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Abstract 
Population dynamics is a central component of demography and critical for meta-population 
management, especially of endangered species. We employed complete individual life 
records to construct census data for a reintroduced black rhinoceros population over 22 years 
from its founding and investigated that population’s dynamics to inform black rhinoceros 
meta-population management practice and, more generally, megaherbivore ecology. Akaike’s 
information criterion applied to scalar models of population growth based on the generalized 
logistic unambiguously selected an exponential growth model (r = 0.102 ± 0.017), indicating 
a highly successful reintroduction, but yielding no evidence of density dependence. This 
result is consistent with, but does not confirm, the threshold model of density dependence that 
has influenced black rhinoceros meta-population management. Our analysis did support 
previous work contending that the generalized logistic is unreliable when fit to data that do 
not sample the entire range of possible population sizes. A stage-based matrix model of the 
exponential population dynamics exhibited mild transient behaviour. We found no evidence 
of environmental stochasticity, consistent with our previous studies of this population that 
found no influence of rainfall on demographic parameters. Process noise derived from 
demographic stochasticity, principally reflected in annual sex-specific recruitment numbers 
that differed from deterministic predictions of the matrix model. Demographically driven 
process noise should be assumed to be a component of megaherbivore population dynamics, 
as these populations are typically relatively small, and should be considered in managed 
removals and introductions. We suggest that an extended period of exponential growth is 
common for megaherbivore populations growing from small size and that an increase in age 
at first reproduction with increasing population size, manifest in the study population, may 
provide a warning of density feedback prior to detectable slowing of population growth rate 
for megaherbivores .  
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INTRODUCTION 

Reintroduction is an important strategy of conservation science (Seddon et al. 2007) and a 
critical component of black rhinoceros (Diceros bicornis) meta-population management 
(Emslie 2001). Since reintroductions are sourced from existing populations, understanding 
population dynamics is vital to conservation theory and practice as regards both the expected 
performance of the introduced population and possible effects on the harvested population 
(Armstrong and Seddon 2007). Similarly, understanding the dynamics of populations affected 
by poaching is important (Brodie et al. 2011). 
 Scalar models of density dependence are prominent in population studies of large 
herbivores (Owen-Smith 2010). Verhulst (1838) considered the equation )(' NrNN φ−= and 

in particular the form θφ bNN =)(  (though with different notation), in the context of 
population growth. This latter has also been employed as a growth equation for organisms. In 
that context Nelder (1961) cited Pütter (1920) and Richards (1959) and noted that the 
equation can be derived from von Bertalanffy's growth equation (e.g., Bertalanffy 1957). 
Gilpin and Ayala (1973) generalized the Lotka-Volterra predator-prey equations by replacing 
N/K by (N/K)θ in the logistic equation. Gilpin et al. (1976) attributed this generalized logistic 
to Verhulst (1838). Recognition that the linear decline in per capita growth rate (pgr) of the 
logistic model is unrealistic for populations of large vertebrates (Fowler 1981, 1987; 
McCullough 1992) led to favouring of the generalized logistic 
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as a flexible model of density dependence, the parameter θ controlling the approach to 
equilibrium K, with a value larger than one considered appropriate for large vertebrates, and r 
the intrinsic rate of growth. Fowler (1981) actually only wrote down the logistic rather than 
the generalized logistic but referred to generalized growth models and cited Richards (1959), 
Pella and Tomlinson (1969), and Gilpin et al. (1976).  

The logistic equation (θ = 1) can be solved by direct integration using the method of 
partial fractions. Rewrite the ODE (ordinary differential equation) as  
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and integrate to obtain, after some manipulation, 
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where N0 = N(0). The generalized logistic can be solved in the same manner, or one can put 
M = Nθ, J = Kθ, and s = rθ and the generalized logistic ODE becomes  
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i.e., the logistic equation for these quantities. Hence, the solution of the generalized logistic 
can be obtained directly from (1) as 
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Standard theory of first –order ODEs (existence of a phase flow) guarantees that if 
one writes the solution (3) in the form ( ))0(,)( NtFtN = , then 

( ))(,)( sNstFtN −=                 (4) 

for any s, 0 ≤ s < t. Equation (4) is easily confirmed for the generalized logistic by algebraic 
substitution in (3). 

From (3), one sees that for N0 << K and so that (N0/K) < e-rt, then for large θ the 
denominator in the first form is approximately one and N(t) behaves as exponential growth 
over that range of t values. Yet the solution still converges on the equilibrium K for large t 
and does so rapidly once the rate of growth begins to decline. Indeed, as θ → ∞, the solution 
converges on exponential growth until N(t) reaches K and growth ceases, which is an extreme 
form of threshold model. McCullough (1999) proposed that pgr for large herbivores might 
remain constant from low abundance to near equilibrium (corresponding to exponential 
growth) and then decline rapidly as equilibrium is approached. For such a model, N(t) is 
continuous but only piecewise differentiable, with a point of nondifferentiability at the 
threshold value N* at which exponential growth ceases. If the decline is modelled by the 
generalized logistic, then the expression for N(t) is an exponential growth curve joined at N* 
to a solution of the generalized logistic with the same r and suitable θ and K (see also Owen-
Smith 2010:39). Taking θ = 1 gives linear decline in pgr after the threshold, sometimes called 
the ‘ramp’ model. 

 The graph of (2) is sigmoid with point of inflexion at  

θ θ+
=

1
KN H .                (5) 

NH is also the abundance at which population growth rate )(' tN is a maximum. For θ > 1, NH 
> K/2 and approaches K as θ → ∞. Hence, for θ > 1, the abundance for optimal sustainable 
harvesting is nearer to K than the value of K/2 for the logistic. For a threshold model of 
population growth, optimal sustainable harvesting can be achieved by harvesting at the 
model’s threshold value N*.  Thus, the appropriate model of population dynamics informs 
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not only how the population approaches equilibrium but also how harvesting can be 
practised. In particular, Emslie (2001) advocated an approach to meta-population 
management for black rhinoceros based on a threshold model of density dependence but the 
scarcity of undisturbed expanding populations poses an obstacle to testing that assumption. 
One of our objectives was to see whether our study population of black rhinoceros (Diceros 
bicornis minor) conformed to expectations based on a threshold model of dynamics. 

 Ideally, fitting a time series of abundances to the solution (2) of (1) by nonlinear 
regression yields estimates of the model parameters by maximum likelihood. Unfortunately, 
time series of data fit to (2) may not yield precise estimates for r, K, and θ when the data does 
not adequately cover the full range of values from near zero to K; θ in particular is often 
imprecisely estimated (Nelder 1961). Time series of abundances are often modelled with 
discrete-time versions of (1); when the data fluctuates about a presumed equilibrium but does 
not sample the population at low abundance, maxima of the likelihood may be determined by 
the product rθ rather than these parameters separately, entailing a redundancy in r and θ and 
non-uniqueness of estimates (Polansky et al. 2009; Clark et al. 2010). Moreover, there are 
several ways to discretize a continuous-time model and various forms appear in the literature. 
Furthermore, a discrete-time model may misrepresent continuous-time dynamics, or discrete-
time dynamics may be misrepresented by an inappropriate time step in the model, in each 
case yielding erroneous estimates of θ (Doncaster 2008). Scalar models themselves 
misrepresent population dynamics by ignoring population structure, which may obscure 
transient dynamics (Koons et al. 2005). Complicating matters further are the influences of 
environmental stochasticity and, for small populations such as reintroduced populations, 
demographic stochasticity. Hence, extracting useful information from a time series of 
abundances faces a variety of challenges. 

Our dataset consisted of a time series of censuses of a black rhinoceros population 
that grew monotonically from its reintroduction in 1986 through the end of 2008 without 
reaching equilibrium. We fitted scalar models of population growth to these data to evaluate 
whether density dependence acted during this time and if so in what form. This exercise 
addressed the objective stated above regarding the probing of population dynamics of black 
rhinoceros in particular, and megaherbivores in general, but also permitted us to explore the 
difficulties mentioned in the preceding paragraph of prescribing and fitting models to 
abundance data. Our data exemplified the opposite density extreme to that considered by 
Polansky et al. (2009) and Clark et al. (2010), i.e., growth from low numbers rather than 
populations near equilibrium. 

On the basis of the results of the scalar population modelling, we next built a matrix 
model to assess the relevance of population structure to the dynamics and, in particular, to 
detect transient dynamics. We also evaluated the importance of environmental and 
demographic contributions to process noise (Lande et al. 2003), during the period after 
introductions ceased. That environmental variation can influence population dynamics is well 
known (Owen-Smith 2010 includes reviews for large herbivores). Demographic stochasticity 
may be important for reintroductions and perhaps for populations of megaherbivores in 
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general. Few estimates of demographic stochasticity of populations of large mammals appear 
in the literature. 

Our study population has been the subject of various studies focusing on other aspects 
of black rhino, and megaherbivore, ecology, reflecting not only the importance of the 
critically endangered black rhinoceros but also the fact that the study population has been 
undisturbed by poaching, been subject to little management intervention, but monitored at the 
individual level over the 22 years of the study period, resulting in a rare opportunity to study 
a natural megaherbivore population. These other studies  (Lent and Fike 2003; Ganqa et al. 
2005; Ganqa and Scogings 2007; van Lieverloo et al. 2009; Fike 2011; Law et al. 2013, 
2014) illuminate the results of this paper. Our paper therefore contributes to the valuable 
study of this particular population and contributes to the understanding of megaherbivore 
population dynamics (Cromsigt et al.  2002; Gough and Kerley 2006; Chamaillé-Jammes et 
al. 2008; Okita-Ouma et al. 2010; Owen-Smith 2010; Brodie et al. 2011) both for theoretical 
ecology and conservation science. 

 
STUDY POPULATION AND DATASET 
 
We base black rhinoceros demography on biological states rather than age (Law and 
Linklater 2014) and employ the definitions of ‘calf’, subadult’, ‘female adult’ and ‘male 
adult’ of Law et al. (2013, 2014) and Law and Linklater (2014), summarized in Table 1. 

 

Table 1. Definitions of biological life stages for demography of the black rhinoceros 

Life Stage Definition 

Calf From birth to: observed separation from the mother; at the birth of the mother’s 
next calf; or the calf’s 4th birthday; whichever comes first 

Subadult From ceasing to be a calf until becoming an adult 

Female 
Adult 

The subadult-adult transition occurs for females at first calving or at the 7th 
birthday, whichever comes first 

Male Adult The subadult-adult transition occurs at the 8th birthday. 

 

 
The Great Fish River Nature Reserve (GFRNR), Eastern Cape Province, South Africa, is split 
into halves by the Great Fish and Kat rivers, and is considered excellent black rhinoceros 
habitat (Ganqa et al. 2005; Ganqa and Scogings 2007; van Lieverloo et al. 2009; Fike 2011). 
Black rhinoceros (Diceros bicornis minor) populations were independently introduced into 
each half of the reserve. The population in the 220 km2 western sector (former Sam Knott and 
Kudu Reserve) is the older, larger, and more consistently monitored of the two , and has been 
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the focus of considerable study, as noted in the Introduction; we refer to it from its founding 
in June 1986 through December 2008 as the SKKR population (or simply SKKR).  

The SKKR population was founded with the release in June, 1986, of one adult 
female (aged about 24), one subadult (SA) female (aged about three), and two males, both 
judged to be adults. One of the males died in 1988 from an injury that occurred prior to 
importation and was treated as a failed import, i.e., excluded from the study. 

In October/November 1989, when population size was four, a second cohort was 
released consisting of three SA females and three SA males, of which one female and one 
male died in 1989 and another male died in 1990, each regarded as a failed import. In 
November, 1990, when population size was eight, two adult females (one aged about 15; the 
other aged about 7 and pregnant) and a SA male were imported. The pregnant female calved 
in December 1990 but both mother and calf were dead by the end of 1991 and are treated as 
failed imports. In January 1992, when population size was 11, a female SA and a male adult 
were released. Between September 1997, when the population was 26, and December 1997, a 
cohort of 7 females and 6 males, all SAs and all quite young (about three years of age) except 
one (aged about six) was imported. See Fike (2011). 

In summary, 13 males and 15 females were introduced but 3 males and 2 females died 
soon after release and did not contribute to the population. The surviving imports included 
only two females and two males that were already adults. One further individual, a female 
adult, entered the SKKR population, from the eastern sector of the GFRR, in 2003. This 
immigrant was the only exception to the demographic isolation of the SKKR population 
during the study period. She calved for the first time after entering the SKKR population and 
is included as a member of the SKKR population from her time of entry.  

The export of 1 SA male and 4 SA females in May 2006 yielded a sex ratio of 9:10 as 
a result of imports and exports, after discounting the failed imports. These exports were the 
first removals from the SKKR population, conducted as part of the meta-population 
management plan to provide donors for reintroductions elsewhere and maintain high 
population growth rates by preventing density feedback on population growth rate. More 
substantial removals were conducted after 2008. Our demographic study of the SKKR 
population focused on the period from reintroduction through the end of 2008 to obtain the 
longest study period possible with minimal effects from removals. As detailed below, we 
accounted for the removals in both scalar and matrix modelling, though in different ways. 
The complete absence of poaching in the GFRR, the fact that only five rhinos were removed 
prior to 2009 by management, and the excellent monitoring of the population at the 
individual level made this population an excellent opportunity for the study of black rhino 
ecology in general and the performance of a reintroduced population in particular. See the 
previously cited literature for further details of the population. 

SKKR was monitored under BF’s direction as reserve manager by ground patrols and 
aerial reconnaissance; each animal was ear notched, and births and deaths recorded as part of 
this monitoring. No animals were handled for the research reported in this paper. The data 
collected by BF permitted actual population censuses to be computed for any month from 
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Jun-86 through Dec-08. The only uncertainty in such censuses arises from uncertainties in 
birth and death dates. At the initial recording of each birth and death, an interval of 
uncertainty was assigned to reflect the precision of the birth or death date (Fike 2011). The 
interval of uncertainty, in months, centered on the nominal birth date (d), was specified by a 
value U so that the interval of uncertainty was d – U to d + U. The values of U employed by 
Fike (2011) were: U = 0 (uncertainty in the nominal date at most 1 week); U = 1; U = 3; U = 
6; U = 12; U > 12. For 106 births and 15 deaths, 29 had U = 0, 38 had U = 1, 32 had U = 3, 
20 had U = 6, 2 had U = 12, and none had U > 12. We therefore computed censuses semi-
annually, every June and December to limit the effects of these uncertainties. We then used 
the assigned intervals of uncertainties to inspect their impact on the censuses by noting when 
a rhino was unambiguously present or not and counting the maximum possible number of 
rhino that might be added to or subtracted from the nominal census count due to the 
uncertainty of birth and death dates. Expressed as percentages of the nominal census counts, 
only three possible modifications exceeded 10%, each at very low population levels (viz., an 
ambiguity of one rhino in a count of three or four). From Jun-86 through Jun-98, 17 of 25 
censuses possessed no ambiguity at all. From Dec-98 through Dec-08, an ambiguity was 
always present but in 14 of 21 censuses was less than 5%. It was clear that this data could not 
be modelled as independently and identically distributed. As these were maximum estimates 
of uncertainty, and ambiguous presence and ambiguous absence, when both present, would 
tend to cancel, taking the nominal censuses as actual population censuses seemed plausible. 

 In particular, we considered our data not to include the kind of observation error that 
arises from employing sample data or count estimates, as many studies are forced to do. We 
therefore did not need to be concerned with false signals of density dependence (Shenk et al. 
1998; Freckleton et al. 2006) or with conflating sampling error and process noise (deValpine 
and Hastings 2002). 

SKKR grew monotonically on a semi-annual basis to reach 110 (26 calves, 39 
subadults, and 45 adults) at the end of 2008. Our dataset consists of population censuses each 
June and December, from June, 1986, through December, 2008, Fig. 1, computed from 
complete population records.  

ANALYSES AND RESULTS 

1. Scalar Population Models 

We began by fitting the census data to scalar models of population growth. Since the data in 
Fig. 1 does not indicate an equilibrium or obvious threshold, we could not include a threshold 
model amongst the candidate models, e.g.., a model based on the ODE of the form 
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in which it is assumed that N* is close to K, but threshold-like dynamics can be approximated 
by large values of θ in the generalized logistic. 

Figure 1. 46 semi-annual census counts of the SKKR population from Jun-86 through Dec-
08. 

 

As black rhinoceros are aseasonal breeders their population dynamics lack a natural time 
step, suggesting continuous-time models are appropriate. We write a per capita growth 
equation like (1) and its solution (2) in the form 

( ) )(')ln(' NfN
N
N

==    ( ))(,)( sNstFtN −=     (7) 

0 ≤ s < t. Denote the census data at time t by Nt. Nonlinear regression fits this data to the 
solution by putting ( )0, NtFNtt −=ε , with εt independent N(0,σ2) variates. Since the 
projected value at t depends only on N0 in this model, εt does not participate in the dynamics 
and so is not a realistic model of process noise. We included this naïve model in our analyses 
as a way of evaluating the importance of process noise. 
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In a discrete-time model, as the projected value at the next time step depends on the 
current value, deviations from the deterministic model participate in the dynamics and can be 
interpreted as process noise in a straightforward fashion. A semi-annual time step should 
preclude a pronounced artificial time lag in discrete-time models of population dynamics for 
black rhinoceros. We considered three discretizations of (7) (Turchin 2003:52). The per 

capita growth rate N
N '  can be discretized as (Nt+1 – Nt)/Nt to give 

)(1
t

t

tt Nf
N

NN
=

−+ , i.e., ( ))(11 ttt NfNN +=+ .             (8) 

For the generalized logistic, however, this model will produce a negative value for Nt+1 if  

θ

r
KNt

11+> .              (9) 

This model is therefore unrealistic for populations for which r is large for then N may easily 
exceed this quantity. This flaw may not be an issue for populations of large herbivores, or at 
least megaherbivores. For r = 0.1, say, N would have to exceed 11K for the logistic to 
generate negative abundances; for θ = 4.5 (a value suggested by Eberhardt et al. 2008), N 
would have to exceed 1.7K; for θ = 10, N would have to exceed only 1.27K. But even this 
density may be unlikely in a natural population of large herbivores, so the model may only 
expose its flaw for large herbivores at rather artificial densities, such as in enclosed 
populations. 

 The second discretization notes that N
N '  = ( )')ln(N  and replaces this quantity by 

ln(Nt+1) – ln(Nt) = ln(Nt+1/Nt) to obtain 

( ))(exp1 ttt NfNN =+              (10) 

This model cannot generate negative abundances and for that reason is considered more 
realistic for ecological applications (Turchin 2003:53). Note that (8) can also be obtained 
from (10) by taking the linear approximation to the exponential function, whence (8) and (10) 
will be similar when f(Nt) is small, i.e., when Nt is near K. 

 The third approach to discretization puts 

( )tt NFN ,11 =+            (11) 

i.e., Nt+1 is projected one time step from an abundance of Nt using the solution F of the 
continuous-time model (7). For the generalized logistic, one obtains 
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where λ = er. When θ = 1, this model is of the form of the Beverton-Holt model; if one 
expands the denominator using the binomial expansion, the linear approximation is of the 
form of the generalized Beverton-Holt model 

a
t

t
t KN

N
N

]/[11 +
=+

λ
    (13) 

studied by Getz (1996). When f is as in the generalized logistic (1), we refer to the model 
resulting from (8) as the discrete generalized logistic (DGL), the model resulting from (10)  
as the generalized Ricker (genRicker), and the model (12) resulting from (11) as the stepwise 
generalized logistic (SGL). The DGL figured prominently in Cromsigt et al. (2002) and 
Okita-Ouma et al. (2010). The SGL should be most faithful to continuous-time dynamics.   

 Continuous-time exponential growth can be obtained from the generalized logistic by 
setting K = ∞, so that f(N) = r. For (8) one obtains Nt+1 = Nt(1 + r), and for (10) and (12) one 
obtains Nt+1 = Nter, which are just two versions (with different interpretations of r) of the 
same model. We used the latter form. 

Error Structure and Process Noise 

 When fitting a scalar model of population growth to a time series of census data by 
nonlinear regression, residuals can be interpreted as process noise in the dynamics. For any 
deterministic, discrete-time model of the form Nt+1 = G(Nt), if in fact  Nt+1 = G(Nt) + εt the 
terms εt contribute to the dynamics at each time step in the sense that the projection to time 
t+2 is based on Nt+1, which includes εt, and thus models process noise as additive on 
abundance. Unlike these discrete-time models, we noted above that in the continuous-time 
model N(t) = F(t,N0) + εt, the term εt at time t only corrects the projection at time t but does 
not influence the projection at future times and in this sense is not part of the dynamics and so 
does not realistically model process noise. An error structure additive on abundance, as just 
described, was employed by Cromsigt et al. 2002, and Okita-Ouma et al. 2010. 

 With error structure interpreted as process noise, however, it is also common to model 
the error structure as multiplicative on abundance, whence additive on Xt := ln(Nt), (Polansky 
et al. 2009; Clark et al. 2010). For example, in the discrete-time exponential model, if r is 
replaced by r + εt, then one obtains 

teNeN t
r

t
ε=+1   i.e.,  Xt+1 = Xt + r + εt              

(14) 

Hence, with process noise additive on vital rates, it is multiplicative on abundance (see 
Hilborn and Mangel 1997:73–74, Turchin 2003:184). For multiplicative error structure, we 
therefore wrote Xt+1 := ( ) ttt NGN ε+=+ )(ln)ln( 1 , so if εt is N(0,σ2), exp(εt) is log-normal. 
The models we compared are listed in Table 2. 
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Table 2 Scalar models of population dynamics with two error structures. Nt is the census 
count at time t; Xt = ln(Nt); F(t,N0) is the solution of the continuous-time generalized logistic 
as in (3) and (4); f is the per capita growth rate of the generalized logistic as in (1); εt are 
independent N(0,σ2) variates. 

Model Additive Error Multiplicative Error 

Continuous-time 

exponential (Cexp) 

Nt = N0ert + εt Xt = X0 + rt + εt 

Continuous-time 

generalized logistic (CGL) 

Nt = F(t,N0) + εt Xt = ( )),(ln 0NtF  + εt 

Discrete-time exponential (Dexp) Nt+1 = erNt + εt Xt+1 = r + Xt + εt 

Discrete generalized  

logistic (DGL) 

Nt+1 = ( ))(1 tt NfN +   

       + εt 

Xt+1 = Xt + ( ))(1ln tNf+  

         + εt 

Generalized Ricker  

(genRicker) 

Nt+1 = ( ))(exp tt NfN  

        + εt 

Xt+1 = Xt + f(Nt) + εt 

Stepwise generalized  

logistic (SGL) 

Nt+1 = F(1,Nt) + εt Xt+1 = ( )),1(ln tNF  + εt 

 

Anticipating difficulty with obtaining estimates for θ, we fitted the continuous-time 
generalized logistic (CGL) and the SGL with θ as a parameter but also with fixed values, 
ranging over the integers 1–10, 15, 20, 30, 50, 60, 100, 120, and 190.  

To illustrate further the differences between the deterministic and stochastic, and 
between the continuous- and discrete-time, models, consider exponential growth. First note 
that in the absence of stochasticity,  

1
)]1(1[

00 −
−+ === t

rtrrt
t NeeNeNN            (15) 

i.e., the continuous- and discrete-time models agree. Suppose there is a single stochastic 
perturbation to the population at time s < t. The discrete-time model incorporates this 
perturbation at the step following the perturbation and future projections incorporate this 
perturbation and are thus accurate. The naïve continuous-time model, however, continues to 
project future population size from the initial population size N0 and thus will differ from the 
actual population size at all times greater than and equal to s. Thus, the discrete time model 
will have just the one residual error when fit to actual population size while the naïve 
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continuous-time model will have residuals for all times greater than or equal to s. Hence, the 
naïve continuous-time model can only be expected to provide a good fit to data in the absence 
of stochasticity or perhaps when the stochasticity in the data is small and tends to cancel out 
over time. In effect the naïve continuous-time model does not see stochasticity but the 
discrete-time model does even if Ns = erNs-1 + e (e > 0, say) but Ns+1 = erNs – d (d > 0). 

A more realistic approach to continuous-time dynamics with process noise was initiated by 
Levins (1969), who wrote )(/' trNN =  with solution 









= ∫

t

dssrNtN
0

0 )(exp)(           (16) 

and applied the central limit theorem to the integral to deduce that it approaches a normal 
variate, whence N(t) is log-normally distributed. More formally, one replaces a deterministic 
ODE by a stochastic differential equation (SDE), in which specific parameters (e.g., r and/or 
K) are treated as stochastic variables (e.g., Tuckwell 1974, but there is an extensive literature 
on continuous-time stochastic processes and SDEs). For exponential growth, the ODE 

rNN =/' , r constant, becomes )()(/' trtrNN ε+== , which is formalized by the SDE  

dN = rN(t)dt + σN(t)dW(t)          (17) 

in which ε(t)dt has been replaced by σdW(t), with dW(t) representing the ‘differential’ of the 
Wiener process, representing Gaussian ‘white’ noise. For a likelihood model of the stochastic 
process described by an SDE, one requires the probability density p(Nt,t,|Nt-1) of observing 
abundance Nt at time t given that the abundance at time t-1 was Nt-1. This probability density 
is obtained as the solution to the Fokker-Planck equation. When solvable, the solutions are 
typically analytically complicated. Various stochastic versions of the continuous-time logistic 
appear in the literature. Tuckwell (1974) derived p(Nt,t,|Nt-1) for the logistic with stochastic r 
but constant K but had to use Taylor series expansions to work with it. More often, for the 
logistic with stochastic r or K, only the steady state probability density, describing  the 
distribution of equilibrium states, is obtained (early literature includes Levins 1969, Goel and 
Richter-Dyn 1974, May 1974, Karlin and Taylor 1981). The solution of the SDE (15) is 
known as geometric Brownian motion. 

Given our data, the discrete-time models should suffice to detect density dependence 
if present in our data. As the SKKR population did not manifest fluctuations, more complex 
models of stochastic dynamics appear unnecessary for our purpose. We do note, however, 
that for continuous-time, stochastic exponential growth, the resulting p(Nt,t,|Nt-1) is log-
normal and the expected abundance obeys deterministic exponential growth but with a 
coefficient of variation that increases exponentially as t → ∞ (e.g., Tuckwell 1974). The 
discrete-time exponential model with multiplicative error is 

Xt  = Xt-1 + r + εt-1  whence  Xt = X0 + rt + ∑
−

=

1

0

t

j
jε = X0 + rt + ε         (18) 
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where ε is a sum of iid N(0,σ2) variates and thus N(0,σ2t). Hence, Xt is N(X0 + rt, σ2t), which 
includes the description of a single time step as ‘Xt is N(Xt-1 + r,  σ2)’. Thus the discrete-time 
exponential model generates the same likelihood for the data Xt as the model of Dennis et al. 
(1991; except that they use μ where we use r and their r differs from ours). Dennis et al. 
observed that these distributional assumptions for Xt are equivalent to p(Nt,t,|Nt-1) being log-
normal. Hence, for a time series of abundances, the likelihood models obtained from the 
discrete-time exponential model with multiplicative error, from Dennis et al. (1991), and 
from the continuous-time stochastic exponential growth model are all identical, i.e., such a 
time series cannot distinguish these models. 

Since the additive error and multiplicative error structures employ different response 
variables Nt and Xt, respectively, distinct AIC analyses are required for these two groups of 
models as one cannot compare models with different response variables via AIC (Burnham 
and Anderson 2002:81). Since Dennis et al.’s model employs Nt, rather than Xt, as the response 
variable, however, its likelihood model of the time-series data can be compared via AICc to the 
models of Table 1 with additive error, thereby providing a common reference between the 
comparisons of the additive error models plus Dennis et al.’s model and the comparisons of 
the multiplicative error models since the discrete-time exponential model has the same 
likelihood as the Dennis et al. model when the latter is expressed in terms of Xt. Thus, we 
consider the models listed in Table 2, together with the model of Dennis et al. (1991) with Nt 
as response and thus with error additive on abundance, as adequate for checking for density 
dependence and preferred error structure. We repeated all analyses using the time series of 
annual December censuses only to assess the influence of time step. 

 Finally, we note that the statistical assumptions regarding residuals in nonlinear 
regression, see below,  entail that the residuals as process noise are typically interpreted as 
representing environmental stochasticity, which is not say that demographic stochasticity is 
absent from the data. Rather, more than fitting the data to such models is required to 
determine the nature of process noise if present in the data. We address this issue in sections 
2 and 4 below 

 Including additions and removals in population modelling 

All introduction events were sufficiently discrete to have occurred between two consecutive 
semi-annual censuses. In our case there was just the one removal event and no additions 
occurred during the semi-annual period of Dec-06 to Jun-06 when the removals were 
conducted. For discrete-time models, if n is the net number of individuals added (with 
negative values of n accounting for a net number of removals) between t and t+1, then the 
model projection from Nt should be compared to Mt+1 :=  Nt+1 – n rather than Nt+1 itself. 
Thus, for discrete time models, the modified census figures Mt were used as the response 
variable in the nonlinear regressions with additive error and Yt := ln(Mt) was used for the 
response variable for models with multiplicative error. Thus, if the deterministic model is 
written as Nt+1 = G(Nt), then to accommodate additions and removals we use instead Mt+1 = 
G(Nt). 
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 For the continuous-time models in Table 2, projections of future abundance are made 
via the solution of the ODE from an initial population size. In our case, there were 5 distinct 
addition events, including the immigration of the one female from the other half of GFRR 
into SKKR, after the founding introduction in Jun-86 and one removal event. The entire 
period of study can be partitioned into 7 disjoint subintervals of time [0, t1], [t1, t2],…,[t6, t7] 
such that each subinterval consists of several consecutive between-census periods and such 
that each distinct addition or removal event occurred in the final between-census period  of 
one of the first six of these subintervals. Thus, [0,t1] covers the time period from time zero to 
the census immediately following the first addition; [t1, t2] covers the period from t1 to the 
census immediately following the next distinct addition event; and so on, except that [t6, t7] 
covers the period from the census immediately following the final addition/removal (the 
removal in our case) to the final census. If F denotes the solution of the deterministic 
continuous-time model as in (3), then for the additive error models one uses: F(t, N0) to 
project abundance over [0, t1]; F(t – t1, 

1t
N ) to project abundance over [t1, t2]; and so on, 

finally using F(t – t6, 
6t

N ) to project abundance over [t6, t7]. These projections are compared 

to the modified census figures Mt for each census time t. For the models with multiplicative 
error, one projects abundances as just described, takes the logarithms of the projections, and 
compares to the Yt. 

 We also needed to modify the likelihood formulae of Dennis et al. (1991) to 
accommodate additions and removals (as they apparently did in their example of the Puerto 
Rican parrot, see their p. 135). Dennis et al. formulated a stochastic model for (st)age 
structured exponentially growing populations with process noise that can be fitted to time 
series N0, N1,...Nq of abundances (censuses, not estimates), with time step τi from the (i-1)’th 
observation to the i’th observation. The likelihood is built from the probability p(Ni, τi|Ni-1) 
of observing Ni at the i’th observation given that the abundance was Ni-1 at the (i-1)’th 
observation. Let Mi := Ni + removals - additions  (removals and additions during the time 
step from the (i-1)’th observation to the i‘th observation) denote the modified count (as 
above). Then, in place of Dennis et al.’s p(Ni, τi|Ni-1) we have  p(Mi, τi |Ni-1). In our case, the 
time steps are all equal. For the semi-annual censuses, τi = ½, for a time unit of one year, and 
q = 45, i.e., 45 observations (N0,M1),...,(N44, M45), each Jun and Dec from Dec-86 through 

Dec-08 and tq = ∑
=

q

i
i

1
τ = 45/2. For annual censuses, τi = 1, q = 22, with observations 

(N0,M1),...,(N21,M22), from Dec-87 through Dec-08, and tq = ∑
=

q

i
i

1
τ = 22. 

The probability p(Ni, τi|Ni-1) was derived by Dennis et al. from a log-normal distribution with 
parameters μ and σ2 (see their equation (8)) and the likelihood of the data (their (22)) by 
multiplying together such probabilities, one for each observation. Thus, to accommodate 
additions and removals, one literally replaces the Ni (but not Ni-1) in their formula by Mi. 
This substitution modifies the maximum likelihood estimates of μ and σ2 obtained by Dennis 
et al. as follows. In place of their equations (24) and (25), one readily obtains 
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respectively, with the latter simplifying in our case to 
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because of equal time steps. But nothing else changes for the analysis of Dennis et al. (1991) 
(though in the linear regression model one has Wi = ln(Mi/Ni-1) of course; ln(Mi) is the 
modified value of ln(Ni) and thus Wi still represents the increments of the Wiener process, 
whence the statistical properties that Dennis et al. appeal to remain valid and the rest of their 
results apply). The maximized log-likelihood is (for equal time steps) 

[ ] ( )[ ]2

1
ln1

2
2ln σπτ +−−∑

=

qM
q

i
i             (22) 

Note that, with Yt = ln(Mt), p(Yt,1|Xt-1) is N(Xt-1 + r,  σ2), just as in the discrete-time 
exponential model with multiplicative error, so the equivalence of the likelihood descriptions 
of a time series of abundances is maintained when introductions and removals are accounted 
for. 

Nonlinear regression and AICc 

For a model of the form 

                     zk = f(xk) + εk                       (23) 

with εk iid N(0,σ2) and n observations, the log-likelihood is 

[ ]
)2ln()2/(

2
)2ln()2/(

2
)(

)ln( 2
2

2
2

2

πσ
σ

πσ
σ

nRSSn
xfz

L
k

kk −−=−
−−

= ∑         (24) 

where RSS is the residual sum of squares (Burnham and Anderson 2002:12, 108–109; Bates 
and Watts 1988:4). Maximum likelihood (ML) estimation of the structural parameters in f is 
equivalent to (non-linear) least-squares estimation. ML estimation of σ2 is found easily by 
calculus to be 
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n
RSSmax2

max =σ           (25) 

where RSSmax denotes the residual sum of squares evaluated for the ML estimates of the 
structural parameters of f (i.e., what is usually meant by the residual sum of squares). The 
deviance (i.e., -2 times the maximized log-likelihood) is then found to be 

)]2ln(1[ln max π++





= n

n
RSS

nD          (26) 

Nonlinear regression was performed in the nonlinear estimation module of Statistica 8 
(Statsoft), which provided the ML estimates of the structural parameters of the model and the 
residuals. From the residuals we computed σ2

max and the deviance D. AICc was then 
computed as  

AICc = D + 
1

2
−− kn

nk           (27) 

(Burnham and Anderson 2002), where k is the number of estimated parameters, here the 
number of structural parameters in the model plus one (for σ2), and n is the number of data 
points used in the likelihood. Note that a time series of length one does not permit estimation 
for any of the models in Table 1, i.e., the initial population census does not count as a datum 
point in the likelihood. As noted above in the discussion of Dennis et al.’s model, the 23 
years of Jun and Dec censuses yield 45 semi-annual census data of the form (Mt+1, Nt) and 22 
annual census data of a similar form. Thus, for all models, n = 45 for the semi-annual census 
data and 22 for the annual census data. 

 For AICc calculations, the second term in (26) is common to all nonlinear regression 
models so cancels out in computations of ∆AICc for such models. However, for comparisons 
of the models with additive error with the model of Dennis et al. (1991) it is essential to 
retain that term in the deviance and all AICc calculations. 

Statistica provides an R2 value for each nonlinear regression, computed as follows. 
The total sum of squares (SS) is defined as usual for a response variable z as ( )∑ −

j
j zz 2 and 

the Error SS is defined as ( )2ˆ∑ −
j

jj zz , where jẑ  is the predicted value. Statistica then 

defines the regression SS as Total SS – Error SS and R2 as the ratio of regression SS to total 
SS, i.e., as 1 – (the ratio of Error SS to Total SS), as a measure of variation explained by the 
model. 

 Nonlinear regression requires starting values (SV) for the structural parameters to be 
estimated (Bates and Watts 1988). For r we used 0.05 as SV for both semi-annual and annual 
census analyses, which proved unproblematic. For K we began with an SV of 150. Since the 
dataset gave no indication that an equilibrium population size had been reached, we expect K 
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to be larger than 110 (mean density 0.5 rhino/sq. km), the Dec-08 census figure. The highest 
local density for black rhinoceros reported by Owen-Smith (1988:224) was 1.6 rhino/sq. kms. 
A mean density of 1.6 should therefore provide an upper bound on K, yielding 352. In fitting 
the generalized logistic with θ fixed, we found that we had to lower the SV of K as θ 
increased in order for Statistica to fit the model (otherwise it complained that the remaining 
model parameters were ‘probably very redundant; estimates suspect’). Larger SVs for K did 
not help. 

For models in which θ was to be estimated in our analyses, we tried SVs of 1 and 4.5 
(the latter following Eberhardt et al. 2008). For the semi-annual censuses, for CGL with 
additive error, when SV was set to one, Statistica reported model parameters were ‘probably 
very redundant; estimates suspect’, but fit the model to the data with an SV of 4.5. The 
opposite was the case for the CGL with multiplicative error. The resulting estimates of θ of 
11.3 and 1.3, respectively, may reflect a dependence on SVs due to the redundancy. Both 
estimates had high CV, 3.6 and 0.9, respectively. (In the case of multiplicative error, the 
estimate of K was essentially the same estimate as obtained for CGL with θ fixed at one.) For 
the DGL, genRicker, and SGL, estimates were obtained with both SVs for both error 
structures. An SV of 1 for θ either yielded the same result as an SV of 4.5, or an estimate for 
K greater than 1000, which is unrealistically high, and an estimate of θ less than 1.5. On the 
other hand, an SV of 4.5 for θ, yielded estimates of K less than 200 and estimates of θ 
between 5 and 10, with each estimate similar across models. But in all cases, CVs of 
estimates of K and θ were very high, greater than 10, making the estimates uninformative. 
For the annual censuses, similar dependence on SVs was observed for additive error models, 
but for multiplicative error both SVs of 1 and 4.5 returned similar estimates of K > 1000 and 
θ < 1. Again CVs were larger than 10. Given that our dataset turned out to be well modelled 
by exponential growth, the various versions of generalized logistic (CGL, DGL, genRicker, 
SGL) approximate the exponential with either large values of K or large values of θ; which 
results in considerable redundancy between K and θ for such data. Statistica, as noted, 
complained about such redundancy. When estimates were obtained, their CVs indicated these 
estimates were of no value. Thus, our general conclusion about this data set (exponential 
growth with no information on K or θ) does not depend on SVs. 

For large herbivores, one expects θ > 1 (Owen-Smith 2010). This expectation appears 
to be challenged by Sibly et al. (2005), who fitted numerous time series of abundances from 
the Global Population Dynamics Database (GPDD;  
http://www3.imperial.ac.uk/cpb/databases/gpdd) to the generalized Ricker model with 
multiplicative error and obtained more often than not values of θ < 1 and even negative. For 
critical assessments of these analyses and Sibly et al.’s response, see Science 311 (2006), 
p.1100d, and further see Doncaster (2008), Eberhardt et al. (2008), Polansky et al. (2009), 
and Clark et al. (2010). The values of θ obtained by Sibly et al. are appended to the 
corresponding time series in the GPDD. We inspected all time series for Rhinocerotidae, 
Elephantidae, Giraffidae, Hippopotamidae, Bovidae, and Cervidae and found little evidence 
to contradict the expectation of θ > 1 for large herbivores. There were actually few such time 

http://www3.imperial.ac.uk/cpb/databases/gpdd
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series for which θ was estimated and for those time series from robust studies θ was 
estimated to be greater than one, except in the one case of Owen-Smith’s (1990) study. But 
Owen-Smith found that fluctuations in abundance in that study were significantly influenced 
by exogenous factors in addition to density, which may have complicated estimates of θ.  

Results of scalar population model comparisons: semi-annual time step 

Table 3 Results of nonlinear regression of scalar models in Table 2 for the semi-annual 
census data. Model name abbreviations as in table 2; R2 is 1 – (ratio of error sum of squares 
to total sum of squares) for the regression fit; Dev is the deviance, -2 times the maximized 
log-likelihood; k is the number of estimable model parameters (including the variance of the 
residuals);  r ± SE is the estimated value of the parameter r common to all the models as an 
annual rate ± its SE; ∆AICc is the model’s AICc value minus that of the model with the 
smallest AICc value, which was the discrete-time exponential model for both error structures. 

 

   Additive error  Multiplicative error 

Model R2 Dev k r ± SE ∆AICc R2 Dev k r ± SE ∆AICc 

Cexp 0.996 194.9 2 0.0912 

±0.0023 

25.6 0.995 -99.4 2 0.1016 

±0.0043 

30.4 

CGL 0.996 194.1 4 0.0921 

±0.0027 

29.5 0.996 -106.3 4 0.115 

±0.011 

28.3 

Dexp 0.998 169.3 2 0.1017 

±0.0092 

  0 0.997 -129.9 2 0.102 

±0.017 

  0 

DGL 0.998 169.3 4 0.106 

±0.021 

4.7 0.997 -129.9 4 0.105 

±0.021 

4.7 

genRicker 0.998 169.3 4 0.103 

±0.020 

4.7 0.997 -129.9 4 0.102 

±0.020 

4.7 

SGL 0.998 169.3 4 0.103 

±0.020 

4.7 0.998 -130.7 4 0.102 

±0.020 

3.9 
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Comparisons of the models in Table 2 for the semi-annual censuses are presented in Table 3. 
The discrete-time exponential was unambiguously the best model of the data for both error 
structures. While estimates of r were relatively consistent across models and precise, 
estimates of K and θ were not. For the CGL, K was estimated as 127 (additive error) and 196 
(multiplicative error) each with CV = 0.8, while DGL, genRicker, and SGL gave estimates 
near 190 (additive error) and near 169 (multiplicative error) but CVs exceeded 10. For the 
CGL θ was estimated as 11.3 (additive error) with CV = 3.6 and 1.3 (multiplicative error) 
with CV = 0.9, and more consistently across DGL, genRicker, and SDL at about 5.5 (additive 
error) and 7.5 (multiplicative error), but with CVs exceeding 10. 

For additive error, the deviance of the CGL models with fixed θ increased slightly 
from 191.9 for θ = 1 to 194.4 for θ = 4, then decreased to 194.1 for θ = 10, and then increased 
monotonically to 194.9 for θ = 190 while for multiplicative error the deviance increased 
monotonically from a low of -106.0 for θ = 1 to -99.6 for θ = 190. Estimates of K for CGL 
with fixed θ and additive error decreased from 545 with CV = 0.5 (θ = 1) to 110 with CV = 
0.03 (θ =190) with a similar pattern for multiplicative error beginning with an estimate of 259 
with CV = 0.3 for θ = 1 and a CV of 0.08 for θ = 190. For the SGL with fixed θ, for both 
error types, deviance did not vary with θ, but while estimates of K roughly decreased to near 
110 with increasing θ, their CVs did not and were consistently much greater than one. 

Differences in ∆AICc-values amongst the discrete-time models in Table 2 were due 
almost entirely to the number of model parameters. The CGL models with fixed θ had ∆AICc 
similar to the other continuous-time models and so were not at all competitive. The SGL 
models with fixed θ, having only slightly larger deviance than the discrete-time exponential 
and only one more parameter were competitive with ∆AICc values of about 2.3 (additive 
error) and 1.5 (multiplicative error) but did not, as noted above, yield informative estimates 
of K.  
 
Results of scalar model comparisons: annual (December) Censuses 

As for the semi-annual censuses, for the annual census data the discrete-time models 
exhibited the same deviances so that their ∆AICc values differed according to their number 
(k) of model parameters. Unlike the semi-annual censuses, however, the (naïve) continuous-
time models exhibited lower deviances and lower AICc values than the discrete-time models. 
For both error types, the continuous-time exponential model had lowest AICc amongst the 
models in Table 2, though the CGL had lower deviance and in the case of multiplicative error 
the difference in AIC values between the two continuous-time models was marginal.  

For CGL, the estimate of K was 117 with CV = 0.4 (additive error) and 382 with CV 
= 2.1 (multiplicative error), while for DGL, genRicker, and SGL about 150 with CV about 6 
(additive) and over 1000 with CV about 35 (multiplicative). For CGL, the estimate of θ was 
about 16 with CV about 4 (additive error) and 0.7 with CV = 1.6 (multiplicative error), while 
for DGL, genRicker and SGL about 7.5 with CV about 15.5 (additive error) and 0.8 with CV 
about 14 (multiplicative error). 
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Table 4 Results for the comparison of scalar models of Table 2 for the December census data 
only. Model name abbreviations as in Table 2; R2 is 1 – (ratio of error sum of squares to total 
sum of squares) for the regression fit; Dev is the deviance, -2 times the maximized log-
likelihood; k is the number of estimable model parameters (including the variance of the 
residuals); r ± SE is the estimated value of the parameter r common to all the models as an 
annual rate ± SE; ∆AICc is the model’s AICc value minus that of the model with the smallest 
AICc value, which was the continuous-time exponential (Cexp) for both analyses. 

 

 Additive error Multiplicative error 

Model R2 Dev k r ± SE ∆AICc R2 Dev k r ± SE ∆AICc 

Cexp 0.995 100.0 2 0.0928 

±0.0033 

0 0.996 -57.8 2 0.1005 

±0.0049 

0 

CGL 0.995 98.8 4 0.0940 

±0.0037 

4.5 0.997 -63.1 4 0.123 

±0.029 

0.5 

Dexp 0.994 105.8 2 0.101 

±0.011 

5.8 0.995 -52.2 2 0.104 

±0.016 

5.6 

DGL 0.994 105.8 4 0.109 

±0.024 

11.5 0.995 -52.3 4 0.117 

±0.079 

11.3 

genRicker 0.994 105.8 4 0.103 

±0.021 

11.5 0.995 -52.3 4 0.110 

±0.070 

11.3 

SGL 0.994 105.8 4 0.103 

±0.021 

11.5 0.995 -52.5 4 0.110 

±0.068 

11.3 
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For additive error, the deviance of the CGL models with fixed θ decreased 
(monotonically with increasing θ from θ = 1 to θ =190) slightly from 99.8 to 99.2 so ∆AICc 
decreased from 2.5 to 1.9. The estimates of K decreased monotonically from 1380 with a CV 
of 2.2 (θ = 1) to 110 with CV = 0.2 (θ = 190). For multiplicative error, deviance increased 
from -62.9 (θ = 1) to -58.1 (θ = 190) so that ∆AICc (relative to the continuous-time 
exponential) increased from -2.4 to 4.8. Estimates of K followed a similar pattern as for 
additive error. Thus, the (naïve) continuous-time logistic (i.e., θ = 1 in the CGL) actually 
gave the best fit to the data for multiplicative error (∆ AICc = -2.4 relative to the continuous-
time exponential). The estimate of K was 270±100, i.e., CV = 0.37. While this range is 
biologically plausible, the behaviour of the estimates of K as θ increased indicated that the 
nonlinear regression was estimating K so that the inflexion point (5) of the solution lay 
beyond the observed data. For additive error, increasing θ slightly improved the fit, i.e., these 
models became more competitive as they better approximated threshold-like models with 
exponential growth for the actual data, but the opposite was true for multiplicative error, 
unlike for the semi-annual census data. The fact that the naïve continuous-time models were 
favoured in the analysis of the annual census data suggests that the stochasticity in the semi-
annual census data tended to average out over the annual time step. For the SGL models with 
fixed θ, for both error types, deviances and AICc values did not vary to any important degree 
and were not competitive (∆AICc greater than eight for both error types). Estimates of K 
started unrealistically high with large CVs for θ = 1, decreased monotonically over the rang θ 
= 1 to 10 to between 150 and 110 with CVs of about 0.7 but for higher values of θ the 
estimates of K fluctuated outside that range and had extremely large CVs.  

Figure 2 shows a plot of the pairs (Xt-1, Yt) for the semi-annual census data, i.e., of the 
log-transformed census data, modified to account for additions/removals, as the second  
coordinate (Yt  = ln(ModCount)) versus the log-transformed actual census data at the previous 
time as the first coordinate (Xt-1 = ln(PrevCount)), together with the line y = x  + c, where c is 
the estimate of (the semi-annual rate ) r  from the discrete-time exponential model with 
multiplicative error, i.e., the overall best fit model. Thus, the line represents this model, viz., 
Yt = Xt-1 + r + εt. Figure 3 shows the same plot for the annual census data with c the estimate 
of (the annual rate) r from the discrete-time exponential model with multiplicative error fit to 
that data. Note that we have not used the jitter option to separate data that coincide, as that 
would defeat comparison of the fit to the line. In Figure 2, for example, for the first four data 
(for Dec-86, Jun-87, Dec-87, Jun-88,  the Yt and Xt-1 values are equal and so plot as the same 
point, below the line (at Xt-1 = 1.1). Though visual inspection does not quantify the model fit 
as well as the deviances of the models, note that beyond 3.5 on the horizontal scale in Figure 
3, there appears to be a tendency for the data to fall just below the line. It is not just that the 
June census data has been removed from the plot in Figure 2, but the remaining (December) 
data is now fit to the exponential model by projecting that data over the larger time step, i.e., 
whereas Yt is projected from Xt-1 in Figure S2, it is projected from Xt-2 (using the same 
parametrization of censuses as for the semi-annual data) in Figure 3, resulting in the different 
estimate of r (as an annual rate). 
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Figure 2. The semi-annual census data plotted together with the line y = x + c, c = the 
estimate of r from the discrete-time exponential model with multiplicative error fit to that 
data. 

                     

Figure 3. The annual census data plotted together with the line y = x + c, c = the estimate of r 
from the discrete-time exponential model with multiplicative error fit to that data. 

 



23 

 

Similarly, the differences between the model fits of the continuous-time exponential 
and logistic (i.e., θ = 1 in the CGL) and the discrete-time exponential for annual census data 
and multiplicative error structure appears fairly subtle in a graphical display (Figure 4). The 
sum of squared residuals for the continuous-time logistic was 0.0733 versus 0.0931 for the 
continuous-time exponential, the squared residuals of the latter consistently slightly larger 
than those of the former for years 7 – 17, summing to 137% of the difference in the sum of 
squared residuals for these two models. Thus, the lower deviance for the continuous-time 
logistic, which yields a lower AICc by 2.4 units, despite the extra model parameter, reflects 
better model fit for years 7 – 17 rather than indicating a slowing of population growth rate 
towards the end of the study. The sum of squared residuals of the discrete-time exponential 
was 0.1200, about 1.6 times larger than that for the continuous-time logistic, which translated 
into some 8 AICc units difference. Thus, there is no evidence that the model fits to the longer 
time-step are more informative than the fits to the semi-annual census data. That smaller 
residuals occurred for the fit of a continuous-time model than for a discrete-time model 
indicated that the annual census data was more easily fit with a projection from an initial  
value rather than an adjustment each time step, i.e., that the annual census data smoothed out 
the irregularities in the semi-annual census data.  

Dennis et al. (1991) model 

The computation of Dennis et al.’s estimate of their μ from (19) agreed to nine decimal 
places with the Statistica estimates of r for the discrete-time exponential model using either 
semi-annual or annual census data. Agreement of estimates of SEs was less close, to eight 
decimal places using the annual census data and seven using the semi-annual census data. 
Agreement for the estimates of σ2 was to more than 10 decimal places using either set of data. 
For both semi-annual and annual census data, the Dennis et al. model had a lower deviance 
than any model with additive error. For semi-annual census data it was almost 10 AICc units 
below the discrete-time exponential model and thus was unambiguously the best model 
amongst those models. For the annual census dataset, the Dennis et al. model was about 7.7 
AICc units below the (naïve) continuous-time exponential model and again unambiguously 
the best model amongst those models. Identifying the Dennis et al. model with the discrete-
time exponential model with multiplicative error structure, then for semi-annual census data, 
one concludes that model is overall the best fit to the data, even across error structures. This 
conclusion fails for the annual census data, as (naïve) continuous time exponential and 
logistic models with multiplicative error outcompeted the discrete-time exponential model 
with multiplicative error structure. 
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Figure 4 Annual census data, multiplicative error structure. Response variables plotted on the 
log scale: observed (modified) count (●); predicted responses for the continuous-time 
exponential (∆), continuous-time logistic (○), and discrete-time exponential (□). 
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2. Estimating Demographic and Environmental Stochasticity from Scalar Models 

Process noise, i.e., departure from the deterministic model, is interpreted as arising from 
demographic and environmental sources of stochasticity. For a population of statistically 
identical individuals, Engen et al. (1998) provided a decomposition of the variance in the 
change in population size from a given population size, which provided definitions of 
demographic and environmental stochasticity and demographic covariance. Sæther et al. 
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(1998a) showed how to apply this formalism to demographic data and a time series of 
abundances (outlined in Lande et al. 2003; see also Morris and Doak 2002:127–133).  

 Environmental stochasticity is typically construed as variations from year to year 
rather than at finer scales, so we conducted this analysis on an annual basis. For each end-of-
year (i.e., our December censuses), 1986 through 2007, we tabulated the contribution each 
individual alive at that time made to the following end-of-year census: counting one for 
survival and one for producing an offspring during that year that survived to the end of the 
year. The usual estimate of variance applied to this annual data defines a quantity Vd(N) for 
each such end-of-year, which is parametrized by the population size rather than time. As 
noted above, the formalism assumes that individuals are statistically identical; in particular, 
for any given year, the individuals alive at that time are assumed to have the same expected 
contribution to the population the following year. This assumption thus ignores, for example, 
stage differences such as the difference between immature individuals that contribute only by 
survival and mature individuals that can also contribute by reproduction. Typically, the 
formalism is applied to subunits of a population (e.g., females) that can plausibly be treated 
as homogeneous and to populations in which individuals mature over one time step. Since we 
are attempting to interpret the process noise of a scalar population model, which also neglects 
differences between individuals, we proceed as if the formalism is applicable to our data 
noting that our estimate of Vd(N) conflates strict demographic stochasticity and fixed 
demographic differences between individuals (such as stage differences), but is still 
demographic in nature. This conflation may lead to biases in estimates of probability of 
extinction and time to extinction (Fox and Kendall 2002, Kendall and Fox 2002, Morris and 
Doak 2002:132–133, Melbourne and Hastings 2008) but our concern is only to estimate the 
relative demographic and environmental contributions to process noise. 

As the best description of the semi-annual data was the discrete-time exponential model, we 
took that model as the best deterministic model for the SKKR population dynamics and 
applied it to the December annual census data, i.e., we converted the value of r obtained from 
the discrete-time exponential model with multiplicative error for the semi-annual census data, 
to an annual time step. The prescription in Sæther et al. (1998a) (also Lande et al. 2003, 
equation (1.11); Morris and Doak 2002, equation (4.14)) amounts to putting 
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where Nt is the observed abundance at time t (the December for which one computes the 
contributions of living individuals to time t+1) and Nt+1 is the abundance at time t+1. For our 
data, we must replace Nt+1 by Mt+1, the modified count at t+1 to account for any introductions 
or removals during the time step (see Including additions and removals in population 
modelling above). Using the estimate of Vd(Nt) obtained as described in the previous 
paragraph, one obtains from (28) an estimate σe

2(Nt) of the environmental contribution to 
process noise.  
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The advice (Sæther et al. 1998a, Morris and Doak 2002, Sæther and Engen 2002,  
Lande et al. 2003) is then to regress each of Vd (Nt) and σe

2(Nt) on Nt to check for density 
dependence. For Vd (Nt), regression yielded a slope of -0.00040 (p = 0.55) and with a 
positive intercept (p = 0.00016), while for σe

2(Nt), regression yielded p > 0.2 for both slope 
and intercept. The t-test for each set of Vd (Nt) and σe

2(Nt) values with a null hypothesis of 
zero mean returned p = 0.000001 for the former (mean = 0.137 ± 0.091) and p = 0.44 for the 
latter. Thus, density dependence was detected for neither Vd (Nt) nor σe

2(Nt), but the mean of 
Vd (Nt) is judged to be nonzero. Overall estimates of the demographic and environmental 
contributions to process noise are obtained as weighted means of Vd (Nt) and σe

2(Nt) (Sæther 
and Engen 2002:194, 197), for which we obtained 0.127 and 0.0002, respectively. The 
estimate of the demographic component can be decomposed into survival and fecundity 
components and the covariance between these two components; for each computation of 
Vd(Nt) one separates those contributions that are due to survival from those due to 
reproduction. The weighted means were 0.109 for the fecundity component and 0.015 for the 
survival component. Since only 14 mortalities contributed to the survival component, it is not 
surprising that the fecundity component was the more important contribution (86%). 

Our strategy of including all individuals for the computation of demographic 
stochasticity is conservative; it is more usual to restrict to the female segment of the 
population. Doing so returned an estimate of 0.178, in place of 0.127, for σd

2, without 
altering any other conclusions of the previous paragraph other than increasing the component 
of σd

2 due to fecundity to 92%. 

3. Matrix Model 

All matrix computations were performed in R 2.15.1( R Development Core Team. 2009. R: A 
language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org). 

Since the semi-annual census data was best modelled by the discrete-time 
exponential, we constructed a stage-based, two-sex, birth-flow matrix model with semi-
annual time step using the entire population history from Jun-86 to Dec-08. As a result 
estimates are not based on samples and there are no ranges or SEs for parameter estimates. 
Consequently, quantities computed from the matrix models, e.g., λ, are exact for our data, i.e., 
do not possess sampling distributions or SEs. We used a semi-annual time step for greater 
accuracy of modelling dynamics by matrix model projections and thus our time unit in all 
computations is half a year. We employed a stage-based rather than age-based model as life 
stages defined as biological states are more relevant than age (Law and Linklater 2014). For 
each sex, the biological states of interest are calf (C), subadult (S), and adult (A) (prefixed by 
F or M to specify sex, e.g., FC for female calf), as defined in Table 1.  

Lacking paternity data, we employed Goodman’s (1969) two-sex model in which 
reproduction is attributed to females only (see also Charlesworth  1994:6–7). The projection 
matrix A for Goodman’s model takes the form 

http://www.r-project.org/
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where the matrix B is the female-only matrix model for the population dynamics, the matrix 
Q is the analogue for males but encodes only survival as males are not modelled as 
contributing to reproduction, and the matrix D encodes the production of male offspring by 
females. The matrix A is reducible (Caswell 2001:90) but, assuming B and Q are irreducible,  
for a realistic two-sex model, i.e., one in which the stable-stage distribution (SSD) contains 
both males and females, one can show that the dominant eigenvalue λA of A has (right) 
eigenvector (wF,wM) with each of wF and wM nonzero and with strictly positive components. 
Moreover: λA is the dominant eigenvalue of B with (right) eigenvector wF; the left 
eigenvector of A (i.e., the reproductive value vector when appropriately scaled) is (vF,0) 
where vF is the left eigenvector of λA as dominant eigenvalue of B; the sensitivities of λA with 
respect to entries of D and Q are zero and both the sensitivities and elasticities of λA with 
respect to entries of B are unambiguous as to whether one considers them as properties of the 
two-sex or female-only model. 

The nonzero entries of matrix B consist of transition rates G between stages, survival 
rates P within stages, and fecundity rates F for the production of female offspring. The matrix 
Q will have an identical structure except that where the fecundity rates occur in B the 
corresponding entries in Q are zero. The only nonzero entries of D are for the fecundity rates 
for the production of male offspring from females. Though the stages C, S, and A are of 
primary biological interest, for a semi-annual time step we could build a more accurate 
matrix model for SKKR as regards transition rates by partitioning C and S into substages. For 
SKKR, calves became subadults beyond 1.5 years of age and subadults became adults 
beyond 2.5 years of having become a subadult. There were calves of both sexes that did 
become subadults before the age of two and females that became adults in their third year of 
being a subadult. As males were not considered adult until age eight, they became adult at 
least a year later than females became adults.The purpose of the substages was to exclude 
transitions from the first year as a calf and the first two years as a subadult. The ‘stages’ for 
the matrix model then were C1a (calf at most 6 months old), C1b (calf, 6 months < age ≤ 12 
months), C2 (calf, age > 12 months), S1a (subadult, within 6 months of becoming subadult), 
S1b (subadult, time since becoming subadult greater than 6 months but less than or equal to 
12 months), S2a  (subadult, time since becoming subadult greater than 12 months but less 
than or equal to 18 months), S2b (subadult, time since becoming subadult greater than 18 
months but less than or equal to 24 months), S3 (subadult, time since becoming subadult 
greater than24 months), A (adult), for each sex. So as to retain the term ‘stage’ for the 
biological states of C, S, A, we refer to these `stages’ as substages. The matrix B took the 
form 
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                      (30) 

As noted already, the matrix Q takes the same form except that the FS and FA entries are 
zero, while the matrix D has entries MS and MA in the final two columns of its first row (for 
the production of male offspring) as its only nonzero entries. We parametrized these matrices, 
i.e., estimated their nonzero entries, in two different ways, yielding two realizations of the 
matrix model. All matrix-model analyses were performed with both parametrizations as a 
check on the robustness of results. 

MM1 matrix model parametrization 

For the first parametrization, denoted MM1, P’s and G’s were modelled in terms of 
probability of transition between stages and survival during stages. For each sex and stage 
(not substage), we computed the ratio of the number of individuals of that sex that died 
during that stage to the total time individuals of that sex and stage were at risk (i.e., alive) as 
an estimate of mortality rate and subtracted this quantity from one to obtain a sex-specific, 
stage-based survival rate σ (e.g., Brault and Caswell 1993). In this parametrization we did not 
distinguish survival for substages of a given stage because we regard stage as the state of 
biological interest and substages as conveniences for model parametrization. For each of C1a 
→ C1b, C1b → C2, S1a → S1b, S1b → S2a, S2a → S2b, S2b → S3, transition is automatic 
given survival over the time step. Thus, for each sex,  

CCbCbCaC GG σ== →→ 2111  and SSbSbSaSaSbSbSaS GGGG σ==== →→→→ 32222111            (31) 

The probabilities of transitions C2 → S1a and S3 → A were estimated as follows. For FC2 
→ FS1a, we computed the mean duration of calfhood for those females that were born and 
transitioned from calf to subadult during the study, subtracted 1 year (i.e., two time units) 
from this mean, and took the reciprocal to define the probability aFSFC 12→γ  (Brault and 
Caswell 1993, Caswell 2001, §6.4.1). For FS3 → A, we computed the mean duration of 
subadulthood for those females that transitioned from calf to subadult and subadulthood to 
adulthood during the study, subtracted 2 years (i.e., four time units) from this mean, and took 
the reciprocal to define the probability FAFS →#γ . Analogous quantities were computed for the 
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transitions MC2 → MS1a and MS3 → MA. Now, suppose there are n(t) individuals in some 
specific substage (FC2, MC2, FS3, or MS3) at time t. In reality, transitions to the next 
substage (FS1a, MS1a, FA, MA, respectively) can occur at any time between t and t+1. Let u 
be an element of [0,1]. If all transitions occur at time t+u, with probability γ¸ and if σ is the 
survival rate for the stage that individuals transition from and ς is the survival rate of the 
stage to which individuals transition to, then  
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            (32) 

 

i.e., the n(t) can be written as the sum of : those that don’t survive until time t+u; those that 
survive until t+u, transition to the next stage but don’t survive until time t+1; those that 
survive until t+u, transition to the next stage and survive until time t+1; those that survive 
until time t+u, don’t transition to the next stage and survive until time t+1; and those that 
survive until time t+u, don’t transition to the next stage and don’t survive until time t+1. 

Hence, the transition rate from the one stage to the next and the persistence rate within the 
initial stage are, respectively 

 uu
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Taking the mean over u in [0, 1] yields 
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and 

∫ −==
1

0

)1( σγduPP u .          (35) 

We used formula (34) for 32 SCG → and ASG →3  and (35) for 22 CCP → , 33 SSP → , AAP → , for each 
sex.  

 Reproduction takes place either by existing female adults or by female subadults that 
transition to adulthood by virtue of giving birth. For fecundity F we first computed the 
fertility (i.e., birth rate) m of adult females as the ratio of the number of births (of a specific 
sex), excluding births that initiated the transition of the mother from subadulthood to 
adulthood, to the total number of female-adult time units during the study. We computed the 
probability α  that a female transitioned from subadulthood to adulthood by giving birth (as 
opposed to reaching the age of seven years without having given birth, see Table 1) as the 
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ratio of number of females that did so transition to the total number of females that 
transitioned from subadulthood to adulthood during the study. Let φ be the birth sex ratio for 
females, i.e., F/(M+F), and μ that for males, i.e., M/(M+F). If there are nA(t) adult females 
and nS(t) female subadults at time t, female adults give birth at time t+u, u in [0, 1], will 
produce, 

u
FCF

u
FAA mtn −1)( σσ             (36) 

female offspring that survive to time t+1 (i.e., a female adult must first survive to time t+u, 
then give birth, and then its calf must survive to t+1 to be censused at t+1; our calculation is 
an adaptation of Caswell 2001, §6.7.1 ). Females transitioning from subadulthood to 
adulthood by giving birth, at time t+ v, v in [0, 1], will produce 

v
FCFAFS

v
FSS tn −

→
1

3)( αφσγσ            (37) 

female offspring that survive to time t+1. We next took the means of u in [0, 1] and v in [0, 1] 
to obtain the per capita fecundities 
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Replacing mF by mM, σFC by σMC, and φ by μ, yields the fecundities for male offspring 
production that give the two nonzero entries for matrix D. 

 The description of our first parametrization (MM1) of the matrix model is now 
complete.  

MM2 matrix model parametrization 

The second parametrization was based on Caswell (2001, §6.1.1). The population projection 
matrix A can be written as the sum T+F, where the matrix T describes transitions and the 
matrix F describes reproduction (Caswell 2001:110). Since each individual’s state is known 
throughout the study period, one can estimate T as follows. For each t, one records the 
number mij of individuals in (sub)stage j at time t that end up in (sub)stage i at time t+1, 
where ‘death’ is a possible fate. The matrix Mt = (mij) contains the matrix Tt as its first s 
rows, where s is the number of (sub)stages; its final row contains the mortality information. 
Caswell (2001, §6.1.1) recommends summing the Mt over t to obtain a matrix M, and then 
taking the transition probability pij from stage j to stage i to be the ij’th entry of M divided by 
the sum over rows of the entries of j’th column of M (this estimate is motivated by maximum 
likelihood estimation). This approach computes P’s and G’s directly rather than σ’s and γ’s.  
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We computed the fecundities using the formulae (38–39) modified so that the transition rates 
computed in the current method replaced transition and survival rates as computed for the 
MM1 parametrization.  In particular, for σFS we used the sum of the transition rates FS3 → 
FS3 and FS3 → FA, for σFC the transition rate FC1a → FC1b, for σMC the transition rate 
MC1a →MC1b, and for σFA the transition rate FA → FA. The description of the second 
parametrization (MM2) is now complete. The actual parametrizations are recorded in Tables 
5 and 6. 

Table 5 The survival and fertility parameters for the SKKR population. Birth sex ratio is 
F/(M+F) for females and M/(M+F) for males, where F = number of female births, M = 
number of male births. The quantity α is the probability that a female transitioned from 
subadulthood to adulthood by giving birth rather than having reached the age of seven years 
without having given birth (See Table 1). 

 

Parameter Female Male 

σC 0.9977 0.9977 

σS 0.9820 0.9841 

σA 0.9959 0.9892 

γC2→S1a 0.3704 0.3529 

γS3→A 0.2578 0.1604 

Birth sex  ratio 0.5619 0.4381 

m (fertility) 0.1029 0.0797 

α        0.6207 

 

 

The most notable difference between MM1 and MM2 is that, for MM2, individuals were 
more likely to remain within the substage C2 or S3 rather than transition to the next stage, 
with the consequence that the fecundity FS was lower for MM2 and individuals reached the 
adult stage at a slower rate, for both sexes.   

N.B. Although the matrix models were constructed on a semi-annual time step and 
with substages for accuracy, our interest is in the biological states C, S, A. Hence, after 
analyses, substages were collapsed to stages for the purposes of comparison and comparisons 
were typically made on an annual basis.  
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Table 6 Nonzero entries of the two matrix models MM1 and MM2. The entries in the 
‘female’ column yield the female-only part of the model (i.e., the matrix B in (29–30)), the 
entries in the ‘male’ columns for fecundities FS3 and FA are the nonzero entries of the matrix 
D and the remaining entries in the ‘male’ columns given the nonzero entries for the matrix Q  
in (29). 

 

 MM1 MM2 

Entry female male female male 

GC1a→C1b 0.9977 0.9977 0.9897 0.9899 

GC1b→C2 0.9977 0.9977 1 1 

GC2→S1a 0.3666 0.3497 0.3409 0.3173 

GS1a→S1b 0.9820 0.9841 1 0.9 

GS1b→S2a 0.9820 0.9841 0.9773 1 

GS2a→S2b 0.9820 0.9841 0.9762 0.9583 

GS2b→S3 0.9820 0.9841 0.9487 1 

GS3→A 0.2549 0.1583 0.2243 0.1087 

PC2 0.6282 0.6456 0.6591 0.6827 

PS3 0.7289 0.8262 0.7664 0.8913 

PA 0.9959 0.9892 0.9958 0.9878 

FS 0.0890 0.0694 0.0775 0.0604 

FA 0.1025 0.0795 0.1021 0.0792 

 

Properties of the two parametrizations 

A useful measure of the difference between two population vectors is Keyfitz’s ∆ 
(e.g., Caswell 2001:101). For any two population vectors X and Y, convert each to a vector of 
proportions by dividing each component by the sum of that vector’s components. If the 
resulting vectors of proportions (which sum to one for each vector) are x and y, then 

∑ −=∆
i

ii yxYX ||
2
1),( .               (40) 
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Keyfitz’s ∆ has a maximum value of one and is zero when the two vectors coincide.  

To compare the two matrix parametrizations, we collapsed the projections of MM1 
and MM2 into stage-based population vectors and then computed Keyfitz’s ∆ for each 
parametrization’s projections for each semi-annual census date Jun-99 through Dec-08. ∆ = 
0.008 in Jun-99, increased monotonically to 0.028 in Dec-00, then decreased monotonically 
to 0.024 in Dec-03, remained at that value through Dec-05, increased to 0.025 for Jun-06 
through Jun-07, and then returned to 0.024 for Dec-07 through Dec-08, with mean 0.0241 
and SD 0.0043.Thus, the overall difference between the projections  of the two 
parametrizations is small. 

 The annual intrinsic rate of increase r was 0.1024 (MM1) or 0.0994 (MM2). MM1 
and MM2 had the same overall patterns for their 18 eigenvalues and eigenvectors. In order of 
decreasing magnitude, after the dominant eigenvalue, 1.0525 (MM1) or 1.0510 (MM2), the 
next two eigenvalues were both real with ratios of 0.99 (MM1 and MM2) and 0.83 (MM1) or 
0.89 (MM2) to the dominant. For both parametrizations, the eigenvectors of these two 
eigenvalues had nonzero components only for the MA, and for the MS3 and MA, 
components, respectively. The significance of these facts is that the approach to the stable 
stage distribution (SSD) of the matrix models will be slowest for these two components, i.e., 
for male adults and MS3s . There follows a complex conjugate pair of eigenvalues, two 
further distinct real eigenvalues, and two distinct pairs of complex conjugate pairs. Each of 
these eigenvalues has a single eigenvector. The final eigenvalue (real) has a single linearly 
independent eigenvector of multiplicity six. The second, third, seventh and last eigenvalues 
are all real and are the eigenvalues of the matrix Q; the fact that the last eigenvalue has 
algebraic multiplicity six but only geometric multiplicity one reflects the fact that the matrix 
Q is singular. The other eigenvalues are those of the female-only matrix model B.  

The elasticity of λ with respect to adult female survival was the largest elasticity, 
0.5396 (MM1) or 0.5349 (MM2), all other elasticities were less than 0.1, and ordered by 
magnitude in the same way for the two models, with the least being that with respect to the 
fecundity FS, 0.0059 (MM1) or 0.0055 (MM2). In decreasing order of magnitude, after the 
highest elasticity comes that with respect to FS3 survival, then that with respect to FC2 
survival, then that with respect to each of the transitions FC1a → FC1b, FC1b →FC2, FC2 
→ FS1a, FS1a → FS1b, FS1b → FS2a, FS2a → FS2b, FS2b → FS3 all of which coincide, 
then that with respect to the transition FS3 → FA and that with respect to the fecundity FA, 
which coincide, and finally the smallest, that with respect to the fecundity FS (see Table 10 
for values). The reproductive values of the substages increased from a (normalized) value of 
1 for FC1a to a value of 1.81 (MM1) or 1.85 (MM2) for FA (recall that male (sub)stages have 
zero reproductive value for the Goodman two-sex model). Thus, as expected for a long-lived 
species, the adult female stage has the greatest influence on demography both as regards the 
influence of adult female survival on λ and reproductive value. As already noted, however, 
our matrix model does not describe the true asymptotic state of the SKKR population so the 
elasticity results should not be over interpreted. The stable stage distributions for stages, 
rather than substages, are recorded in Table 7, the differences consistent with the previous 
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observation that individuals are slightly more likely to remain as calves or subadults rather 
than transition to the next stage for MM2 relative to MM1. 

Table 7 The stable stage distributions (SSD) for MM1 and MM2. 

 

 MM1 MM2 

stage SSD SSD 

FC 0.1371 0.1395 

FS 0.1550 0.1602 

FA 0.2826 0.2787 

MC 0.1089 0.1122 

MS 0.1413 0.1553 

MA 0.1751 0.1541 

 

Very roughly, given black rhino reproductive behaviour, one expects a typical adult 
female black rhino to be accompanied by a calf, and to have one prior calf as a SA in the 
population (for SKKR, mean (± SD) female calf duration was 2.06 ± 0.80 years; mean male 
calf duration was 2.05 ± 0.83 years; mean female SA duration was 2.7 ± 1.3 years; mean 
male subadult duration was 3.1 ± 2.0 years). If the birth sex ratio (BSR) is 1:1, then one 
expects the SSD to be roughly (0.5, 0.5, 1, 0.5, 0.5, x) (assuming the SSD is achieved prior to 
density dependence sets in), where x < 1 if adult males survive at a lower rate than adult 
females. Hence, upon normalizing, one gets a SSD of roughly (0.125, 0.125, 0.25, 0.125, 
0.125, y), where y ≤ 0.25, except that all the figures (i.e., other than y) should be a little larger 
than stated if x < 1 (y < 0.25), and the figure for MS should be a little larger still and that for 
MA a little smaller as males are subadults longer, on average, than females are, while the 
proportion for calves should be slightly less to reflect less than perfect reproduction. Large 
departures from this rough SSD should reflect departures in the BSR from 1:1. For the SKKR 
population, which produced 48 F to 38 M during 1999 – 2008, the proportions should be a 
little higher for females than males (comparing calves with calves, SAs with SAs; (48/38) x 
0.125 ≈ 0.158 and (38/48) x 0.125 ≈ 0.099). The SSDs derived from the matrix models are 
consistent with these expectations. Of course, the onset of density dependence would be 
expected to alter the proportions of stages. 

For each parametrization, the matrix model projections approached their SSDs over 
the period Jun-99 through Dec-08, with Keyfitz’s ∆ between the projection and the SSD 
strictly decreasing from 0.227 (MM1) or 0.208 (MM2) to 0.001 (MM1) or 0.004 (MM2), 
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respectively. Thus, the transient behaviour present in the matrix model projections during the 
period of interest basically consisted of the ‘smooth’ extinguishing of the deviation from SSD 
present in the initial population vector (i.e., SKKR in Dec-98). In particular, for the MM1 
parametrization, the damping ratios (Caswell 2001, §4.7.1) for the second and third largest 
eigenvalues were 1.06 and 1.27, respectively, so that exponential damping of their 
eigenvectors had half-lives of 11.2 and 2.9 years, respectively. Thus, though the proportion of 
adult males is somewhat slow to approach the SSD proportion (the eigenvector of the second 
largest eigenvalue has male adults as its only nonzero component), all other eigenvectors are 
damped fairly rapidly, implying that all other (sub)stages approach their SSD proportions 
fairly rapidly. For MM2, the half-life for the second largest eigenvalue is the same as for 
MM1 but that for the third largest eigenvalue is 4.2, slightly larger, implying that MS3 
approaches its SSD proportion a little slower than for MM1, as noted previously. All these 
half-lives, however, are just a fraction of black rhinoceros lifespan. 

Matrix model analyses and results 

Our primary interest in the matrix model was in modelling the dynamics of the stage-
structured population after introductions ceased, from Dec-98 through Dec-08.  The SKKR 
population was still a young population. In particular, no rhinoceros born in GFFR died of 
old age during the study. Thus, though matrix entries of MM1 and MM2 might be plausibly 
considered representative of the dynamics during the study, as adults age, and deaths due to 
old age become common, the survival rate of adults will decrease below that during the study 
period. Thus, the asymptotic dynamics of the matrix model should not be confused with the 
asymptotic dynamics of the actual population, even in the absence of density dependence in 
the actual population. Thus, the asymptotic dynamics of the two parametrizations are only 
indicative of the model and of how the population might have been expected to behave in the 
long term had nothing else changed, which as noted is unrealistic. The asymptotic properties 
of the matrix model then are of interest as indicators of how well the matrix model describes 
an exponentially growing population of large herbivores (‘slow’ mammals) with adult 
survival rates that are somewhat too high in the long run (e.g., Brodie et al. 2011 estimated 
adult female survival as 0.944, 95% CI = 0.920 – 0.962 and adult male survival as somewhat 
lower but larger than 0.9). We did not use the matrix model to forecast population dynamics 
beyond the study period. 

 The five rhinoceros removed from SKKR in May-06 belonged, as of Jun-06, to the 
following substages: one to each of FS2a, FS2b, MS3, and two to FS3. The corresponding 
substage population vector was projected forward from Jun-06 by each of MM1 and MM2 
and, for Dec-06, Dec-07, and Dec-08, the projected quantities rounded to integers so as to 
obtain biologically sensible projections (moreover, since the exported male did not turn eight 
years old until 2009 it was retained as a subadult throughout), resulting in the following 
stage-based population vectors (FC, FS, FA, MC, MS, MA): 
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           (41) 

for Dec-06, Dec-07, and Dec-08, respectively, for both MM1 and MM2. The final vector for 
Dec-08 was slightly ambiguous for the MM2 projection, as an alternative interpretation was 
that the population vector for Dec-08 was the same as that for Dec-07, but we chose the 
option in (41) as a consensus result and in order to have a parametrization-independent result. 
These three vectors were added to the observed SKKR population vectors for Dec-06, Dec-
07, and Dec-08. The resulting augmented population vectors, together with the observed 
SKKR population vectors for each December from 1998 through 2005, will henceforth be 
referred to as the SKKR population vectors and were the population vectors to which the 
matrix projections were compared. Thus, the actual SKKR substage population vector for 
Dec-98 was projected semi-annually by each of MM1 and MM2 up to Dec-08. For each 
December, 1999 through 2008, these projections were collapsed to stage-based population 
vectors and compared to the actual stage-based population vectors. In addition the projected 
number of additions each year (i.e., born during that year and survived to the end of that 
year), by sex, were recorded and compared to the actual number of additions, by sex, per 
year. In addition to direct comparison, we computed Keyfitz’s ∆. The results for both 
parametrizations are presented in Table 8. Figure 5 shows plots of Keyfitz’s ∆. 

Figure 5 Keyfitz’s ∆ for the SKKR population vector and: the SSD of MM1 (solid circles); 
the SSD for MM2 (open crcles); the projections of MM1 (solid squares); the projections 
MM2 (open squares). 
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Unlike the projections’ monotone convergence on their SSDs (described on p. 34), the SKKR 
population vectors, though eventually close to SSDs and model projections, exhibited mild 
fluctuations relative to them. 

Table 8 The second and fourth columns list the matrix model projections for the end of year 
for parametrizations MM1 and MM2, respectively; the third column lists the  SKKR 
population vectors (augmented by the exports of 2006 plus their projections for 2007 and 
2008) at the end of year; all these population vectors are formatted as the transpose of the row 
vector (FC, FS, FA, MC, MS, MA); column six lists the number of female and male recruits 
each year (augmented by the projected additions from the 2006 exports) as a column vector 









M
F

; the fifth and seventh columns list the number of projected female and male recruits 

each year (recruits are offspring of the year surviving to the end of the year), in the same 
format as column six, for MM1 and MM2, respectively; the final column lists Keyfitz’s ∆ for 
the SKKR population vector of column three and the MM1 Projection in column two (∆1), 
and the MM2 projection in column four (∆2) (also plotted in Fig. 5). 

Year MM1 

Pop Vec 

SKKR 

Pop Vec 

MM2 

Pop Vec 

MM1 

recruits 

SKKR 

recruits 

MM2 

births 

∆1 

∆2 
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5.5
4.9
0.5
6.11
4.9
6.5

 



























5
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3
9

13
6

 



























0.5
9.9
9.4
2.11
6.9
6.5

 









4.2
1.3

 







0
4

 







2.2
9.2

 
0.1059 

0.0870 

 

2000 

 



























3.7
1.9
9.5
6.14
0.8
2.7

 



























6
9
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12
9
7

 



























4.6
9.9
8.5
0.14
5.8
0.7

 









8.2
6.3

 







0
1

 







7.2
4.3

 
0.0774 

0.0570 
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2001 

 



























1.9
1.9
5.6
4.16
5.8
1.8

 



























6
12
7

17
9
6

 



























9.7
1.10
5.6
8.15
8.8
0.8

 









9.2
7.3

 







7
4

 







8.2
6.3

 
0.0879 

0.0675 

 

2002 

 



























5.10
8.9
1.7
2.18
6.9
9.8

 



























10
8
7

18
9
7

 



























1.9
8.10
2.7
6.17
7.9
9.8

 









2.3
1.4

 







0
3

 







1.3
0.4

 
0.0372 

0.0579 

 

2003 

 



























9.11
6.10
8.7
0.20
9.10
7.9
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4.10
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7.9

 









5.3
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3.3
3.4

 
0.0703 
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4.13
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0.22
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0.0967 
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5.13
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1.4
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0.0276 
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2006 

 

 



























7.16
8.13
4.10
1.27
9.14
1.13

 


























17
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14
27
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12

 


























5.14
0.15
4.10
9.25
9.14
0.13

 









8.4
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5.4
8.5

 
0.0628 

0.0744 

 

2007 

 

 



























6.18
2.15
6.11
0.30
5.16
6.14

 


























16
14
16
29
18
12

 


























1.16
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5.11
6.28
5.16
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0.5
4.6

 
0.0604 

0.0532 

 

2008 

 

 



























7.20
8.16
8.12
3.33
2.18
2.16

 


























16
20
14
32
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9.17
0.18
7.12
6.31
2.18
8.15

 









9.5
5.7

 







5
9

 







5.5
1.7

 
0.0522 

0.0296 

 

 

We offer the following account of the results recorded in Table 8. In this account, stages such 
as FC will refer to the SKKR population vector in comparison to the projections.  ‘Recruits’ 
are offspring of the year that survive to the end of the year; for the SKKR population, 
probability of death in the first year after birth was negligible, so recruits are essentially 
births. First note that while transitions from MS3 to MA occurred in SKKR by a male 
reaching age eight (Table 1), in the model they occurred by probability and the matrix model 
does not capture the actual distribution of male ages in stage S3 of the SKKR population. In 
1999, FS was high and FA low compared to the projection, so FS transitioned to FA less than 
expected by the model while MC was low due to absence of male recruits in 1999; this state 
of affairs persisted for 2000. The low number of recruits in 2000 combined with the high 
number of males born in 2001 resulted in FC lagging behind projections but MC having 
caught up; FS to FA transitions resulted in rough agreement for these stages but MS grew 
larger than projected, resulting in a deficit for MA. During 2002, MS to MA transitions 
brought closer agreement with projections and the remaining stages maintained their status. 
The high number of female recruits in 2003 put FC ahead of projections but MS began to lag 
behind projections, reflecting the absence of male recruits in 1999–2000. MA moved ahead 
of projections indicating a higher transition rate of MS to MA than projected in 2003. In 
2004, little had changed except that male recruits are slightly less than projected. In 2005 
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there was close agreement between projections and SKKR, except that MS still lagged. The 
discrepancy in FC from 2003 – 2004 has been eliminated. A high number of recruits occurred 
in 2006 compared to projections; by the end of that year FC lagged by one behind projection, 
and FS moved ahead of projections (a higher rate of FC to FS transitions than projected, 
induced by the higher number of actual recruits therefore causing more calves to become 
independent) but MC was ahead of projections while MS still lagged. The lag in MS 2002 – 
2006 appears to reflect the absence of male recruits in 1999 – 2000, the fact that MS deaths, 
although few, were concentrated in 2003 – 2005 (whereas FS deaths were more spread out 
over time), and the higher rate of MS to MA transitions noted for 2003. In 2007, FC lagged 
further behind projection due to the lower number of female recruits than projected, FS was 
more in line with projections, and the state of affairs for the other stages was basically 
unchanged. In 2008, a higher number of female recruits than projected occurred, and FC was 
now in line with projections, while FS had slightly increased its advance over projection 
since 2007, the excess deriving from the greater-than-projected number of female recruits in 
2006. The higher number of male recruits than projected for 2005 – 2007 maintained MC 
ahead of projections and also pushed MS ahead of projections, but these male recruits had not 
yet affected MA.  

 In summary, we propose that the differences in number and sex between the actual 
annual recruits and the matrix-model projected recruits, and the resulting knock-on effects as 
calves transition to subadults and subadults to adults explain much of the discrepancy 
between the SKKR population vectors and matrix-model projections. The fluctuations in 
Keyfitz’s ∆, both between the SKKR population vectors and the projections and between the 
former and the SSDs (Fig. 5), are greater than the transient behaviour manifest in the matrix 
models themselves for the period 98 – 08 (p. 34). Nevertheless, as measured by Keyfitz’s ∆, 
the differences between the actual SKKR population vectors and the matrix model 
projections is small, less than 0.1 after 1999. 

Transient dynamics 

We noted that the asymptotic properties of the matrix model are of limited interest as the 
SKKR population was still young and adult mortality rates will increase after 2008 due to 
individuals dying of old age and eventually density dependence will have some effect also. 
The primary interest then of the asymptotic properties of the matrix model was in assessing 
closeness of the matrix model projections during 98–08 to the SSD as an indication of 
transient dynamics, i.e., deviations from the SSD due to the initial population vector. Koons 
et al. (2005) drew attention to the fact that sensitivities of transient growth may differ from 
sensitivities of asymptotic growth. The period Dec-98 through Dec-08 is of interest not only 
for understanding transient dynamics in their own right but also because during this period 
removals commenced to source reintroductions elsewhere, so any transient behaviour may 
have consequences for such harvesting. 

 We used the matrix model (we conducted the following analyses for each 
parametrization MM1 and MM2; results were very similar and we only report those for 
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MM1) to project the SKKR substage population vector for each December, 1998 through 
2007, through two time steps to the following December, compared that projection with the 
SKKR population vector for the December to which the projection was made using Keyfitz’s 
∆ applied to the stage-based population vectors (i.e., after collapsing substages), and 
computed the transient annual growth rate for each such projection as  

GR = 
ne

nAe
'

' 2

              (42) 

where n is the SKKR substage population vector , e is a column vector all of whose 
components are 1, and 'e  denotes its transpose. Note that for this computation, the SKKR 
vectors did not need to be augmented with the exports and their projections to 2007 – 2008, 
except that the exports themselves were retained for the SKKR 2006 population vector that 
was compared to the projection from the 2005 SKKR population vector. The exports were 
excluded from the 2006 SKKR population vector that was projected to 2007. For the 10 
projections, the mean GR ± SD was 1.1111 ± 0.0084, and the range from 1.0967 (2006) to 
1.1267 (2000), as compared to the asymptotic annual growth rate (λ) of 1.1078 of MM1, 
(Table 9). These results are consistent with the fact (Fig. 5) that SKKR population vectors 
during this period did not stray much from the SSD. 

Table 9 Transient annual growth rates computed from (42) from actual SKKR substage 
population vectors, each December, 1998–2007. 

Year Growth rate 

1998 1.1078 

1999 1.1191 

2000 1.1267 

2001 1.1127 

2002 1.1140 

2003 1.1166 

2004 1.1118 

2005 1.1030 

2006 1.0967 

2007 1.1026 
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Values of GR below λ could sound a warning to managers planning to remove 
animals during the coming year that the population vector is currently expected to perform 
below the stable rate λ. For SKKR, that condition pertained from 2005–2007, with values 
smaller by -0.4, -1.0, and -0.5% of the value of λ, respectively. The smallest value for GR 
occurred for the projection from Dec-06 to Dec-07, after the removals of the five SAs. These 
five were expected to have contributed two new animals to the population during that year 
according to equation (40), which might account for that lowest anticipated annual 
recruitment from 2006 to 2007. 

Keyfitz’s ∆ between the projection to a given December and that December’s SKKR 
population vector (after collapsing substages) averaged 0.054, with a SD of 0.025 and a low 
of 0.020 for the projection from 2003 to 2004 (Fig. 6). These values allow a retrospective 
assessment of actual population performance versus anticipated performance based on the 
matrix model. For example, note that the largest value of GR occurred for the projection from 
Dec-00 to Dec-01, which is also the projection for which the disparity between actual and 
predicted performance is greatest as measured by ∆. During that year, there were 11 animals 
recruited to the population but the projected number was only about three, so the SKKR 
population actually outperformed the annual projection that year. The lowest value of ∆ 
occurred for the projection Dec-03 to Dec-04, for which GR had its third highest value; for 
this year actual additions (eight) and anticipated additions coincided closely. For the three 
years in which GR was less than λ, ∆ was never large than 0.05 so actual population 
performance was similar to predictions. Further years of data would have been interesting to 
see if there was a signal of a trend in these values of GR less than λ. 

Figure 6 Plot of Keyfitz’s ∆ between the projections over one year (two time steps) of matrix 
model MM1 of SKKR population vectors for each December, 1998–2007, and the actual 
SKKR population vector the following December. 
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Figure 7 The proportion of each stage-and-sex, is plotted against year, Dec-99 through Dec-
08 for: the matrix model (MM1) stable stage distribution (●); the SKKR population vector 
(∆); the matrix model (MM1) projections of the SKKR population vector in Dec-98 (□); and 
the matrix model projection (MM1) of the SKKR population vector from the previous 
December to that year’s December (○). The SKKR population vector in Dec-98 was 
(FC,FS,FA,MC,MS,MA) = (5,11,8,3,11,4) with proportions (0.12,0.26,0.19,0.07,0.26,0.10) 
versus the SSD of (0.14,0.155,0.28,0.11,0.14,0.175). 
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In Fig. 7, the SKKR population vectors exhibit the least convergence on MM1’s SSD, 
MM1’s projections from Dec-98 the most, with the annual projections reflecting the 
proportions of the SKKR vector of the previous year. As argued on pp. 39–40, it is the 
discrepancies in actual recruits from projected recruits, manifest in the fluctuations of the 
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proportions of calf stages that result in the deviation of the actual population dynamics from 
those of the model. 

 

Koons et al. (2005) computed the sensitivities to entries aij of A of the growth over a 
single time step at arbitrary time t-1 

vAe
vAeGR t

t

t 1'
'

−
= ,              (43) 

where v is the population vector at time t-1 , by calculating the partial derivatives of GRt to 
aij. As an aside, we note that the resulting sensitivities to aij of growth GR1 over one time 
step is just the proportion of the j’th stage in the initial population vector, independently of 
the form of A or the size of the time step, indicating the importance of the initial population 
vector. If the initial population vector is the SSD, the growth is λ and one might expect to 
obtain the sensitivities of the asymptotic growth rate λ, but the two formulae only agree if the 
reproductive value vector w of A equals e, which one would not expect. The difference stems 
from the fact that in computing the sensitivities of the asymptotic growth rate, the population 
vector v is the SSD and thus depends on aij too, whereas for the transient growth rate v is 
fixed. Moreover, if vj = 0, then the transient sensitivity with respect aij, any i, is zero, 
because no variation in aij can effect GR1 when vj is zero. 

We adapted Koons et al.’s notion of sensitivities of transient growth to our purposes 
by taking the partial derivatives of (42) with respect to entries of A, which results in the 
following formula: 

ne

nAnA

a
G k

j
k

i
kk

k
j

ij '

∑ ∑ 







+

=
∂
∂  ,         (44) 

where here k
jA denotes the entry of the matrix A in the j’th row and k’th column and nk 

denotes the k’th component of n. These sensitivities indicate the dependence on the matrix 
entries of the transient one-year growth projections from actual SKKR states, which might 
warn the manager of unusual transient demographics. We converted sensitivities to 
elasticities in the usual manner (Caswell 2001:226). Note that our GR in (42) is homogeneous 
of degree two in the entries of A, so by Euler’s formula (Caswell 2001:229), our elasticities 
will sum to two. 

   

Table 10 Means ± SD for the sensitivities and elasticities of GR (42) computed by (44) and 
sensitivities and elasticities of the dominant eigenvalue of MM1. 

 



45 

 

Matrix  

entry 

Sensitivity  

of λ 

Mean (sensitivity  

of GR) ± SD 

Elasticity  

of λ 

Mean (elasticity  

of GR) ± SD 

FS fecundity 0.070 0.178 ± 0.117 0.0059 0.0142 ± 0.0086 

FA fecundity 0.315 0.558 ± 0.067 0.0307 0.0515 ± 0.0062 

 FC1a → FC1b 0.039 0.062 ± 0.019 0.0366 0.0552 ± 0.0169 

FC1b → FC2 0.039 0.057 ± 0.028 0.0366 0.0512 ± 0.0247 

FC2 → FC2 0.091 0.157 ± 0.040 0.0542 0.0888 ± 0.0222 

FC2 → FS1a 0.105 0.156 ± 0.040 0.0366 0.0515 ± 0.0129 

FS1a → FS1b 0.039 0.052 ± 0.018 0.0366 0.0460 ± 0.0160 

FS1b → FS2a 0.039 0.043 ± 0.029 0.0366 0.0386 ± 0.0259 

FS2a → FS2b 0.039 0.042 ± 0.022 0.0366 0.0369 ± 0.0199 

FS2b → FS3 0.039 0.051 ± 0.039 0.0366 0.0453 ± 0.0344 

FS3 → FS3 0.119 0.191 ± 0.116 0.0825 0.1249 ± 0.0344 

FS3 → FA 0.127 0.194 ± 0.118 0.0307 0.0444 ± 0.0268 

FA → FA 0.570 0.606 ± 0.074 0.5396 0.5436 ± 0.0671 

MS fecundity 0 0.178 ± 0.108 0 0.0111 ± 0.0067 

MA  fecundity 0 0.558 ± 0.067 0 0.0399 ± 0.0048 

MC1a → MC1b 0 0.054 ± 0.019 0 0.0485 ± 0.0172 

MC1b → MC2 0 0.049 ± 0.038 0 0.0438 ± 0.0342 

MC2 → MC2 0 0.116 ± 0.050 0 0.0672 ± 0.0291 

MC2 → MS1a 0 0.115 ± 0.049 0 0.0362 ± 0.0156 

MS1a → MS1b 0 0.036 ± 0.014 0 0.0317 ± 0.0124 

MS1b → MS2a 0 0.029 ± 0.023 0 0.0254 ± 0.0201 

MS2a → MS2b 0 0.027 ± 0.015 0 0.0239 ± 0.0137 

MS2b → MS3 0 0.033 ± 0.029 0 0.0295 ± 0.0260 

MS3 → MS3 0 0.190 ± 0.094 0 0.1411 ± 0.0688 

MS3 → MA 0 0.191 ± 0.094 0 0.0271 ± 0.0132 

MA → MA 0 0.317 ± 0.068 0 0.2827 ± 0.0609 
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For most nonzero entries of A, the sensitivities varied without obvious pattern across 
the years, except that, for both sexes, those for subadult fecundity (FS and MS) and the 
transition probabilities from S to A (GFS3→FA and GMS3→MA) tended to decrease, while those 
for female adult fecundity (FA and MA) and adult survival (PFA and PMA) tended to increase, 
as one might expect for a long-lived species. The same patterns were observed for the 
elasticities. One can think of a given annual projection of an SKKR population vector and the 
corresponding GR as the growth expected over the next year. Any unusual departure in the 
rankings of sensitivities and elasticities of GR to the matrix entries of the female component 
of the matrix model to those of λ could serve as a warning of unusual transient dynamics, 
which might be relevant to management practices. In the present case, there do not appear to 
be any warning bells of very unusual demography. The patterns in sensitivities and 
elasticities were similar for both transient and asymptotic growth rates. 

 In summary, the matrix model projections converged towards the SSD over the 
modelled period 1998–2008, indicating the dynamics were only mildly transient during this 
period in the sense that the projections were not already in the SSD. Moreover, the projected 
annual growth rates (42) each year 1998–2007 differed by less than 1.8% from the 
asymptotic growth rate λ (Table 7). The transient sensitivities and elasticities (Table 10) did 
not indicate any surprising departures from expectations based on asymptotic dynamics.   

4. Demographic Stochasticity of the Structured Population Dynamics 

Sæther et al. (1998b) used a fairly complicated procedure (some details of which were 
unpublished) to estimate demographic and environmental stochasticity for brown bears 
accounting for their population structure. Engen et al. (2005) developed a simpler method 
based on matrix models and obtained, for long-lived vertebrates that produce only a single 
offspring per breeding occasion, and assuming no relationship between reproduction and 
subsequent adult survival and no environmental stochasticity, an equation that estimates 
demographic stochasticity from the deterministic (female-only) matrix model presumed to 
underlie the dynamics. It appears plausible to apply this equation to the female segment of 
our matrix model. The demographic assumptions apply to black rhinoceros. While an absence 
of environmental stochasticity will not be generally valid for black rhinoceros, the estimate of 
environmental stochasticity for SKKR using the scalar model of exponential growth in 
section 2 indicates it was negligible, a result we shall argue in the Discussion is consistent 
with our previous studies of SKKR. Moreover, the previous estimate of demographic 
stochasticity reflected variation in fecundity (at least 86%) more than survival so restricting 
to the female-only segment of the population focuses on the most important source of 
demographic stochasticity. The method of Engen et al. (2005) will provide a more refined 
estimate of demographic stochasticity than the estimate in section 2 by accounting for 
differences between individuals due to stage structure. 

Engen et al.’s equation (13) is written down for an age-structured population but it is 
a simple matter to extend it to a stage-based matrix model. Recall that λ is the same for the 
full and female-only matrix models.  Let (ui) be the SSD of a female-only matrix model and 
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let (vi) be the reproductive value vector, normalized to have unit scalar product with the SSD. 
Then,  

∑ −=
ji

ijijjid aau
,

2
2

2 )1()(1 ν
λ

σ                    (45) 

where the summation is over nonzero entries of the projection matrix A = (aij). Since our 
matrix model was constructed with a semi-annual time step, we applied (45) to Z = A2, which 
is the projection over one year. 

The value obtained for matrix model MM1 was 0.105 and 0.106 for MM2 for semi-
annual time steps, so we only report the result for A2 for MM1, which was 0.204.  

DISCUSSION 

Consistent with Nelder (1961), estimates of K and especially θ were poor, and often useless, 
when fitting the time series of abundances to the various versions of the generalized logistic. 
Exponential growth can be mimicked by the generalized logistic with large values of K 
and/or θ, resulting in a redundancy in these parameters when fit to exponential-growth-like 
data. Fitting exponential growth data to a generalized logistic will force the inflexion point 
(5) of the latter to be located beyond the range of the actual data. The estimates of K and their 
CVs obtained from the models CGL and SGL with fixed values of θ were increasingly more 
precise as θ increased, i.e., as these models become more threshold-like, reflecting the fact 
that increasingly threshold-like models can be fit to exponential growth with an inflexion 
increasingly just beyond the final census value. Thus, the competitiveness of these models, as 
measured by AICc, merely reflected the degree to which they represent exponential growth 
prior to their inflexion point. The generalized logistic will be unreliable for modelling 
population dynamics when the data samples only abundances near K (Polansky et al. 2009; 
Clark et al. 2010) or only abundances prior to the onset of density dependence (our study) but 
does appear to be useful for data across the range of population growth (Eberhardt et al. 
2008). 

Semi-annual census data over 22.5 years for the reintroduced and expanding black 
rhinoceros SKKR population was unambiguously best fit, amongst scalar population models 
based on the generalized logistic (Table 2), by the discrete-time exponential model with 
multiplicative error. As likelihood models of this data, however, this model is 
indistinguishable from the model of Dennis et al. (1991) and of the continuous-time 
stochastic exponential growth model (Levins 1969, Tuckwell 1974). Thus our results do not 
discriminate between continuous- and discrete-time versions of stochastic exponential growth 
but do favour multiplicative over additive error. One expects process noise to be 
multiplicative on population growth if it is additive on vital rates (Turchin 2003:184). The 
non-competitive performance of the naïve continuous-time exponential growth model 
indicated that process noise contributed to the dynamics.  

The naïve continuous-time models were favoured over the discrete-time exponential 
model for the annual (December) census data, however. Residuals of the fit of models 
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indicated that differences between the results for the two time steps was an artifact of the 
annual time step rather than biologically informative (Figs. 3–4). It appears that stochasticity 
contained in the semi-annual censuses tended to average out over the annual interval. Hence, 
censuses limited to longer intervals can misrepresent the dynamics of populations with 
asynchronized reproduction and no natural time step. 
  The absence of information in our data regarding K is consistent with the 
threshold model (6) adopted in Emslie (2001), but does not confirm it. Whether it is more 
likely that the dynamics of SKKR conform to the threshold model rather than a generalized 
logistic model, with a value of θ exhibiting a slower decline in pgr after the inflexion, 
depends on how close the SKKR population approached its carrying capacity by December 
2008. The highest (local) density for black rhinoceros reported by Owen-Smith (1988) was 
1.6/km2. Employing this figure as a mean density for SKKR yields 352 as an upper bound for 
K. Ignoring stochasticity, it would take 11.5 years to reach this figure from the final census of 
110 via exponential growth with the value of r obtained from our best model. Stochasticity 
and removals aside, then, one could expect to discern the form of density dependence for 
SKKR within another 11.5 years, either a relatively sudden cessation in exponential growth 
for a threshold model or a more gradual decline in pgr consistent with the generalized logistic 
with a value of θ larger than one, but smaller than about ten. 
 For annual survey data for two black-rhinoceros populations that exhibited leveling 
off of population size, Cromsigt et al. (2002) employed discrete-time models with additive 
error (interpreted as observation error) and obtained good fits to their data with the DGL form 
with estimates for θ of 10 and 28 (no SEs reported). For three black-rhinoceros populations, 
Okita-Ouma et al. (2010) followed the procedure of Cromsigt et al. (2002) and found that 
only the exponential model returned sufficiently precise estimates of model parameters. The 
time frame for both studies was roughly ten years. Chamaillé-Jammes et al. (2008) used AICc 
to compare several discrete-time scalar models of population dynamics with multiplicative 
error, including the genRicker, for aerial survey counts of an elephant (Loxodonta africana) 
population exhibiting several years of considerable growth after cessation of culling, 
followed by fluctuations, and obtained the genRicker as best fit with θ = 6.55 (SE = 2.51) but 
ultimately found that only a model with K related to rainfall adequately explained their data. 
We propose that an extended period of growth indistinguishable from exponential growth 
may be common for expanding populations of megaherbivores. In addition to the SKKR 
population and those of Okita-Ouma et al. (2010), Knight et al. (2001) and Gough and Kerley 
(2006) reported exponential growth for expanding populations of black rhinoceros and 
elephant, respectively, while Brodie et al. (2011) deduced density independent vital rates 
from mark-recapture survey data for a black rhinoceros population recovering from poaching.  

Our estimate of the (annual) intrinsic rate of growth for the SKKR population of 
0.102 ± 0.017 is at the high end of the range of published values with estimates typically 
below 0.1 (Owen-Smith, 1988; Knight et al. 2001; Okita-Ouma et al. 2010; Brodie et al. 
2011; Ferreira et al. 2011; Greaver et al. 2014); Cromsigt et al. (2001) obtained r = 0.1 while 
Okita-Ouma et al.’s (2010) largest estimate was 0.086 ± 0.022. The scaling law r = 1.5 W-0.36 
(Caughley and Krebs 1983), where W is mean adult live weight in kilograms, yields W = 
1750 for r = 0.102 and higher rates for lower W, so the estimate of SKKR is within 
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theoretical expectations as W lies in the range 700 – 1400 for black rhinoceros (Owen-Smith, 
1988; 1000kg yields r = 0.125).  

Since the population grew exponentially, we built a stage-based matrix model 
employing biological states of calf, subadult, and adult (Law and Linklater 2014; Table 1). 
As the final planned introduction occurred in Dec-97, we employed this matrix model to 
examine the structured population dynamics from Dec-98 through Dec-08, which period 
included the removal of five rhinoceros in May-06. The matrix-model projection of the 
SKKR population vector for Dec-98 (5 female calves, 11 female subadults, 8 female adults, 3 
male calves, 11 male subadults, 4 male adults, Keyfitz’s ∆ = 0.227 from the stable-stage 
distribution) converged monotonically and initially quite rapidly on the matrix model’s 
stable-stage distribution. In this sense, the matrix model and initial population vector for Dec-
98 exhibited only mild transient dynamics. Moreover, the projected annual growth rates for 
Dec-98 through Dec-07 ranged from 1.0967 to 1.1267 (Table 9) versus the asymptotic rate of 
1.1078. Also, the pattern of rankings for sensitivities and elasticities of the model’s 
asymptotic growth rate and of annual growth rates were similar; in particular, adult survival 
was the most influential parameter on both (Table 10). Thus, once reintroductions ceased, the 
deterministic dynamics implied that the SKKR population should approach its stable-stage-
distribution dynamics within the lifespan of black rhinoceros. If these results are typical for 
black rhinoceros, then transient dynamics will largely reflect unusual population structure 
rather than the sub-dominant eigenvalues. Nevertheless, the computation of projected annual 
growth rates from a matrix model could provide a useful tool for managers planning a 
removal of individuals to check for a robust population structure and avoid unintended low 
short-term growth rate in response to the removal, viz., values below the asymptotic rate 
indicate a less robust population structure. 

On the other hand, the actual SKKR population vectors, Dec-99 through Dec-08, did 
differ from the matrix model projections and did not converge monotonically on the model’s 
stable-stage distribution, exhibiting instead small fluctuations (Fig. 5). Similarly, Keyfitz’s ∆ 
between the annual projections of the SKKR population vectors for each December, 1998–
2007, and the SKKR population vectors for the following December, though typically less 
than 0.1 did not converge on zero over this period (Fig. 6). Thus, the deterministic model did 
not capture the structured population trajectory in all detail. As noted above, we previously 
found no influence of rainfall on SKKR demography and here estimated environmental 
stochasticity as absent. Direct examination of the structured population trajectories and 
matrix projections (Table 8) indicated that the discrepancies could largely be attributed to the 
deviations between the actual numbers of, and model projections of, sex-specific recruitment 
each year. We previously found no deterministic explanation for the variation in interbirth 
intervals or birth sex in the SKKR population (Law et al. 2013, 2014) in terms of biologically 
plausible covariates and proposed that the variation was due to demographic stochasticity.  

As measured by R2 (Table 3), the fit of the scalar models to the abundance data was 
extremely high, yet the better fit of the discrete-time exponential model compared to the 
continuous-time model indicated the presence of process noise in the dynamics. From the 
unstructured population, we estimated environmental stochasticity to be negligible. The 
climate of the study area is warm temperate (Fike 2011) with rainfall expected to be the main 
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driver of environmental influence on dynamics. Yet we found no evidence for influence of 
rainfall on interbirth intervals, age at first reproduction, or birth sex (Law et al. 2013, 2014), 
consistent with the estimation of no environmental stochasticity.  In combination, this 
evidence of process noise manifest as variation in fecundity and birth sex (there was very 
little mortality, Law et al. 2013) in the SKKR population dynamics in the absence of 
environmental influence supports our interpretation of this variation as due to demographic 
stochasticity.  

There have been few estimates of demographic stochasticity for long-lived 
vertebrates, or even of mammals. Using unstructured population models, our estimate 0.127 
(or 0.178 for the female segment only) of demographic stochasticity for SKKR compares 
with values of 0.267 for a population of Swiss ibex (Capra ibex) (Sæther et al. 2007b), 0.28 
for the Soay sheep  (Ovis aries) of Hirta Island, U.K. (Lande et al. 2003, Table 1.2),  0.571 
for Scandinavian wolverines (Gulo gulo) (Sæther et al. 2005), and 0.745 for a population of 
Norwegian roe deer (Capreolus capreolus) (Grøtan et al. 2005), the last being the highest 
value for demographic stochasticity reported for a mammalian population by any method. For 
structured population models, our estimate of 0.204 compares with 0.084 for a population of 
wandering albatross (Diomedea exulans) (Engen et al. 2005), 0.15 for a Norwegian island 
population of moose (Alces acles) using the method of Engen et al. 2005 (Sæther et al. 
2007a), 0.155 and 0.180 for two populations of Scandinavian brown bear (Ursus arctos) 
(Sæther et al. 1998b). The studies of Sæther et al. (1998b), (2007a) and (2007b) also reported 
very low (< 0.008) to negligible values for environmental stochasticity σe

2.  
Our estimates of demographic stochasticity are similar to those for species with long 

generation times (Sæther et al. 2007a); the larger values obtained in the studies cited above 
appear to result from a combination of high adult survival and variable recruitment. For the 
SKKR population, demographic stochasticity manifested itself in random variation in IBIs 
(Law et al. 2013) and also birth sex (Law et al. 2014) with the difference between actual 
population structure and matrix-model projections due differences between actual, and 
projected, sex-specific recruitment. Thus, the SKKR population is a more modest example of 
high adult survival and variable recruitment. The absence of environmental stochasticity and 
moderate demographic stochasticity implies that the mean of observed ln(Nt+1/Nt) values 
should not differ too much from the intrinsic rate of growth, which no doubt aided the 
success of this reintroduction. Calf mortality was essentially absent for SKKR, but important 
in the studies of Hrabar and du Toit (2005), Brodie et al. (2011), and Greaver et al. (2014) 
and may be contributions to environmental and/or demographic stochasticity and/or the 
deterministic dynamics of those populations. 

The form of density dependence for megaherbivores remains uncertain, though an 
extended period of exponential growth may be common. Whether this period of growth 
continues until a threshold followed by a sharp decline in pgr, or to an inflexion followed by 
a more gradual reduction, requires further study with time series of census data over the full 
range of population sizes. We previously reported an increase of age at first reproduction in 
SKKR with increasing population size (Law et al. 2013) despite no apparent resource 
limitation (van Lieverloo et al., 2009) and suggested this response was socially mediated 
(Bronson 1989:163). Increase in age at first reproduction might therefore provide a practical 
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early warning sign of density feedback in an expanding population of megaherbivores prior 
to detectable slowing in growth rate. Further study across populations and species is required 
to explore this possibility. Demographic contributions to process noise are likely important 
for understanding megaherbivore population dynamics, as such populations are often 
relatively small, and therefore of relevance to both the impact of removals on donor 
populations and on the performance of reintroduced populations. Though megaherbivores 
may exhibit some robustness to environmental variation, we would not expect the absence of 
environmental stochasticity observed in the SKKR dynamics to be typical of megaherbivores, 
especially given the diverse habitats occupied by black rhinoceros and elephant in particular. 
Hrabar and du Toit (2005), Gough and Kerley (2006), Chamaillé-Jammes et al. (2008) and 
Lee et al. (2011) all reported influences of rainfall on the demography of megaherbivores, 
black rhinoceros in the first instance and African elephant in the other three. Nevertheless, 
Brodie et al. (2011:355) found no temporal variation in vital rates, over a 14-year period, of 
the black rhinoceros population they studied in the ‘most extreme desert-dwelling ecotype of 
black rhino’. It would be interesting to know the rainfall pattern over that time. 

Given adequate monitoring of a potential donor population to avoid unreliability due 
to estimates of abundance rather than census data (Ludwig 1999), one might employ the 
model of Dennis et al. (1991) to compute probabilities of extinction (or of an unacceptable 
reduction in numbers) prior to the inception of managed removals as a check on the 
robustness of the population. Engen et al. (1998), however, pointed out that the model of 
Dennis et al. (1991) neglects demographic stochasticity, which could result in biased 
estimates of such calculations. Knight et al. (2001) obtained from the model of Dennis et al. 
(1991) the probability of a particular black rhino population decreasing from only 33 to ten 
individuals to be negligible. Similar calculations using both the model of Dennis et al. (1991) 
and that of Engen et al. (2005), which incorporates demographic stochasticity, also yielded 
negligible probabilities for various scenarios with the SKKR population and the differences 
in results between the two methods were of no practical consequence. When such 
probabilities are not negligible, the differences in the models may not be unimportant, e.g., 
for populations influenced by both environmental and demographic stochasticity, especially 
if the latter also influences survival, and not just fecundity as for SKKR. In formula (45), 
derived from Engen et al. (2005), the contribution from a given nonzero entry of the 
projection matrix depends on the dominant eigenvalue, the stable-stage distribution, the 
sensitivity of λ to that entry, and the variance of the demographic parameter the entry is the 
mean of. The importance of demographic stochasticity is also evident in the form of founder 
effects of course, so selection of individuals for removal is important for both the donor and 
target populations. 
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