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Observer impacts on animal behaviour concern conservation managers and researchers of
critically endangered species, like black rhino (Diceros bicornis). Repeated observations are
sometimes necessary, but may distress and displace animals. Information from more remote
observations using radio-triangulation is limited and includes larger measurement errors.
We investigated the influence of observer visits on average daily displacement by 14 black
rhinos in Hluhluwe-iMfolozi Park, South Africa, and the accuracy of triangulated locations
with increasing observer distance and the time to complete bearing sets. Fortnightly
observer visits for 34 months that often disturbed rhino (52% of visits) had an insignificant
impact on daily movements. However, increasing observer distance from rhino, and the time
taken to triangulate, were both significant explanations of rhino location error. We recommend
that measures to quantify and minimize observer influence become standard monitoring
protocol and that bearings for radio-triangulation of black rhino locations occur from <1 km
(not >2 km), and be completed within 30 minutes. Reporting measures for spatial error and
observer influence permit the development of objective thresholds for data inclusion to
improve radio-telemetry data and inter-study comparisons of black rhino range studies.

Key words: observer disturbance, radio-telemetry, radio-triangulation, home range, Diceros
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INTRODUCTION
Accurate measures of animal location and move-
ment are fundamental to the monitoring of individu-
als and populations, and in conservation planning
and management towards species recovery.
Radio-telemetry has been integral to wildlife moni-
toring for several decades (i.e. >75% of home
range studies have used radio-telemetry; Laver &
Kelly, 2008) as it facilitates knowing the identity
and location of free-ranging animals. Notwith-
standing its value, radio-telemetry is not without
limitations. Ground-based radio-tracking to observe
and locate an animal may subject it to repeated
human disturbance. Disturbance can be reduced
by radio-signal triangulation from greater distances
but it is prone to greater location error than direct
sightings (White & Garrot, 1990). Quantifying the
influence that observers have on animal displace-
ment and the location error from triangulations
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with increasing distance from animals would
provide greater confidence in ecological studies
that use radio-telemetry and assist in balancing
concerns about animal disturbance and location
error, butthese are rarely achieved (Saltz, 1994).
Conservationists are increasingly concerned
about human disturbance effects on wildlife and
their management (Frederick & Colpopy, 1989;
Carney & Sydeman, 1999; Beale & Monaghan, 2004;
Kolowski & Holekamp, 2008; Crosmary, Valeix,
Fritz, Madzikanda & Cote, 2012; Selier, Slotow &
Di Minin, 2015). Disturbance by researchers and
tourists has been implicated in the reduced breed-
ing performance and altered behaviour of several
bird (e.g. Adele, Pygoscelis adeliae, and Magellanic
Penguins, Spheniscus magellanicus; Puffins,
Fratercula arctica; Culik & Wilson, 1995; Rodway,
Montevecchi & Chardine, 1996; Walker, Boersma
& Wingfield, 2005) and mammal species (e.g.
impala, Aepyceros melampus, lions, Panthera leo,
and whales, Odontocetes and Mysticetes spp.;
Matson, Goldizen & Putland, 2005; Hayward &
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Hayward, 2009; Senigaglia et al., 2016). If unad-
dressed, these concerns could undermine the
contribution that research and tourism bring to
species conservation (Rodway et al., 1996; Carney
& Sydeman, 1999; Carey, 2009).

Human presence induces vigilance, alarm and
escape responses (displacement) in the critically
endangered (Emslie, 2015) black rhinoceros
(Diceros bicornis) (hereafter rhino) (Schenkel &
Schenkel-Hulliger, 1969; Owen-Smith, 1987;
Berger & Cunningham, 1995; Géttert, 2011; Plotz,
2014). There is concern that human disturbance
may displace black rhinos from preferred habitat
(Berger & Cunningham, 1995; Beytell, 2010;
Gottert, 2011; Odendaal, 2011), but it is not known
whatimpact regular monitoring has on their spatial
behaviour. Black rhinos are typically monitored by
obtaining direct sightings of individuals (Plotz,
2014), but this method can often disturb the focal
animal because the dense vegetation in which
black rhinos are found necessitates proximity to
view the animal (e.g. <50m; Owen-Smith, 1988;
Plotz, 2014). Indeed, the commonly used ear-
notching technique for rhino identification encour-
ages observers to disturb the animal because
vigilant rhinos face the observer and present their
ears forward (Amin et al., 2006) — a posture allow-
ing their notching pattern to be clearly seen
(Hitchins, 1990). Black rhinos will typically run
once they confirm that people are near (e.g.
human scent; Owen-Smith, 1987, 1988; Plotz,
2014). Studies of black rhinos have yet to address
the impact that observers might have on their loca-
tions and movement.

Radio-telemetry is being replaced by GPS satel-
lite technologies for most wildlife (e.g. satellite
collars on savanna elephants, Loxodonta africana;
Thomas, Holland & Minot, 2008) but its successful
deployment on black rhinos has been delayed
through issues with overheating, unreliable signal
transmission and attachment-related injuries such
as lesions and tissue damage (e.g. from both neck
and ankle collars; see Alibhai & Jewell, 2001a, b).
Researchers, therefore, continue to rely on horn-
implant VHF radio transmitters (Pienaar & Hall-
Martin, 1991; Shrader & Beauchamp, 2001) for
regular monitoring of black rhinos as they have
proved to be robust to the challenges of rhinos and
their habitat (e.g. Morgan, Mackey & Slotow 2009;
Gottert, Schone, Zinner, Hodges & Boer, 2010;
Odendaal-Holmes, Marshall & Parrini, 2014;
Plotz, Grecian, Kerley & Linklater, 2016).

Although triangulation from greater distances

may be the preferred way of reducing disturbance
of radio-monitored animals, the technique is
susceptible to a number of measurement errors
(Macdonald & Amlaner, 1979). Bearings are inher-
ently imprecise, especially due to radio-signal
reflection and bearing bias (White & Garrott,
1990), increasing observer distance from the
signal, and animal movement during triangulation
(Macdonald & Amlaner, 1979; Lee, White, Garrott,
Bartman & William-Alldredge, 1985; Harris et al.,
1990; Schmutz & White, 1990; Saltz, 1994).

In this study, we describe the effects that
observers and radio-triangulation error have on
black rhino movements and location estimates.
This study aims to address questions about the
impact of intensive monitoring for research on
rhino populations and motivate improvements in
black rhino location and movement studies using
radio-triangulation.

STUDY AREA AND POPULATION
Huhluwe-iMfolozi Park (HiP) (28°0" to 28°25’S,
31°42’ to 32°0'E) is a 960 km’ fenced, semi-arid
and mild-temperate South African reserve. Annual
rainfall is largely seasonal (October to March) and
decreases with latitude from 990 to 635 mm over
steep to gentle hill-country terrain ranging from
450to 60 m a.s.l. Average minimum winter temper-
atures are 13°C and average maximum summer
temperatures are 33°C. The subtropical vegeta-
tion varies from grasslands to Acacia spp. wood-
lands and denser thickets dominated by broadleaf
genera like Euclea and Maytenus (Balfour &
Howison, 2001; Plotz, 2014; Plotz et al., 2016).

HiP has the largest (c. 218; Clinning, Druce,
Robertson, Bird & Nxele, 2009) surviving endemic
population of south-central black rhino (D. b. minor)
in Africa (Brookes & MacDonald, 1983) and under-
goes annual black rhino harvesting (c. 5 to 8 %
of the population) as it serves as a strategic
donor (source) population for species rescue by
reintroduction and restocking (e.g. Black Rhino
Range Expansion Project, BRREP; Emslie, 2001;
Linklater et al., 2012; Plotz, 2014; Hayward et al.,
2017). Our experimental population consisted of
14 adult (>7 years; Law & Linklater, 2015) female
rhinos who received horn-implanted radio trans-
mitters (VHF) from March 2007 to October 2008 as
part of a larger study of black rhino population dy-
namics (see Plotz & Linklater, 2009; Linklater et
al., 2010a; Plotz, 2014; Plotz et al., 2016).

Descriptions of horn implant techniques and
equipment are provided in Plotz et al. (2016). All



Plotz et al.: Quantifying black rhino displacement and location error 49

capture and study procedures were approved
by Ezemvelo KwaZulu-Natal Wildlife (EKZNW)
research department (Hill Top; permit no: ZC/101/
01), Victoria University of Wellington Animal
Ethics Committee (2007R2) and the Zoological
Society of San Diego (IACUC number 169).

Although the procedure to immobilize and insert
horn-implant radio-transmitters could increase the
sensitivity that rhinos may have towards humans,
thisisless likely in HiP because almost all individu-
als in the population are immobilized several times
over their lives for reasons other than inserting
horn-implant radio-transmitters (e.g. ear notches
where ear tissue is removed to create unique
patterns for identification purposes and the inser-
tion of short-range transponders under the skin;
Hitchins, 1990). Moreover, female rhinos in HiP
are likely to be immobilized several times over their
breeding lives as the management policy is for the
mothers of calves to be immobilized at the same
time their calves receive their ear notches (Plotz,
2014).

METHODS

Obtaining direct sighting and radio-triangulated
locations

Ground-based radio-telemetry was used to track
and locate individual black rhinos either via direct
observation (i.e. researcher at <50 m from rhino,
estimated with a Leica Rangefinder CRF Range
Master 1200) or remote triangulation from March
2007 to December 2009 (see Plotz, 2014). When
locating rhinos, we selected individuals at random
without replacement until each of the 14 study
animals had been located before selecting again
from our rhino cohort (e.g. Plotz et al., 2016). For a
direct sighting, we first determined the direction of
each rhino’s unique radio-transmitter signal from
high elevations. The identification of an individual
rhino and its location were verified by walking
towards the radio signal on foot (signal strength
becomes louder as proximity increases) while
remaining downwind of the rhino until it was
sighted. Radio-triangulation estimates were ob-
tained by an observer taking bearings (i.e.
measuring the direction of each rhino’s unique
radio-transmitter signal) at varying distances from
the rhino, from two or more sites at high elevation.
A hand-held compass was used to estimate the
direction of the rhino’s radio-signal to the nearest
degree. Positions of direct sighting and triangula-
tion bearing points were determined via hand-held
GPS units (Garmin e-trex model). All triangulation

location bearings were converted into GPS loca-
tions using Locate Ill software (Nams, 2006),
where triangulation bearings less than 60° and
greater than 180° apart were excluded from
estimates of rhino locations by the software’s
maximum likelihood estimator because they result
in lines that intersect gradually and are known to
introduce substantial location estimate error
(White & Garrot, 1990).

Quantifying observer influence

To quantify and compare the influence of observ-
ers on rhino movement we used remote triangula-
tions to measure daily (24 h) displacement
distances after 108 direct sightings during which
the rhino was disturbed to varying degrees. Bear-
ings for triangulation data were taken from a
median distance of more than a kilometre away
(1.5 km) and are, therefore, unlikely to have dis-
turbed rhinos. During visits, two observers were
typically <50 m from the rhinos and remained
for <20 minutes. Median 24 h displacement
distances were also estimated by conducting
triangulations on study rhinos 24 h before their
scheduled visits (n = 116 samples). Comparing
24 h displacement distances in this way controlled
for errors in the triangulated location estimates.
When visited and sighted, each rhino’s awareness
and response to the observer was scored on an
ordinal scale from 0 (unaware of the researchers)
to 3 (displaced by the researchers; see Fig. 1 for
description; cf. Berger & Cunningham, 1995;
Gottert, 2011).

Rhinos have a bimodal activity pattern with early
morning and late afternoon activity peaks (Goddard,
1967; Kiwia, 1986; Gottert, 2011) that may modify
their movement and response to observers. Also,
repeated human exposure may have a habituation
affect, where rhino react or displace less over time
for the same level of disturbance (e.g. Géttert,
2011). Moreover, due to individual differences
some rhinos may be more responsive to observer
disturbance than others (e.g. Géttert, 2011). In
analyses, therefore, active (08:00—10:00, 15:00—
18:00) and inactive (10:01-14:59) time periods,
the numerical sequence of each sample, and rhino
identity, were included as covariates. Disturbance
data were square root transformed and then
included as the response variable in alinear-mixed
effects model run in the package ‘ime4’v. 1.1-10
(Bates et al., 2015) using R v.3.2.2 (R Core Team
2016). Rhino identity was included as a random
effect. The effect of observer visit, sample order
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0 =rhino not visibly alert and did not respond to the observer
(e.g., browsing)

1 = rhino visibly alert but only head and ears raised

2 =rhino alert (ears and head raised) and walked and/ or ran (charged)
towards or away from the observer (remained in sight of observer)

3 =rhino alert (ears and head raised) and ran at (charged) and/ or
fled from the observer (moved out of sight of observer).

Fig. 1. lllustration depicting the ordinal scale (0 to 3 disturbance score) developed to quantify the level of disturbance
rhinos experienced during each observer visit. Photographs by Roan Plotz, Rosalynn Anderson-Lederer and Dale

Morris.

(habituation) and time period, on the daily distance
travelled by a rhino were assessed by comparing
models with and without the term of interest using
likelihood ratio tests. For all statistical tests we
regarded the critical value («) of <0.05 as statisti-
cally significant.

Radio-triangulation error

Triangulation error was measured by comparing
a black rhino’s estimated location by triangulation
with a known location obtained from a direct sight-
ing that was conducted immediately after said
triangulation. Test data resulted from 72 locations
of rhinos first estimated by triangulation and then
visually located. The factors known to contribute

the greatest error in triangulation estimates include;
the animal's distance from the observer when
bearings are taken because greater distances
correspond to increased signal refraction, and
compound errors in observer interpretation of
signal direction (Lee et al., 1985; Schmutz &
White, 1990; Saltz, 1994). Also, longer time to
complete a triangulation (in this case to also obtain
the direct sighting of rhinos), will contribute to
differences between the triangulated location and
subsequent location when sighted because
animals move (Lee et al., 1985; Schmutz & White,
1990). Therefore, we tested the effects of observer
bearing distance from a rhino and the typical time
researchers would take to complete bearings and
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obtain a direct sighting, in a large reserve like HiP,
on triangulation error. To accomplish this we
collated all triangulated location estimates (calcu-
lated using Locate Ill; Nams, 2006) and direct
sighting locations of rhinos and used the Haversine
formulae for calculating the shortest distance
between two latitude and longitude locations on
the earth’s surface (Sinnot, 1984).

The recorded positions that observers took
bearings from was also collated and the distance
between them and corresponding direct sighting
(actual) rhino locations was similarly measured to
allow observer bearing distance on triangulation
error to be tested. For analysing the effect that
distance of the bearing point had on the triangula-
tion-estimated versus direct-sighting locations,
we consistently used the bearing point location
(recorded by GPS) taken farthest from the rhino for
each triangulation of an individual rhino’s location.
We also calculated the median point in time between
when the first and last triangulation bearing (also
for consistency) was completed and the visual
sighting of the rhino was obtained, to test the effect
that time (i.e. rhino movement) had on triangula-
tion error.

We also predicted there to be a correlation
between observers bearing distances from rhinos
and the time taken to complete bearings, where
greater distances are likely to correspond with
longertime periods needed to complete bearings.

The triangulation data were log,, transformed
and fitted as the response variables in linear-
mixed effects models with rhino identity included
as arandom effect. The effect of observer distance
from the rhino, and the time from triangulation to
direct sighting were assessed by comparing
models with and without the term of interest using
likelihood ratio tests.

The signal strength of radio-transmitters (termed
‘gain’) has previously been used to assess proximity
to black rhinos (e.g. gains of >5.0 associated with
distances <234 m from rhino, average 86 m;
Linklater & Swaisgood, 2008). The gain can be
adequately gauged on the radio-telemetry receiver
in 0.1 increments from weaker (e.g. 2) to stronger
signal strengths (e.g. =5), that become stronger
as distance to the radio-transmitter (rhino)
decreases (Macdonald & Amlaner, 1979; Linklater
& Swaisgood, 2008). To illustrate how gain can be
used to reduce triangulation error (i.e. reduce
distances when taking bearings), we calculated
the average gains and observer distances to rhinos
associated with our closest, and, for comparison,

farthest, observer distances to rhino when triangu-
lating (n = 72 samples each).

RESULTS

Observer influence

The median distance travelled (daily displace-
ment, +1 S.E.) by black rhinos during the 24 hours
before they were visited by an observer was
1.32km (IQR =1.30 km; range = 0.13—4.63 km). In
comparison, the same rhino triangulated 24 hours
after an observer visit travelled a median of
1.73 km (IQR = 1.76 km; range = 0.14-8.20 km).
Visited rhinos were displaced 400 m further than
unvisited rhinos but the difference was not statisti-
cally significant (LMM: y* = 2.11, P=0.15). There
was also no significant effect of sampling order (i.e.
habituation: y*=2.10, P=0.15), or time of day (* =
0.39, P = 0.53) on daily displacement.

Although rhinos that were displaced during
observer visits (i.e. disturbance score 3 recorded
on 19% of visits, 20/108 samples) moved a median
600 m further on average (2.03 km; IQR = 1.41 km;
range = 0.23-8.2 km) compared to unaware rhinos
(disturbance score 0 recorded on 48% of visits,
52/108; 1.41 km; IQR = 1.39 km; range = 0.25—
4.6 km), this difference was not statistically signifi-
cant (x° = 0.82, P=0.37; see Fig. 2). Disturbance
scores, 1 and 2, indicated that rhinos were visibly
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Fig. 2. Mean estimated black rhino displacement
distance from 108 triangulated locations 24 hours after
an observer visit (disturbance) in Hluhluwe-iMfolozi
Park, South Africa. For each observer disturbance event
(i.e. direct sighting), each rhino’s disturbance response
to observers was scored on an ordinal scale from 0 to 3:
0 = rhino not visibly alert and did not respond to the
observer, 48%; 1 = rhino alert but only head and ears
raised toward observer, 26%; 2 = rhino alert and walked
towards or away from the observer, 7%;and 3 = rhino ran
from the observer until no longer visible, 19%.
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aware of an observer and then walked away, and
were recorded on 26% (28/108) and 7% (8/108) of
all visits to rhinos, respectively.

Radio-triangulation error

The distance at which farthest triangulation
bearings were estimated from rhinos varied from
0.25 to 5.64 km (median of 1.47 km; IQR =
1.54 km). The time taken to complete triangulation
bearings varied from 3 to 275 minutes (median of
25 minutes; IQR = 37.75 minutes). The time
between triangulation and direct observations of
rhinos also varied widely from 7 to 671 minutes
(median = 1S.E., 65 minutes; IQR = 133.5
minutes).

Increasing distance of an observer from a rhino
when triangulating its location (bearing positions)
significantly affected triangulation error (LMM:
%° =7.98, P < 0.01; Fig. 3), and was also associ-
ated with significantly longer time periods to
complete triangulations (i.e. record bearings)
(¢* =5.61, P=0.02; Fig. 4) and obtain direct sight-
ings of rhinos, which also significantly affected
triangulation error (i.e. rhino movement) (° = 4.28,
P = 0.04; Fig. 5).

The median distance between locations esti-
mated by triangulation and actual locations (i.e.
discrepancy between locations) was 0.53 km (IQR
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° oo
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Distance between known (direct sighting) and
triangulated rhino locations (km)

O

0.70 km; range = 0.03-3.8 km). The median
farthest observer bearing distances from rhino
during triangulations was 1.47 km and was associ-
ated with a median gain of 3.5 + 0.1 (IQR = 0.8;
range: 2.5—4.8). Observer’s bearing distance from
rhinos was reduced by more than a third (0.91 km;
IQR = 0.60 km; range: 0.4—3.8 km) when our gain
averaged 4.0 +0.1 (range: 2.6-5.1) and more than
two-thirds (0.49 km; IQR =0.51 km; range: 0.3-2.1
km) when our gain averaged 4.5 + 0.1 (range:
3.2-5.2) during bearing measurements.

DISCUSSION

We found small increases in daily displacement
distance for black rhinos during a period of regular
observer visits (=1 visit every fortnight), including
when observers generated escape-responses in
rhinos. We found that triangulation error could be
substantial and attributable to the distance at
which radio-bearings were taken, and animal
movement (i.e. time between triangulation and
visual sighting of rhino).

Observer influence

Repeated radio-telemetry monitoring of black
rhinos that included visiting rhinos for direct obser-
vation often resulted in animal disturbance (52%,
56/108, of visits recorded disturbance score 1 to 3,
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Fig. 3. Trend in discrepancy (km) between locations recorded with triangulation (estimate) and the direct sighting
location of black rhinos relative to observer distance from rhino in Hluhluwe-iMfolozi Park, South Africa (n = 72

samples).
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Fig. 5. Trend in discrepancy (km) between locations recorded with triangulation (estimate) and direct sightings of
rhinos recorded immediately afterwards (n = 72 samples) and relative to the time taken for the observer to complete
the triangulation set and directly sight black rhinos in Hluhluwe-iMfolozi Park, South Africa.
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see Fig. 1) but this had a small and statistically
insignificant effect on their daily displacement dis-
tance. Although rhinos moved a median distance
of 400 m more during the 24 hours after a visit, they
were not displaced sufficiently to substantially
alter their location. Indeed, even rhinos that were
disturbed and ran from view, did not travel signifi-
cantly further over the course of 24 hours than
rhinos that were recorded as being oblivious of the
observer (at least to the end of each visit; Fig. 2).
Moreover, rhinos that appeared unaware of the
observer during a visit moved a median distance
of 1.4 km, similar to the median 1.3 km per day
distance travelled by rhinos that had not been
visited (i.e. triangulations 24 h before a direct
sighting).

Berger & Cunningham (1995) and Beytell (2010),
in the only other studies known to quantify black
rhino (D. b. bicornis) displacement by observers,
found them easily disturbed by humans and slow
to resume pre-disturbance behaviours. Beytell
(2010) recommended human approach distances
of no less than 100 m, similar to the recommenda-
tions for other taxa. Theuerkauf & Jedrzejewski
(2002), for example, recommended that observers
tracking wolves (Canis lupus) do so from between
200 m and 400 m to reduce their influence on wolf
movements. Similar constraints appear unneces-
sary for HiP black rhinos based on our findings. We
found the disturbance created by visiting rhinos
to within 50 m for visual identity and location as
frequently as once a fortnight to have a limited
impact on black rhino movements in HiP. Indeed,
our median daily displacement distance after
researcher visits for rhinos that fled (+2.03 km)
was half the median human induced displacement
distances recorded for black rhinos elsewhere in
southern Africa (e.g. ¢. 4.4 km in Namibia; Berger
& Cunningham, 1995). Nevertheless, we recom-
mend that precautionary measures of observers’
influence be a standard part of intensive monitor-
ing efforts of rhinos.

Populations may vary in their sensitivity to
anthropogenic disturbance and monitoring regimes
and observers vary in their propensity to displace
wildlife. HiP’s rhino population has been annually
harvested for over 60 years to assist with a species
range expansion programme (i.e. 5-8% of popula-
tion; Hitchins, Keep & Rochat, 1972; Emslie, 2001;
Clinning et al., 2009; Plotz, 2014), which may have
acclimatized them to regular human disturbance.
Moreover, we did not investigate if habitat use
(within home range) by rhinos was spatially or

temporally altered by our regular disturbances. In
Kenya, for example, wild dogs (Lycaon pictus) in
human versus non-human dominated areas had
similar home range sizes, but area-avoidance and
intra-species overlaps increased in human domi-
nated areas (Woodroffe, 2011). For rhinos, dis-
placement distance and energetic costs might
also have a non-linear relationship where greater
distances travelled translate into more or less
energy expended. Understanding the relationship
between movement and energetic cost for rhinos
would improve our understanding of the ecological
impacts of disturbance on rhinos. We were, how-
ever, unable to equate distance to energetic costs
because we have no metric or way of measuring
the energetic costs in the field with wild rhinos (e.g.
horses, Equus caballus; Minetti, Ardigo, Reinach
& Saibene, 1999). Nonetheless, the impact of a
non-linear relationship between distance and
energetic costs is much less likely over the short
distances we recorded compared with greater dis-
placement distances wherein the rhino is likely to
encounter a greater diversity of terrain or become
energetically anaerobic. Incorporating measures
of less visible responses by rhinos to human dis-
turbance would also greatly improve assessments
of its impact (e.g. heart rate, Nimon, Schroter &
Stonehouse, 1995; distress; Linklater et al.,
2010b), but again testing this remained outside the
scope of our study. Further investigations of black
rhino movements, energetic costs and range use
at finer scales (including physiological responses;
e.g. Linklater et al., 2010b), within human-disturbed
habitats are required.

Triangulation error

The median 530 m discrepancy between trian-
gulation-estimated locations and visually confirmed
locations of rhinos highlights the amplifying effect
that observer distance can have on spatial error
when triangulating. Greater observer distance can
also amplify the time taken to complete bearings,
with a significant positive relationship between
triangulation error and time to complete the trian-
gulation. This was probably due to animal move-
ment while the estimate was taking place meaning
that observer distance and time to triangulate
were both strong explanations of rhino location
error.

Ours is the first black rhino study to measure
triangulation error. It raises questions about the
precision of black rhino home range and habi-
tat-use studies that use substantial numbers of
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radio-triangulation estimates without considering
(testing) location error (e.g. 81% of all locations in
Gottert et al., 2010, were triangulations). Spatial
error should be measured and reported and, if
necessary and possible, mitigated in home range
studies by triangulating closer to the animal.

Theuerkauf & Jedrzejewski (2002) achieved a
mean radio-triangulation error of 0.19 km by
having 75% of their triangulations on wolves con-
ducted at an observer distance of between 0.20
and 1.2 km. Our results indicate that if observers
want to significantly improve the precision of radio-
triangulations for black rhinos, they should aim to
minimize observer distance from rhino when trian-
gulating. Analysis of our data shows that median
triangulation location error is reduced by almost
half when bearings are taken fromless than 1.0 km
from the rhino (e.g.to 0.29 km cf. to overall median
of 0.54 km). Also, spatial error in triangulated loca-
tions is reduced by a similar amount when the
time from triangulating to sighting the rhino was
completed in under 30 minutes (e.g. to 0.28 km
with IQR of 0.43 km cf.to overall median of 0.54 km
with IQR of 0.70 km).

Our understanding of the spatial ecology of black
rhinos are hampered by methodological inconsis-
tencies across location studies and a disregard for
sources of location error (Linklater et al., 2010a;
Plotz et al., 2016). Accurate location estimates are
important because they provide greater insights
into the ecological needs and the spatial structure
of black rhino populations (e.g. male and female
rhino’s seasonal movements, Plotz et al., 2016;
responses to changing population density, Linklater
& Hutcheson, 2010). We recommend, therefore,
that researchers in the field aim to significantly
reduce triangulation location error for black rhinos
by adopting distance protocols when completing
individual triangulation bearings, because shorter
distances (e.g. preferably <1 km, not >2 km =
median 1.33 km discrepancy between triangu-
lated and direct sighting locations, with IQR
1.41 km) reduces the time needed to complete tri-
angulations, which ultimately limits the affect rhino
movement has on location error.

To reduce observer distances to decrease over-
all triangulation error researchers should, when-
ever possible, aim to record bearings of black rhino
locations with gain (signal strength reading) levels
of 4 or above (e.g. median observer distance of
0.91 km). The recommendations above are based
upon data gathered by observers (n = 2) that had
several years’ experience tracking rhinos. Our

recommendations will likely vary according to the
level of experience and/or skill of observers that
track black rhinos.

Conservation implications

Researchers and managers monitoring black
rhinos will be reassured that direct observations,
often causing disturbance and animal displacement,
at bi-weekly intervals, had little impact on rhino
daily movements. However, triangulation error can
lead to substantial errors in animal location data.
We recommend that bearings for radio-triangulation
of black rhino locations occur from shorter distances
and time periods. Nonetheless, more research into
rhino socio-spatial ecology is needed to determine
whether black rhinos are avoiding human dis-
turbed areas at finer spatial scales (cf. wild dogs;
Woodroffe, 2001).

Inaccurate, non-standardized location data have
the potential to mislead black rhino population
management (see Linklater et al., 2010a; Plotz
et al., 2016). Thus, assessing and reporting on
known errors in radio-telemetry location studies
(e.g. Kauhala & Tiilikainen, 2002; Theuerkauf &
Jedrzejewski, 2002; Harless, Walde, Delaney,
Pater & Hayes, 2010; Gula & Theuerkauf, 2013;
Plotz et al., 2016) should become best practice
(Macdonald & Amlaner, 1979; Harris et al., 1990;
White & Garrott, 1990; Saltz, 1994; Frair et al.,
2010). The magnitude of observer disturbance
and triangulation error is likely to differ over time,
between species, populations and sites. Reporting
measures for spatial error, as presented here,
would permit the development of objective thresh-
olds for data inclusion (Saltz, 1994; Frair et al.,
2010; Gula & Theuerkauf, 2013; Plotz et al., 2016)
to improve radio-telemetry data quality and
inter-study comparisons (e.g. Laver & Kelly, 2008 ;
Plotz et al., 2016). Refining our understanding of
rhino spatial ecology requires radio-telemetry
studies to repeatedly test and report on observer
effect and triangulation error.

In future, as technology options for monitoring
rhinos develop (e.g. drones; Mulero-Pazmany,
Stolper, Van Essen, Negro & Sassen, 2014), mini-
mizing or even preventing observer influence and
triangulation error will likely become possible.
However, under-reporting of known sources of
animal disturbance and location error remains
an issue across all wildlife monitoring studies,
including those that use GPS satellite technol-
ogy (Frair et al., 2004; Frair et al., 2010). Wildlife
managers and researchers would benefit from
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more meaningful inter-study comparisons if test-
ing and reporting on known sources of disturbance
and location error, relative to the technology used
(Frair et al., 2004), became standard practise.
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