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Historical biodiversity occurrence records are often discarded in spatial modeling 
analyses because of a lack of a method to quantify their sampling bias. Here we 
propose a new approach for predicting sampling bias in historical written records 
of occurrence, using a South African example as proof of concept. We modelled 
and mapped accessibility of the study area as the mean of proximity to freshwater 
and European settlements. We tested the model’s ability to predict the location of 
historical biodiversity records from a dataset of 2612 large mammal occurrence records 
collected from historical written sources in South Africa in the period 1497–1920. We 
investigated temporal, spatial and environmental biases in these historical records and 
examined if the model prediction and occurrence dataset share similar environmental 
bias. We find a good agreement between the accessibility map and the distribution of 
sampling effort in the early historical period in South Africa. Environmental biases in 
the empirical data are identified, showing a preference for lower maximum temperature 
of the warmest month, higher mean monthly precipitation, higher net primary 
productivity and less arid biomes than expected by a uniform use of the study area. 
We find that the model prediction shares similar environmental bias as the empirical 
data. Accessibility maps, built with very simple statistical rules and in the absence 
of empirical data, can thus predict the spatial and environmental biases observed in 
historical biodiversity occurrence records. We recommend that this approach be used 
as a tool to estimate sampling bias in small datasets of occurrence and to improve the 
use of these data in spatial analyses in ecological and conservation studies.

Keywords: citizen-science, environmental bias, historical ecology, mammals, 
occurrence records, South Africa

Introduction

With a growing interest in historical ecology research (Szabó 2015) and the recogni-
tion that historical biodiversity data are key to understanding the long-term impact 
of human activities (Clavero and Revilla 2014, Mihoub et al. 2017), more and more 
datasets of centuries-old biodiversity records are being assembled (Rookmaaker 
2007, Matthews and Heath 2008, Clavero and Delibes 2013, Butynski et al. 2015, 
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Boshoff et al. 2016, Turvey et al. 2015, 2017). However, an 
obstacle to integrating historical occurrences in ecological 
analyses remains the substantial levels of spatial and envi-
ronmental bias these data contain due to opportunistic and 
unstandardized sampling and reporting. Existing methods 
to address sampling bias in spatial modeling analyses are not 
appropriate for small single-taxa datasets of occurrence. The 
lack of appropriate methodological approaches to quantify 
sampling bias in these data often leads to the discarding of 
historical occurrence records altogether, along with the valu-
able information they contain (Szabó and Hédl 2011). It is 
thus critical to develop methods to quantify sampling effort 
of historical written records and explicitly incorporate sam-
pling biases in spatial analyses in order to allow their consid-
eration in ecology and conservation research.

Historical sources such as governmental archives, travel 
accounts, gazetteers, diaries and correspondence, contain a 
wealth of information on the distribution and abundance 
of plants and animals, long before modern ecological data 
started to be collected. By extending the timeline considered, 
written historical records of species occurrence represent an 
opportunity to contribute to a better understanding of biodi-
versity trends over long periods of times (Shaffer et al. 1998, 
Tingley and Beissinger 2009, Turvey et al. 2017). They are 
also important in a conservation context, as they can provide 
unique new insights into extinction dynamics and chang-
ing species status through time, help to establish meaningful 
temporal baselines for biodiversity, and assist in determining 
desired future conditions, all of which are key to setting con-
servation priorities and informing management decisions 
(Willis et al. 2007, Rick and Lockwood 2013, Turvey et al. 
2015, Mihoub et al. 2017).

However, historical data are often perceived as untrust-
worthy and assumed to be inadequate for most statistical 
modeling methods. Notably, the lack of information on non-
detection and the absence of protocols for data collection 
make their utilization in spatial modeling techniques diffi-
cult (Syfert et al. 2013). Ideally, sampling effort should be 
perfectly uniform or random so that observed distribution 
patterns are real and not simply a reflection of the intensity 
of sampling. However, processes behind the collection of his-
torical records are often spatially biased towards regions more 
frequented by observers (Reddy and Davalos 2003, Newbold 
2010). If this spatial bias results in an environmental bias, 
this may induce a bias towards environments that have 
received more sampling and substantially impact quantitative 
analyses based on these data. Spatial modeling techniques 
where an empirical model relates such occurrence records to 
environmental variables will then likely provide inaccurate 
outputs, reflecting sampling effort rather than the true dis-
tribution of the species (Phillips et al. 2009). Ultimately, the 
inability to measure sampling bias may lead to rejecting these 
data, as they may not achieve minimum requirement to be 
used in conservation analyses (Williams et al. 2002). Tools 
to explicitly report the spatial distribution of the bias and 
lack of sampling effort across a study region include maps 

of ignorance that provide information on sampling coverage 
and reliability (Rocchini et al. 2011, Ruete 2015), maps of 
collecting effort (Schulman et al. 2007) or spatial modeling 
of the distribution of effort based on occurrence data from 
biodiversity databases and environmental variables that influ-
ence where observers are likely to search for particular species 
(Stolar and Nielsen 2015). Solutions for explicitly incorpo-
rating sampling bias in species distribution modeling include 
1) the spatial filtering of occurrence data (Boria et al. 2014, 
Fourcade et al. 2014, Varela et al. 2014), 2) weighting sample 
points according to the distribution of sampling effort (Stolar 
and Nielsen 2015), 3) the manipulation of background data 
(also referred to as pseudo-absences) using all occurrences 
within a target group as absence data with the hypothesis that 
these share the same geographical bias as the presence dataset 
(Phillips et al. 2009, Hertzog et al. 2014, Ranc et al. 2016) or 
4) the incorporation of presence-only and presence–absence 
data for multiple species in a joint probabilistic model to 
estimate and adjust for the bias (Fithian et al. 2015). These 
methods have been shown to improve the performance of 
SDMs built with spatially biased data. Fourcade et al (2014) 
demonstrated that systematic sampling, or the spatial fil-
tering of occurrence data, consistently ranked among the 
best performing method to correct for sampling bias in the 
widely used species distribution modelling tool MAXENT. 
However, because they require large datasets of a species’ 
occurrence or information on the occurrence of other spe-
cies collected with the same protocol, these methods are 
inappropriate for application to occurrence record datasets 
that have a small sample size or focus on one taxa, which 
is often the case of datasets extracted from historical writ-
ten sources (Hoving et al. 2003, Matthews and Heath 2008, 
Kittinger et al. 2013). Providing an appropriate method to 
predict sampling bias in historical occurrence records would 
represent an important step towards integrating these data in 
spatial analyses of biodiversity patterns.

A South African example

Over-hunting and loss of habitat largely altered the composi-
tion of the large mammal fauna in southern Africa, especially 
since the start of the colonial period (Boshoff and Kerley 
2015, Boshoff et al. 2016). However, because most of this 
impact occurred in the past 250–300 years, these trends can-
not be captured by research studies based on recent ecological 
data alone. Since the first written account of South Africa’s 
fauna by Vasco de Gama in 1497, literate explorers, settlers, 
hunters, missionaries and naturalists have written accounts 
describing their environment and the animals they encoun-
tered in their travels. Occurrence records extracted from these 
written sources provide invaluable insights into the histori-
cal distribution, abundance and composition of the mammal 
fauna in South Africa (Rookmaaker 1989, Skead et al. 2007, 
2011, Scholte 2012, Boshoff and Kerley 2013). Previous 
studies have discussed the reliability of these records (Boshoff 
and Kerley 2010) and their implication for the historical 
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distribution of large mammals in South Africa (Boshoff et al. 
2002, Boshoff and Kerley 2015, Boshoff et al. 2016), but 
the sampling biases have not been explicitly quantified. 
Evaluating the sampling bias in these records will allow their 
inclusion in more advanced quantitative analyses, with the 
potential to reconstruct the historical distribution, abundance 
and extinction patterns of large mammals in Southern Africa.

Here, we propose an innovative approach, requiring no 
empirical data, to map modelled geographical accessibility, 
based on our knowledge of the behavior and environmen-
tal constraints faced by observers. We test the relevance of 
these accessibility maps to predict sampling bias in empiri-
cal data, using a comprehensive dataset of written records 
of species’ occurrence collected in the early historical period 
in South Africa that we assume to be representative of the 
sampling effort at this period. We investigate temporal, spa-
tial and environmental biases in these historical records to 
inform further use of these data for ecology and conserva-
tion research. Finally, we examine if the model predictions 
and the occurrence dataset share similar environmental bias, 
compared to what would be expected given a uniform use of 
the study area.

Material and methods

Study area

The boundaries of the study area follow those described in 
Boshoff et al. (2016). It incorporates the present-day political 
territories of the Western Cape, Eastern Cape, Northern 
Cape and Free State provinces, and the far western part of the 

North West Province, of the Republic of South Africa, and 
all of the Kingdom of Lesotho (Fig. 1). The area constitutes 
some 70% (881 377 km2) of the total area of ‘South Africa’, 
i.e. South Africa and the countries of Lesotho and Swaziland.

Historical occurrence records

We used a data set of 3512 historical occurrence records of 
medium- to large-sized mammals, including 51 species from 
11 families (comprising 16 carnivores and 39 herbivores). 
Each occurrence record corresponds to sightings, vocalisations 
or signs (e.g. tracks/spoor) of one or more individuals. This 
data set was extracted from written historical sources includ-
ing letters, diaries or books written by various missionaries, 
explorers, travellers, naturalists, military personnel, big game 
hunters and pastoralists who visited or settled in the study 
area, starting in 1497, this being the start of the written his-
torical period in that region (Skead 1980, 1987, Boshoff and 
Kerley 2013) (Supplementary material Appendix 1). Because 
these historical occurrence records concern a large number 
of mammal species, over a long period of time, we consider 
these data to be representative of the true distribution of 
observers in the early historical period, defined here as ending 
in 1920, after which period the study of the distribution 
of mammals in South Africa became more formalized and 
started to be captured in the scientific literature (Boshoff and 
Kerley, 2013). We deleted duplicates, i.e. records reporting 
occurrences of different mammal species but collected at 
the same place at the same date by the same observer. After 
this step, 2612 unique localities were left for the analyses. 
We tested if the occurrence records are spatially biased using 
simulation envelopes, a well-established technique to test 

Figure 1. Map of South Africa showing the study area (in light grey) and locality of historical written records (blue dots). Locations of 
historical European settlements (established pre-1900) in the study area are indicated with red squares and the location of Cape Town and 
Port Elizabeth are indicated with black squares, for geographical reference purpose.
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complete spatial randomness (CSR) (Baddeley et al. 2014). 
This method is based on computing a summary function of 
the point pattern, such as Ripley’s K function (Dixon 2002), 
and comparing it with the envelope of the same functions 
obtained from several simulations of the null model, in 
that case a homogeneous Poisson process (Supplementary 
material Appendix 2). We also mapped the distribution of 
historical records through time to identify temporal biases 
in the data, for six time periods: pre-1720 and five 40-year 
periods between 1720 and 1920 (Supplementary material 
Appendix 3).

Environmental biases in the historical occurrence 
records

We tested environmental biases in the historical written 
records by comparing the frequency distribution in the his-
torical written occurrence dataset (OBS) and the background 
dataset (BACKGROUND, defined using the coordinates of 
all cells in the study area, n = 8387) for three environmen-
tal features: maximum temperature of the warmest month 
(Tmax), mean monthly precipitation (PREC) and mean 
annual net primary productivity (NPP). We selected these 
variables because they have been identified as correlates of 
large mammals’ distribution and species richness in south-
ern Africa (Coe et al. 1976, Andrews and O’Brien 2000) and 
would potentially be useful predictors of species distribution 
in habitat modelling approaches based on this occurrence 
dataset. We applied a Mann-Whitney U test to determine 
whether the distributions of the two datasets along these 
three gradients are identical. We calculated the difference 
between the OBS and BACKGROUND frequencies, as an 
index of environmental ‘preference’ of the observers (black 
line on Fig. 2). An index above (below) 0 indicates a prefer-
ence (avoidance) of the environmental condition considered. 
Finally, we calculated the environmental completeness of the 
OBS dataset, i.e. the degree to which the climatic ranges are 
covered by the observations, following the methodology in 
Kadmon et al. (2003).

Maximum temperature of the warmest month Tmax 
and average monthly precipitations were downloaded from 
WorldClim 1.4 at a 30 s (~1 km²) resolution (Hijmans et al. 
2005). PREC was calculated as the mean of the average pre-
cipitation for the 12 months of the year. NPP was obtained 
from MODIS MOD17 gross/net primary production proj-
ect of the numerical terradynamic simulation group, at 30 
s resolution (Zhao et al. 2005). We reduced the impact of 
inter-annual climatic variability by using long-term climatol-
ogy obtained by averaging Tmax and PREC over the period 
1960–1990 and NPP, which relies on more recent satellite 
data, over the period 2000–2015. By measuring environ-
mental biases in 15th–20th century data with environmental 
data from the 20th century, we assumed that environmen-
tal conditions have remained stable during that time period. 
Environmental data were aggregated on a 0.1° × 0.1° grid 
using the bilinear interpolation resampling method, with the 
raster package (Hijmans 2014) in R 3.4.3 (R Core Team).

Accessibility model

We expected that early observers would be biased in their 
movement by the proximity of freshwater and existing settle-
ments (Supplementary material Appendix 1). Thus the acces-
sibility model was built based on two spatial components: 
the proximity of European settlements and freshwater. We 
decided not to include terrain or barriers (e.g. cliffs, rivers) 
in the accessibility model, owing to the peculiar behavior 
of early travelers who demonstrated a strong ability to over-
come obstacles in the landscape (see Supplementary material 
Appendix 4 for more details on the observer’s habits and the 
effect of adding terrain in the analysis). Important European 
settlements of the 17th–19th century in the study area were 
identified based on Floyd’s chronological order of town 
establishment in South Africa (Floyd 1960). We retrieved 
information on surface freshwater from the 1:500  000 
Resource Quality Information Services river coverage dataset 
provided by the Department of Water and Sanitation of the 
Republic of South Africa (Weepener et al. 2012). These data 

Figure 2. Frequency distribution of (a) maximum temperature of the warmest month, (b) mean monthly precipitation, (c) mean annual net 
primary productivity in historical written records (OBS – blue bars) and background records (BACKGROUND – grey bars). The black lines 
represents the difference between observed and expected frequencies, smoothed by local regression (plain line), and the 95% confidence 
intervals (dashed lines). The values for the smoothed regression lines are shown on the secondary y axis. A difference above (below) 0 means 
that observed frequency is higher (lower) than expected from a random space use. The observations cover more than 95% of the environmental 
range for the three environmental variables considered.
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were aggregated on a 0.1° × 0.1° grid, using the raster pack-
age (Hijmans 2014) in R 3.4.3. They include information 
on three levels of seasonality of river flow (perennial, non-
perennial, dry) that were used to adjust the model.

For each cell of the study area, we calculated the Euclidean 
distance to the nearest settlement and freshwater source, 
respectively distS and distW. Location of rivers itself is a poor 
indicator of the proximity of water, as the seasonality of river 
flow varies in space (Uys and O’Keeffe 1997). Distance to 
freshwater was thus weighted by the probability of finding 
water in that river, respectively assigned a value of 0.01, 0.5 
and 1 for dry, non-perennial and perennial rivers. For each 
cell xi of the study area, we then calculated the settlement 
proximity index (SPI ) and water proximity index (WPI ) as 
a Gaussian kernel function of the distance to both features. 
The accessibility index AI was then calculated as the mean of 
SPI and WPI:

AI x e ei
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Where hS and hW are the kernel widths for settlements and 
freshwater, respectively, summarizing the scale at which the 
feature influences the movement of observers. 

To calibrate the model, we used an estimate of the 
average distance that observers could cover in one day. 
According to Burman (1988, in Joubert 1995), a span of 
oxen on trek could travel at between four and five kilome-
ters per hour, and trekkers did not exceed 10 km per day if 
accompanied with sheep. When no livestock were present, 
36 km could be covered in winter and 24 km in summer. 
Given this information, we used a rough estimate of around 
20 km covered daily with an ox-wagon. We set hS at 40 km,  
i.e. approximately two days of travel and hW at 10 km, i.e. 
about half a day of travel. These values seemed relevant in 
the light of our knowledge of the constraints faced by trav-
ellers (Supplementary material Appendix 1). AI was scaled 
between zero and one, higher values representing more acces-
sible areas. The correlation between the two components of 
AI (WPI and SPI) is 0.13 (Spearman’s correlation statistic). 
See Supplementary material Appendix 5 for a sensitivity test 
with different values of the model’s parameters.

Model’s ability to predict observer’s occurrence

We first evaluated the model’s ability to predict observer’s 
presences by plotting the number of observed occurrences  
that fall in each of n classes of predicted AI (n = 20). From  
this, we calculated Pearson’s correlation coefficient (ρ) 
between the number of observed occurrences and predicted 
AI, a value of ρ = 1 indicating a total positive linear correlation 
between the two variables.

We then measured how much the model’s prediction 
differ from random distribution of the observed presences 
across the prediction gradient using the continuous Boyce 
index (Bcont), as described in Hirzel et al. (2006). This 

method consists in partitioning the AI range in i classes 
using a ‘moving window’ of width W (W = 1/10 of the AI 
range). For each class i, it calculates the frequency of evalu-
ation points predicted by the model to fall in this class (Pi) 
and the expected frequency from a random distribution 
across the study area (Ei). For each class, the predicted-
to-expected (P/E) ratio is calculated (Boyce et al. 2002). 
Low AI class should contain fewer evaluation presences 
than expected by chance, resulting in P/E < 1 whereas high 
AI classes should have P/E increasingly higher than 1. For 
a model that properly predicts presences, the plot of P/E 
against AI is expected to show a monotonically increasing 
curve, i.e. P/E increase as AI increases. This monotonic 
increase is measured by the continuous Boyce index (Bcont), 
calculated as the Spearman rank correlation coefficient 
between P/E and AI. Bcont varies from –1 to 1, with 0 indi-
cating a random model and 1 a perfect agreement between 
the prediction and the data.

As the distribution of settlements changed over time, so 
did the accessibility of the landscape. We calculated AI at 
different time periods (Pre-1720, 1721–1760, 1761–1800, 
1801–1840, 1841–1880 and 1881–1920), taking into 
account the establishment date of European settlements. 
We then evaluated the model’s ability to predict the pres-
ence of observers for each time period using the same meth-
ods as described above (see the results of this analysis in 
Supplementary material Appendix 3). 

We also tested the predictive performance of each 
components of AI with two other models: the SPI model 
(WPI set to 0) and the WPI model (SPI set to 0) using the 
same set of model performance estimators (Supplementary 
material Appendix 5), and investigated the ability of the 
model to predict the density of records (Supplementary 
material Appendix 6).

Comparison of environmental biases in the model  
and the data

To be pertinent in addressing sampling bias in spatial 
modeling approaches, the accessibility map should share 
similar environmental biases as the occurrence data, for 
the environmental variables that may be used in the model 
(Phillips et al. 2009). We compared environmental biases 
in three different datasets: OBS, BACKGROUND and 
MODEL (the latter being defined as all cells in the study 
area, n = 8387, to which we assigned values of predicted AI as 
weights). We considered the three previously mentioned envi-
ronmental variables (Tmax, PREC and NPP), plus the South 
African biomes (BIOMES), which are simplified vegetation 
units defined on floristic criteria, exposed to similar macro-
climatic patterns, with broad scale applicability to develop 
conservation and management strategies over large areas 
(Mucina and Rutherford, 2006). We acquired spatial infor-
mation on biomes from the 2012 Vegetation Map of South 
Africa, Lesotho and Swaziland (Mucina and Rutherford 
2006, South African National Biodiversity Inst. 2012). The 
Savanna biome in our study area is essentially composed 
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of the Eastern Kalahari Bushveld and Kalahari Duneveld 
Bioregions, which present excessively drained sandy soil with 
high evaporation rates, and are thus considered Arid Savanna 
(Mucina and Rutherford 2006). We extracted environmen-
tal values for each location of the three datasets and plotted 
the estimated mean and 95% confidence interval from a lin-
ear regression, weighted with values of AI for the MODEL 
dataset. This allowed us to compare environmental biases 
in the OBSERVED and MODEL datasets, compared to 
what would be expected given a uniform use of the study 
area (BACKGROUND). We tested the difference in mean 
environmental values for Tmax, PREC and NPP between the 
three datasets using weighted two-sample t-tests (Bland and 
Kerry 1998). Finally, we plotted the weighted histogram of 
the frequency distribution of BIOMES in each dataset (the 
weights for the MODEL dataset being the extracted values of 
predicted AI for each cell of the study area).

Data deposition

The spreadsheet of historical occurrence records, the GIS 
layers and the R code used in this paper are available from 
Figshare Digital Repository (< https://doi.org/10.6084/
m9.figshare.c.3916342.v1 >) (Monsarrat et al. 2018)

Results

Historical occurrence records are widely but not uniformly 
distributed in space. They are spatially clustered compared 
to what would be expected from a random point process 
(Supplementary material Appendix 2), with an apparent 
bias towards southern coastal areas and the north-east of the 
study area (Fig. 1). Records are confined to the southern 
part of the country until 1760, after which a shift in distri-
bution of records towards the north and east of the study 
area is observed (Supplementary material Appendix 3 Fig. 
A3.1). The number of records collected in 40-year periods 
increases from 1720 to 1840 (884 records in 1800–1840) 
but decreases afterwards, with only 326 records between 
1880 and 1920 (Supplementary material Appendix 3 Fig. 
A3.1). We found environmental biases in the historical 
records when compared to the availability of environmen-
tal conditions in the study area (Fig. 2) (Mann-Whitney U 
test, p < 0.001), with a higher sampling of areas with low 
maximum temperature of the warmest month, high mean 
monthly precipitation and high mean annual net primary 
productivity. The observations cover more than 95% of the 
environmental range for the three environmental variables 
considered (Tmax, PREC, NPP). 

The model predicts areas of high accessibility in the south-
ern and eastern parts of the study area. On the contrary, the 
northern part of the current Northern Cape and the western 
part of the Northwest Province show low accessibility indexes 
(Fig. 3). There is a strong linear correlation between the fre-
quency of observed occurrences and predicted AI (Fig. 4a; 
Pearson’s correlation coefficient, ρ = 0.93). The plot of P/E 

against AI (Fig. 4b) and the high continuous Boyce index 
value (Bcount = 0.995) show an extremely high ability of the 
model to predict observer’s presences. A similar analysis based 
on the density of records per cell was much less predictive, due 
to the large amount of cells with few records (Supplementary 
material Appendix 6). When evaluating the predictive abil-
ity of the model at different time periods, we found that 
the model performed better in the very early phase of South 
Africa colonization (before 1720) and in the recent past (after 
1840) than in the 1720–1840 period, which corresponds to 
the exploration phase of South Africa (i.e. when European 
settlements began to be built but were not yet officially 
established) (Supplementary material Appendix 3).

The comparison of environmental biases in the 
BACKGROUND, OBS and MODEL datasets shows that 
both OBS and MODEL have different estimates of mean 
environmental values than would be expected from a uni-
form use of the study area (BACKGROUND) (weighted 
paired t-test, p < 0.001) (Fig. 5a–c). The estimates of mean 
environmental values of OBS and MODEL are also dif-
ferent but they are consistently more similar between each 
other than between OBS and BACKGROUND. Biomes 
are not sampled evenly, with arid environments like Nama-
Karoo, Succulent Karoo and Savanna being less represented 
in the dataset than expected by a uniform use of the area 
(Fig. 5d), whereas the Albany Thicket, Azonal Vegetation, 
Fynbos and Grassland are positively selected. For all biomes, 
the distribution of frequencies of OBS and MODEL are 
consistently biased in the same direction when compared to 
BACKGROUND (Fig. 5d).

Discussion

Sampling bias can be difficult to quantify in small, single-taxa 
datasets of species occurrence. We show that an accessibility 
map built with a model based on very simple statistical rules 
and only two spatial features can approximate the spatial dis-
tribution and environmental biases observed in an empirical 
dataset of historical written occurrences. These results sug-
gest that sampling effort can be modelled accurately without 
the use of empirical data, given that we know the processes 
influencing the bias behind data collection. This has strong 
implications for the inclusion of small historical datasets in 
ecological and conservation studies.

Assumptions and limitations

Our assumption that the distribution of historical written 
records of large mammal occurrence is representative of the 
true distribution of observers in the early historical period 
could be challenged if this distribution reflects a biological 
reality rather than sampling effort. For example, some habi-
tats in South Africa could have no large mammal species 
(hence the absence of records would represent an absence of 
mammal species rather than of observers) or the bias towards 
the proximity of freshwater could be caused by a higher 
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detectability of mammal species around water resources. 
However, the 51 mammal species included in the dataset are 
distributed throughout South Africa, occupy a great variety 
of habitats and biomes and have very different ecologies 

(Skinner and Chimimba 2005). For example, some species 
that are well adapted to arid environments (e.g. spring-
bok, brown hyaena, eland, gemsbok) (Skinner et al. 1984, 
Hofmeyr and Louw 1987, Skinner and Chimimba 2005) 

Figure 3. Accessibility map and historical data. The map of accessibility index (AI) for observers in the early historical period (1497–1920) 
in the study area is built from a model based on two spatial features, proximity of freshwater and proximity of European settlements. Shades 
of red indicate progressively higher accessibility as predicted by the model. Black dots are historical written records of large mammal 
occurrence for the period 1497–1920.

Figure 4. Model performance plots. (a) Histogram of number of occurrences against the predicted accessibility index (AI). The value of Pearson’s 
coefficient of correlation between observed frequency of presences and predicted AI is 0.93. (b) Predicted/Expected (P/E) curve. Each point is 
calculated as the ratio of frequency of evaluation points predicted by the model (P) and the expected frequency from a random distribution 
across the study area (E) for the corresponding AI class. A straight curve indicates an ideal model with perfect predictive ability. The measure of 
monotonic increase of the P/E curve calculated with the Spearman’s correlation coefficient gives a continuous Boyce index Bcont of 0.995.
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occur naturally in areas that are predicted to have limited 
accessibility in the model. These species are generally over-
reported in historical accounts (Monsarrat and Kerley 2018) 
and they are reported elsewhere in the study area, indicating 
that the absence of records in arid areas is due to a lack of 
effort rather than to the absence of mammal species. Also, 
some species are water-independent and their detectability 
would not necessarily increase close to freshwater. However, 
there remains the possibility of a confusion between spe-
cies’ detectability and bias in sampling effort. While this 
limitation is difficult to test, it should be kept in mind in the 
interpretation of the results.

Ecological responses to climate change over the past 
centuries (Parmesan 2006, Wanner et al. 2008) may affect the 
results of our analyses, in a way that we are unable to account 
for. We used a long-term climatology to mitigate the impact 
of inter-annual variations in climatic variables. Additionally, 
because all values in the different datasets have been extracted 
from the same environmental data, the relative comparison 

between the OBS, MODEL and BACKGROUND datasets 
remains valid.

We found a good but not perfect agreement between the 
predicted map of accessibility and the location of observers’ 
records. Some records located in areas with a very low pre-
dicted accessibility suggest that additional factors influence 
the distribution of observers. It is likely that the establish-
ment of roads in the early 20th century would have influ-
enced the accessibility of the area, and hence the location of 
records, at that period, as suggested by studies on modern 
correlates of sampling bias (Kadmon et al. 2004). However, 
in the absence of reliable data on the network of roads pre-
1920, we were unable to test this idea. Using the modern 
road network as a proxy would be problematic as many 
modern cities were not yet established in 1920 and the road 
network would have changed considerably in the 20th cen-
tury. One of the main factors that we could not include 
in the model are the travelers’ motivation. For example, in 
1795, the French naturalist François Le Vaillant travelled 

Figure 5. Comparison of environmental biases in the ‘background’, ‘obs’ and ‘model’ datasets. (a) to (c) show the modelled estimate of mean 
values and 95% confidence interval for maximum temperature of the warmest month (Tmax), mean monthly precipitation (PREC) and 
mean annual net primary productivity (NPP), respectively. Levels of significance for the differences between the three groups from weighted 
paired t-tests are indicated in each graph (***: p<0.001); (d) shows the frequency distribution of biomes in the ‘background’ (grey), ‘obs’ 
(blue) and ‘model’ (pink) datasets (IOCB: Indian ocean costal belt).
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from Cape Town to the Orange River, crossing the arid 
Karoo plains of the Western and Northern Cape in order 
to be the first European to describe the fauna in this remote 
area. The author describes how he was obliged to abandon 
his three wagons and leave his people and baggage dispersed 
on the road, after most of his 52 oxen died and he and his 
company almost died of thirst (Le Vaillant 1796). While 
it cannot predict such idiosyncratic behavior, the model 
shows nonetheless a high ability to correctly predict posi-
tive occurrences in the study area, suggesting that it can be 
a powerful tool to assist in the interpretation of historical 
observers’ records.

Biases in South African historical written records  
of mammal occurrence

We provide evidence of spatial, temporal and environmental 
biases in written records of mammal occurrence collected in 
the early historical period in South Africa. Travelers’ avoid-
ance of hot, arid and unproductive habitats is an intuitive 
result, as they would require large amount of water and 
fodder for their livestock. The changes in distribution of 
observer effort over time can be explained by the colonial his-
tory of South Africa (Supplementary material Appendix 3). 
The spatio-temporal distribution of these historical occur-
rence records raises questions about how our baseline of the 
historical composition of mammal communities is shifted 
spatially – in addition to temporally – as different areas are 
sampled in different time periods. When using historical 
written records to reconstruct ecological baselines, one has 
to bear in mind the spatio-temporal context of the observ-
ers’ distribution. For example in South Africa, the interior 
part of the country was never described in writing before 
1760, and the Orange Free State was mostly unknown to 
literate travellers before the beginning of the 19th century. 
Other sources (e.g. archaeological, palaeontological) should 
therefore be considered to study earlier ecological conditions 
in these regions.

Knowing about temporal, geographic and environmen-
tal biases is important to improve the use of these historical 
records in South Africa conservation research and manage-
ment. One can use this information to identify gaps in 
knowledge to guide future data collection effort (e.g. look-
ing for archaeological records in areas with a low density 
of records to inform the historical distribution of these 
species) or to develop appropriate analytical tools for these 
data (e.g. by explicitly addressing biases in spatial analy-
ses). This provides opportunities to go beyond descriptive 
approaches (e.g. as in Boshoff et al., 2016) and to develop 
tools to derive historical species distribution from these 
written historical records. Additionally, these historical 
sources contain descriptions on the fauna, vegetation, cli-
mate and inhabitants of the country (Rookmaaker 1989, 
Hoffman et al. 1995, Nash and Endfield 2002, Huigen 
2009, Skead 2009). Thus, the study of sampling bias can be 
informative across disciplines for data extracted from these 
sources.

Relevance of accessibility maps to quantify  
sampling biases 

The analysis of historical occurrence records with spatial mod-
eling methods has great potential to improve our knowledge 
of species’ ecology, historical distribution and status changes, 
with implications for their conservation and the management 
of remaining populations. However, if used without correc-
tion for sampling bias, species status changes or conservation 
plans based on such uncorrected data may be misleading.

Accessibility maps can be useful tools to report the spatial 
distribution of bias and lack of sampling effort across a study 
region, providing an innovative avenue to improve the statis-
tical power of spatial analyses based on small datasets of spe-
cies occurrences. In contrast with other approaches used to 
estimate sampling bias, accessibility maps require no empiri-
cal data of observer occurrence. Their applications are similar 
to those of uncertainty maps (Rocchini et al. 2011, Ruete 
2015) or maps of sampling effort (Stolar and Nielsen 2015). 
These include the visual exploration of the quality of the data 
and the improvement of inferences made from them (Tingley 
and Beissinger 2009). Following existing methods to address 
sampling bias in species distribution models (Phillips et al. 
2009, Hertzog et al. 2014), accessibility maps could be used 
to manipulate background data in species distribution mod-
elling to generate pseudo-absences data with a similar geo-
graphical sampling bias to that of the presence data. It could 
also be used to adjust model estimates by down-weighting 
sample points from locations with higher accessibility (Stolar 
and Nielsen 2015).

Here, we show that proximity of freshwater and proxim-
ity of settlements alone can be good predictors of sampling 
bias in historical occurrence data. This is both a surprising 
outcome – meaning that sampling effort can be predicted 
with very simple rules and that understanding biases in other 
contexts may not require ‘rocket science’ – and an expected 
result, as it is consistent with previous empirical analyses of 
sampling biases in occurrence data (Hijmans et al. 2000, 
Soberón et al. 2000, Reddy and Davalos 2003, Newbold 
2010). We believe that the impact of freshwater and settle-
ment proximity on observers’ movements is not specific to 
the South African context and that these environmental fea-
tures are also limiting for early travelers in other parts of the 
world. Freshwater availability would be particularly limiting 
in arid environments, but the potential for rivers to serve 
as means of transportation is not to be underestimated in 
other, less dry, areas. The importance of each factor, however, 
can vary over time. During the exploration phase of South 
Africa, when settlements were already in place but not offi-
cially established, freshwater alone seemed a better predic-
tor of traveler’s distribution. This is due to a lag between the 
building of European settlements and their official date of 
establishment. For a given time period, it is thus important to 
consider localities that were important aggregation places, in 
addition to officially established settlements, in order to draw 
a better picture of the availability of the area at that time. 
Understanding the constraints that historical observers faced 
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in their travel might require reading historical references that 
describe the lifestyle and habits of early travelers. A huge 
amount of historical references that are digitized and avail-
able online through archives (e.g. Internet Archive < https://
archive.org/ >, Google Books < https://books.google.com >, 
the Biodiversity Heritage Library < www.biodiversitylibrary.
org >) could be used for that purpose.

While this study focuses on historical written records 
of occurrence, a parallel can be drawn with contemporary 
datasets that are subject to the same type of biases. Amateur 
naturalists still collect opportunistic sightings, in what is now 
defined as citizen science (Dickinson et al. 2010). Historical 
occurrence records can therefore be seen as a particular case of 
citizen-derived science data (Miller-Rushing et al. 2012), both 
types of data presenting similar sampling biases. Additionally, 
modern datasets of occurrence for some under-represented 
taxa such as insects, and invertebrates in general, may share 
similar limitations with historical datasets on vertebrates 
(Lobo and Martin-Piera 2002). The approach described in 
this study could thus be added to the existing toolbox of 
methods used to address biases in citizen science datasets 
(Bird et al. 2014, Isaac et al. 2014) or other small datasets of 
occurrence, making this analysis relevant to a much broader 
audience than the community of historical ecologists.

We encourage further testing of this approach in different 
spatio-temporal contexts and for other taxa to 1) evaluate the 
ability of accessibility maps to predict sampling bias in other 
large datasets of occurrence and 2) compare the performance 
of species distribution models using accessibility maps vs 
other existing methods to correct for sampling bias. If acces-
sibility maps prove to be robust predictors of sampling bias 
in different contexts and are shown to improve the perfor-
mance of species distribution models, this will provide strong 
support for their relevance in addressing sampling bias in the 
analyses of small datasets of occurrence.

Specific recommendations

We suggest that, rather than discarding small historical occur-
rence datasets a priori due to possible biases they may contain, 
researchers and conservationists could use accessibility maps 
to explore sampling bias and improve the use of these data in 
modern quantitative analyses. The strength of this tool lies 
in its simplicity, and on its non-reliance on empirical data of 
observer occurrence. The only requirements to build acces-
sibility maps are to have 1) a good knowledge of the processes 
underlying the behavior and environmental constraints faced 
by observers, which can be inferred from the historical lit-
erature and 2) access to spatially explicit information on the 
distribution of relevant environmental features. From this, 
spatially explicit functions describing the accessibility of the 
study area can be used to calculate the accessibility index for 
the study area. 

This approach can easily be implemented and applied to 
other spatio-temporal contexts. We recommend that users 
thoroughly identify which environmental features constrain 
the movement of observers in order to set appropriate rules 

to build the accessibility map. Proximity to freshwater and to 
settlements seem important features in South Africa in the 
15th–19th centuries, but other parameters may influence 
the distribution of observers in other contexts. For example, 
avoidance of diseases and social conflicts, natural barriers, 
attraction for minerals or natural resources are examples of 
other elements that could be included in the model, depend-
ing on the context of the study. The temporal and spatial 
extent and resolution of the analysis should also be adapted 
so as to produce accessibility maps that are relevant to the 
ecology of the study model and researchers’ needs.
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