
Report
Genomic Analysis of Demo
graphic History and
Ecological Niche Modeling in the Endangered
Sumatran Rhinoceros Dicerorhinus sumatrensis
Highlights
d This study reports the first whole-genome sequence for the

Sumatran rhinoceros

d The Sumatran rhinoceros underwent large population

fluctuations during the Pleistocene

d Pleistocene climate change dramatically influenced the

available habitat

d Changes in population may have been due to population

decline and/or fragmentation
Mays et al., 2018, Current Biology 28, 70–76
January 8, 2018 ª 2017 The Authors. Published by Elsevier Ltd.
https://doi.org/10.1016/j.cub.2017.11.021
Authors

Herman L. Mays, Jr., Chih-Ming Hung,

Pei-Jen Shaner, ..., Jun Fan,

Swanthana Rekulapally,

Donald A. Primerano

Correspondence
maysh@marshall.edu

In Brief

Mays et al. report the first genome

sequence for the Sumatran rhinoceros.

Genomic analysis reveals a fluctuating

population history, ending at low levels by

the end of the Pleistocene. Ecological

niche models suggest that changing

climate during the Pleistocene influenced

habitat availability and most likely led to
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SUMMARY

The vertebrate extinction rate over the past century is
approximately 22–100 times greater than back-
ground extinction rates [1], and large mammals are
particularly at risk [2, 3]. Quaternary megafaunal ex-
tinctions have been attributed to climate change
[4], overexploitation [5], or a combination of the two
[6]. Rhinoceroses (Family: Rhinocerotidae) have a
rich fossil history replete with iconic examples of
climate-induced extinctions [7], but current pres-
sures threaten to eliminate this group entirely. The
Sumatran rhinoceros (Dicerorhinus sumatrensis) is
among the most imperiled mammals on earth. The
2011 population was estimated at%216 wild individ-
uals [8], and currently the species is extirpated, or
nearly so, throughout the majority of its former
range [8–12]. Understanding demographic history is
important in placing current population status into a
broader ecological and evolutionary context. Anal-
ysis of the Sumatran rhinoceros genome reveals
extreme changes in effective population size
throughout the Pleistocene. Population expansion
during the early to middle Pleistocene was followed
by decline. Ecological niche modeling indicated
that changing climate most likely played a role in
the decline of the Sumatran rhinoceros, as less suit-
able habitat on an emergent Sundaland corridor iso-
lated Sumatran rhinoceros populations. By the end
of the Pleistocene, the Sundaland corridor was
submerged, and populations were fragmented and
consequently reduced to low Holocene levels
from which they would never recover. Past events
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denuded the Sumatran rhinoceros of genetic diver-
sity through population decline, fragmentation, or
some combination of the two and most likely made
the species even more susceptible to later exploita-
tion and habitat loss.

RESULTS AND DISCUSSION

Genomic coalescent analyses allow for hypothesis testing

regarding demographic history, an approach that is particularly

useful when studying recently extinct or highly endangered spe-

cies, where sampling is often extremely limited [13]. Studies have

shown that currently imperiled or recently extinct species tend to

have experienced long-term population decline [14, 15] or have a

relatively low effective population size (Ne) caused by dramatic

population fluctuation [16]. It is of biological and conservation

importance to examine the driving forces behind these historical

changes in populations. Climate is likely to be a causal factor in

shaping population dynamics of many species [6, 17]. Popula-

tions denuded of genetic diversity by past climate fluctuations

are especially vulnerable to current exploitation and habitat

degradation [16]. To address questions at the intersection of

climate and population change, we coupled a demographic

analysis using a pairwise sequential Markovian coalescent

(PSMC) method based on whole-genome sequencing with

ecological niche models (ENMs) to elucidate the demographic

history of the Sumatran rhinoceros as it relates to past climate

change (see STAR Methods).

Our study reports the first draft genome assembly for the

Sumatran rhinoceros. Jellyfish 2.2.3 [18] supported a genome

size of 2.53 Gb sequenced at a peak coverage of 463. Our

estimated genome size is broadly congruent with other esti-

mates of genome size in the Perissodactyla (http://www.

genomesize.com) [19]. Heterozygosity was low (approximately

1.3 single-nucleotide polymorphism [SNP] sites per 1,000 bp
ublished by Elsevier Ltd.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Demographic History of the Suma-

tran Rhinoceros

The PSMC analysis is applied to the genomic

sequences of the Sumatran rhinoceros converted

to demographic units (individuals and years)

assuming a generation time of g = 12 years and a

substitution rate of m = 1.95 3 10�9 substitutions/

site/year (2.34 3 10�8 substitutions/site/genera-

tion). The x axis indicates time before present in

years on a log scale, and the y axis indicates the

effective population size. The bold gray curve

shows the estimate based on original data, and the

light gray curves show the estimates for 100

bootstrapped sequences. The two gray shaded

areas indicate the last glacial period (LGP) and the

last interglacial period (LIG) and the dashed line

demarcates the approximate time of the last

glacial maximum (LGM). See also Figure S1.
of autosomal sequence) and was comparable to that found in

whole-genome studies in recently extinct mammals [17, 20]

and approaching that of inbred domestic species such as the

horse (Equus caballus) [21].

Prior studies place the Sumatran rhinoceros within the dicero-

rhine Eurasian rhinoceroses with close evolutionary affiliations

with the woolly rhinoceroses (Coelodonta spp.) and Stephano-

rhinus spp. [7, 22, 23]. Fossils fromMyanmar attributed to Dicer-

orhinus have been dated to the middle to late Pliocene [24] and

fossils from Guangxi, China, have been dated to the early Pleis-

tocene [25]. Earlier fossils attributed to Dicerorhinus most likely

belong to other dicerorhine genera, such as Stephanorhinus

[23]. Fossil evidence therefore suggests that Dicerorhinus origi-

nated in Northern Indochina and South China during the middle

to late Pliocene, with at least one lineage eventually expanding

southward into Indochina and Sundaland during a period

when the landmasses in the region were emergent and in their

present-day configurations [26]. After the Pliocene, the region

was periodically submerged, isolating terrestrial biotas [27].

PSMC analysis of the Sumatran rhinoceros genome comple-

ments this fossil record with a demographic history derived

from genomic data.

The PSMC analyses revealed the population dynamics of

the Sumatran rhinoceros from approximately 7 Ma to 1 ka (Fig-

ures 1 and S1; Table 1). PSMC analyses based on all scaffolds

and autosomal scaffolds returned similar results, and therefore

we only reported the results for the latter. Sumatran rhinoceros

populations most likely experienced substantial population fluc-

tuations since the beginning of the Pleistocene (2.58 Ma). The

degree and timing of these fluctuations depended on estimates

of substitution rate and generation time, but the trend in Pleisto-

cene population change was similar across separate analyses.

Applying a substitution rate of 2.34 3 10�8 substitutions/site/

generation [28] and a generation time of 12 years [29], we esti-

mated a peak Ne (rounded to the nearest 100 individuals) of

57,800 occurring approximately 950 ka, a minimal Ne of 700

occurring approximately 9 ka, and a net drop in Ne of 31,200
across the Pleistocene (Figure 1; Table 1). Separate PSMC ana-

lyses based on upper and lower estimates of substitution rate

from the literature [13, 30, 31] revealed a peak Ne (41,000–

112,800) sometime during the early to middle Pleistocene and

a minimal Ne (500–1,300) by the end of the Pleistocene (Fig-

ure S1; Table 1). Population decline characterized Sumatran

rhinoceros populations throughout most of the middle to late

Pleistocene (Figures 1 and S1; Table 1).

An increase in Ne occurring during the early to middle Pleis-

tocene is indicative of a demographic expansion that most

likely co-occurred with a range expansion of the Sumatran rhi-

noceros from an ancestral, more northerly Asian distribution

into Southeast Asia and Sundaland. The expansion of the Su-

matran rhinoceros across an exposed Sundaland would corre-

spond to similar expansions of continental mammals into the

region. By the middle Pleistocene, continental fauna replaced

many island taxa that evolved in isolation during the early Pleis-

tocene [32], and PSMC analyses suggest that the Sumatran

rhinoceros was also part of this early to middle Pleistocene in-

vasion of Sundaland. After this early to middle Pleistocene

demographic expansion were dramatic population fluctuations

throughout the remainder of the Pleistocene often occurring in

association with climate and/or sea-level changes. Popula-

tion fluctuations might explain relatively low and long-term

decline in Ne of the Sumatran rhinoceros from middle to late

Pleistocene [16].

The duration of the last glacial period (LGP, ca. 10–120 ka)

[27] and the transition between the Pleistocene and the Holo-

cene coincides with dramatic population changes in many spe-

cies. Genomic analyses reveal abrupt declines in Ne associated

with the end of the LGP for many north temperate and arctic

megafauna [17, 31, 33, 34] or steady declines throughout the

LGP [35]. Genomic studies of other species, including sub-trop-

ical and tropical species, also suggest declines in Ne during the

LGP for crocodilians [36], birds [15, 16], and mammals [13, 14].

Nadachowska-Bryska et al. [15] found that the LGP coincided

with significant declines in Ne for 22 of 38 avian species studied.
Current Biology 28, 70–76, January 8, 2018 71



Table 1. Effective Population Size over Time

Substitutions/Site/

Generation

Minimum Ne (Time of

Minimum Ne in ka)

Maximum Ne (Time of

Maximum Ne in ka) Ne at 12 ka Ne at 2.58 Ma

Net Change in Ne during

the Pleistocene

1.2 3 10�8 1,300 (17) 112,800 (1,800) 1,300 55,300 �54,000

2.34 3 10�8 700 (9) 57,800 (950) 3,600 34,800 �31,200

3.3 3 10�8 500 (6.5) 41,000 (650) 2,300 30,800 �28,500

Effective population size (Ne) variation across three PSMC analyses using different estimates of the per-generation substitution rate and a generation

time of g = 12. All population sizes are rounded to the nearest 100 individuals (see also Figure S1).
The LGP was likewise a period of population decline for the Su-

matran rhinoceros ending at their current and minimal Ne by the

Pleistocene-Holocene boundary.

Comparisons among studies of demographic changes based

on PSMC are fraught with assumptions. Although the shape of

the Ne curve remains consistent, magnitude and timing of

changes in Ne are biased by both substitution rate and genera-

tion time [15]. Substitution rates used in the analyses are

estimates derived from studies of other large mammals

[13, 28, 30, 31] and represent a source of variation in the

PSMC analyses in estimating the timing and magnitude of the

Ne curve.

PSMC analyses reveal a low recent estimate of Ne for the Su-

matran rhinoceros that has remained low since the end of the

LGP (Figures 1 and S2; Table 1). Population declines due to

recent human exploitation and habitat loss are most likely acting

on a population denuded of genetic diversity during the Pleisto-

cene. However, PSMC is a poor indicator of very recentNe, given

the comparatively small sample size associated with very recent

coalescent events [13]. Future studies using coalescent ap-

proaches that incorporate variation across multiple genomes

[37] would aid in corroborating these patterns. However, given

the paucity of wild rhinoceros samples in general and the delib-

erate inbred nature of the captive Sumatran rhinoceros popula-

tion, obtaining multiple genetically independent samples for

sequencing in this species is challenging.

ENMs suggest that past climate changemay have contributed

significantly to the population dynamics of the Sumatran

rhinoceros. Predicted present-day distributions of the Suma-

tran rhinoceros are similar between the ‘‘all occurrences’’

(D. sumatrensis and Rhinoceros spp.; Figure 2A) and ‘‘SR occur-

rences’’ (D. sumatrensis; Figure 2D) datasets and are in general

agreement with their current distribution [11, 38]. Predicted pre-

sent-day distribution of the subspecies D. s. sumatrensis (‘‘DSS

occurrences’’; Figure 2G) is restricted to Sumatra and the Malay

Peninsula and does not extend to other areas within the Sunda-

land region (e.g., Borneo and Java). This pattern is consistent

with the known distribution of this subspecies and suggests

that climatic conditions alone may be sufficient to limit range

expansion of D. s. sumatrensis.

All three ENMs for the Sumatran rhinoceros (all occurrences,

SR occurrences, and DSS occurrences) revealed significant

changes in predicted distributions associated with Pleistocene

climate change from the last interglacial (LIG) [39] through the

last glacial maximum (LGM) [27, 40] to present day (Figure 2).

The central Sundaland corridor was submerged at the end of

the LGP, creating a western refugium in Sumatra and an

eastern refugium in Borneo [41]. Predicted distributions are

similar between the LIG (Figures 2C, 2F, and 2I) and present
72 Current Biology 28, 70–76, January 8, 2018
day (Figures 2A, 2D, and 2G), both of which are smaller and

more fragmented than that during the LGM (Figures 2B, 2E,

and 2H). Predicted present-day distributions fall predominantly

within tropical and subtropical moist broadleaf forest for all

three ENMs (Table S2). Predicted LGM distributions were

concentrated in the Sundaland region (Figures 2B, 2E,

and 2H), and the highest proportion of LGM distributions

were associated with tropical grassland followed by monsoon

and dry forest and tropical forest. However, for the DSS model,

32% of predicted LGM distribution fell within tropical forest,

indicating that for this subspecies, tropical forest closely rivals

tropical grassland as the vegetation found in the most suitable

climate niche during the LGM (Table S2). If forest cover restricts

the ecological niche, at least for the subspecies D. s. sumatren-

sis, their LGM distribution would have been greatly reduced

and become highly fragmented (Figure 2; Table S2). For

instance, removing the ‘‘tropical grassland’’ in central Sunda-

land reduced predicted LGM distributions by 21%–34% (Fig-

ure S2; Table S2). The rise in sea level, particularly in the

Sundaland region [41], also reduced the predicted distributions

for the Sumatran rhinoceros from the LGM to present day by

25%–39% (Figure 2; Table S2).

Among the dicerorhine rhinoceroses only the Sumatran rhi-

noceros is known as a tropical forest species with the rest

being primarily or exclusively open woodland, grassland,

and savannah species with more temperate distributions

[7, 22, 23]. Modern Sumatran rhinoceroses typically have a pref-

erence for secondary forest and in some locales are associated

with riparian, disturbed, and even edge habitat [12, 42]. Given the

close evolutionary relationships between the Sumatran rhinoc-

eros and more temperate, grassland, and open forest species,

the ancestral preferred habitat for the Sumatran rhinoceros

when it expanded into Southeast Asia during the early Pleisto-

cene may have been more open, with populations adapting to

more forested habitats over time.

A broad north-south savannah corridor may have extended

through Sundaland during the late Pleistocene [43–46] (Fig-

ure S2). This belt of open vegetation running through central Sun-

daland between what are now the islands of Sumatra and

Borneo has been under some debate [44, 47]. However, limited

migration during the LGP between west (Sumatra) and east

(Borneo) Sundaland has been suggested for mammals [48],

snakes and frogs [49], and rainforest termites [44]. Divergence

among these taxa within Sundaland is most likely due to vicari-

ance events that predate the Pleistocene, indicating that the

Sundaland corridor acted as a barrier to dispersal for many

taxa. The Sundaland savannah corridor may have been a dy-

namic, mosaic landscape comprising both open and closed

vegetation habitats [45, 46]. Whether such mosaic landscape



Figure 2. Predicted Distributions of the Sumatran Rhinoceros

All occurrences (top) include Dicerorhinus sumatrensis and Rhinoceros spp., SR occurrences (middle) include D. sumatrensis, and DSS occurrences (bottom)

include SR occurrences from Sumatra and Peninsula Malay (D. s. sumatrensis). Occurrences for Rhinoceros spp. are denoted with an x, and known Sumatran

rhinoceros occurrences are denoted with open circles. Fossil records attributed to the Sumatran rhinoceros are denoted by triangles. A grid is overlaid on the

maps in the second column to denote emergent land during the last glacial maximum (LGM). The areas with suitability scores lower than the minimum training

presence threshold are considered ‘‘not suitable.’’ The land submerged post-LGM are the areas approximately 120 m below sea level on the bathymetric map.

See also Figures S2 and S3 and Tables S2 and S3.
was part of the niche for any species in the genus Dicerorhinus,

Sumatran rhinoceros sensu lato, or the Sumatran/Malay Penin-

sula subspecies (D. s. sumatrensis) during the LGP is unclear.

Given the strong favoring of tropical and subtropical moist

broadleaf forest in all three present-day ENMs and known

habitat preferences [12, 42], favorable climate may not have

been associated with favorable vegetation during the LGM.

In addition, PSMC analyses revealed demographic decline

throughout the LGP, suggesting that the central Sundaland

corridor may have functioned as a ‘‘soft’’ barrier to dispersal

for Sumatran rhinoceros populations in Sumatra/Malay Penin-

sula and Borneo that would in effect promote population diver-

gence [50]. Contraction of lowland and upland tropical forest

during the LGP has resulted in the current refugial state of these

habitats and most likely contributed to population bottlenecks

in many Sundaland species [51]. The concordance between

the contractions of predicted distributions and genetic evidence

of a declining population throughout the LGP suggests a role for
climate in the reduction of Sumatran rhinoceros populations by

the end of the Pleistocene to levels from which they would never

recover.

Distinguishing population declines from population structuring

is difficult using PSMC [33]. The Sumatran rhinoceros has been

historically divided into three subspecies: a historically extinct

D. s. lasiotis occurring in Northern Indochina, South China,

Myanmar, and far eastern India; D. s. sumatrensis on the Malay

Peninsula and Sumatra; and D. s. harrissoni on the island of Bor-

neo [42, 50, 52]. The latter two subspecies aremost likely the de-

scendants of populations trapped in refugia either during the

LGP when a drier central Sundaland corridor acted as a barrier

to dispersal, by the end of the LGP, or during earlier interglacial

periods when the corridor was submerged. D. s. lasiotis, how-

ever, may have been isolated from other populations since the

LIG, when large portions of Indochina were unsuitable in terms

of climatic conditions (Figures 2C and 2F). The ENM analysis

restricted to occurrences of D. s. sumatrensis (the subspecies
Current Biology 28, 70–76, January 8, 2018 73



from which our genome data were derived) is the model showing

the most dramatic contraction of predicted distribution due to

the inundation of the Sundaland corridor. Therefore, the conclu-

sion that climate played a role in population decline is at least

strongly suggested for D. s. sumatrensis, if not for the entire

species.

Climate, however, is not the only potential cause of extinctions

and population declines at the Pleistocene-Holocene boundary.

Depredation and habitat changes by expanding Homo sapiens

populations are implicated in the extinctions of many mega-

faunal species [5, 53]. Excavations at the Niah cave site on the

island of Borneo reveals that forest was cleared by humans for

cultivation during the Holocene [54] and that humans hunted

local animals, including the Sumatran rhinoceros, as early as

the late Pleistocene [55]. Hunting by Pleistocene humans in

Southeast Asia has been implicated in the extirpation of orangu-

tans (Pongo spp.) from parts of their range and the extinction of

Stegodon and the giant pangolin (Manis palaeojavanica) [56]. It is

likely that recent human exploitation and habitat loss have been

acting on Sumatran rhinoceros populations already denuded of

genetic diversity since the Pleistocene and have thus acceler-

ated their extinction trajectory.

Coupling analyses from genome data and ENM is a powerful

tool in elucidating the patterns and process associated with

past demographic changes in populations. For critically endan-

gered species, this approach may provide a more objective

ecological and evolutionary context for designing conservation

strategies. We hope our genome sequence may serve as a refer-

ence for broader population genomics in this imperiled species.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue was collected from a captive, wild-caught male Sumatran Rhinoceros collected in Indonesia in Retak Mudik, Sub-District of

Ipuh, District of Bengkulu Utara, and Province of Bengkulu on the island of Sumatra and exported to the Cincinnati Zoo and Botanical

Garden on April 10, 1991. This specimen (named ‘‘Ipuh’’) was euthanized due to deteriorating health on February 18, 2013 and tissue

samples from skeletal muscle, heart and liver were collected during the necropsy and separate samples of each tissue type were

stored in ethanol or RNAlater kept at �80�C. Genomic DNA was isolated from each tissue type using standard phenol-chloro-

form-isoamyl alcohol extraction methods. Tissues and specimen voucher material (mounted skin and complete disarticulated

skeleton) were deposited at the Cincinnati Museum Center (CMC: M4249).

METHOD DETAILS

Genome sequencing
Whole genome, shotgun sequencing was performed on an Illumina HiSeq 1500 at the Marshall University Genomics Core Facility.

One paired-end library and eight mate pair libraries were prepared from purified genomic DNA and sequenced. We prepared the

paired end library using Illumina TruSeq DNA PCR-Free LT Library Preparation Kit from genomic DNA according to the manufac-

turer’s instructions; average insert size for this library was 462 base pairs (bp). These libraries were sequenced in three separate

2 3 250 bp paired-end HiSeq1500 Rapid Runs. Gel-free and gel-plus mate pair libraries were prepared using the Nextera Mate

Pair Library Prep Kit according to the manufacturer’s instructions. Gel-plus libraries were prepared from DNA fragments in three

size ranges: 4-6kb, 6-9kb and 9-12kb. Adaptor enrichment (library amplification) was 10 cycles of PCR for gel-free libraries and

15 cycles of PCR for gel-plus libraries. Two replicates were generated for each gel-free and gel-plus mate pair library, resulting in

8 libraries in total. Average library insert sizes for gel-free and gel-plus libraries ranged from 345 to 515 bp and from 240 to

363 bp, respectively. Mate pair libraries were sequenced in a 2 3 150 bp paired-end Rapid Run mode. Illumina HiSeq sequencing

used the HiSeq PE Rapid Cluster Kit v2 and HiSeq Rapid SBS Kit v2 sequencing kits.

Genome assembly
Trimming of sequencing reads was done using Trimmomatic 0.33 [57] and K-mer estimation was performed using kmergenie [58].

Genome size and coverage was estimated from trimmed fastq files by 25-mers in Jellyfish 2.2.3 [18].De novo genome assembly from

the Illumina libraries was conducted via a pipeline combining DISCOVAR de novo [59] and SOAPdenovo2 2.04 [60]. Contigs were

generated by passing the paired-end reads through DISCOVAR de novo, running on a 12 TB node on the Bridges computing cluster

at Pittsburgh Supercomputing Center via a startup allocation from the Extreme Science and Engineering Discovery Environment

(XSEDE) [61]. Resulting contigs were combined with the mate pair libraries and assembled into scaffolds using the ‘‘scaff’’ command

from SOAPdenovo2. After preprocessing, 570,526,774 paired-end DNA sequencing reads were used to assemble contigs with

DISCOVAR de novo. The resulting contigs, with an N50 of 80,701 bp, were combined with reads from mate pair libraries and

assembled into scaffolds using SOAPdenovo2. This process generated 1.1 million scaffolds, 4,588 of which were greater than

100 kb, spanning a total of 2.96 Gb with an N50 of 0.6 Mb.

Occurrence data for ecological niche modeling
We built ecological niche models (ENMs) for Sumatran Rhinoceros at a resolution of 10 arc-minutes (ca. 18.5 km 3 18.5 km at the

equator) given the relatively low resolution of the occurrence data (e.g., only 26% of the 19 occurrences reported in Meijaard [9] had

an accuracy of < 20 km). Sumatran Rhinoceros tend to have large home ranges with low population densities (home range: ca.

10-30 km2; population density: ca. 0.02-0.04 km2) [68] and as such our comparatively coarse spatial resolution is likely ecologically

relevant.

Occurrences were obtained from the literature [9–11, 38, 69–74] and geo-referenced in GoogleEarth. We established three occur-

rence datasets. An all occurrences dataset (132 occurrences) included Sumatran Rhinoceros (D. sumatrensis) and putative Rhinoc-

eros spp.; the SR occurrences dataset (91 occurrences) included occurrences from all recognized subspecies of the Sumatran

Rhinoceros (SR); and a DSS occurrences dataset (30 occurrences) included SR occurrences from Sumatra and theMalay Peninsula,

which are assigned to the subspeciesD. s. sumatrensis (DSS) [52]. Although the historical geographic range of Sumatran Rhinoceros

is indeterminate, partly due to their sympatric distribution with Rhinoceros spp. (R. unicornis, R. sondaicus), modern observations,

fossil records and historical documents indicate that they once occurred in Bhutan and northeastern India, through southern China,

Myanmar, Thailand, Cambodia, Lao PDR, Vietnam and the Malay Peninsula, and the islands of Sumatra and Borneo in Indonesia

[11, 38, 74]. Therefore, we set the spatial extent of the ENMs to include all known occurrences of Sumatran Rhinoceros and sympatric

Rhinoceros spp., an area ranging from 71� to 124� E and 11� S to 38� N (herein ‘South Asia’). However, for DSS occurrences,

we reduced the spatial extent to the Sundaland region, ranging from 90� to 124� E and 11� S to 11� N (i.e., the northern boundary

set at Isthmus of Kra). It is necessary to reduce the study area for DSS occurrences because they are spatially clustered, which

may lead to model overfitting when pseudo-absence data are randomly drawn from a large study area. For statistical analysis of

these models see section below.
e2 Current Biology 28, 70–76.e1–e4, January 8, 2018



QUANTIFICATION AND STATISTICAL ANALYSIS

Demographic analysis using PSMC
The Burrows-Wheeler Aligner program (BWA 0.7.15) [62] was used to map raw sequencing reads against the de novo assembled

genome containing all scaffolds or scaffolds excluding those that are X chromosome-linked (i.e., autosomal scaffolds). The

BWA-mem algorithm was used with default parameters. We searched X chromosome-linked scaffolds from the assembled genome

by blasting all scaffolds against the X-chromosomes of human (Homo sapiens; GenBank: GCA_000001405.25), mouse (Mus mus-

culus; GenBank: GCA_000001635.7) and horse (Equus caballus; GenBank: GCA_000002305.1), respectively, using BLAST+ 2.5.0

[63]. We assumed the blasted scaffolds that were shared among the three independent analyses as X chromosome-linked scaffolds

in the Sumatran Rhinoceros genome. The BLAST+ parameters were set as: -evalue = 1e-10; -word_size = 15; -max_target_seqs =

1000. We then excluded X chromosome-linked scaffolds from the assembled genome to test for their effect on the genome-based

estimates of demographic history.

SAMtools 1.3.1 [64] was used to sort and merge reads from different sequencing lanes. The program Picard 2.4.0

(https://broadinstitute.github.io/picard/) was used to remove duplicate reads from the BWA mapped records. Sequencing depth

was estimated using BamTools 1.3.1 [65]. The Genome Analysis Toolkit (GATK 3.6) [75] was used for local realignment and base

quality recalibration to the mapped records before calling consensus sequences. Recalibration based on a concordant SNP dataset

was done with SAMtools ‘‘mpileup’’ and GATK ‘‘UnifiedGeontyper’’ programs.

We applied the SAMtools package to produce diploid consensus sequences containing heterozygous (i.e., single-nucleotide poly-

morphism, SNP) sites for the BWA aligned records using the ‘‘mpileup,’’ ‘‘bcftools’’ and ‘‘vcfutils.pl’’ programs. Several filters and

options were added to keep only those consensus sequences with high confidence: (1) the option ‘‘–C50’’ was used to lower map-

ping quality for reads containing excessive mismatches; (2) theminimummapping quality for an alignment to be included (-q) was set

to 25; (3) sites with sequencing depths (-d) smaller than a third and (-D) larger than twice of the average depth of the aligned genome

were excluded from the consensus sequence assignment, and (4) the sequences with consensus quality lower than 20 were filtered

out. The first three filters were performed when using SAMtools for consensus sequence calling, and the fourth one was performed

using the ‘‘fq2psmcfa’’ program in the PSMC package. We calculated the percentage of SNP sites of the consensus sequences.

We used the Pairwise Sequentially Markovian Coalescent (PSMC 0.6.5) [13] model to infer the effective population sizes (Ne) of the

Sumatran Rhinoceros over time based on the genome sequences with SNP sites. The program ‘‘fq2psmcfa’’ provided by the PSMC

package was used to divide the consensus sequences to 100-bp bins as input files for PSMC analysis. The minimal consensus

quality of sequence for considering the fq2psmcfa conversion was set to 20. We set N (the number of iterations) = 25, t (Tmax) =

15 and p (atomic time interval) = 4+25*2+4+6.

We used a substitution rate based on comparisons between cattle, dog and human genomes of 1.953 10�9 substitutions/site/year

[28]. In addition, we report supplementary PSMC analyses based on two other substitution rates from studies of human and horses

(Equus spp.) genomes, which were 1.03 10�9 substitutions per site per year [13, 31], and that of the Przewalski’s Horse (Equus prze-

walskii) genome, which was 2.75 3 10�9 substitutions per site per year [30], to define potential bounds for population size and the

timing of demographic changes. Other estimates of substitution rates averaged across mammalian orders fall within this range

(2.22 3 10�9 substitutions/site/year) [76]. We estimated a generation time of 12 years based on doubling the average maximum

age at sexual maturity (6.5 years for males and 5.5 years for females) [29]. Thus the substitution rates of 1.2 3 10�8, 2.34 3 10�8,

and 3.3 3 10�8 substitutions/site/generation were used to convert the PSMC output to scales in years and individuals. Bootstrap

tests with 100 replicates were performed by splitting the converted PSMC input sequences to shorter segments using the program

‘‘splitfa’’ in the PSMC package, and then randomly sampling the segments using the ‘‘-b’’ option for PSMC analyses.

Ecological niche modeling
We constructed ENMs in Maxent 3.3.3 [67] with bioclimate variables from Worldclim [77] as predictors. We retained the bioclimate

variables that are not highly correlated with one another (jrj R 0.8) for the given study area (i.e., South Asia, Sundaland) and have a

non-zero permutation importance to model fit (for the lists of bioclimate variables used in the ENMs; Table S1). The ENMs built under

current climates were projected to paleoclimates during the last interglacial period (LIG; ca. 120 - 140 ka) [39] and the last glacial

maximum (LGM; ca. 22 ka) [40]. The multivariate similarity surface (MESS) was used to detect areas with novel paleoclimate condi-

tions (i.e., climate conditions that fall outside of the training range) [78]. TheMESS results indicated that most of the study area did not

present novel paleoclimate conditions (Figure S3). To produce predicted distributions, we applied the minimum training presence

threshold (i.e., the areas with suitability scores lower than the threshold values are considered ‘not suitable’). The area under the

receiver operating characteristic curve (AUC) of present-day ENMs ranged from 0.82 to 0.91. The partial receiver operating charac-

teristic curves were estimated at omission rate of 0%, 1%and 5%,with bootstrappedmean AUC ratios > 1 (p < 0.001 based on 1,000

replicates) for all present-day ENMs across the three occurrence datasets [79], suggesting appropriate model fit.

Sumatran Rhinoceros occur in dense forests such as rainforests, secondary forests and closed-canopy woodlands [38], which

could further limit their distribution. However, adding vegetation type as a predictor to ENMs is difficult in our case because

paleo-vegetation data is lacking for LIG and difficult to reconcile between LGM and modern vegetation data. As an alternative,

we calculated the proportion of present-day suitable areas that falls within each biome type [80] and the proportion of LGM suitable

areas that falls within each vegetation type [81].
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DATA AND SOFTWARE AVAILABILITY

The genome sequence assembly has been deposited at DNA DataBank of Japan (DDBJ), the European Nucleotide Archive (ENA),

and GenBank at the National Center for Biotechnology Information (NCBI) under the accession GenBank: PEKH00000000. The

version described in this paper is version GenBank: PEKH01000000. Raw sequencing reads were deposited in the Sequence

Read Archive at the NCBI and accessed via accession number SRA: PRJNA415733. Occurrence data is available from the Dryad

Digital Repository (https://doi.org/10.5061/dryad.2jp32).
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