
1 23

European Journal of Wildlife
Research
 
ISSN 1612-4642
Volume 61
Number 4
 
Eur J Wildl Res (2015) 61:601-609
DOI 10.1007/s10344-015-0935-3

Dynamics of an expanding black rhinoceros
(Diceros bicornis minor) population

Peter R. Law, Brad Fike & Peter C. Lent



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



ORIGINAL PAPER

Dynamics of an expanding black rhinoceros (Diceros bicornis
minor) population

Peter R. Law1
& Brad Fike2 & Peter C. Lent3

Received: 15 August 2014 /Revised: 20 May 2015 /Accepted: 26 May 2015 /Published online: 6 June 2015
# Springer-Verlag Berlin Heidelberg 2015

Abstract Understanding population dynamics is critical for
meta-population management, especially of endangered spe-
cies, and also for megaherbivore ecology. We employed com-
plete individual life records to construct census data for a
reintroduced black rhinoceros population over 22 years since
its founding and investigated its dynamics. Akaike’s informa-
tion criterion applied to scalar models of population growth
based on the generalized logistic unambiguously selected an
exponential growth model (r=0.102±0.017), indicating a
highly successful reintroduction. No evidence of density de-
pendence was detected, and thus, we could not confirm the
threshold model of density dependence that has influenced
black rhinoceros meta-population management. Our analysis
supported previous work contending that the generalized lo-
gistic is unreliable when fitted to data that do not sample the
entire range of population sizes. A stage-based matrix model
of the exponential population dynamics exhibited mild tran-
sient behaviour. We found no evidence of environmental
stochasticity, consistent with our previous studies of this

population that found no influence of rainfall on demographic
parameters. Demographic stochasticity was present, principal-
ly reflected in annual sex-specific recruitment numbers that
differed from deterministic predictions of the matrix model.
Demographically driven process noise should be assumed to
be a component of megaherbivore population dynamics, as
these populations are typically relatively small, and should
be accounted for in managed removals and introductions.
Increase in age at first reproduction with increasing population
size, as manifested in the study population, may provide a
warning of possible density feedback prior to detectable
slowing of population growth rate for megaherbivores.

Keywords Black rhinoceros . Density dependence .
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Introduction

Reintroduction is an important strategy of conservation sci-
ence (Seddon et al. 2007) and a critical component of meta-
population management for endangered rhinoceros species
(Emslie 2001; Emslie et al. 2009). Since reintroductions are
sourced from existing populations, understanding population
dynamics is vital to conservation theory and practice as
regards both the expected performance of the introduced pop-
ulation and possible effects on the donor population
(Armstrong and Seddon 2007). Slowing rates of increase in
potential source populations led Emslie et al. (2009) to stress
the need for predictive models to aid meta-population man-
agement for all species of rhinoceros. Population dynamics
are a vital component in this effort, which also embraces pop-
ulations recovering from poaching (Brodie et al. 2011).
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The approach to meta-population management for black
rhinoceros (Diceros bicornis) of Emslie (2001) assumed a
threshold model of density dependence (McCullough 1992,
1999) involving exponential growth from low abundance to
near equilibrium followed by a rapid decline in population
growth rate to zero (S3) (equations, etc., numbered with a
prefix BS^ refer to the Supplementary Online Resource).
However, the scarcity of undisturbed expanding populations
of rhinoceros and other megaherbivores poses an obstacle to
testing that hypothesis of megaherbivore ecology. There are
few long-term studies of megaherbivore population dynamics
(Owen-Smith 2010), especially based on census data.

For not only rhinoceros ecology and conservation in par-
ticular but also megaherbivore ecology in general, compo-
nents of dynamics requiring attention include density de-
pendence (Bonenfant et al. 2009; Owen-Smith 2010), tran-
sient dynamics (Koons et al. 2005), and both environmental
and demographic stochasticity (Lande et al. 2003; Engen
et al. 2005; Owen-Smith 2010); see also Morris and Doak
(2002). Even with census data, however, extracting ecolog-
ical information faces challenges prescribing and fitting
models to abundance data (Polansky et al. 2009; Clark
et al. 2010).

Our dataset consisted of a time series of censuses of a black
rhinoceros (D. bicornis minor) population that grewmonoton-
ically from its reintroduction in 1986 through the end of 2008
without reaching equilibrium. We fitted scalar models of pop-
ulation growth to these data to evaluate whether density de-
pendence acted during this time and explored the difficulties
mentioned above with fitting models. We estimated demo-
graphic and environmental stochasticity for the unstructured
population using the best-fit scalar model (Lande et al. 2003;
Morris and Doak 2002).

We next built a matrix model to assess the relevance of
population structure to the dynamics, in particular, to check
for transient dynamics (Koons et al. 2005) and to estimate
demographic stochasticity for the structured population
(Engen et al. 2005). That environmental variation can influ-
ence population dynamics is well known (Owen-Smith 2010).
Demographic stochastici ty may be important for
reintroductions and perhaps for many populations of
megaherbivores. Few estimates of demographic stochasticity
have been reported for mammals.

This paper extends the study of a key population of the
critically endangered black rhinoceros (Lent and Fike 2003;
Ganqa et al. 2005; Ganqa and Scogings 2007; van
Lieverloo et al. 2009; Fike 2011; Law et al. 2013, 2014)
and contributes to the understanding of megaherbivore
population dynamics (Cromsigt et al. 2002; Gough and
Kerley 2006; Chamaillé-Jammes et al. 2008; Okita-Ouma
et al. 2010; Owen-Smith 2010; Brodie et al. 2011; Lee et al.
2011; Okita-Ouma 2014) both for theoretical ecology and
conservation science.

Methods

Study population and dataset

The Great Fish River Nature Reserve, Eastern Cape Province,
South Africa, is split into halves by the Great Fish and Kat
rivers and is considered an excellent black rhinoceros habitat.
Black rhinoceros were independently introduced into each
half of the reserve. The population in the 220-km2 western
sector (former Sam Knott and Kudu Reserve) is the older,
larger, and more consistently monitored of the two and has
been the focus of considerable study, as noted in the
BIntroduction.^ We refer to it from its founding in June 1986
through December 2008 as SKKR. SKKR was effectively
isolated demographically and was monitored by ground pa-
trols and aerial reconnaissance; each animal was ear-notched
for identification, and all births and deaths were recorded. No
animals were handled for the research reported in this paper.

A total of 23 individuals were successfully introduced, the
final release in December 1997, five subadults were removed
in May 2006, and the population grew monotonically on a
semi-annual basis to reach 110 (26 calves, 39 subadults, and
45 adults) in December 2008. From complete population re-
cords, we computed population censuses each June and
December, from June 1986 through December 2008 (Fig. 1).
These census data excluded concerns of false signals of den-
sity dependence (Shenk et al. 1998; Freckleton et al. 2006;
Bonenfant et al. 2009) or with conflating sampling error with
process noise (deValpine and Hastings 2002). See the Online
Resource and previously cited literature for further details of
the population.

Scalar population models

Scalar models of density dependence are prominent in popu-
lation studies of large herbivores (Owen-Smith 2010).
Recognition that the linear decline in per capita growth rate
of the logistic model is unrealistic for populations of large
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Fig. 1 Semi-annual census data, June 1986 to December 2008
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vertebrates (Fowler 1981, 1987; McCullough 1992) favoured
the generalized logistic as a flexible model of density depen-
dence. Since black rhinoceros are aseasonal breeders, their
population dynamics lack a natural time step. We write a
continuous-time per capita growth equation and its solution
in the form

N 0

N
¼ ln Nð Þð Þ0 ¼ f Nð Þ N tð Þ ¼ F t−s;N sð Þð Þ ð1Þ

0≤s<t. For the generalized logistic,

f Nð Þ ¼ r 1− N=Kð Þθ
h i

; ð2Þ

(see S1 for F). Let Nt be the census data at time t. Non-linear
regression fits these data to the solution by putting
εt=Nt−F(t,N0), with εt independent N(0,σ

2) variates. Since
the projected value at t depends only on N0 in this model, εt
does not participate in the model dynamics and is not realisti-
cally modelled as process noise.We included this naïve model
in our analyses to evaluate the importance of process noise.

Discrete-time models incorporate process noise in a
straightforward fashion. A semi-annual time step should pre-
clude a pronounced artificial time lag in discrete-time models
of population dynamics for black rhinoceros. We considered
three discretizations of Eq. (1) (Turchin 2003). One can re-

place N 0�
N by (Nt+1−Nt)/Nt; replace (ln(N))′ by ln(Nt+1)−

ln(Nt)=ln(Nt+1/Nt); or use the solution of Eq. (1) to project
the population at t+1 from the population at t. Applied to
the continuous-time generalized logistic (Eq. (2)), we refer
to the first discretization as the discrete generalized logistic
(DGL), the second as the generalized Ricker (genRicker),
and the third as the stepwise generalized logistic (SGL). The
DGL figured prominently in Cromsigt et al. (2002) and Okita-
Ouma et al. (2010) though the genRicker is considered more
ecologically realistic. The SGL should be most faithful to
continuous-time dynamics. Models of exponential growth
can be obtained by taking the limit as K goes to infinity.
Anticipating difficulty with obtaining estimates for θ (Nelder
1961), we fitted the continuous-time generalized logistic
(CGL) and the SGL with θ as a parameter but also with fixed
integer values 1–10, 15, 20, 30, 50, 60, 100, 120, and 190. The
error structure can be modelled as additive (Cromsigt et al.
2002; Okita-Ouma et al. 2010), or as multiplicative (Polansky
et al. 2009; Clark et al. 2010), on abundance, the latter additive
on the logarithmic scale. The models that we compared are
listed in Table 1.

All model projections were adjusted to reflect introductions
and removals (pp. S5–S6). Non-linear regression (pp. S7–S9)
was performed in Statistica 8 (Statsoft), the maximized likeli-
hood of the data computed for each model, and Akaike infor-
mation criterion (AICc) employed to compare models
(Burnham and Anderson 2002). The two error structures,

additive and multiplicative, involve different response vari-
ables, Nt and Xt=ln(Nt), respectively, and constitute separate
analyses for AICc comparisons. However, the discrete-time
exponential model with multiplicative error has the same like-
lihood for time series data as the likelihood model of Dennis
et al. (1991) for the response Xt, which Dennis et al. (1991)
recast as a likelihood model for the response Nt, using the log-
normal distribution. This recast model can be compared using
AICc with the models with additive error structure as these
models have response variable Nt. Since the recast likelihood
is equivalent to the likelihood of the discrete-time exponential
model with multiplicative error, it provides a common refer-
ence for the two separate AICc analyses. To assess the influ-
ence of time step between censuses, we repeated the above
analyses employing just the December census data.

The discrete-time exponential growth model with multipli-
cative error was unambiguously the best fit to the semi-annual
census data and provided an estimate of the expected annual
growth rate in the form er. For each December census, we
tabulated the contribution that each individual of the census
made through its own survival and recruitment of offspring at
the next December census. The variance of these data yields a
quantity Vd(Nt) for each December. For each December, we
put

Ntþ1

Nt
−er

� �2
¼ σ2

e N tð Þ þ Vd Ntð Þ
Nt

ð3Þ

where Nt is the population size for the December census in
question and Nt+1 that for the following December. Equation
(3) is then solved for σe

2(Nt). Weighted means of the quantities
Vd(Nt) and σe

2(Nt) provide estimates of demographic and en-
vironmental stochasticity, respectively, for the unstructured
population (Sæther et al. 1998a; Lande et al. 2003; Morris
and Doak 2002; pp. S15–S16).

Matrix model

Since the semi-annual census data were best modelled by the
discrete-time exponential, we constructed a stage-based, two-
sex, birth-flowmatrix model with semi-annual time step using
the entire population history from June 1986 to December
2008. The biological states of interest were calf (dependent
upon the mother, specifically, in association with its mother,
less than 4 years old, and no younger calf present), subadult
(no longer a calf but not yet an adult), and adult (for females,
have given birth or at least 7 years old; for males, 8 or more
years old) (Law et al. 2013; Law and Linklater 2014). Lacking
paternity data, reproduction was assigned exclusively to fe-
males (Goodman 1969). We constructed two distinct parame-
trizations of the matrix model to assess robustness of results:
MM1, adapted from the parametrization in Brault and Caswell
(1993), and MM2, based on Caswell (2001, Section 6.1.1)
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(pp. S16–S22). Due to further aging of the population and the
eventual onset of density dependence, we restricted the appli-
cation of the matrix model to the period December 1998
through December 2008 after introductions. Population vec-
tors were compared using Keyfitz’s Δ (Caswell 2001:101 and
(S29)).

We adapted methods of Koons et al. (2005) to investi-
gate transient dynamics in the model (pp. S30–S34). We
projected the SKKR population vector for each
December, 1998 through 2007, through two time steps
to the following December, compared that projection with
the SKKR population vector for the December to which
the projection was made using Keyfitz’s Δ, and computed
the transient annual growth rate for each such projection
as the ratio of projected population size to initial popula-
tion size (the five exports during 2006 were retained for
the comparison with the projection from 2005 to 2006).
We also compared the rankings of sensitivities and elas-
ticity of the transient growth rates to those of the asymp-
totic growth rate.

To directly investigate the influence of stage structure and
stochasticity, the SKKR population vectors, augmented by the
matrix-model projections of the five rhinoceros removed in
May 2006, were compared to the matrix-model projections,
through December 2008, of the population structure in
December 1998, after introductions had ceased.

Engen et al . (2005) provided a formulation of
stochasticity for structured populations. In particular, from
the deterministic (female only) projection matrix A under-
lying the dynamics of a population of long-lived vertebrates
that produce only a single offspring per breeding occasion,
assuming no relationship between reproduction and subse-
quent adult survival and no environmental stochasticity,
which turned out to be the case for our study population,
one has

σ2
d ¼

1

λ2

X
i; j

νið Þ2ujai j 1−ai j
� � ð4Þ

where the summation is over non-zero entries of the projection
matrix A=(aij), (ui) is the stable-stage distribution of the

female-only matrix model, and (vi) is the reproductive value
vector, normalized to satisfy ∑

i
νiui ¼ 1. Since our matrix

model was constructed with a semi-annual time step, we ap-
plied Eq. (4) to Z=A2, which is the projection over 1 year.

Results

Scalar models

Table 2 records the comparisons of the models in Table 1 for
the semi-annual censuses. The discrete-time exponential was
unambiguously the best model of the data for both error struc-
tures. While estimates of r were relatively consistent across
models and precise, estimates of K and θ were not. For CGL,
DGL, genRicker, and SGL and both error structures, estimates
of K fell in the interval (110, 200) and for θ were greater than
one but coefficients of variation (CVs) for both were large, at
least 0.8 and often exceeding 10.

For additive error, the deviance of the CGL models with
fixed θ fluctuated slightly for values of θ up to ten and then
increased monotonically with θ (values ranging from 191.9 to
194.9), while for multiplicative error, the deviance increased
monotonically with θ (values ranging from −106.0 to −99.6).
Estimates of K for CGL with fixed θ, for both error structures,
decreased monotonically with θ converging on 110, with CVs
also decreasing to less than 0.1. For the SGL with fixed θ, for
both error types, deviance did not vary with θ, but while esti-
mates of K roughly decreased to near 110 with increasing θ,
their CVs did not and were consistently much greater than
one.

Differences in ΔAICc values amongst the discrete-time
models in Table 2 were due almost entirely to the number of
model parameters. The CGL models with fixed θ had ΔAICc

similar to the other continuous-time models and so were not at
all competitive. The SGL models with fixed θ, having only
slightly larger deviance than the discrete-time exponential and
only one more parameter, were competitive with ΔAICc

values of about 2.3 (additive error) and 1.5 (multiplicative
error) but did not, as noted above, yield informative estimates

Table 1 Scalar models of
population dynamics with two
error structures

Model Additive error Multiplicative error

Continuous-time exponential (Cexp) Nt=N0e
rt+εt Xt=X0+rt+εt

Continuous-time generalized logistic (CGL) Nt=F(t,N0)+εt Xt=ln(F(t,N0)) +εt
Discrete-time exponential (Dexp) Nt+1=e

rNt+εt Xt+1=r+Xt+εt
Discrete generalized logistic (DGL) Nt+1=Nt(1+f (Nt))+εt Xt+1=Xt+ln(1+f (Nt))+εt
Generalized Ricker (genRicker) Nt+1=Ntexp( f (Nt))+εt Xt+1=Xt+f (Nt)+εt
Stepwise generalized logistic (SGL) Nt+1=F(1,Nt)+εt Xt+1=ln(F(1,Nt)) +εt

Nt is the census count at time t; Xt=ln(Nt); F(t,N0) is the solution of the continuous-time generalized logistic (S1);
f=r[1−(N/K)θ ] is the per capita growth rate of the generalized logistic; εt are independent N(0,σ2 ) variates
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of K. The model of Dennis et al. (1991) reproduced the esti-
mate of r and its standard error (SE) for the discrete-time
exponential with multiplicative error (their μ), gave a lower
deviance than any model with additive error, and was almost
10 AICc units below the discrete-time exponential model and
thus unambiguously the best model.

The most important difference between the analyses of the
semi-annual census data and the annual (December) census
data was that the latter favoured the naïve continuous-time
models over the discrete-time models (Table S1). Although
exponential growth was the top model for additive error, the
CGL with θ=1 gave the best fit for multiplicative error
(Fig. S4).

Matrix model

As the two parametrizations of the matrix model produced
very similar results, we present the results for MM1 only
(see pp. S23–S29 for MM2). From December 1999 to
December 2008, Keyfitz’s Δ between the matrix-model pro-
jections from December 1998 and the model stable-stage dis-
tribution strictly decreased from 0.227 to 0.001 (Fig. 2).
Keyfitz’s Δ between the annual projections to a given
December, 1999–2008, and that December’s SKKR popula-
tion vector averaged (±SD) 0.054 (±0.025) with a low of
0.020 for the projection from 2003 to 2004 (Fig. S5). The
corresponding projected (transient) growth rates over 1 year
averaged (±SD) 1.1111 (±0.0084), ranging from 1.0967 to
1.1267 (Table S6), as compared to the asymptotic annual
growth rate of λ=1.1078. Transient dynamics of the model
were mild as the dependence on the initial population vector
was erased. The rankings of sensitivities and elasticity were
similar for both transient and asymptotic growth rates
(Table S7).

The SKKR population vectors, December 1999 through
December 2008, deviated somewhat from matrix-model pro-
jections (Table 3) and Keyfitz’s Δ between the SKKR

population vectors and both the corresponding matrix-model
projections and stable-stage distribution exhibited mild fluc-
tuations (Fig. 1). The discrepancies between the SKKR pop-
ulation vectors and the projections could be attributed to the
differences between actual sex-specific annual recruitment
and those of the model projections (Table 3; pp. S29–S30).

Process noise

The estimates of the demographic (σd
2) and environmental

(σe
2) stochasticity from the unstructured population using

the discrete-time model of exponential growth were 0.127
(of which 86 % were directly due to variation in fecundity as
opposed to survival) and 0.0002, respectively. For the annual
estimates from which these weighted means were obtained,
the t test returned p=10−6 and 0.44, respectively. The assumption
that σe

2=0 for the application of Eq. (4) was consistent with
this result. The resulting estimate of σd

2 from the female-only
matrix model was 0.204.

Table 2 Results of non-linear regression of scalar models in Table 1 for the semi-annual census data

Additive error Multiplicative error

Model R2 Dev k r±SE ΔAICc R2 Dev k r±SE ΔAICc

Cexp 0.996 194.9 2 0.0912±0.0023 25.6 0.995 −99.4 2 0.1016±0.0043 30.4

CGL 0.996 194.1 4 0.0921±0.0027 29.5 0.996 −106.3 4 0.115±0.011 28.3

Dexp 0.998 169.3 2 0.1017±0.0092 0 0.997 −129.9 2 0.102±0.017 0

DGL 0.998 169.3 4 0.106±0.021 4.7 0.997 −129.9 4 0.105±0.021 4.7

genRicker 0.998 169.3 4 0.103±0.020 4.7 0.997 −129.9 4 0.102±0.020 4.7

SGL 0.998 169.3 4 0.103±0.020 4.7 0.998 −130.7 4 0.102±0.020 3.9

Model name abbreviations as in Table 1; R2 is 1− (ratio of error sum of squares to total sum of squares) for the regression fit; Dev is the deviance, −2
times the maximized log-likelihood; k is the number of estimable model parameters (including the variance of the residuals); r±SE is the estimated value
of the parameter r common to all the models as an annual rate±its SE; ΔAICc is the model’s AICc value minus that of the model with the smallest AICc

value, which was the discrete-time exponential model in both analyses
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Fig. 2 Keyfitz’s Δ between matrix-model projections (MMPs) from
December 1998 and the model stable-stage distribution (black circle),
the MMPs and the SKKR population vectors (white square), and the
SKKR population vectors and the stable-stage distribution (white circle)
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Discussion

Consistent with Nelder (1961), when fitting versions of the
generalized logistic, estimates ofK and especially θwere poor,
often useless. Exponential growth can be mimicked by the
generalized logistic with large values of K and/or θ, resulting
in redundancy of these parameters when fit to exponential-
growth-like data. The generalized logistic will be unreliable
for modelling time series of abundance values only near K
(Polansky et al. 2009; Clark et al. 2010) or only prior to pro-
nounced density dependence (our study) but appears to be
useful for data across the range of population growth
(Eberhardt et al. 2008).

The semi-annual census data were unambiguously best fit
by the discrete-time exponential model with multiplicative

error amongst the models of Table 1. This model has the same
likelihood as the model of Dennis et al. (1991) and the
continuous-time stochastic exponential growth model
(Tuckwell 1974). One expects process noise to be multiplica-
tive on population growth if it is additive on vital rates
(Turchin 2003:184). The non-competitive performance of
the naïve continuous-time exponential growth model indicat-
ed that process noise contributed to the dynamics. But, the
naïve continuous-time models were favoured over the
discrete-time exponential model for the annual census data.
Residuals of the fit of models indicated that differences be-
tween the results for the two time steps were an artefact of the
annual time step rather than biologically informative (Figs. S1
and S2). It appears that stochasticity contained in the semi-
annual censuses tended to average out over the annual

Table 3 The first column gives the year and Keyfitz’s Δ between the SKKR population vector, listed in column 3, and the matrix-model projected
population vector, listed in column 2

Year Δ MM SKKR Recruits Year Δ MM SKKR Recruits

1999
5:6
9:4
11:6
5:0
9:4
5:5

0
BBBBBB@

1
CCCCCCA

6
13
9
3
10
5

0
BBBBBB@

1
CCCCCCA

3:1
2:4

4
0

2
66664

3
77775

2004
10:7
12:2
22:0
8:5
11:6
13:4

0
BBBBBB@

1
CCCCCCA

13
11
23
7
8
15

0
BBBBBB@

1
CCCCCCA

5:0
3:9

5
3

2
66664

3
77775

0.1059 0.0743

2000
7:2
8:0
14:6
5:9
9:1
7:3

0
BBBBBB@

1
CCCCCCA

7
9
12
3
9
6

0
BBBBBB@

1
CCCCCCA

3:6
2:8

1
0

2
66664

3
77775

2005
11:8
13:5
24:4
9:4
12:7
15:0

0
BBBBBB@

1
CCCCCCA

12
13
24
10
10
15

0
BBBBBB@

1
CCCCCCA

5:5
4:3

4
6

2
66664

3
77775

0.0774 0.0276

2001
8:1
8:5
16:4
6:5
9:1
9:1

0
BBBBBB@

1
CCCCCCA

6
9
17
7
12
6

0
BBBBBB@

1
CCCCCCA

3:7
2:9

4
7

2
66664

3
77775

2006
13:1
14:9
27:1
10:4
13:8
16:7

0
BBBBBB@

1
CCCCCCA

12
18
27
14
10
17

0
BBBBBB@

1
CCCCCCA

6:1
4:8

8
7

2
66664

3
77775

0.0879 0.0628

2002
8:9
9:6
18:2
7:1
9:8
10:5

0
BBBBBB@

1
CCCCCCA

7
9
18
7
8
10

0
BBBBBB@

1
CCCCCCA

4:1
3:2

3
0

2
66664

3
77775

2007
14:6
16:5
30:0
11:6
15:2
18:6

0
BBBBBB@

1
CCCCCCA

12
18
29
16
14
16

0
BBBBBB@

1
CCCCCCA

6:8
5:3

9
5

2
66664

3
77775

0.0372 0.0604

2003
9:7
10:9
20:0
7:8
10:6
11:9

0
BBBBBB@

1
CCCCCCA

12
10
20
7
7
14

0
BBBBBB@

1
CCCCCCA

4:5
3:5

7
4

2
66664

3
77775

2008
16:2
18:2
33:3
12:8
16:8
20:7

0
BBBBBB@

1
CCCCCCA

16
20
32
14
20
16

0
BBBBBB@

1
CCCCCCA

7:5
5:9

3
6

2
66664

3
77775

0.0703 0.0522

Projections are from the SKKR population in December 1998, and population vectors for a given year are for December of that year. The column headed
‘Recruits’ lists the projected number of female andmale recruits, in that order, followed by the actual number of female and male recruits, in that order, to
the population for the corresponding year (‘recruits’ being offspring of the year that survive to the end of the year; for the SKKR population, the
probability of death in the first year after birth was negligible, so recruits are essentially births)
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interval. Hence, censuses limited to longer intervals can mis-
represent the dynamics of populations with asynchronized
reproduction and no natural time step.

For annual survey data for two black rhinoceros popula-
tions that exhibited levelling off of population size, Cromsigt
et al. (2002) employed discrete-time models with additive
error (interpreted as observation error) and obtained good fits
to their data with the DGL with estimates for θ of 10 and 28
(no SEs reported). Okita-Ouma et al. (2010) followed the
procedure of Cromsigt et al. (2002) but found that only the
exponential model returned sufficiently precise estimates of
model parameters for three black rhinoceros populations.
The time frame for both studies was roughly 10 years.
Chamaillé-Jammes et al. (2008) used AICc to compare several
discrete-time scalar models of population dynamics with mul-
tiplicative error, including the genRicker, for aerial survey
counts of an elephant (Loxodonta africana) population
exhibiting several years of considerable growth after cessation
of culling, followed by fluctuations, and obtained the
genRicker as best fit with θ=6.55 (SE=2.51) but ultimately
found that only a model with K related to rainfall adequately
explained their data. We propose that an extended period of
exponential growth is common for expanding populations of
megaherbivores. In addition to the SKKR population and
those of Okita-Ouma et al. (2010), Knight et al. (2001) and
Gough and Kerley (2006) reported exponential growth for
expanding populations of black rhinoceros and elephant,
respectively, while Brodie et al. (2011) deduced density-
independent vital rates from mark-recapture survey data for
a black rhinoceros population recovering from poaching.

Our estimate of the annual intrinsic rate of growth for the
SKKR population (0.102±0.017) is at the high end of pub-
lished values (Owen-Smith 1988; Knight et al. 2001; Okita-
Ouma et al. 2010; Brodie et al. 2011; Ferreira et al. 2011;
Greaver et al. 2014), which are typically below 0.1. Our esti-
mate is within theoretical expectations based on the scaling
law r=1.5W−0.36 (Caughley and Krebs 1983), where W is the
mean adult live weight in kilograms, 700–1400 for black rhi-
noceros (Owen-Smith 1988; 1000 kg yields r=0.125).

The matrix-model projection of the SKKR population vec-
tor for December 1998 converged monotonically and initially
quite rapidly on the matrix model’s stable-stage distribution
(Fig. 2). Transience in the SKKR dynamics was also mild.
Once reintroductions ceased, the deterministic dynamics im-
plied that the SKKR population should approach its stable-
stage distribution within the lifespan of black rhinoceros. If
these results are typical for black rhinoceros, then transient
dynamics will largely reflect unusual population structure
rather than the subdominant eigenvalues. Nevertheless, the
computation of projected annual growth rates could provide
a useful tool for managers planning a removal, e.g., to check
for rates below the asymptotic rate, which suggest less robust
population structures.

The actual SKKR population vectors, December 1999
through December 2008, differed from the matrix-model pro-
jections and did not converge monotonically on the model’s
stable-stage distribution, exhibiting instead small fluctuations
(Fig. 2). Similarly, Keyfitz’s Δ between the annual projections
of the SKKR population vectors for each December, 1998–
2007, and the SKKR population vectors for the following
December, though typically less than 0.1, did not converge
on zero over this period (Fig. S5 and S6). Direct examination
of the structured population trajectories and matrix projections
(Table 3) indicated that the discrepancies could largely be
attributed to deviations between the actual numbers of and
model projections of sex-specific recruitment each year. We
previously (Law et al. 2013, 2014) found no deterministic
explanation for the variation in interbirth intervals or birth
sex in the SKKR population and proposed that the variation
was due to demographic stochasticity.

As measured by R2 (Table 3), the fit of the scalar models to
the abundance data was extremely high, yet the better fit of the
discrete-time exponential model compared to the continuous-
time model indicated the presence of process noise in the
dynamics. From the unstructured population, we estimated
environmental stochasticity to be negligible. The climate of
the study area is warm temperate (Fike 2011) with rainfall
expected to be the main driver of environmental influence
on dynamics. Yet, we (Law et al. 2013, 2014) found no evi-
dence for the influence of rainfall on interbirth intervals, age at
first reproduction, or birth sex, consistent with our estimation
of no environmental stochasticity.

There have been few estimates of demographic
stochasticity for long-lived vertebrates or mammals. For the
unstructured population, our estimate of 0.127 compares with
values of 0.267 for a population of Swiss ibex (Capra ibex)
(Sæther et al. 2007b), 0.28 for the Soay sheep (Ovis aries) of
Hirta Island, UK (Lande et al. 2003, Table 1.2), 0.571 for
Scandinavian wolverines (Gulo gulo) (Sæther et al. 2005),
and 0.745 for a population of Norwegian roe deer
(Capreolus capreolus) (Grøtan et al. 2005). For structured
population models, our estimate of 0.204 compares with
0.084 for a population of wandering albatross (Diomedea
exulans) (Engen et al. 2005), 0.15 for a Norwegian island
population of moose (Alces acles) using the method of
Engen et al. 2005 (Sæther et al. 2007a), and 0.155 and 0.180
for two populations of Scandinavian brown bear (Ursus
arctos) (Sæther et al. 1998b). The studies of Sæther et al.
(1998b, 2007a, 2007b) also reported very low (<0.008) to
negligible values for environmental stochasticity. Our esti-
mates of demographic stochasticity are similar to those for
species with long generation times (Sæther et al. 2007a).
The larger values obtained in the studies cited above appear
to result from a combination of high adult survival and vari-
able recruitment, the SKKR population also exhibiting high
adult survival but more modest variable recruitment. The
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absence of environmental stochasticity and moderate demo-
graphic stochasticity implies that the mean of observed
ln(Nt+1/Nt) values should not be much less than the intrinsic
rate of growth, which no doubt aided the success of this rein-
troduction. Unlike SKKR, calf mortality was important in the
studies of Hrabar and du Toit (2005), Brodie et al. (2011), and
Greaver et al. (2014) and may be components of environmen-
tal and/or demographic stochasticity and/or the deterministic
dynamics of those populations.

For megaherbivores, an extended period of exponential
growth consistent with the threshold model of McCullough
(1992, 1999), employed by Emslie (2001) for rhinoceros
meta-population management, may be common. It remains
unclear, however, at what rate population growth declines
when density feedback begins. We previously reported (Law
et al. 2013) an increase of age at first reproduction in SKKR
with increasing population size despite no apparent resource
limitation (van Lieverloo et al. 2009) and suggested that this
response may be socially mediated (Bronson 1989:163).
Increase in age at first reproduction might therefore provide
a practical early warning sign of density feedback in an
expanding population of megaherbivores prior to detectable
slowing in growth rate. Further study across populations and
species is required to explore this possibility. Process noise
was present in the SKKR dynamics, identified as variation
primarily in recruitment. Demographic stochasticity is likely
important for understanding megaherbivore population dy-
namics, as such populations are often relatively small, and
therefore of relevance to the impact of removals both on donor
populations and on the performance of reintroduced popula-
tions. Though megaherbivores may exhibit some robustness
to environmental variation, e.g., Brodie et al. (2011:355) also
found no temporal variation in vital rates over a 14-year period
in a black rhinoceros population, we would expect environ-
mental stochasticity to be common, as in Gough and Kerley
(2006), Hrabar and du Toit (2005) Chamaillé-Jammes et al.
(2008), and Lee et al. (2011).
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INTRODUCTION 

The Generalized Logistic  

The generalized logistic can be solved in the same manner as the logistic, integrating using 
partial fractions, or one can simply put M = Nθ, J = Kθ, and s = rθ and the generalized logistic 
ODE becomes  
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i.e., the logistic equation for these quantities. Hence, the solution of the generalized logistic 
can be obtained directly from the well-known solution of the logsitic as 
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From (S1), one sees that for N0 << K and so that (N0/K) < e-rt, then for large θ the 
denominator in the first form is approximately one and N(t) behaves as exponential growth 
over that range of t values. Yet the solution still converges on the equilibrium K for large t 
and does so rapidly once the rate of growth begins to decline. Indeed, as θ → ∞, the solution 
converges on exponential growth until N(t) reaches K and growth ceases, which is an extreme 
form of threshold model. McCullough (1999) proposed that per capita growth rate (pgr) 
might remain constant from low abundance to near equilibrium (corresponding to exponential 
growth) and then decline rapidly as equilibrium is approached. For such a model, N(t) is 
continuous but only piecewise differentiable, with a point of nondifferentiability at the 
threshold value N* at which exponential growth ceases. If the decline is modelled by the 
generalized logistic, then the expression for N(t) is an exponential growth curve joined at N* 
to a solution of the generalized logistic with the same r and suitable θ and K (see also Owen-
Smith 2010:39). Taking θ = 1 gives linear decline in pgr after the threshold, sometimes called 
the ‘ramp’ model. 

 The graph of (S1) is sigmoid with point of inflexion at  
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NH is also the abundance at which population growth rate )(' tN is a maximum. For θ > 1, NH 
> K/2 and approaches K as θ → ∞. Hence, for θ > 1, the abundance for optimal sustainable 
harvesting is nearer to K than the value of K/2 for the logistic. For a threshold model of 
population growth, optimal sustainable harvesting can be achieved by harvesting at the 
model’s threshold value N*.  Thus, the appropriate model of population dynamics informs 
not only how the population approaches equilibrium but also how removals can be 
undertaken to source new populations. 

METHODS 

The Study Population and Dataset 

Thirteen males and 15 females were introduced but 3 males and 2 females died soon 
after release and did not contribute to the population. The surviving imports included only 
two females and two males that were already adults. For details of the introductions can be 
found in Fike (2011). One further individual, a female adult, entered the SKKR population, 
from the eastern sector of the Great Fish River Nature Reserve (GFRR), in 2003. This 
immigrant was the only exception to the demographic isolation of the SKKR population 
during the study period. She calved for the first time after entering the SKKR population and 
is included as a member of the SKKR population from her time of entry. 

The export of 1 SA male and 4 SA females in May 2006 yielded a sex ratio of 9:10 as 
a result of imports and exports, after discounting the failed imports. Our demographic study 
of the SKKR population focused on the period from reintroduction through the end of 2008 
to obtain the longest study period possible with minimal effects from removals. As explained 
below, the removals were accounted for in the analyses of this paper for both scalar and 
matrix models, though in different ways.  More substantial removals were conducted after 
2008. 

 The complete absence of poaching in the GFRR, the fact that only five rhinos were 
removed prior to 2009 by management, and the excellent monitoring of the population at the 
individual level made this population an excellent opportunity for the study of black rhino 
ecology in general and the performance of a reintroduced population in particular.  

 As each individual of the SKKR population was ear notched, routine monitoring and 
recording of all births and deaths resulted in a record of the population over time, allowing 
actual population censuses to be computed for any month from Jun-86 through Dec-08. The 
only uncertainty in such censuses arises from uncertainties in birth and death dates. At the 
initial recording of each birth and death, an interval of uncertainty was assigned to reflect the 
precision of the birth or death date (Fike 2011). The interval of uncertainty, in months, 
centered on the nominal birth date (d), was specified by a value U so that the interval of 
uncertainty was d – U to d + U. The values of U employed by Fike (2011) were: U = 0 
(uncertainty in the nominal date at most 1 week); U = 1; U = 3; U = 6; U = 12; U > 12. For 
106 births and 15 deaths, 29 had U = 0, 38 had U = 1, 32 had U = 3, 20 had U = 6, 2 had U = 
12, and none had U > 12. We therefore computed censuses semi-annually, every June and 



3 

 

December to limit the effects of these uncertainties. We then used the assigned intervals of 
uncertainties to inspect their impact on the censuses by noting when a rhino was 
unambiguously present or not and counting the maximum possible number of rhino that 
might be added to or subtracted from the nominal census count due to the uncertainty of birth 
and death dates. Expressed as percentages of the nominal census counts, only three possible 
modifications exceeded 10%, each at very low population levels (viz., an ambiguity of one 
rhino in a count of three or four). From Jun-86 through Jun-98, 17 of 25 censuses possessed 
no ambiguity at all. From Dec-98 through Dec-08, an ambiguity was always present but in 14 
of 21 censuses was less than 5%. It was clear that this data could not be modelled as 
independently and identically distributed. As these were maximum estimates of uncertainty, 
and ambiguous presence and ambiguous absence, when both present, would tend to cancel, 
taking the nominal censuses as actual population censuses seemed plausible. 

 Since the data does not indicate an equilibrium or obvious threshold, we could not 
include a threshold model amongst the candidate models, e.g.., a model based on the ODE of 
the form 
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in which it is assumed that N* is close to K, but threshold-like dynamics can be approximated 
by large values of θ in the generalized logistic. 

Error Structure and Process Noise 

 To illustrate the differences between deterministic and stochastic, and between 
continuous- and discrete-time, models, consider exponential growth. First note that in the 
absence of stochasticity,  
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i.e., the continuous- and discrete-time models agree. Suppose there is a single stochastic 
perturbation to the population at time s < t. The discrete-time model incorporates this 
perturbation at the step following the perturbation and future projections incorporate this 
perturbation and are thus accurate. The naïve continuous-time model, however, continues to 
project future population size from the initial population size N0 and thus will differ from the 
actual population size at all times greater than and equal to s. Thus, the discrete time model 
will have just the one residual error when fit to actual population size while the naïve 
continuous-time model will have residuals for all times greater than or equal to s. Hence, the 
naïve continuous-time model can only be expected to provide a good fit to data in the absence 
of stochasticity or perhaps when the stochasticity in the data is small and tends to cancel out 
over time. In effect the naïve continuous-time model does not see stochasticity but the 
discrete-time model does even if Ns = erNs-1 + e (e > 0, say) but Ns+1 = erNs – d (d > 0). 
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A more realistic approach to continuous-time dynamics with process noise was 
initiated by Levins (1969), who wrote )(/' trNN =  with solution 
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and applied the central limit theorem to the integral to deduce that it approaches a normal 
variate, whence N(t) is log-normally distributed. More formally, one replaces a deterministic 
ODE by a stochastic differential equation (SDE), in which specific parameters (e.g., r and/or 
K) are treated as stochastic variables (e.g., Tuckwell 1974, but there is an extensive literature 
on continuous-time stochastic processes and SDEs). For exponential growth, the ODE 

rNN =/' , r constant, becomes )()(/' trtrNN ε+== , which is formalized by the SDE  

dN = rN(t)dt + σN(t)dW(t)          (S6) 

in which ε(t)dt has been replaced by σdW(t), with dW(t) representing the ‘differential’ of the 
Wiener process, representing Gaussian ‘white’ noise. For a likelihood model of the stochastic 
process described by an SDE, one requires the probability density p(Nt,t,|Nt-1) of observing 
abundance Nt at time t given that the abundance at time t-1 was Nt-1. This probability density 
is obtained as the solution to the Fokker-Planck equation. When solvable, the solutions are 
typically analytically complicated.  

Given our data, the discrete-time models should suffice to detect density dependence 
if present in our data. As the SKKR population did not manifest fluctuations, more complex 
models of stochastic dynamics appear unnecessary for our purpose. We do note, however, 
that for continuous-time, stochastic exponential growth, the resulting p(Nt,t,|Nt-1) is log-
normal and the expected abundance obeys deterministic exponential growth but with a 
coefficient of variation that increases exponentially as t → ∞ (Tuckwell 1974). The discrete-
time exponential model with multiplicative error is 

Xt  = Xt-1 + r + εt-1  whence  Xt = X0 + rt + ∑
−

=
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0

t

j
jε = X0 + rt + ε         (S7) 

where ε is a sum of iid N(0,σ2) variates and thus N(0,σ2t). Hence, Xt is N(X0 + rt, σ2t), which 
includes the description of a single time step as ‘Xt is N(Xt-1 + r,  σ2)’. Thus the discrete-time 
exponential model generates the same likelihood for the data Xt as the model of Dennis et al. 
(1991; except that they use μ where we use r and their r differs from ours). Dennis et al. 
observed that these distributional assumptions for Xt are equivalent to p(Nt,t,|Nt-1) being log-
normal. Hence, for a time series of abundances, the likelihood models obtained from the 
discrete-time exponential model with multiplicative error, from Dennis et al. (1991), and 
from the continuous-time stochastic exponential growth model are all identical, i.e., such a 
time series cannot distinguish these models. Moreover, since Dennis et al.’s model employs 
Nt, rather than Xt, as the response variable, its likelihood model of the time-series data can be 
compared via AICc to the models of Table 1 with additive error, thereby providing a common 
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reference between the comparisons of the additive error models plus Dennis et al.’s model and 
the comparisons of the multiplicative error models (via the discrete-time exponential model). 

 Thus, we consider the models listed in Table 1, together with the model of Dennis et 
al. (1991) with Nt as response and thus with error additive on abundance, as adequate for our 
purposes of checking for density dependence and preferred error structure. Finally, we note 
that the statistical assumptions regarding residuals in nonlinear regression, see below, entail 
that the residuals as process noise are typically interpreted as representing environmental 
stochasticity, which is not say that demographic stochasticity is absent from the data. Rather, 
more than fitting the data to such models is required to determine the nature of process noise 
if present in the data. We address this issue in subsequent analyses below. 

Including Additions and Removals in Population Modelling 

All introduction events were sufficiently discrete to have occurred between two consecutive 
semi-annual censuses. In our case there was just the one removal event and no additions 
occurred during the semi-annual period of Dec-06 to Jun-06 when the removals were 
conducted. For discrete-time models, if n is the net number of individuals added (with 
negative values of n accounting for a net number of removals) between t and t+1, then the 
model projection from Nt should be compared to Mt+1 :=  Nt+1 – n rather than Nt+1 itself. 
Thus, for discrete time models, the modified census figures Mt were used as the response 
variable in the nonlinear regressions with additive error and Yt := ln(Mt) was used for the 
response variable for models with multiplicative error. Thus, if the deterministic model is 
written as Nt+1 = G(Nt), then to accommodate additions and removals we use instead Mt+1 = 
G(Nt). 

 For the continuous-time models in Table 1, projections of future abundance are made 
via the solution of the ODE from an initial population size. In our case, there were 5 distinct 
addition events, including the immigration of the one female from the other half of GFRR 
into SKKR, after the founding introduction in Jun-86 and one removal event. The entire 
period of study can be partitioned into 7 disjoint subintervals of time [0, t1], [t1, t2],…,[t6, t7] 
such that each subinterval consists of several consecutive between-census periods and such 
that each distinct addition or removal event occurred in the final between-census period  of 
one of the first six of these subintervals. Thus, [0,t1] covers the time period from time zero to 
the census immediately following the first addition; [t1, t2] covers the period from t1 to the 
census immediately following the next distinct addition event; and so on, except that [t6, t7] 
covers the period from the census immediately following the final addition/removal (the 
removal in our case) to the final census. If F denotes the solution of the deterministic 
continuous-time model as in (3), then for the additive error models one uses: F(t, N0) to 
project abundance over [0, t1]; F(t – t1, 

1t
N ) to project abundance over [t1, t2]; and so on, 

finally using F(t – t6, 
6t

N ) to project abundance over [t6, t7]. These projections are compared 

to the modified census figures Mt for each census time t. For the models with multiplicative 
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error, one projects abundances as just described, takes the logarithms of the projections, and 
compares to the Yt. 

 We also needed to modify the likelihood formulae of Dennis et al. (1991) to 
accommodate additions and removals (as they apparently did in their example of the Puerto 
Rican parrot, see their p. 135). Dennis et al. formulated a stochastic model for (st)age 
structured exponentially growing populations with process noise that can be fitted to time 
series N0, N1,...Nq of abundances (censuses, not estimates), with time step τi from the (i-1)’th 
observation to the i’th observation. The likelihood is built from the probability p(Ni, τi|Ni-1) 
of observing Ni at the i’th observation given that the abundance was Ni-1 at the (i-1)’th 
observation. Let Mi := Ni + removals - additions  (removals and additions during the time 
step from the (i-1)’th observation to the i‘th observation) denote the modified count (as 
above). Then, in place of Dennis et al.’s p(Ni, τi|Ni-1) we have  p(Mi, τi |Ni-1). In our case, the 
time steps are all equal. For the semi-annual censuses, τi = ½, for a time unit of one year, and 
q = 45, i.e., 45 observations (N0,M1),...,(N44, M45), each Jun and Dec from Dec-86 through 

Dec-08 and tq = ∑
=

q

i
i

1
τ = 45/2. For annual censuses, τi = 1, q = 22, with observations 

(N0,M1),...,(N21,M22), from Dec-87 through Dec-08, and tq = ∑
=

q

i
i

1
τ = 22. 

The probability p(Ni, τi|Ni-1) was derived by Dennis et al. from a log-normal distribution with 
parameters μ and σ2 (see their equation (8)) and the likelihood of the data (their (22)) by 
multiplying together such probabilities, one for each observation. Thus, to accommodate 
additions and removals, one literally replaces the Ni (but not Ni-1) in their formula by Mi. 
This substitution modifies the maximum likelihood estimates of μ and σ2 obtained by Dennis 
et al. as follows. In place of their equations (24) and (25), one readily obtains 
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respectively, with the latter simplifying in our case to 
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because of equal time steps. But nothing else changes for the analysis of Dennis et al. (1991) 
(though in the linear regression model one has Wi = ln(Mi/Ni-1) of course; ln(Mi) is the 
modified value of ln(Ni) and thus Wi still represents the increments of the Wiener process, 
whence the statistical properties that Dennis et al. appeal to remain valid and the rest of their 
results apply). The maximized log-likelihood is (for equal time steps) 

[ ] ( )[ ]2

1
ln1

2
2ln σπτ +−−∑

=

qM
q

i
i    (S11) 

Note that, with Yt = ln(Mt), p(Yt,1|Xt-1) is N(Xt-1 + r,  σ2), just as in the discrete-time 
exponential model with multiplicative error, so the equivalence of the likelihood descriptions 
of a time series of abundances is maintained when introductions and removals are accounted 
for. 

Nonlinear regression and AICc 

For a model of the form 

    zk = f(xk) + εk      (S12) 

with εk iid N(0,σ2) and n observations, the log-likelihood is 

[ ]
)2ln()2/(

2
)2ln()2/(

2
)(

)ln( 2
2

2
2

2

πσ
σ

πσ
σ

nRSSn
xfz

L
k

kk −−=−
−−

= ∑  (S13) 

where RSS is the residual sum of squares (Burnham and Anderson 2002:12, 108–109; Bates 
and Watts 1988:4). Maximum likelihood (ML) estimation of the structural parameters in f is 
equivalent to (non-linear) least-squares estimation. ML estimation of σ2 is found easily by 
calculus to be 

n
RSSmax2

max =σ     (S14) 

where RSSmax denotes the residual sum of squares evaluated for the ML estimates of the 
structural parameters of f (i.e., what is usually meant by the residual sum of squares). The 
deviance (i.e., -2 times the maximized log-likelihood) is then found to be 

)]2ln(1[ln max π++





= n

n
RSS

nD    (S15) 

Nonlinear regression was performed in the nonlinear estimation module of Statistica 8 
(Statsoft), which provided the ML estimates of the structural parameters of the model and the 
residuals. From the residuals we computed σ2

max and the deviance D. AICc was then 
computed as  
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AICc = D + 
1

2
−− kn

nk     (S16) 

(Burnham and Anderson 2002), where k is the number of estimated parameters, here the 
number of structural parameters in the model plus one (for σ2), and n is the number of data 
points used in the likelihood. Note that a time series of length one does not permit estimation 
for any of the models in Table 1, i.e., the initial population census does not count as a datum 
point in the likelihood. As noted above in the discussion of Dennis et al.’s model, the 23 
years of Jun and Dec censuses yield 45 semi-annual census data of the form (Mt+1, Nt) and 22 
annual census data of a similar form. Thus, for all models, n = 45 for the semi-annual census 
data and 22 for the annual census data. 

 For AICc calculations, the second term in (S15) is common to all nonlinear 
regression models so cancels out in computations of ∆AICc for such models. However, for 
comparisons of the models with additive error with the model of Dennis et al. (1991) it is 
essential to retain that term in the deviance and all AICc calculations. 

Statistica provides an R2 value for each nonlinear regression, computed as follows. 
The total sum of squares (SS) is defined as usual for a response variable z as ( )∑ −

j
j zz 2 and 

the Error SS is defined as ( )2ˆ∑ −
j

jj zz , where jẑ  is the predicted value. Statistica then 

defines the regression SS as Total SS – Error SS and R2 as the ratio of regression SS to total 
SS, i.e., as 1 – (the ratio of Error SS to Total SS), as a measure of variation explained by the 
model. 

 Nonlinear regression requires starting values (SV) for the structural parameters to be 
estimated (Bates and Watts 1988). For r we used 0.05 as SV for both semi-annual and annual 
census analyses, which proved unproblematic. For K we began with an SV of 150. Since the 
dataset gave no indication that an equilibrium population size had been reached, we expect K 
to be larger than 110 (mean density 0.5 rhino/sq. km), the Dec-08 census figure. The highest 
local density for black rhinoceros reported by Owen-Smith (1988:224) was 1.6 rhino/sq. kms. 
A mean density of 1.6 should therefore provide an upper bound on K, yielding 352. In fitting 
the generalized logistic with θ fixed, we found that we had to lower the SV of K as θ 
increased in order for Statistica to fit the model (otherwise it complained that the remaining 
model parameters were ‘probably very redundant; estimates suspect’). Larger SVs for K did 
not help. 

For large herbivores, one expects θ > 1 (Owen-Smith 2010). This expectation appears 
to be challenged by Sibly et al. (2005), who fitted numerous time series of abundances from 
the Global Population Dynamics Database (GPDD;  
http://www3.imperial.ac.uk/cpb/databases/gpdd) to the generalized Ricker model with 
multiplicative error and obtained more often than not values of θ < 1 and even negative. For 
critical assessments of these analyses and Sibly et al.’s response, see Science 311 (2006), 

http://www3.imperial.ac.uk/cpb/databases/gpdd
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p.1100d, and further see Doncaster (2008), Eberhardt et al. (2008), Polansky et al. (2009), 
and Clark et al. (2010). The values of θ obtained by Sibly et al. are appended to the 
corresponding time series in the GPDD. Systematic inspection of all time series for 
Rhinocerotidae, Elephantidae, Giraffidae, Hippopotamidae, Bovidae, and Cervidae found 
little evidence to contradict the expectation of θ > 1 for large herbivores. There were actually 
few such time series for which θ was estimated and for those time series from robust studies 
θ was estimated to be greater than one, except in the one case of Owen-Smith’s (1990) study. 
But Owen-Smith found that fluctuations in abundance in that study were significantly 
influenced by exogenous factors in addition to density, which may have complicated 
estimates of θ. For models in which θ was to be estimated in our analyses, we tried SVs of 1 
and 4.5 (the latter following Eberhardt et al. 2008). For the semi-annual censuses, for CGL 
with additive error, when SV was set to one, Statistica reported model parameters were 
‘probably very redundant; estimates suspect’, but fit the model to the data with an SV of 4.5. 
The opposite was the case for the CGL with multiplicative error. The resulting estimates of θ 
of 11.3 and 1.3, respectively, may reflect a dependence on SVs due to the redundancy. Both 
estimates had high CV, 3.6 and 0.9, respectively. (In the case of multiplicative error, the 
estimate of K was essentially the same estimate as obtained for CGL with θ fixed at one.) For 
the DGL, genRicker, and SGL, estimates were obtained with both SVs for both error 
structures. An SV of 1 for θ either yielded the same result as an SV of 4.5 or an estimate for 
K greater than 1000, which is unrealistically high, and an estimate of θ less than 1.5. On the 
other hand, an SV of 4.5 for θ, yielded estimates of K less than 200 and estimates of θ 
between 5 and 10, with each estimate similar across models. But in all cases, CVs of 
estimates of K and θ were very high, greater than 10, making the estimates uninformative. 
For the annual censuses, similar dependence on SVs was observed for additive error models, 
but for multiplicative error both SVs of 1 and 4.5 returned similar estimates of K > 1000 and 
θ < 1. Again CVs were larger than 10. Given that our dataset turned out to be well modelled 
by exponential growth, the various versions of generalized logistic (CGL, DGL, genRicker, 
SGL) approximate the exponential with either large values of K or large values of θ; which 
results in considerable redundancy between K and θ for such data. Statistica, as noted, 
complained about such redundancy. When estimates were obtained, their CVs indicated these 
estimates were of no value. Thus, our general conclusion about this data set (exponential 
growth with no information on K or θ) does not depend on SVs. 

RESULTS 

 Scalar Model Comparisons for Annual (December) Censuses 

As for the semi-annual censuses, for the annual census data the discrete-time models 
exhibited the same deviances so that their ∆AICc values differed according to their number 
(k) of model parameters. Unlike the semi-annual censuses, however, the (naïve) continuous-
time models exhibited lower deviances and lower AICc values than the discrete-time models. 
For both error types, the continuous-time exponential model had lowest AICc amongst the 
models in Table 1, though the CGL had lower deviance and in the case of multiplicative error 
the difference in AIC values between the two continuous-time models was marginal.  
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Table S1 Results for the comparison of scalar models of Table 1 for the December census 
data only. Model name abbreviations as in Table 1; R2 is 1 – (ratio of error sum of squares to 
total sum of squares) for the regression fit; Dev is the deviance, -2 times the maximized log-
likelihood; k is the number of estimable model parameters (including the variance of the 
residuals); r ± SE is the estimated value of the parameter r common to all the models as an 
annual rate ± SE; ∆AICc is the model’s AICc value minus that of the model with the smallest 
AICc value, which was the continuous-time exponential (Cexp) for both analyses. 

 

 Additive error Multiplicative error 

Model R2 Dev k r ± SE ∆AICc R2 Dev k r ± SE ∆AICc 

Cexp 0.995 100.0 2 0.0928 

±0.0033 

0 0.996 -57.8 2 0.1005 

±0.0049 

0 

CGL 0.995 98.8 4 0.0940 

±0.0037 

4.5 0.997 -63.1 4 0.123 

±0.029 

0.5 

Dexp 0.994 105.8 2 0.101 

±0.011 

5.8 0.995 -52.2 2 0.104 

±0.016 

5.6 

DGL 0.994 105.8 4 0.109 

±0.024 

11.5 0.995 -52.3 4 0.117 

±0.079 

11.3 

genRicker 0.994 105.8 4 0.103 

±0.021 

11.5 0.995 -52.3 4 0.110 

±0.070 

11.3 

SGL 0.994 105.8 4 0.103 

±0.021 

11.5 0.995 -52.5 4 0.110 

±0.068 

11.3 

 

For CGL, the estimate of K was 117 with CV = 0.4 (additive error) and 382 with CV 
= 2.1 (multiplicative error), while for DGL, genRicker, and SGL about 150 with CV about 6 
(additive) and over 1000 with CV about 35 (multiplicative). For CGL, the estimate of θ was 
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about 16 with CV about 4 (additive error) and 0.7 with CV = 1.6 (multiplicative error), while 
for DGL, genRicker and SGL about 7.5 with CV about 15.5 (additive error) and 0.8 with CV 
about 14 (multiplicative error). 

For additive error, the deviance of the CGL models with fixed θ decreased 
(monotonically with increasing θ from θ = 1 to θ =190) slightly from 99.8 to 99.2 so ∆AICc 
decreased from 2.5 to 1.9. The estimates of K decreased monotonically from 1380 with a CV 
of 2.2 (θ = 1) to 110 with CV = 0.2 (θ = 190). For multiplicative error, deviance increased 
from -62.9 (θ = 1) to -58.1 (θ = 190) so that ∆AICc (relative to the continuous-time 
exponential) increased from -2.4 to 4.8. Estimates of K followed a similar pattern as for 
additive error. Thus, the (naïve) continuous-time logistic (i.e., θ = 1 in the CGL) actually 
gave the best fit to the data for multiplicative error (∆ AICc = -2.4 relative to the continuous-
time exponential). The estimate of K was 270±100, i.e., CV = 0.37. While this range is 
biologically plausible, the behaviour of the estimates of K as θ increases indicated that the 
nonlinear regression was estimating K so that the inflexion point (S2) of the solution lay 
beyond the observed data. For additive error, increasing θ slightly improved the fit, i.e., these 
models became more competitive as they better approximated threshold-like models with 
exponential growth for the actual data, but the opposite was true for multiplicative error, 
unlike for the semi-annual census data. The fact that the naïve continuous-time models were 
favoured in the analysis of the annual census data suggests that the stochasticity in the semi-
annual census data tended to average out over the annual time step.  

For the SGL models with fixed θ, for both error types, deviances and AICc values did 
not vary to any important degree and were not competitive (∆AICc greater than eight for both 
error types). Estimates of K started unrealistically high with large CVs for θ = 1, decreased 
monotonically over the rang θ = 1 to 10 to between 150 and 110 with CVs of about 0.7 but 
for higher values of θ the estimates of K fluctuated outside that range and had extremely large 
CVs.  

Figure S1 shows a plot of the pairs (Xt-1, Yt) for the semi-annual census data, i.e., of 
the log-transformed census data, modified to account for additions/removals, as the second  
coordinate (Yt  = ln(ModCount)) versus the log-transformed actual census data at the previous 
time as the first coordinate (Xt-1 = ln(PrevCount)), together with the line y = x  + c, where c is 
the estimate of (the semi-annual rate ) r,  from the discrete-time exponential model with 
multiplicative error, i.e., the overall best fit model. Thus, the line represents this model, viz., 
Yt = Xt-1 + r + εt. Figure S2 shows the same plot for the annual census data with c the 
estimate of (the annual rate) r from the discrete-time exponential model with multiplicative 
error fit to that data. 
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Figure S1. The semi-annual census data plotted together with the line y = x + c, c = the 
estimate of r from the discrete-time exponential model with multiplicative error fit to that 

data.  

Figure S2. The annual census data plotted together with the line y = x + c, c = the estimate of 
r from the discrete-time exponential model with multiplicative error fit to that data. 
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Note that we have not used the jitter option to separate data that coincide, as that would 
defeat comparison of the fit to the line. In Figure S1, for example, for the first four data (for 
Dec-86, Jun-87, Dec-87, Jun-88,  the Yt and Xt-1 values are equal and so plot as the same 
point, below the line (at Xt-1 = 1.1). 

Though visual inspection does not quantify the model fit as well as the deviances of 
the models, note that beyond 3.5 on the horizontal scale in Figure S2, there appears to be a 
tendency for the data to fall just below the line. It is not just that the June census data has 
been removed from the plot in Figure S1, but the remaining (December) data is now fit to the 
exponential model by projecting that data over the larger time step, i.e., whereas Yt is 
projected from Xt-1 in Figure S1, it is projected from Xt-2 (using the same parametrization of 
censuses as for the semi-annual data) in Figure S2, resulting in the different estimate of r (as 
an annual rate). 

Similarly, the differences between the model fits of the continuous-time exponential 
and logistic (i.e., θ = 1 in the CGL) and the discrete-time exponential for annual census data 
and multiplicative error structure appears fairly subtle in a graphical display (Figure S3). The 
sum of squared residuals for the continuous-time logistic was 0.0733 versus 0.0931 for the 
continuous-time exponential, the squared residuals of the latter consistently slightly larger 
than those of the former for years 7 – 17, summing to 137% of the difference in the sum of 
squared residuals for these two models. Thus, the lower deviance for the continuous-time 
logistic, which yields a lower AICc by 2.4 units, despite the extra model parameter, reflects 
better model fit for years 7 – 17 rather than indicating a slowing of population growth rate 
towards the end of the study. The sum of squared residuals of the discrete-time exponential 
was 0.1200, about 1.6 times larger than that for the continuous-time logistic, which translated 
into some 8 AICc units difference. Thus, there is no evidence that the model fits to the longer 
time-step are more informative than the fits to the semi-annual census data. That smaller 
residuals occurred for the fit of a continuous-time model than for a discrete-time model 
indicated that the annual census data was more easily fit with a projection from an initial  
value rather than an adjustment each time step, i.e., that the annual census data smoothed out 
the irregularities in the semi-annual census data. 

Dennis et al. (1991) Model 

The computation of Dennis et al.’s estimate of their μ from (S8) agreed to nine decimal 
places with the Statistica estimates of r for the discrete-time exponential model using either 
semi-annual or annual census data. Agreement of estimates of SEs was less close, to eight 
decimal places using the annual census data and seven using the semi-annual census data. 
Agreement for the estimates of σ2 was to more than 10 decimal places using either set of data. 
For the annual census dataset, the Dennis et al. model had a lower deviance than any model 
with additive error, and was also about 7.7 AICc units below the (naïve) continuous-time 
exponential model. 

 



14 

 

Figure S4 Annual census data, multiplicative error structure. Response variables plotted on 
the log scale: observed (modified) count (●); predicted responses for the continuous-time 
exponential (∆), continuous-time logistic (○), and discrete-time exponential (□). 
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Estimating Demographic and Environmental Stochasticity from the Unstructured 
Population  

Process noise, i.e., departure from the deterministic model, is interpreted as arising from 
demographic and environmental sources of stochasticity. For a population of statistically 
identical individuals, Engen et al. (1998) provided a decomposition of the variance in the 
change in population size from a given population size, which provided definitions of 
demographic and environmental stochasticity and demographic covariance. Sæther et al. 
(1998a) showed how to apply this formalism to demographic data and a time series of 
abundances (outlined in Lande et al. 2003; see also Morris and Doak 2002:127–133).  

 Environmental stochasticity is typically construed as variations from year to year 
rather than at finer scales, so we conducted this analysis on an annual basis. For each end-of-
year (i.e., our December censuses), 1986 through 2007, we tabulated the contribution each 
individual alive at that time made to the following end-of-year census: counting one for 
survival and one for producing an offspring during that year that survived to the end of the 
year. The usual estimate of variance applied to this annual data defines a quantity Vd(N) for 
each such end-of-year, which is parametrized by the population size rather than time. As 
noted above, the formalism assumes that individuals are statistically identical; in particular, 
for any given year, the individuals alive at that time are assumed to have the same expected 
contribution to the population the following year. This assumption thus ignores, for example, 
stage differences such as the difference between immature individuals that contribute only by 
survival and mature individuals that can also contribute by reproduction. Typically, the 
formalism is applied to subunits of a population (e.g., females) that can plausibly be treated 
as homogeneous and to populations in which individuals mature over one time step. Since we 
are attempting to interpret the process noise of a scalar population model, which also neglects 
differences between individuals, we proceed as if the formalism is applicable to our data 
noting that our estimate of Vd(N) conflates strict demographic stochasticity and fixed 
demographic differences between individuals (such as stage differences), but is still 
demographic in nature. This conflation may lead to biases in estimates of probability of 
extinction and time to extinction (Fox and Kendall 2002, Kendall and Fox 2002, Morris and 
Doak 2002:132–133, Melbourne and Hastings 2008) but our concern is only to estimate the 
relative demographic and environmental contributions to process noise. 

As the best description of the semi-annual data was the discrete-time exponential model, we 
took that model as the best deterministic model for the SKKR population dynamics and 
applied it to the December annual census data, i.e., we converted the value of r obtained from 
the discrete-time exponential model with multiplicative error for the semi-annual census data, 
to an annual time step. The prescription in Sæther et al. (1998a) (also Lande et al. 2003, 
equation (1.11); Morris and Doak 2002, equation (4.14)) is to put 
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where Nt is the observed abundance at time t (the December for which one computes the 
contributions of living individuals to time t+1) and Nt+1 is the abundance at time t+1. For our 
data, we must replace Nt+1 by Mt+1, the modified count at t+1 to account for any introductions 
or removals during the time step (see the section Including Additions and Removals in 
Population Modelling above). Using the estimate of Vd(Nt) obtained as described in the 
previous paragraph, one obtains from (S17) an estimate σe

2(Nt) of the environmental 
contribution to process noise.  

The advice (Sæther et al. 1998a, Morris and Doak 2002, Sæther and Engen 2002,  
Lande et al. 2003) is then to regress each of Vd (Nt) and σe

2(Nt) on Nt to check for density 
dependence. For Vd (Nt), regression yielded a slope of -0.00040 (p = 0.55) and with a 
positive intercept (p = 0.00016), while for σe

2(Nt), regression yielded p > 0.2 for both slope 
and intercept. The t-test for each set of Vd (Nt) and σe

2(Nt) values returned p = 0.000001 for 
the former (mean = 0.137 ± 0.091) and p = 0.44 for the latter. Thus, density dependence was 
detected for neither Vd (Nt) nor σe

2(Nt), but the mean of Vd (Nt) is judged to be nonzero. 
Overall estimates of the demographic and environmental contributions to process noise are 
obtained as weighted means of Vd (Nt) and σe

2(Nt) (Sæther and Engen 2002:194, 197), for 
which we obtained 0.127 and 0.0002, respectively.  

Our strategy of including all individuals for the computation of demographic 
stochasticity is conservative; it is more usual to restrict to the female segment of the 
population. Doing so returned an estimate of 0.178, in place of 0.127, for σd

2, without 
altering any other conclusions of the previous paragraph other than increasing the component 
of σd

2 due to fecundity to 92%. 

Matrix Models 

All matrix computations were performed in R 2.15.1( R Development Core Team. 2009. R: A 
language and environment for statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org). 

The projection matrix A for Goodman’s model takes the form 









=

QD
B

A
0

     (S18) 

where the matrix B is the female-only matrix model for the population dynamics, the matrix 
Q is the analogue for males but encodes only survival as males are not modelled as 
contributing to reproduction, and the matrix D encodes the production of male offspring by 
females. The matrix A is reducible (Caswell 2001:90) but, assuming B and Q are irreducible,  
for a realistic two-sex model, i.e., one in which the stable-stage distribution (SSD) contains 
both males and females, one can show that the dominant eigenvalue λA of A has (right) 
eigenvector (wF,wM) with each of wF and wM nonzero and with strictly positive components. 
Moreover: λA is the dominant eigenvalue of B with (right) eigenvector wF; the left 
eigenvector of A (i.e., the reproductive value vector when appropriately scaled) is (vF,0) 

http://www.r-project.org/
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where vF is the left eigenvector of λA as dominant eigenvalue of B; the sensitivities of λA with 
respect to entries of D and Q are zero and both the sensitivities and elasticities of λA with 
respect to entries of B are unambiguous as to whether one considers them as properties of the 
two-sex or female-only model. 

We employed a stage-based rather than age-based model as life stages defined as 
biological states are more relevant than age (Law and Linklater 2014). For each sex, the 
biological states of interest are calf (C), subadult (S), and adult (A) (prefixed by F or M to 
specify sex, e.g., FC for female calf), as defined in the text and Law and Linklater (2014). 
The nonzero entries of matrix B consist of transition rates G between stages, survival rates P 
within stages, and fecundity rates F for the production of female offspring. The matrix Q will 
have an identical structure except that where the fecundity rates occur in B the corresponding 
entries in Q are zero. The only nonzero entries of D are for the fecundity rates for the 
production of male offspring from females. Though the stages C, S, and A are of primary 
biological interest, for a semi-annual time step we could build a more accurate matrix model 
for SKKR as regards transition rates by partitioning C and S into substages. For SKKR, 
calves became subadults beyond 1.5 years of age and subadults became adults beyond 2.5 
years of having become a subadult. There were calves of both sexes that did become 
subadults before the age of two and females that became adults in their third year of being a 
subadult. As males were not considered adult until age eight, they became adult at least a year 
later than females became adults.The purpose of the substages was to exclude transitions 
from the first year as a calf and the first two years as a subadult. The ‘stages’ for the matrix 
model then were C1a (calf at most 6 months old), C1b (calf, 6 months < age ≤ 12 months), 
C2 (calf, age > 12 months), S1a (subadult, within 6 months of becoming subadult), S1b 
(subadult, time since becoming subadult greater than 6 months but less than or equal to 12 
months), S2a  (subadult, time since becoming subadult greater than 12 months but less than 
or equal to 18 months), S2b (subadult, time since becoming subadult greater than 18 months 
but less than or equal to 24 months), S3 (subadult, time since becoming subadult greater 
than24 months), A (adult), for each sex. So as to retain the term ‘stage’ for the biological 
states of C, S, A, we refer to these `stages’ as substages. The matrix B takes the form 
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           (S19) 

As noted already, the matrix Q takes the same form except that the FS and FA entries are 
zero, while the matrix D has entries MS and MA in the final two columns of its first row (for 
the production of male offspring) as its only nonzero entries. We parametrized these matrices, 
i.e., estimated their nonzero entries, in two different ways, yielding two realizations of the 
matrix model. All matrix-model analyses were performed with both parametrizations as a 
check on the robustness of results. 

 For the first parametrization, P’s and G’s were modelled in terms of probability of 
transition between stages and survival during stages. For each sex and stage (not substage), 
we computed the ratio of the number of individuals of that sex that died during that stage to 
the total time individuals of that sex and stage were at risk (i.e., alive) as an estimate of 
mortality rate and subtracted this quantity from one to obtain a sex-specific, stage-based 
survival rate σ (e.g., Brault and Caswell 1993). In this parametrization we did not distinguish 
survival for substages of a given stage because we regard stage as the state of biological 
interest and substages as conveniences for model parametrization. For each of C1a → C1b, 
C1b → C2, S1a → S1b, S1b → S2a, S2a → S2b, S2b → S3, transition is automatic given 
survival over the time step. Thus, for each sex,  

CCbCbCaC GG σ== →→ 2111  and SSbSbSaSaSbSbSaS GGGG σ==== →→→→ 32222111  (S20) 

The probabilities of transitions C2 → S1a and S3 → A were estimated as follows. For FC2 
→ FS1a, we computed the mean duration of calfhood for those females that were born and 
transitioned from calf to subadult during the study, subtracted 1 year (i.e., two time units) 
from this mean, and took the reciprocal to define the probability aFSFC 12→γ  (Brault and 
Caswell 1993, Caswell 2001, §6.4.1). For FS3 → A, we computed the mean duration of 
subadulthood for those females that transitioned from calf to subadult and subadulthood to 
adulthood during the study, subtracted 2 years (i.e., four time units) from this mean, and took 
the reciprocal to define the probability FAFS →#γ . Analogous quantities were computed for the 
transitions MC2 → MS1a and MS3 → MA. Now, suppose there are n(t) individuals in some 
specific substage (FC2, MC2, FS3, or MS3) at time t. In reality, transitions to the next 
substage (FS1a, MS1a, FA, MA, respectively) can occur at any time between t and t+1. Let u 
be an element of [0,1]. If all transitions occur at time t+u, with probability γ¸ and if σ is the 
survival rate for the stage that individuals transition from and ς is the survival rate of the 
stage to which individuals transition to, then  

)()1)(1(
)()1()()()1()()1()(

1

111

tn
tntntntntn

uu

uuuuuuu

σγσ

σγσγσςγσςσ

−−+

−++−+−=
−

−−−

  (S21) 

 

i.e., the n(t) can be written as the sum of : those that don’t survive until time t+u; those that 
survive until t+u, transition to the next stage but don’t survive until time t+1; those that 
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survive until t+u, transition to the next stage and survive until time t+1; those that survive 
until time t+u, don’t transition to the next stage and survive until time t+1; and those that 
survive until time t+u, don’t transition to the next stage and don’t survive until time t+1. 

Hence, the transition rate from the one stage to the next and the persistence rate within the 
initial stage are, respectively 

 uu
uG γσς −= 1                      σγσγσ )1()1(1 −=−= − uu

uP   (S22). 

Taking the mean over u in [0, 1] yields 
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and 

∫ −==
1

0

)1( σγduPP u     (S24). 

We used formula (S23) for 32 SCG → and ASG →3  and (S24) for 22 CCP → , 33 SSP → , AAP → , for each 
sex.  

 Reproduction takes place either by existing female adults or by female subadults that 
transition to adulthood by virtue of giving birth. For fecundity F we first computed the 
fertility (i.e., birth rate) m of adult females as the ratio of the number of births (of a specific 
sex), excluding births that initiated the transition of the mother from subadulthood to 
adulthood, to the total number of female-adult time units during the study. We computed the 
probability α  that a female transitioned from subadulthood to adulthood by giving birth (as 
opposed to reaching the age of seven years without having given birth) as the ratio of number 
of females that did so transition to the total number of females that transitioned from 
subadulthood to adulthood during the study. Let φ be the birth sex ratio for females, i.e., 
F/(M+F), and μ that for males, i.e., M/(M+F). If there are nA(t) adult females and nS(t) female 
subadults at time t, and female adults give birth at time t+u, u in [0, 1], the following number 
of female offspring will survive to time t+1, 

u
FCF

u
FAA mtn −1)( σσ     (S25) 

(i.e., a female adult must first survive to time t+u, then give birth, and then its calf must 
survive to t+1 to be censused at t+1; our calculation is an adaptation of Caswell 2001, §6.7.1 
), while females transitioning from subadulthood to adulthood by giving birth, at time t+ v, v 
in [0, 1], will produce 

v
FCFAFS

v
FSS tn −

→
1

3)( αφσγσ     (S26) 
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female offspring that survive to time t+1. We next took the means of u in [0, 1] and v in [0, 1] 
to obtain the per capita fecundities 
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Replacing mF by mM, σFC by σMC, and φ by μ, yields the fecundities for male offspring 
production that give the two nonzero entries for matrix D. 

 The description of our first parametrization (MM1) of the matrix model is now 
complete. The second parametrization was based on Caswell (2001, §6.1.1). The population 
projection matrix A can be written as the sum T+F, where the matrix T describes transitions 
and the matrix F describes reproduction (Caswell 2001:110). Since each individual’s state is 
known throughout the study period, one can estimate T as follows. Namely, for each t, one 
records the number mij of individuals in (sub)stage j at time t that end up in (sub)stage i at 
time t+1, where ‘death’ is a possible fate. The matrix Mt = (mij) contains the matrix Tt as its 
first s rows, where s is the number of (sub)stages; its final row contains the mortality 
information. Caswell (2001, §6.1.1) recommends summing the Mt over t to obtain a matrix 
M, and then taking the transition probability pij from stage j to stage i to be the ij’th entry of 
M divided by the sum over rows of the entries of j’th column of M (this estimate is motivated 
by maximum likelihood estimation). This approach computes P’s and G’s directly rather than 
σ’s and γ’s.  We computed the fecundities using the formulae (S25–S28) modified so that the 
transition rates computed in the current method replaced transition and survival rates as 
computed for the MM1 parametrization.  In particular, for σFS we used the sum of the 
transition rates FS3 → FS3 and FS3 → FA, for σFC the transition rate FC1a → FC1b, for σMC 
the transition rate MC1a →MC1b, and for σFA the transition rate FA → FA. The description 
of the second parametrization (MM2) is now complete. The actual parametrizations are 
recorded in Tables S3 and S4. The most notable difference between MM1 and MM2 is that, 
for MM2, individuals were more likely to remain within the substage C2 or S3 rather than 
transition to the next stage, with the consequence that the fecundity FS was lower for MM2 
and individuals reached the adult stage at a slower rate, for both sexes.   
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Table S2 The survival and fertility parameters for the SKKR population. Birth sex ratio is 
F/(M+F) for females and M/(M+F) for males, where F = number of female births, M = 
number of male births. The quantity α is the probability that a female transitioned from 
subadulthood to adulthood by giving birth rather than having reached the age of seven years 
without having given birth. 

 

Parameter Female Male 

σC 0.9977 0.9977 

σS 0.9820 0.9841 

σA 0.9959 0.9892 

γC2→S1a 0.3704 0.3529 

γS3→A 0.2578 0.1604 

Birth sex  ratio 0.5619 0.4381 

m (fertility) 0.1029 0.0797 

α        0.6207 
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Table S3 Nonzero entries of the two matrix models MM1 and MM2. The entries in the 
‘female’ column yield the female-only part of the model (i.e., the matrix B, (S19)), the entries 
in the ‘male’ columns for fecundities FS3 and FA are the nonzero entries of the matrix D and 
the remaining entries in the ‘male’ columns given the nonzero entries for the matrix Q , in 
(S18). 

 

 MM1 MM2 

Entry female male female male 

GC1a→C1b 0.9977 0.9977 0.9897 0.9899 

GC1b→C2 0.9977 0.9977 1 1 

GC2→S1a 0.3666 0.3497 0.3409 0.3173 

GS1a→S1b 0.9820 0.9841 1 0.9 

GS1b→S2a 0.9820 0.9841 0.9773 1 

GS2a→S2b 0.9820 0.9841 0.9762 0.9583 

GS2b→S3 0.9820 0.9841 0.9487 1 

GS3→A 0.2549 0.1583 0.2243 0.1087 

PC2 0.6282 0.6456 0.6591 0.6827 

PS3 0.7289 0.8262 0.7664 0.8913 

PA 0.9959 0.9892 0.9958 0.9878 

FS 0.0890 0.0694 0.0775 0.0604 

FA 0.1025 0.0795 0.1021 0.0792 

 

A useful measure of the difference between two population vectors is Keyfitz’s ∆ 
(e.g., Caswell 2001:101). For any two population vectors X and Y, convert each to a vector of 
proportions by dividing each component by the sum of that vector’s components. If the 
resulting vectors of proportions (which sum to one for each vector) are x and y, then 

∑ −=∆
i

ii yxYX ||
2
1),( .    (S29) 

Keyfitz’s ∆ has a maximum value of one and is zero when the two vectors coincide.  
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To compare the projections of the two parametrizations, we collapsed the projections 
of MM1 and MM2 into stage-based population vectors and then computed Keyfitz’s ∆ for the 
two projections for each semi-annual census date Jun-99 through Dec-08. ∆ = 0.008 in Jun-
99, increased monotonically to 0.028 in Dec-00, then decreased monotonically to 0.024 in 
Dec-03, remained at that value through Dec-05, increased to 0.025 for Jun-06 through Jun-
07, and then returned to 0.024 for Dec-07 through Dec-08, with mean 0.0241 and SD 0.0043. 
Thus, the overall difference between the projections of the two parametrizations is small. 

Our primary interest in the matrix model was in modelling the dynamics of the stage-
structured population after introductions ceased, from Dec-98 through Dec-08.  The SKKR 
population was still a young population. In particular, no rhinoceros born in GFFR died of 
old age during the study. Thus, though matrix entries of MM1 and MM2 might be plausibly 
considered representative of the dynamics during the study, as adults age, and deaths due to 
old age become common, the survival rate of adults will decrease below that during the study 
period. Thus, the asymptotic dynamics of the matrix model should not be confused with the 
asymptotic dynamics of the actual population, even in the absence of density dependence in 
the actual population. Thus, the asymptotic dynamics of the two parametrizations are only 
indicative of the model and of how the population might have been expected to behave in the 
long term had nothing else changed, which as noted is unrealistic. The asymptotic properties 
of the matrix model then are of interest as indicators of how well the matrix model describes 
an exponentially growing population of large herbivores (‘slow’ mammals) with adult 
survival rates that are somewhat too high in the long run (e.g., Brodie et al. 2011 estimated 
adult female survival as 0.944, 95% CI = 0.920 – 0.962 and adult male survival as somewhat 
lower but larger than 0.9). 

 Although the matrix models were constructed on a semi-annual time step and with 
substages for accuracy, our interest is in the biological states C, S, A. Hence, after analyses, 
substages were collapsed to stages for the purposes of comparison and all comparisons were 
made on an annual basis. The annual intrinsic rate of increase r was 0.1024 (MM1) or 0.0994 
(MM2). MM1 and MM2 had the same overall patterns for their 18 eigenvalues and 
eigenvectors. In order of decreasing magnitude, after the dominant eigenvalue, 1.0525 
(MM1) or 1.0510 (MM2), the next two eigenvalues were both real with ratios of 0.99 (MM1 
and MM2) and 0.83 (MM1) or 0.89 (MM2) to the dominant. For both parametrizations, the 
eigenvectors of these two eigenvalues had nonzero components only for the MA, and for the 
MS3 and MA, components, respectively. The significance of these facts is that the approach 
to the stable stage distribution (SSD) of the matrix models will be slowest for these two 
components, i.e., for male adults and MS3s. There follows a complex conjugate pair of 
eigenvalues, two further distinct real eigenvalues, and two distinct pairs of complex conjugate 
pairs. Each of these eigenvalues has a single eigenvector. The final eigenvalue (real) has a 
single linearly independent eigenvector of multiplicity six. The second, third, seventh and last 
eigenvalues are all real and are the eigenvalues of the matrix Q; the fact that the last 
eigenvalue has algebraic multiplicity six but only geometric multiplicity one reflects the fact 
that the matrix Q is singular. The other eigenvalues are those of the female-only matrix model 
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B. The elasticity of λ with respect to adult female survival was the largest elasticity, 0.5396 
(MM1) or 0.5349 (MM2), all other elasticities were less than 0.1, and ordered by magnitude 
in the same way for the two models, with the least being that with respect to the fecundity FS, 
0.0059 (MM1) or 0.0055 (MM2). In decreasing order of magnitude, after the highest 
elasticity comes that with respect to FS3 survival, then that with respect to FC2 survival, then 
that with respect to each of the transitions FC1a → FC1b, FC1b →FC2, FC2 → FS1a, FS1a 
→ FS1b, FS1b → FS2a, FS2a → FS2b, FS2b → FS3 all of which coincide, then that with 
respect to the transition FS3 → FA and that with respect to the fecundity FA, which coincide, 
and finally the smallest, that with respect to the fecundity FS (see Table S8 for values). The 
reproductive values of the substages increased from a (normalized) value of 1 for FC1a to a 
value of 1.81 (MM1) or 1.85 (MM2) for FA (recall that male (sub)stages have zero 
reproductive value for the Goodman two-sex model). Thus, as expected for a long-lived 
species, the adult female stage has the greatest influence on demography both as regards the 
influence of adult female survival on λ and reproductive value. As already noted, however, 
our matrix model does not describe the true asymptotic state of the SKKR population so the 
elasticity results should not be over interpreted. The stable stage distributions for stages, 
rather than substages, are recorded in Table S4, the differences consistent with the previous 
observation that individuals are slightly more likely to remain as calves or subadults rather 
than transition to the next stage for MM2 relative to MM1. 

Table S4 The stable stage distributions (SSD) for MM1 and MM2. 

 

 MM1 MM2 

stage SSD SSD 

FC 0.1371 0.1395 

FS 0.1550 0.1602 

FA 0.2826 0.2787 

MC 0.1089 0.1122 

MS 0.1413 0.1553 

MA 0.1751 0.1541 

 

Very roughly, given black rhino reproductive behaviour, one expects a typical adult 
female black rhino to be accompanied by a calf, and to have one prior calf as a SA in the 
population (for SKKR, mean (± SD) female calf duration was 2.06 ± 0.80 years; mean male 
calf duration was 2.05 ± 0.83 years; mean female SA duration was 2.7 ± 1.3 years; mean 
male subadult duration was 3.1 ± 2.0 years). If the birth sex ratio (BSR) is 1:1, then one 
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expects the SSD to be roughly (0.5, 0.5, 1, 0.5, 0.5, x) (assuming the SSD is achieved prior to 
density dependence sets in), where x < 1 if adult males survive at a lower rate than adult 
females. Hence, upon normalizing, one gets a SSD of roughly (0.125, 0.125, 0.25, 0.125, 
0.125, y), where y ≤ 0.25, except that all the figures (i.e., other than y) should be a little larger 
than stated if x < 1 (y < 0.25), and the figure for MS should be a little larger still and that for 
MA a little smaller as males are subadults longer, on average, than females are, while the 
proportion for calves should be slightly less to reflect less than perfect reproduction. Large 
departures from this rough SSD should reflect departures in the BSR from 1:1. For the SKKR 
population, which produced 48 F to 38 M during 1999 – 2008, the proportions should be a 
little higher for females than males (comparing calves with calves, SAs with SAs; (48/38) x 
0.125 ≈ 0.158 and (38/48) x 0.125 ≈ 0.099). The SSDs derived from the matrix models are 
consistent with these expectations. Of course, the onset of density dependence would be 
expected to alter the proportions of stages. 

For each matrix model, the projections approached their SSDs over the period Jun-99 through 
Dec-08, with Keyfitz’s ∆ between the projection and the SSD strictly decreasing from 0.227 
(MM1) or 0.208 (MM2) to 0.001 (MM1) or 0.004 (MM2), respectively. Thus, the transient 
behaviour present in the matrix model projections during the period of interest basically 
consisted of the ‘smooth’ extinguishing of the deviation from SSD present in the initial 
population vector (i.e., SKKR in Dec-98). In particular, for the MM1 parametrization, the 
damping ratios (Caswell 2001, §4.7.1) for the second and third largest eigenvalues were 1.06 
and 1.27, respectively, so that exponential damping of their eigenvectors had half-lives of 
11.2 and 2.9 years, respectively. Thus, though the proportion of adult males is somewhat 
slow to approach the SSD proportion (the eigenvector of the second largest eigenvalue has 
male adults as its only nonzero component), all other eigenvectors are damped fairly rapidly, 
implying that all other (sub)stages approach their SSD proportions fairly rapidly. For MM2, 
the half-life for the second largest eigenvalue is the same as for MM1 but that for the third 
largest eigenvalue is 4.2, slightly larger, implying that MS3 approaches its SSD proportion a 
little slower than for MM1, as noted previously. All these half-lives, however, are just a 
fraction of black rhinoceros lifespan. 

 The five rhinoceros removed from SKKR in May-06 belonged, as of Jun-06, to the 
following substages: one to each of FS2a, FS2b, MS3, and two to FS3. The corresponding 
substage population vector was projected forward from Jun-06 by each of MM1 and MM2 
and, for Dec-06, Dec-07, and Dec-08, the projected quantities rounded to integers so as to 
obtain biologically sensible projections (moreover, since the exported male did not turn eight 
years old until 2009 it was retained as a subadult throughout), resulting in the following 
stage-based population vectors (FC, FS, FA, MC, MS, MA): 
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for Dec-06, Dec-07, and Dec-08, respectively, for both MM1 and MM2. The final vector for 
Dec-08 was slightly ambiguous for the MM2 projection, as an alternative interpretation was 
that the population vector for Dec-08 was the same as that for Dec-07, but we chose the 
option in (S30) as a consensus result and in order to have a parametrization-independent 
result. These three vectors were added to the observed SKKR population vectors for Dec-06, 
Dec-07, and Dec-08. The resulting augmented population vectors, together with the observed 
SKKR population vectors for each December from 1998 through 2005, were then taken as 
the actual population vectors to which the matrix projections would be compared. Thus, the 
actual SKKR substage population vector for Dec-98 was projected semi-annually by each of 
MM1 and MM2 up to Dec-08. For each December, 1999 through 2008, these projections 
were collapsed to stage-based population vectors and compared to the actual stage-based 
population vectors. In addition the projected number of additions per year (i.e., born during 
that year and survived to the end of that year), by sex, were recorded and compared to the 
actual number of additions, by sex, per year. In addition to direct comparison, we computed 
Keyfitz’s ∆. The results for both parametrizations are presented in Table S5. Figure S4 shows 
a plot of various Keyfitz distances. 

Figure S4 Keyfitz’s ∆ for the SKKR population vector and: the SSD of MM1 (solid circles); 
the SSD for MM2 (open crcles); the projections of MM1 (solid squares); the projections of 
MM2 (open squares). 
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Unlike the projections’ monotone convergence on their SSDs, the SKKR population vectors 
though eventually close to SSDs and model projections exhibited mild fluctuations relative to 
them. 

Table S5 The second and fourth columns list the matrix model projections for the end of year 
for parametrizations MM1 and MM2, respectively; the third column lists the  SKKR 
population vectors (augmented by the exports of 2006 plus their projections for 2007 and 
2008) at the end of year; all these population vectors are formatted as the transpose of the row 
vector (FC, FS, FA, MC, MS, MA); column six lists the number of female and male recruits 
each year (augmented by the projected additions from the 2006 exports) as a column vector 









M
F

; the fifth and seventh columns list the number of projected female and male recruits 

each year (recruits are offspring of the year surviving to the end of the year), in the same 
format as column six, for MM1 and MM2, respectively; the final column lists Keyfitz’s ∆ for 
the SKKR population vector of column three and the MM1 Projection in column two (∆1), 
and the MM2 projection in column four (∆2) (also plotted in Fig. S5). 
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Pop Vec 

MM2 

Pop Vec 

MM1 

recruits 

SKKR 

recruits 

MM2 

births 

∆1 

∆2 

1999 

 



























5.5
4.9
0.5
6.11
4.9
6.5

 



























5
10
3
9

13
6

 



























0.5
9.9
9.4
2.11
6.9
6.5

 









4.2
1.3

 







0
4

 







2.2
9.2

 
0.1059 

0.0870 

 

2000 

 



























3.7
1.9
9.5
6.14
0.8
2.7

 



























6
9
3

12
9
7

 



























4.6
9.9
8.5
0.14
5.8
0.7

 









8.2
6.3

 







0
1

 







7.2
4.3

 
0.0774 

0.0570 

 

2001 

 



























1.9
1.9
5.6
4.16
5.8
1.8

 



























6
12
7

17
9
6

 



























9.7
1.10
5.6
8.15
8.8
0.8

 









9.2
7.3

 







7
4

 







8.2
6.3

 
0.0879 

0.0675 

 



28 

 

2002 

 



























5.10
8.9
1.7
2.18
6.9
9.8

 



























10
8
7

18
9
7

 



























1.9
8.10
2.7
6.17
7.9
9.8

 









2.3
1.4

 







0
3

 







1.3
0.4

 
0.0372 

0.0579 

 

2003 

 



























9.11
6.10
8.7
0.20
9.10
7.9

 



























14
7
7
20
10
12

 



























4.10
7.11
8.7
3.19
9.10
7.9

 









5.3
5.4

 







4
7

 







3.3
3.4

 
0.0703 

0.0929 

 

2004 

 

 



























4.13
6.11
5.8
0.22
2.12
7.10

 


























15
8
7
23
11
13

 


























7.11
7.12
6.8
2.21
2.12
7.10

 









9.3
0.5

 







3
5

 







7.3
7.4

 
0.0743 

0.0967 

 

2005 

 

 



























0.15
7.12
4.9
4.24
5.13
8.11

 


























15
10
10
24
13
12

 


























0.13
8.13
4.9
4.23
5.13
7.11

 









3.4
5.5

 







6
4

 







1.4
2.5

 
0.0276 

0.0475 

 

2006 

 

 



























7.16
8.13
4.10
1.27
9.14
1.13

 


























17
10
14
27
18
12

 


























5.14
0.15
4.10
9.25
9.14
0.13

 









8.4
1.6

 







7
8

 







5.4
8.5

 
0.0628 

0.0744 

 



29 

 

2007 

 

 



























6.18
2.15
6.11
0.30
5.16
6.14

 


























16
14
16
29
18
12

 


























1.16
4.16
5.11
6.28
5.16
3.14

 









3.5
8.6

 







6
3

 







0.5
4.6

 
0.0604 

0.0532 

 

2008 

 

 



























7.20
8.16
8.12
3.33
2.18
2.16

 


























16
20
14
32
20
16

 


























9.17
0.18
7.12
6.31
2.18
8.15

 









9.5
5.7

 







5
9

 







5.5
1.7

 
0.0522 

0.0296 

 

 

 

We offer the following account of the results recorded in Table S5. In this account, stages 
such as FC will refer to the SKKR population vector in comparison to the projections.  
‘Recruits’ are offspring of the year that survive to the end of the year; for the SKKR 
population, probability of death in the first year after birth was negligible, so recruits are 
essentially births. First note that while transitions from MS3 to MA occurred in SKKR by a 
male reaching age eight, in the model they occurred by probability and the matrix model does 
not capture the actual distribution of male ages in stage S3 of the SKKR population. In 1999, 
FS was high and FA low compared to the projection, so FS transitioned to FA less than 
expected by the models while MC was low due to absence of male recruits in 1999; this state 
of affairs persisted for 2000. The low number of recruits in 2000 combined with the high 
number of males born in 2001 resulted in FC lagging behind projections but MC having 
caught up; FS to FA transitions resulted in rough agreement for these stages but MS has grew 
larger than projected, resulting in a deficit for MA. During 2002, MS to MA transitions 
brought closer agreement with projections and the remaining stages maintained their status. 
The high number of female recruits in 2003 put FC ahead of projections but MS began to lag 
behind projections, reflecting the absence of male recruits in 1999–2000. MA moved ahead 
of projections indicating a higher transition rate of MS to MA than projected in 2003. In 
2004, little had changed except that male recruits are slightly less than projected. In 2005 
there was close agreement between projections and SKKR, except that MS still lagged. The 
discrepancy in FC from 2003 – 2004 has been eliminated. A high number of recruits occurred 
in 2006 compared to projections; by the end of that year FC lagged by one behind projection, 
and FS moved ahead of projections (a higher rate of FC to FS transitions than projected, 
induced by the higher number of actual recruits therefore causing more calves to become 
independent) but MC was ahead of projections while MS still lagged. The lag in MS 2002 – 
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2006 appears to reflect the absence of male recruits in 1999 – 2000, the fact that MS deaths, 
although few, were concentrated in 2003 – 2005 (whereas FS deaths were more spread out 
over time), and the higher rate of MS to MA transitions noted for 2003. In 2007, FC lagged 
further behind projection due to the lower number of female recruits than projected, FS was 
more in line with projections, and the state of affairs for the other stages was basically 
unchanged. In 2008, a higher number of female recruits than projected occurred, and FC was 
now in line with projections, while FS had slightly increased its advance over projection 
since 2007, the excess deriving from the greater-than-projected number of female recruits in 
2006. The higher number of male recruits than projected for 2005 – 2007 maintained MC 
ahead of projections and also pushed MS ahead of projections, but these male recruits had not 
yet affected MA.  

 In summary, we propose that the differences in number and sex between the actual 
annual recruits and the projected recruits and the resulting knock-on effects as calves 
transition to subadults and subadults to adults appear to explain much of the discrepancy 
between the SKKR population vectors and matrix-model projections. The fluctuations in 
Keyfitz’s ∆, both between the SKKR population vectors and the projections and between the 
former and the SSD (Fig. S4), are greater than the transient behaviour manifest in the matrix 
models themselves for the period 98 – 08 (Fig. 1). Nevertheless, as measured by Keyfitz’s ∆, 
the differences between the actual SKKR population vectors and the matrix model 
projections is small, less than 0.1 after 1999. 

Transient Dynamics 

We noted that the asymptotic properties of the matrix model are of limited interest as the 
SKKR population was still young and adult mortality rates will increase after 2008 due to 
individuals dying of old age and eventually density dependence will have some effect also. 
The primary interest then of the asymptotic properties of the matrix model was in assessing 
closeness of the matrix model projections during 98–08 to the SSD as an indication of 
transient dynamics (Fig. 1). Koons et al. (2005) drew attention to the fact that sensitivities of 
transient growth may differ from sensitivities of asymptotic growth. The period Dec-98 
through Dec-08 is of interest not only for understanding transient dynamics in their own right 
but also because during this period  removals commenced to source reintroductions 
elsewhere, so any transient behaviour may have consequences for such harvesting. 

 We used the matrix model (we conducted the following analyses for each 
parametrization MM1 and MM2; results were very similar and we only report those for 
MM1) to project the SKKR substage population vector for each December, 1998 through 
2007, through two time steps to the following December, compared that projection with the 
SKKR population vector for the December to which the projection was made using Keyfitz ∆ 
applied to the stage-based population vectors (i.e., after collapsing substages), and computed 
the transient annual growth rate for each such projection as  
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GR = 
ne

nAe
'

' 2

     (S31) 

where n is the SKKR substage population vector , e is a column vector all of whose 
components are 1, and 'e  denotes its transpose. Note that for this computation, the SKKR 
vectors did not need to be augmented with the exports and their projections to 2007 – 2008, 
except that the exports themselves were retained for the SKKR 2006 population vector that 
was compared to the projection from the 2005 SKKR population vector. The exports were 
excluded from the 2006 SKKR population vector that was projected to 2007. For the 10 
projections, the mean GR ± SD was 1.1111 ± 0.0084 as compared to the asymptotic annual 
growth rate (λ) of 1.1078 of MM1, and individual values differed from the asymptotic rate by 
less than 1.8% of the asymptotic rate (Table S6). These results are consistent with the fact 
(Fig. S4) that SKKR population vectors during this period did not stray much from the SSD. 

 

Table S6 Transient annual growth rates computed from (S31) from actual SKKR substage 
population vectors, each December, 1998–2007. 

 

Year Growth rate 

1998 1.1078 

1999 1.1191 

2000 1.1267 

2001 1.1127 

2002 1.1140 

2003 1.1166 

2004 1.1118 

2005 1.1030 

2006 1.0967 

2007 1.1026 

 

Values of GR below λ could sound a warning to managers planning to remove 
animals during the coming year that the population vector is currently expected to perform 
below the stable rate λ. For SKKR, that condition pertained from 2005–2007, with values 
smaller by -0.4, -1.0, and -0.5% of the value of λ, respectively. The smallest value for GR 
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occurred for the projection from Dec-06 to Dec-07, after the removals of the five SAs. These 
five were expected to have contributed two new animals to the population during that year 
according to equation (S30), which might account for that lowest anticipated annual 
recruitment from 2006 to 2007. 

Keyfitz’s ∆ between the projection to a given December and that December’s SKKR 
population vector (after collapsing substages) averaged 0.054, with a SD of 0.025 and a low 
of 0.020 for the projection from 2003 to 2004 (Fig. S5). These values allow a retrospective 
assessment of actual population performance versus anticipated performance based on the 
matrix model. For example, note that the largest value of GR occurred for the projection from 
Dec-00 to Dec-01, which is also the projection for which the disparity between actual and 
predicted performance is greatest as measured by ∆. During that year, there were 11 animals 
recruited to the population but the projected number was only about three, so the SKKR 
population actually outperformed the annual projection that year. The lowest value of ∆ 
occurred for the projection Dec-03 to Dec-04, for which GR had its third highest value; for 
this year actual additions (eight) and anticipated additions coincided closely. For the three 
years in which GR was less than λ, ∆ was never large than 0.05 so actual population 
performance was similar to predictions. Further years of data would have been interesting to 
see if there was a signal of a trend in these values of GR less than λ. 

Figure S5 Plot of Keyfitz’s ∆ between the projections over one year (two time steps) of 
matrix model MM1 of SKKR population vectors for each December, 1998–2007, and the 
actual SKKR population vector the following December. 
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In Fig. S6, the SKKR population vectors exhibit the least convergence on MM1’s 
SSD, MM1’s projections from Dec-98 the most, with the annual projections reflecting the 
proportions of the SKKR vector of the previous year. As argued on pp. 29–30, it is the 
discrepancies in actual recruits from projected recruits, manifest in the fluctuations of the 
proportions of calf stages that result in the deviation of the actual population dynamics from 
those of the model. 

Figure S6 The proportion of each stage-and-sex, is plotted against year, Dec-99 through Dec-
08 for: the matrix model (MM1) stable stage distribution (●); the SKKR population vector 
(∆); the matrix model (MM1) projections of the SKKR population vector in Dec-98 (□); and 
the matrix model projection (MM1) of the SKKR population vector from the previous 
December to that year’s December (○). The SKKR population vector in Dec-98 was 
(FC,FS,FA,MC,MS,MA) = (5,11,8,3,11,4) with proportions (0.12,0.26,0.19,0.07,0.26,0.10) 
versus the SSD of (0.14,0.155,0.28,0.11,0.14,0.175). 
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Koons et al. (2005) computed the sensitivities to entries aij of A of the growth over a 
single time step at arbitrary time t-1 

vAe
vAeGR t

t

t 1'
'

−
= ,    (S32) 

where v is the population vector at time t-1 , by calculating the partial derivatives of GRt to 
aij. As an aside, we note that the resulting sensitivities to aij of growth GR1 over one time 
step is just the proportion of the j’th stage in the initial population vector, independently of 
the form of A or the size of the time step, indicating the importance of the initial population 
vector. If the initial population vector is the SSD, the growth is λ and one might expect to 
obtain the sensitivities of the asymptotic growth rate λ, but the two formulae only agree if the 
reproductive value vector w of A equals e, which one would not expect. The difference stems 
from the fact that in computing the sensitivities of the asymptotic growth rate, the population 
vector v is the SSD and thus depends on aij too, whereas for the transient growth rate v is 
fixed. Moreover, if vj = 0, then the transient sensitivity with respect aij, any i, is zero, 
because no variation in aij can effect GR1 when vj is zero. 

We adapted Koons et al.’s notion of sensitivities of transient growth to our purposes 
by taking the partial derivatives of (S40) with respect to entries of A, which results in the 
following formula: 

ne

nAnA

a
G k

j
k

i
kk

k
j

ij '

∑ ∑ 







+

=
∂
∂  ,   (S33) 

where here k
jA denotes the entry of the matrix A in the j’th row and k’th column and nk 

denotes the k’th component of n. These sensitivities indicate the dependence on the matrix 
entries of the transient one-year growth projections from actual SKKR states, which might 
warn the manager of unusual transient demographics. We converted sensitivities to 
elasticities in the usual manner (Caswell 2001:226). Note that our GR in (S31) is 
homogeneous of degree two in the entries of A, so by Euler’s formula (Caswell 2001:229), 
our elasticities will sum to two. 

 For most nonzero entries of A, the sensitivities varied without obvious pattern across 
the years, except that, for both sexes, those for subadult fecundity (FS and MS) and the 
transition probabilities from S to A (GFS3→FA and GMS3→MA) tended to decrease, while those 
for female adult fecundity (FA and MA) and adult survival (PFA and PMA) tended to increase, 
as one might expect for a long-lived species. The same patterns were observed for the 
elasticities.  

Table S7 Means ± SD for the sensitivities and elasticities of GR (S31) computed by (S33) 
and sensitivities and elasticities of the dominant eigenvalue of MM1. 
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Matrix  

entry 

Sensitivity  

of λ 

Mean (sensitivity  

of GR) ± SD 

Elasticity  

of λ 

Mean (elasticity  

of GR) ± SD 

FS fecundity 0.070 0.178 ± 0.117 0.0059 0.0142 ± 0.0086 

FA fecundity 0.315 0.558 ± 0.067 0.0307 0.0515 ± 0.0062 

 FC1a → FC1b 0.039 0.062 ± 0.019 0.0366 0.0552 ± 0.0169 

FC1b → FC2 0.039 0.057 ± 0.028 0.0366 0.0512 ± 0.0247 

FC2 → FC2 0.091 0.157 ± 0.040 0.0542 0.0888 ± 0.0222 

FC2 → FS1a 0.105 0.156 ± 0.040 0.0366 0.0515 ± 0.0129 

FS1a → FS1b 0.039 0.052 ± 0.018 0.0366 0.0460 ± 0.0160 

FS1b → FS2a 0.039 0.043 ± 0.029 0.0366 0.0386 ± 0.0259 

FS2a → FS2b 0.039 0.042 ± 0.022 0.0366 0.0369 ± 0.0199 

FS2b → FS3 0.039 0.051 ± 0.039 0.0366 0.0453 ± 0.0344 

FS3 → FS3 0.119 0.191 ± 0.116 0.0825 0.1249 ± 0.0344 

FS3 → FA 0.127 0.194 ± 0.118 0.0307 0.0444 ± 0.0268 

FA → FA 0.570 0.606 ± 0.074 0.5396 0.5436 ± 0.0671 

MS fecundity 0 0.178 ± 0.108 0 0.0111 ± 0.0067 

MA  fecundity 0 0.558 ± 0.067 0 0.0399 ± 0.0048 

MC1a → MC1b 0 0.054 ± 0.019 0 0.0485 ± 0.0172 

MC1b → MC2 0 0.049 ± 0.038 0 0.0438 ± 0.0342 

MC2 → MC2 0 0.116 ± 0.050 0 0.0672 ± 0.0291 

MC2 → MS1a 0 0.115 ± 0.049 0 0.0362 ± 0.0156 

MS1a → MS1b 0 0.036 ± 0.014 0 0.0317 ± 0.0124 

MS1b → MS2a 0 0.029 ± 0.023 0 0.0254 ± 0.0201 

MS2a → MS2b 0 0.027 ± 0.015 0 0.0239 ± 0.0137 

MS2b → MS3 0 0.033 ± 0.029 0 0.0295 ± 0.0260 

MS3 → MS3 0 0.190 ± 0.094 0 0.1411 ± 0.0688 

MS3 → MA 0 0.191 ± 0.094 0 0.0271 ± 0.0132 

MA → MA 0 0.317 ± 0.068 0 0.2827 ± 0.0609 



36 

 

 

One can think of a given annual projection of an SKKR population vector and the 
corresponding GR as the growth expected over the next year. Any unusual departure in the 
rankings of sensitivities and elasticities of GR to the matrix entries of the female component 
of the matrix model to those of λ could serve as a warning of unusual transient dynamics, 
which might be relevant to management practices. In the present case, there do not appear to 
be any warning bells of very unusual demography. The patterns in sensitivities and 
elasticities were similar for both transient and asymptotic growth rates. 

 In summary, the matrix model projections converged towards the SSD over the 
modelled period 1998–2008, indicating the dynamics were mildly transient during this period 
in the sense that the projections were not already in the SSD. Moreover, the projected annual 
growth rates (S31) each year 1998–2007 differed by less than 1.8% from the asymptotic 
growth rate λ (Table S6). The transient sensitivities and elasticities (Table S7) did not 
indicate any surprising departures from expectations based on asymptotic dynamics.   

Demographic Stochasticity of the Structured Population Dynamics 

Sæther et al. (1998b) used a complicated procedure (some details of which were 
unpublished) to estimate demographic and environmental stochasticity for brown bears 
accounting for their population structure. Engen et al. (2005) developed a simpler method 
based on matrix models and obtained, for long-lived vertebrates that produce only a single 
offspring per breeding occasion, and assuming no relationship between reproduction and 
subsequent adult survival and no environmental stochasticity, an equation that estimates 
demographic stochasticity from the deterministic (female-only) matrix model presumed to 
underlie the dynamics. It appears plausible to apply this equation to the female segment of 
our matrix model. Engen et al.’s equation (13) is written down for an age-structured 
population but it is a simple matter to extend it to a stage-based matrix model. Recall that λ is 
the same for the full and female-only matrix models.  Let (ui) be the SSD of a female-only 
matrix model and let (vi) be the reproductive value vector, normalized to have unit scalar 
product with the SSD. Then,  

∑ −=
ji

ijijjid aau
,

2
2

2 )1()(1 ν
λ

σ                    (S34) 

where the summation is over nonzero entries of the projection matrix A = (aij). The value 
obtained for matrix model MM1 was 0.105 (0.106 for MM2), which is for a mi-annual time 
step. For annual time steps, we applied (S34) to Z = A2, which is the projection over one year, 
obtaining 0.204 for MM1.  
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