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Abstract. A deterministic mathematical model of the black rhino population in 

South Africa will be discussed. The model is constructed by dividing the black 

rhino population into multiple patches. The impact of human intervention on 

different translocation strategies is incorporated into the model. It is shown that, 

when implemented correctly, translocation can accelerate the growth rate of the 

total black rhino population. Equilibrium points are shown with their local 

stability criteria.  
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1 Introduction 

The black rhino population in the 1970s had a bleak future, since there were 

only about 2500 left in South Africa. Prior to this, there were about 70,000 

black rhinos in South Africa [1,2]. This alarming decrease in the population 

number arose from poaching rhinos for their horns, which are marketed in Asia 

and Europe. To overcome poaching, the South African government has tried to 

prevent illegal rhino hunting. However, these attempts have been largely 

unsuccessful. In order to increase the population numbers of the black rhino, a 

translocation strategy has been implemented.  

The translocation strategy involves relocating rhinos in an area populated fairly 

densely with rhinos to another area which is less dense and has a suitable habitat 

to support population growth [3]. The involvement of the government in the 

translocation strategy can be considered to be fairly successful since the current 

black rhino population reached 4860 rhinos in 2011 [4]. The translocation 
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method is implemented in densely populated areas such as the Hluhluwe-

Umfolozi National Park. 

In the relocating process there are many factors to be considered: rhino size, 

age, sex and climate variability are the main influencing factors [5,6]. The 

population density is also of critical importance. The carrying capacity is mostly 

influenced by environmental factors such as rainfall. With sufficient rainfall, 

food and water will be abundant and thus the rhino population growth will be 

higher due to a higher reproduction rate. It should be noted that harvesting, 

which is the removal and relocation of rhinos, should be conducted in a way 

that ensures that the donor population will not be negatively affected. The aim 

of the translocation strategy is to increase the growth rate of the total black 

rhino population in South Africa. 

A simple mathematical model was developed in this study in order to describe 

the effect of translocation on the total rhino population in South Africa. The 

translocation rate, which was defined as an intervention variable, was assumed 

to be time-dependent. The object of this research was to find better strategies for 

optimizing the growth rate of the black rhino population. The donor population 

should not be severely affected in a negative way and the receiver population 

must benefit from the harvest. 

A mathematical model to describe this situation in a population of black rhinos 

in South Africa will be discussed in this paper. This paper is constructed as 

follows. In the next section, the construction of the mathematical model will be 

discussed. In the third section, a mathematical analysis of the equilibrium points 

and their local stability criteria will be given. A numerical simulation with a 

number of different translocation strategies will be given in section 4. The 

conclusion will be given in the last section. 

2 Mathematical Model 

The logistic mathematical model is implemented in three different patches, 

namely: the variable       denotes the population number of the resource or 

donor population,       denotes the first translocation or receiver population, 

and       the second translocation population. In each population group, the 

recruitment rate, which depends on environmental factors and thus differs for 

each population, is a combination of the rate at which rhinos are born,  , which 

may decrease due to competition between rhinos. The carrying capacity, 

   which also depends on climatic conditions such as rainfall variability, will 

differ for each population group. The recruitment rates and carrying capacities 

are assumed to be known parameters. A fraction of rhinos from population 

group       will be translocated to populations       and       at a rate of 
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      with proportions of   and       respectively. We include the parameter 

  so that the total rate at which rhinos are taken from    is       and because 

we do not want to restrict the fraction of rhinos being received from populations 

      and       to be the same. The value of parameter   will depend on the 

state of the receiving populations. For instance, it may happen that one 

population is in a more desperate need of donated rhinos. When population 

      reaches a state in which it can function independently, a fraction of this 

population will be translocated to       at a rate of      . We implement the 

possibility of population       becoming a donor population once it can 

function unaided by harvesting, since we want to maximize the growth rate of 

all three populations. In other words, we want to ensure that we reach a state in 

which all three populations can function independently. The three decision 

variables in this model are                The model illustrated in Figure 1.   

 

Figure 1 Diagram showing the translocation strategy for the black rhino 

population. 

Using the assumptions stated above and Figure 1, the system of differential 

equations for the black rhino translocation strategy is given by 
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where   ,        , is the recruitment rate for each population and the initial 

conditions       are given. All parameters are non-negative and we have that 

            for       and also          

To accommodate seasonal rainfall variability and the geography of each 

environment, the carrying capacity for each population is time-dependent. In 

this model, we assume the carrying capacity in each patch is presented as a 
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sinusoidal function given by                 (
  

  
) for         where     

is the initial carrying capacity for each   while   and   are constants to account 

for the fluctuations of     . 

In the next section we assume that all translocation rates and carrying capacities 

are constant. We let                and                 . The 

stability analysis of the model will be discussed in the next section.  

3 Analysis of the Model 

There are four equilibrium points for Eq. (1-3), which are given by 
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where    
  is the equilibrium point of    in   .  

Equilibrium point    represents the situation where all populations are extinct 

and equilibrium point    represents the situation where only the receiver 

population exists. Both cases may occur if the translocation strategy is not 

successful. An example of a possible failure of the translocation strategy would 

be to harvest rhinos at a rate that is greater than the natural recruitment rate 
       .  On the other hand,    represents the situation where the main source 

population becomes extinct because the harvesting rate is greater than the 

natural recruitment rate        . Trivially,    will always be non-zero if the 

harvesting rate is smaller than the natural recruitment rate        .  

The last equilibrium point, denoted by   , depicts the situation where all 

populations exist. The point    will always be a positive equilibrium point if 

      for      . Therefore, as long as the translocation rate is always less 

than the natural recruitment rate,    will always be positive.  
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The Jacobian matrix of system (1-3) is given by  
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According to matrix (4),    has three different eigenvalues, namely,    
       ,            and      . Because     ,    will always 

unstable. In a similar way, we have three eigenvalues for   , i.e.    
       ,            and       . We can see that    will always be 

locally asymptotically stable if       for      . From an ecological point of 

view, this situation must be avoided. It may happen if the translocation rate is 

larger than the natural recruitment rate in each population. 

The third equilibrium point,   , will be locally asymptotically stable if       

and       since it has three different eigenvalues given by           , 

            and    
         

  

  
, where    

  is the equilibrium state for    

in   . This situation represents the failure of the translocation strategy in the    

population because the translocation rate is larger than the natural recruitment 

rate. The Jacobian matrix of equilibrium point    is omitted due to its 

complexity. The eigenvalues of    are given by  
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where   
  is the equilibrium point of    in   . The first eigenvalue    will be 

negative if        . (This is already fulfilled by the positiveness criteria of 

  ). The second eigenvalue will always be negative also due to the positiveness 

requirement for   , i.e        . The last eigenvalue will always be negative if 
  

   
   . From equilibrium point   , it is easily verified that this condition is 

indeed satisfied.  

A summary of the positiveness and local stability criteria for each equilibrium 

point is presented in Table 1.  
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Table 1 Positiveness and local stability criteria for each equilibrium point. 

Equilibrium Point Positive criteria Local stability criteria 

           - Always unstable 

          
   -       ,       

        
    

               ,       

      
    

    
         ,             ,       

As shown from the analytical results regarding positivity and local stability for 

each equilibrium point, it can be seen that only the natural recruitment rate and 

translocation rate play a role in the stability for each point. The carrying 

capacities do not play any role in the stability of the system.  

 
Figure 2 Carrying capacity for each population with              (

  

 
), 

           (
  

  
),      . We define the carrying capacities to be sinusoidal 

functions as they have seasonal fluctuations. The carrying capacity for    is 

given as a constant. 

Numerical simulations to show the dynamics of each population group for the 

cases given in Table 1 are shown below. The carrying capacities of each black 

rhino population depend on climatic conditions and also the geography of each 

area. We let the carrying capacities for       and       be sinusoidal functions 

given by              (
  

 
),            (

  

  
), while we set the 

carrying capacity for       to a constant parameter because we assume that this 

receiver population exists in a sufficiently small region (for an example, a 
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private game farm). In Figure 2, plots of the carrying capacities with respect to 

time (in years) are given. 

 
Figure 3 Dynamics of             and       (for      ) with parameter 

values    
 

 
                     .   

 
Figure 4 Dynamic of             and       (for      ) with parameter 

values    
 

 
                    . 
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Figure 5 Dynamic of             and       (case            ) with 

parameter values    
 

 
                    . 

The first simulation shows that when the translocation rates are smaller than the 

natural recruitment rates (      for        with         , all populations 

tend to the non-zero equilibrium point (  ). Populations    and     fluctuate 

about their carrying capacities due to the sinusoidal nature of the carrying 

capacities (see Figure 3). The next simulation, shown in Figure 4, depicts the 

opposite situation, where the translocation rates are larger than the natural 

recruitment rates. As shown in Table 2, this scenario will reach the equilibrium 

point    where only      , as the main receiver population, will be positive 

while the other populations tend to zero. The dynamics of each population are 

shown in Figure 4. The last simulation, shown in Figure 5, considers the 

situation where the translocation rate from       is larger than its natural 

recruitment rate while the translocation rate from       is smaller than its 

natural recruitment rate. This situation will give us equilibrium point   , where 

all populations are zero, except      .   

If we cannot ensure successful implementation of the translocation strategy, one 

or more rhino populations may become extinct. Therefore, in the next section 

we will show that there are some translocation strategies that will lead to an 

increase in the total black rhino population.  
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4 Numerical Simulation of Translocation Strategies 

In this section, numerical results are given in order to analyze the response of 

the black rhino populations to different translocation strategies. The first 

simulation shows the behavior of the populations when different carrying 

capacities for    are considered. The simulations include the assumption that 

the government or private farm owners can enable the population of       to 

have a large carrying capacity. We use the same parameter values as in Figure 

3, except for the translocation rates (               ), while the initial 

conditions are given as                           . A constant 

translocation rate does not address the actual physical situation but is an 

important approximation for scientific justification. As shown in Figure 6, with 

      (first row),        (second row) and        (third row), these 

translocation strategies succeed to increase total black rhino population.  

 

Figure 6 Dynamics of the black rhino populations with different    (      

(first row),        (second row) and        (third row)). 

Although in Figure 7 we have shown that these translocation strategies succeed 

in increasing the total number of the black rhino population, the higher the value 

of   , the better the result. This means that one of the biggest challenges for the 

government or private farm owners is to provide a suitable environment that 

promotes rhino population growth before implementing the translocation 

strategy. 
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Figure 7 Difference of total rhino population when       (left),        

(center) or        (right). 

The next simulations were generated with strategies using different 

translocation rates. The translocation rates differ from being constant to being a 

periodic discrete rate. Each strategy is implemented for 50 years. Figure 8 

shows the periodic translocation rate strategies that were used.   

 

Figure 8 Periodic translocation rate strategies with a 10-year gap (left) and a 5-

year gap (right). 
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(a) (b) 

 

(c)        (d) 

Figure 9 Dynamics of the black rhino populations with different translocation 

strategies. All parameter values are the same as used in Figure 2. The figures 

show the dynamics of                   and the total rhino population. 

It can be seen from Figure 9 that the gap of the translocation strategies does not 

play an important role. As long as the translocation rate fulfills the criteria in 

Table 1, the total population of black rhinos will still increase and reach 

equilibrium state   .  

5 Conclusions 

A deterministic mathematical model of the black rhino population with a 

translocation strategy has been developed in this paper. Translocation strategies 

involve relocating a fraction of one population to one or more other populations. 

The idea of translocation strategies is to optimize the growth rate of a 

population that is still far from its carrying capacity. 
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The total number of black rhinos will increase with the implementation of 

successful translocation strategies. The higher the carrying capacities of the 

receiver populations, the better the result. This is dependent on the government 

and private farm owners, who have to provide or choose a suitable environment 

so that the receiver populations are able to increase significantly in size.  

Discrete translocation strategies are more suitable to describe the real physical 

situation than using a constant translocation rate. The reason for this lies within 

the recovery time given to a population to acclimatize to the changes 

implemented due to translocating rhinos. For instance, a rest period where no 

translocation is implemented is accounted for in this model.  

Further development of the model would involve formulating the translocation 

strategies as an optimal control problem. It is important to see how the 

translocation strategies should be applied in an optimal way. This depends on 

the carrying capacities and also on the initial conditions of the populations. 

Acknowledgments 

This work is a result from the Mathematics in Industry Study Group meeting in 

December 2012, University of the Witwatersrand, South Africa. The author 

would like to thank the referees for their helpful suggestions. This research was 

funded by the International Research Grant of the Indonesian Directorate 

General for Higher Education 2013. 

References 

[1] Reid, C., Slotow, R., Howison, O. & Balfour, D., Habitat Changes 

Reduce the Carrying Capacity of Hluhluwe-iMfolozi Park, South Africa, 

for Critically Endangered Black Rhinoceros Diceros bicornis, Oryx, 

41(2), pp. 247-254, 2007. 

[2] Emslie, R.H., Workshop on Biological Management of Black Rhino. 

Pachyderm, 31, pp. 83-84, 2007. 

[3] Owen-Smith, N., African Rhino Conservation, Presentation at 

Mathematics in Industry Study Group, University of The Witwatersrand, 

South Africa, 2013. 

[4] IUCN 2012. IUCN Red List of Threatened Species, Version 2012.2. 

(http://www.iucnredlist.org), (21 January 2013). 

[5] Linklater, W.L. & Hutcheson, I.R., Black Rhinoceros are Slow to 

Colonize a Harvested Neighbour’s Range, South African Journal of 

Wildlife Research, 40(1), pp. 58-63, 2010. 

[6] Hrabar, H. & du Toit, J.T., Dynamics of a Protected Black Rhino 

(Diceros bicornis) Population: Pilanesberg National Park, South Africa, 

Animal Conservation, 8, pp. 259-267, 2005. 


