more consistent with how faunal commu-
nities respond to changing environmental conditions than independent
human behavioural choices.

Occupational intensity may have had a significant effect on sub-
sistence behaviour during the SB. Mortality data, for example, suggest
that seasonality may have influenced when BBC was occupied during
the SB. Reynard and Henshilwood (2018) have suggested that Layer CC
in the middle SB was an intensely or frequently occupied period and, in
this study, CC also yields the richest ungulate sample. Another intensely
or frequently occupied period at BBC – Layer CF in the early SB –
corresponds to a significant drop in ungulate richness and diversity.
This implies that site-use intensity at BBC may have been affected by
environmental conditions in the SB.
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