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ABSTRACT  

 
Charismatic mega-fauna species such as elephants and rhinos have valuable tusks and 

horns that are sought after by opportunistic poachers.  Poaching also assumes the form 

of subsistence hunting by households living in and around protected areas.  The 

conservation of endangered animal species is important for the environmental 

sustainability of natural ecosystems.  This dissertation consists of four separate essays 

on the economics of poaching and protection of endangered species.   

 

The first essay examines the labor allocation problem of an opportunistic poacher 

harvesting an endangered species within a protected area.  The labor allocation 

problem is coupled with the species’ population dynamics to estimate how poaching 

responds to economic parameters over time.  The model provides insight into the 

relationship between species population dynamics, economic parameters, and 

biological parameters. Interesting and counterintuitive results are observed for a wide 

range of economic and biological parameters.   

 

Civil unrest and political instability have been associated with poaching.  In the 

second essay I examine an empirical data set on rhino poaching in Assam, India.  



 

Assam witnessed a prolonged period of civil unrest and political instability during 

which rhino poaching increased dramatically.  The relationship between civil unrest 

and rhino poaching is identified through an econometric exercise.  I factor in the 

relationship between poaching and other variables associated with it – including black-

market rhino horn prices, potential size of black markets, and anti-poaching efforts.  

These variables are seen to have the predicted associations with poaching, and help 

identify the latter’s relationship with civil unrest.   

 

International criminal syndicates sponsor elephant poaching in Africa.  The third essay 

develops a dynamic a model of organized criminal poaching.  Under plausible 

conditions poaching is insensitive to black-market price of ivory, but changes 

dramatically with the probability of interception by anti-poaching patrols.  Parameter 

space is analyzed extensively to ascertain the effect of economic parameters on 

elephant population sustainability.  In the fourth essay I examine the strategic 

interaction between poachers and anti-poachers in a spatiotemporal setting.  A space is 

conceptualized within which meta-populations of elephants disperse temporally.  

Optimal locational strategies of poachers and anti-poachers are solved for, and their 

effects on elephant population dynamics are examined.   

 

Keywords: Rhinoceros unicornis; Loxodonta africana; poaching; stochastic 

population dynamics; bifurcation; deterministic chaos; civil unrest; strategic 

interaction.
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CHAPTER 1 

 

INTRODUCTION 

 

The harvesting of endangered or protected species is a major concern for 

environmental conservation.  Opportunistic poachers react according to economic 

incentives and disincentives underlying conservation policy.  The sustainability of 

protected species population would depend on how poaching behavior is affected by 

changes in economic or policy parameters.  The first essay (Chapter 2) develops a 

labor allocation model of an opportunistic poacher harvesting a protected species 

within a protected area.  Economic or conservation policy parameters – such as fines 

for poaching, wage rates in and around the protected area, black market prices for the 

protected species, and anti-poaching enforcement – are fed into the model.  The model 

frames the labor allocation problem in the context of the protected species’ population 

dynamics.  In this essay we will examine the effect of changing economic parameters 

on both the quantitative and qualitative aspects of harvesting behavior and the 

resultant species population dynamics.  

 

In the next essay (Chapter 3) we will examine the effect that civil unrest and political 

instability in a region have on endangered species poaching.  In particular we will 

consider the case of the Kaziranga National Park in Assam, India, which witnessed a 

marked increase in the poaching of Indian rhinos that coincided with a prolonged 

period of civil unrest, militancy, and political instability in the region.  We will use 
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estimates of rhino population and poaching data to econometrically estimate a harvest 

function.  In this empirical exercise we will identify the relationship between civil 

unrest and rhino poaching.    

 

The protection of elephants in Southern Africa has become more difficult and 

dangerous with the advent of international syndicates that use organized crime to 

sponsor elephant poaching in Southern Africa.  In the next essay (Chapter 4) we will 

develop a dynamic model of organized poaching.  We will examine how the 

opportunistic behavior of the leader of a poaching organization is affected by high-

value returns of selling elephant tusks on the black market.  We will factor in the cost 

of poaching effort and the probability of getting intercepted by anti-poaching patrols.  

This enables us to model the operating life of a poaching organization as a stochastic 

process over time.  The economic decision-making process is coupled with the 

population dynamics of elephants in Southern Africa’s range states.  We will examine 

how poaching behavior is affected by economic parameters and the probability of 

interception by anti-poaching patrols.  The model of elephant population dynamics 

will also enable us to examine the sustainability implications of changes in economic 

parameters.   

 

With elephant poaching increasing markedly over the last decade and anti-poaching 

units having limited resources to protect them against poachers, anti-poaching units 

must act strategically in order to achieve effective protection.  Elephants are 

distributed over wide geographic regions and thereby it becomes important for 
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conservation policy to consider the spatial aspects of elephant population distribution.  

In the final essay (Chapter 5) we will develop a model that views poaching and 

protection as a repeated game between strategic opponents in space.  A space is 

conceptualized within which meta-populations of elephants disperse via seasonal 

migration.  Poaching and protection are introduced as strategic location-specific 

choices of the opponents in space.  The conceptual model will enable us to develop 

insight into the effect of various location choice strategies of poachers and anti-

poachers on elephant population dynamics.     
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CHAPTER 2 

 

POACHING AND THE DYNAMICS OF A PROTECTED SPECIES 

 

2.1   Introduction and Background 

Poaching is a threat to the survival of protected species in low-income countries.  Bio-

economic models account for the economic parameters that drive the incentive to 

harvest or poach under open access conditions under which poachers myopically 

maximize short-run profit, and entry and exit occur until rents are dissipated.  Such 

models predict equilibrium levels of endangered populations under various 

conservation policies such as trade bans  (Bulte & van Kooten, 1999a; Bulte & van 

Kooten, 1999b; Burton, 1999), fines for poaching  (Bulte & van Kooten, 1999a; Bulte 

& van Kooten, 1999b; Damania, Milner-Gulland, & Crookes, 2005; Damania, 

Stringer, Karanth, & Stith, 2003; Milner-Gulland & Leader-Williams, 1992; Skonhoft 

& Solstad, 1998), alternative livelihoods to resolve conflict between land use and 

species conservation  (Fischer, Muchapondwa, & Sterner, 2011; Johannesen & 

Skonhoft, 2005; Skonhoft, 2007; Winkler, 2011), and black market price-control 

through supply restrictions  (Brown & Layton, 2001; Kremer & Morcom, 2000; 

Mason C.F., Bulte E.H., & Horan R.D., 2012).  Such models analyze steady states and 

the dynamics of open access resource systems using the Gordon-Schaefer framework, 

which essentially models a dynamic system with two differential or first-order 

difference equations representing harvest effort and species growth net of harvest 

(Bulte, 2003).  Species growth is often modeled using a logistic function, and harvest 
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is represented by a Schaefer or Cobb-Douglas production function.   (Bulte, 2003) 

extends the Gordon-Schaefer framework by the accounting for the relationship 

between harvest and species population abundance.  Harvest is determined by the 

abundance of species population and prey switching can take place at low prey 

densities.  Bulte finds that the traditional result of a unique and stable steady state 

under open access in the long run might be misleading, and that multiple equilibria or 

steady states might exist that are driven by small changes in the underlying economic 

parameters used in the model.   

Ecologists have noted that discrete-time models of species populations may 

exhibit seemingly random or chaotic behavior  (Hastings & Powell, 1991; May RM, 

1976) because the stability of steady states in such dynamical systems are dependent 

on the values of model parameters  (Edelstein-Keshet, 1988; Hale, Jack K.,Koçak, 

Hüseyin., 1991).  (May RM, 1976) first showed how parameter variation in a first-

order difference equation may cause steady state values to become unstable.  For some 

range of parameter values there may exist critical values at which a qualitative change 

in the behavior of the dynamical system occurs.  Oscillatory and chaotic population 

behavior has been observed empirically.  For instance ecologists have found, on 

examination of historical data on the fur trade of the Canadian lynx (Lynx canadensis), 

that increased trapping effort on the part of fur traders seemed to induce high-

amplitude chaotic behavior in the lynx population  (Gamarra & Ricard, 2000; 

Schaffer, 1985).  These studies deduce that the amplitude of population cycles is 

affected by changes in pelt price for lynx and in some cases results in counterintuitive 
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population dynamics.  Ecologists find that dynamic natural systems are generally 

unstable over long time horizons  (Gamarra & Ricard, 2000; Schaffer, 1985).   

Predictions of species population behavior merit careful study.  Abrupt 

qualitative changes in population behavior may come about by changes in economic 

and biological parameters.  In this chapter we develop a model of poaching in a 

protected area that houses a protected species.  We study the qualitative effects of 

economic and biological parameter changes on poaching behavior, as well as the 

resultant effects on protected species’ population dynamics.  The economic parameters 

that we examine include the black market price of the protected species, the fine for 

poaching, the wage rate from employment in and around the protected area, and anti-

poaching enforcement.  We also examine changes in the biological parameters that can 

be used to represent different types of species.  We provide extensive numerical 

analyses of parameter space for both economic parameters and biological parameters.  

Our results serve as an extension of the findings of previous studies which deduce that 

dynamic natural systems are either unstable in the long run or have non-unique steady 

states driven by changes in the model’s economic and biological parameters.  The 

model reveals that policy parameter variations induce abrupt qualitative changes in 

poaching and population behavior.     

In section 2.2 we present a model of illegal harvest or poaching based on a 

system of two first-order difference equations.  We study the effects of poaching on 

population dynamics with the help of numerical comparative static exercises.  The 

numerical results are presented in section 2.3.  Section 2.4 provides a discussion of the 

numerical results and possible implications for conservation policy.  
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2.2   A Model of Risky Open Access 

In this section we develop a bio-economic model of poaching to study its effects on 

species’ dynamics and poacher utility.  Let us consider a poacher living near a 

protected area (PA) who allocates time to poaching, non-poaching employment and 

leisure.  The poacher accordingly derives utility from consumption of harvest, income 

from non-poaching employment and black market sales, and leisure time.  The 

poacher maximizes a utility function subject to time and budget constraints in each 

time period for a finite time horizon.  The protected species’ population dynamics is 

modeled using a growth function and a poaching production function.  Poaching is 

subject to risky open access, whereby a fine is incurred for being caught poaching by 

an anti-poaching patrol.  The poacher solves for the optimal sequences of poaching 

time, non-poaching employment time and leisure time.  We first provide the general 

mathematical form of the bio-economic model and the resulting constrained-

maximization conditions.  Later we use specific functional forms for utility, 

population growth, poaching production and probability functions.  

We define E[  ]   (    [  ]   
 ) as the poacher’s expected utility in time 

period  , where    is the consumption of the endangered species from the preserve in 

period  , E[  ] is the expected income in period  , and   
  is the leisure time in period 

 .   We define   
  to be the time spent poaching and   

  to be the time spent in non-

poaching employment in and around the PA in period  .  Accordingly we define   to 

be the time constraint for each period as     
    

    
 .  
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We define a poaching production function as     (  
    ), where    

represents the harvested amount from the PA and    is the protected species 

population in period  .  The poacher consumes    out of    and sells the remainder 

(     ) at a price,    on the black market.  The poacher also allocates time towards 

non-poaching employment (  
 ) within the PA and earns a wage rate of    in period 

 .  We define    to be the fine that the poacher pays for being caught by an anti-

poaching patrol in period  .  Since poaching is risky, we define  (  
 ) to be the 

probability of getting caught poaching.  This implies that the expected fine in period   

is given by  (  
 )  , and therefore the total expected income of the poacher is given 

by  [  ]  (     )       
   (  

 )  .  

Given these definitions expected utility takes the form  (    [  ]   
 )  

 (   (     )       
   (  

 )       
    

 ) where we assume that 

       .  The protected resource is assumed to evolve as per the iterative map: 

         (  )   (  
    ) i.e. generations of the protected species or the 

renewable resource are assumed to overlap.  The utility maximizing poacher views    

as given and does not know or concern himself with how his actions will affect     .  

The poacher solves a static time allocation problem in each period  , given the level of 

resource stock and the risk of a fine.  The constrained-optimization problem is set up 

as follows:  

   
{     

    
 }

   

 ∑    (    [  ]   
 ) 

    subject to:  

  
      

    
 ,  
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 [  ]  (     )       
   (  

 )  , and          (  )  

 (  
    ). 

 

  is the discount factor and   is the finite time horizon in this time allocation 

problem.  The Lagrangean ( ) is set up as follows:  

  ∑   { (   (     )       
   (  

 )       
    

 )   
   

     (    (  )   (  
    )      )}  

 

With the assumption that the poacher is myopic and does not account for the 

future value of the stocks we set        .  The resulting first-order constrained-

optimization conditions are as follows: 

{
  ( )

   
 

  ( )

   
  }                      (2.1) 

{
  ( )

   
[
  ( )

   
      (  

 )  ]  
  ( )

   
 }   

      
      (2.2) 

{
  ( )

   
   

  ( )

   
 }   

      
         (2.3) 

 [  ]  (     )       
   (  

 )       (2.4) 

  
      

    
         (2.5) 

 

Equations (2.1) through (2.5) can be solved simultaneously for   ,   
 ,   

 ,    

and   
  given      and parameter values for   ,    and   . Once we solve for   

  

we can use the iterative map          (  )   (  
    ) to calculate the next 

period’s renewable resource stock,     . Then we use Equations (2.1) through (2.5) to 

solve for     ,     
 ,     

 ,      and     
   given       . From the iterative map we 
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will have            (    )   (    
      ). This process is continued until the 

finite time horizon,  . A steady state is reached if   ,   
 ,   

 ,    and   
  are 

unchanging, i.e. where net growth equals harvest:   (  )   (  
    ).  

We specify functional forms for poacher utility, the harvest function, species 

population growth, and the probability of getting caught poaching. The poacher’s 

utility is represented by a Cobb-Douglas utility function specified in Equation (2.6), 

where                          .  Note that      is not 

necessary for a positive level of utility.    

     [  ]
 (  

 ) (     
 )     (2.6) 

 

A Schaefer production function is specified in Equation (2.7) for the poaching 

production function, where     is a poaching technology or efficiency parameter.  

 (  
    )     

           (2.7) 

 

We use a modified logistic population growth function from previous studies  

(Cromsigt, Hearne, Heitkonig, & Prins, 2002; Milner-Gulland & Leader-Williams, 

1992).    represents the intrinsic growth rate of the protected species,   is the carrying 

capacity of the protected area and   is a skew parameter in the growth function; a 

value of     causes the population level supporting peak growth to lie to the right of 

   .  (Cromsigt et al., 2002; Milner-Gulland & Leader-Williams, 1992) discuss how 

different values of   can be used to represent different species.  

 (  )     (  (   ⁄ ) )       (2.8) 

 



11 

As we mentioned previously poaching is a risky activity for the individual, 

whereby a fine is incurred for being caught poaching by an anti-poaching patrol.  

Probability functions can be formulated to include the property that the probability of 

getting caught increases with the proportion of time spent poaching or harvesting (see:  

(Copeland, Brian Richard., Taylor, M. Scott,National Bureau of Economic Research., 

2004; Damania et al., 2005).  We model riskiness with a probability function specified 

in Equation (2.9), which satisfies this property; when   
    we have  (  

 )   , 

and when   
    we have  (  

 )   .
1
  Note that as   declines the probability of 

being caught while poaching increases.  In this probability function The parameter   

can be taken to represent the effectiveness of anti-poaching enforcement within the 

PA; the more effective the anti-poaching patrols are in apprehending the poacher, the 

lower would be the value of  . 

 (  
 )  (  

  ⁄ )    (  (    
 ))     (2.9) 

 

Using Equations (2.6) – (2.9), we derive the first order constrained-

optimization conditions.  We evaluate the first-order conditions in steady state by 

setting          , dropping the   subscripts from the choice variables 

           , and deriving the following expressions:  

         (     )          (2.10) 

   (  (        )  (     )e  (    )   ⁄ )           (2.11) 

                                                 
1
 We use the simplifying assumption that the probability of getting caught poaching and the probability 

of paying the fine are the same.  While we can include a joint probability of getting caught poaching 

and paying the fine, no additional insight would be garnered from the model.  
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                             (2.12) 

 

 We note that    (  (  ⁄ )  ) in steady state and that therefore we 

derive 𝜕 (⋅) 𝜕  
 ⁄    (        ).  Equations (2.10) – (2.12) can be numerically 

solved for the steady state values of the decision variables            .  We can use 

these values to derive the steady state value of the resource stock,  .  This is done for 

a set of base-case parameter values, which are listed in Table 2.1.  

Table 2.1: Steady state values of the Risky Open Access model under base-case model 

parameters. 

 

 

 

 

 

 

 

Parameters Values Decision variables    

 = 1    0.0316 Maximized utility= 1.5046 

 = 1   = 0.5892   

 = 1   = 0.1634   

 = 1     

 = 1 Steady state values:    

 = 0.3     0.4108 Equation (2.10)= 1.23E-06 

 = 5     0.2420 Equation (2.11)= 1.78E-07 

 = 0.3     0.8246 Equation (2.12)= -1.00E-07 

 = 5      0.2474   

 = 1  (  )    0.3907   

 = 1     

 = 1     

 = 1     

 = 1     
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2.3   Numerical Analyses  

Table 2.1 shows the steady state values of the resource stock and the decision 

variables.  We can numerically solve for the optimal sequence of {     
    

 }   
    for 

a given initial value for the resource stock,   .  Let us consider an initial value of 

      .  We numerically solve for      
    

  using Equations (2.1) – (2.3).  Then 

we use the iterative map        (  )   (  
    ) to calculate    and 

numerically solve for      
    

  in the next time period    1.  The simulation 

exercise is conducted for one hundred time periods i.e.       to check for 

convergence to a steady state value of the population over time.  

 

 Figure 2.1 depicts a simulation of the risky open access model using the base-

case parameter values listed in Table 2.1 for the time horizon            with initial 

stock       .  The plots for the resource stock (  ) and the time spent poaching 

(  
 ) show convergence to the steady state values of 0.4108 and 0.5892 respectively 

via damped overshoot after     .  We note that the steady state values correspond to 

those listed in Table 2.1.  
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Figure 2.1: Approach dynamics of the resource stock,    (solid line) and poaching 

time,   
  (dashed line) using base case parameter values of Table 2.1. 

 

From Figure 2.1 it is evident that when the stock level is high the time spent 

poaching is also high, and when the stock declines, so does the poaching time.  Thus 

the changes in poaching time follow the changes in the abundance and scarcity of the 

resource stock.  In Figure 2.1 we see that the stock converges to the previously 

calculated steady state and       0 lies in the “basin of attraction”. 
2
     

We noted earlier that for a certain range of parameter values there may exist 

critical values or “bifurcation points,” for which we observe abrupt changes in the 

qualitative behavior of the dynamical system being modeled.  Bifurcation diagrams 

can be used to show the values of the parameter at which the dynamical system moves 

                                                 
2
 The steady state value of          is locally stable, because |  ( )|    where  ( )    

  (  (  ⁄ ) )      ; |  ( )|         when evaluated at         , i.e. the steady state.  
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from steady state to period-doubling bifurcation, and then eventually to “deterministic 

chaos”; deterministic because the parameters are not random variables in our model.    

The parameters in our risky open access model include the wage rate (  ) for 

employment in and around the PA, the fine (  ) imposed for being caught poaching 

and the effectiveness of anti-poaching enforcement ( ).  The price of the species sold 

on the black-market ( ) can be considered as an indirect policy parameter, i.e. 

confiscated harvest by anti-poaching patrols can be dumped on local markets causing 

the black-market price to fall, and thereby create a disincentive to poach.  These 

parameters can be referred to as policy parameters in that they might be directly or 

indirectly controlled by the manager of the PA.  Changes in the values of policy 

parameters may facilitate a renewal of population from low levels, but with the 

possibility of chaotic behavior, policy may well induce widely oscillating population 

trends over time.  The biological parameters in our model are the intrinsic growth rate 

( ) of the protected species, the skew parameter ( ) in the logistic growth function, 

and the size of the PA or the carrying capacity ( ).  We can represent different 

species in our model with different values of   and  .  Small mammals would have 

higher reproductive rates (i.e. higher values of   in the model) compared to large or 

mega-fauna species; the latter can be represented by lower values of   (Eberhardt, 

1987).  The modified logistic growth function with the skew parameter ( ) allows for 

non-linearity in the relationship between    and the strength of population density-

dependence (     ⁄ ).  For modeling mega-fauna there is empirical evidence for 

values of    ; density-dependence becomes more important for large mammals 
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when their population is closer to the environmental carrying capacity ( ) (Cromsigt 

et al., 2002; Eberhardt, 1987).    

In the analysis of our bio-economic model we shall study the changes in 

qualitative behavior of the protected population dynamics and poaching time for 

changes in the economic parameters, which include the wage rate ( ), the poaching 

fine ( ), the black-market price ( ), and the effectiveness of anti-poaching 

enforcement ( ), as well as for different values of the biological parameters, which 

include the intrinsic growth rate ( ), and the skew parameter ( ).  Bifurcation diagrams 

of   for different combinations of  ,  , and   could provide insight on the 

effectiveness of anti-poaching policy in conserving populations of different species.  

This has the potential of providing an integrative analysis of the economics and the 

ecology of species conservation policy.     

We begin our comparative static exercises by changing the wage rate   from 

its base case value of 1 to a value of 1.5 (i.e. a fifty percent increase in wage rate from 

its base-case value).  All other parameter values retain the same values of Table 2.1.  

The resulting simulation is shown in Figure 2.2.  What we observe is that    and   
  

oscillate with increasing amplitude until      and afterwards they both oscillate 

within a two-point cycle with    {             } and   
  {             }. 

When           the stock is so low as to only induce a   
         from the 

expected utility-maximizing poacher.  When           poaching is more attractive 

and poaching effort increases to   
        , i.e. by a factor of 6.67.  Given this 

observed two-point cycle pattern when      , we suspect that further increases in 

  will lead to cycles of    and ultimately deterministic chaos in the evolution of the 
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resource stock   .  Figure 2.3 plots the bifurcation points for changes in the parameter 

values of  - it shows the resource stock,   , for increments of 0.005 in the interval 

  [     ].  The critical values, or “bifurcation points,” occur in the range   

[     ].  Bifurcation diagrams, like in Figure 2.3, provide us with information about 

the qualitative dynamics of the resource stock for a given range of parameter values.  

For instance in Figure 2.3 in the interval   {     } we note that when   

{         } the lower bound of which is smaller than the resource stock levels when 

  {       }.  This result shows that policy aimed at increasing the wage rate might 

have unintended consequences of a lower resource stock level.   

 

 

 

Figure 2.2: Dynamics of the resource stock,    (light) and poaching time,   
  (dark) 

when   increases to 1.50   

 



18 

 
Figure 2.3: Bifurcation points and steady state values in the dynamics of    (vertical 

axis) for increments of 0.005 in values of   [     ] (horizontal axis) 

 

Next we study the effects of changes in the fine ( ) for getting caught 

poaching.  Figure 2.4 plots the bifurcation points for increments of 0.005 in the 

parameter values of   in the interval [   ].  The critical values (bifurcation points) 

occur approximately at    0.3 and 0.47.  This tells us that when the fine is reduced 

from its base-case level of 1 to a little below 0.50 (i.e. half the base-case level) we 

observe a period-doubling bifurcation in the resource stock dynamics.  Chaotic 

behavior in the resource stock dynamics occurs when    0.3 and the resource stock 

attains steady state values in the range with no bifurcations in the resource stock.  The 

level of the steady state values is seen to increase when the fine is increased, which 

serves intuition since an increasing poaching fine would lower the marginal 

productivity of the time spent poaching   
 .   It is interesting to note that when the 

level of the fine is reduced to zero the resource stock value does not decline to zero.  
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This is because the marginal product of the time spent poaching   
  goes to zero as 

    , while at the same time the marginal product of wage labor time remains at 

      (remember in these comparative static numerical exercises we change one 

parameter at a time while maintaining the other parameters at their base-case values 

listed in Table 2.1).    

 

 
Figure 2.4: Bifurcation points and steady state values in the dynamics of    (vertical 

axis) for increments of 0.005 in values of   [   ] (horizontal axis).   

 

We now examine the bifurcation points in the third economic parameter- the 

black market price  - for the range   [   ] as shown in Figure 2.5.  Period-

doubling bifurcation begins to occur in the resource stock values when the black 

market price is lowered to the range of [   ]   When the value of   increases above 

this range we note that the resource stock attains steady state values with no 

bifurcation occurring.  The resource stock steady state level does decline, which serves 

intuition since an increasing black market price would increase the marginal 
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productivity of the time spent poaching   
 .  This tells us that increasing black market 

prices might tend to reduce the resource stock to lower levels that are locally stable, 

unique, steady state values.          

 

 

 
Figure 2.5: Bifurcation points and steady state values in the dynamics of    (vertical 

axis) for increments of 0.005 in values of   [   ] (horizontal axis).   

 

The last policy parameter that we examine is the effectiveness of anti-poaching 

enforcement ( ).  Figure 2.6 plots the bifurcation points for increments of 0.005 in the 

parameter values of   in the interval [   ].  Recall from Equation (2.9) that a higher 

value of   result in a lower probability of capture, and so would imply a reduced level 

of effectiveness of anti-poaching patrols.  For   (      ] we note that the resource 

stock attains unique, locally stable, steady state values with no bifurcation occurring.  

The resource stock steady state level does decline, which serves intuition since 

lowering the effectiveness of anti-poaching enforcement lowers the probability of 
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detection.  Therefore the poacher would spend relatively more time poaching 

compared to other activities; in other words the marginal productivity of the time spent 

poaching,   
 , increases for the poacher.  For   [      ] we observe two-point 

cycles.  This tells us that increasing the effectiveness of anti-poaching patrols 

(lowering the value of  ) does not always lead to higher steady state levels in the 

resource stock, i.e. the lower limit of the bifurcation or critical values are lower than 

some range of steady state values.  Next we show that counterintuitive dynamics can 

emerge from our comparative static numerical exercise when modeling different type 

of protected species.    

 

 
Figure 2.6: Bifurcation points and steady state values in the dynamics of    (vertical 

axis) for increments of 0.005 in the interval   [   ] (horizontal axis).  

 

We turn our attention to the qualitative dynamics when we model different 

types of species.  Different values of biological parameters in the logistic growth 

function have been used to study he population dynamics of different types of species.  

Values of    1 are used to model population dynamics of large mammal species 
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(Cromsigt et al., 2002).  Different values of the net intrinsic growth rate ( ) in the 

logistic growth function can represent different species.  Empirical estimates find 

small values of   (low reproductive rates) for large mammals and high values of   for 

small mammals (Eberhardt, 1987).  First we change the value of the skew parameter   

to represent different mammal species being modeled.  Figure 2.7 plots the bifurcation 

points for increments of 0.005 in the parameter values of   in the interval [   ], but 

this time when we change the value of   to 2.  Note that when the anti-poaching 

effectiveness increases (i.e. the value of   reduces, which then increases the 

probability of anti-poaching patrols intercepting the poacher) the resource stock attains 

locally stable, unique, steady state values.  However for   in the range [   ] we note 

that the steady state stock levels reduce.  In Figure 2.6 we saw that increasing the 

effectiveness of anti-poaching patrols beyond a critical value leads to bifurcations in 

the stock level.  This comparative static exercise reveals that it is possible to have 

counterintuitive results when one increases the effectiveness of anti-poaching patrols, 

particularly when different species are being modeled with different skew parameter 

values.     
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Figure 2.7: Steady state values in the dynamics of    (vertical axis) for increments of 

0.005 in the interval   [   ] for a variation in the skew parameter from its base-case 

value, i.e.      (  ).   

 

We use these comparative static numerical exercises to derive combined 

insight on the effects of changing levels of both biological and economic parameters 

on the qualitative population dynamics.  First we examine the effects of changing 

levels of the intrinsic growth rate ( ) in conjunction with different levels of anti-

poaching enforcement effectiveness ( ).  We do this by simulating the time paths of 

the resource stock,   , for combinations of values of   {                     } 

and   {          }.  Once we derive the time paths for each combination of   and 

 , we record the points in the time paths of    at which the qualitative behavior 

changes from steady state to period-doubling bifurcation. In Figure 2.8 we record the 

qualitative behavior of the resource stock's equilibrium points for the values of   

(along the horizontal axis) in conjunction with values of   (along the vertical axis).  

The legend on the right hand side in Figure 2.8 indicates the qualitative behavior of 
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species dynamics: convergence to steady state shown in dark blue, two-point cycles 

shown in light blue/green, four-point cycles shown in yellow, eight-point cycles 

shown in orange/red, and finally “deterministic” chaos shown in dark red.  

 

 
Figure 2.8: Qualitative behavior of the resource stock,   , for combinations of values 

of the intrinsic growth rate   {                     }  (horizontal axis), and the 

anti-poaching effectiveness parameter   {          } (vertical axis).    

 

For any given value of   on the vertical axis as we move across the grid (i.e. 

left to right) we have color-coded cells depicting the qualitative features of the 

equilibrium points for different values of   on the horizontal axis.  Figure 2.8 tells us 

how the changing effectiveness of anti-poaching enforcement affects the stability 

characteristics of the equilibria for different species represented by different intrinsic 

growth rates,  .  Conversely for any given value of   (i.e. any one particular species 

being modeled) as we move from bottom to top in Figure 2.8 we see how the changing 

effectiveness of anti-poaching enforcement affects the qualitative dynamics of a 
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particular species.  From Figure 2.8 we observe that for smaller values of  , we have 

locally stable, unique, steady states of the resource stock for low values of  .  For 

those same values of  , as we move up the vertical axis, we are seeing a slackening in 

the effectiveness of anti-poaching enforcement, and the resource stock begins to give 

way to two-point cycles, four-point cycles, eight-point cycles and eventually to 

deterministic chaos.  For high values of   on the horizontal axis, low values of   do 

not always produce locally stable, unique, steady state values.  However for those high 

values of  , it appears that as the effectiveness of anti-poaching enforcement slackens, 

we begin to observe unique, locally stable, steady state values of the resource stock.  

Another result we found from this numerical exercise, which is not depicted in Figure 

2.8, was that for all values of   increasing the value of   led to declining average 

values of the resource stock – in terms of average steady state values or average values 

of the bifurcation points.   

In essence what Figure 2.8 tells us is that different levels of anti-poaching 

enforcement have variable effects on the qualitative aspects of population dynamics 

for different species as represented by different intrinsic growth rates.  As far as policy 

insight that can potentially be garnered from Figure 2.8 our results suggest that if 

policy makers wish to avoid chaotic population dynamics for mega-fauna species with 

low-  values, the effectiveness of anti-poaching patrols/enforcement needs to be 

relatively better than in the case of protecting high   species or small mammals.  In 

Figure 2.8 we see that for high-  species (i.e.    0.60) increasing the effectiveness of 

anti-poaching enforcement (reducing   from the range [    ] to the range [   ]) 

results in period doubling bifurcation in the resource stock.     
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Lastly we examine the effects of changing levels of the skew parameter ( ) in 

conjunction with different levels of anti-poaching enforcement effectiveness ( ).  

Recall from Figure 2.7 that increasing the anti-poaching effectiveness (i.e. lowering 

the value of  ) gave us counterintuitive results for some range of   values: for values 

of the skew parameter     the steady state stock levels began to decline when anti-

poaching enforcement was made more effective.  In figure 2.9 we use a color-coded 

grid to depict at what combinations of   and   the resources stock,  , goes from 

steady state to two-point cycles.  Two-point cycles are shown in yellow, and the 

steady states are shown in different shades of green- darker green indicates higher 

average steady state resource stock values for the range of   values, and lighter green 

indicates lower average steady state values.  For any given   value as we move down 

the grid we have increasing values of   (i.e. lower levels of anti-poaching 

effectiveness).  For     when   increases from   through   we observe decreasing 

steady state   values.  This serves intuition because as the effectiveness of anti-

poaching enforcement decreases, the marginal product of poaching time (  
 ) would 

increase, and we would expect lower stock values.  Recall that higher values of   are 

used to model larger mammals (Cromsigt et al., 2002).  So as we move across the grid 

in Figure 2.9 we are modeling the population dynamics of larger mammals.  The 

counterintuitive results seen in Figure 2.7 are also noted here in Figure 2.9 for larger   

values: i.e. increasing the effectiveness of anti-poaching patrols leads to decreasing 

steady state values of the resource stock,  .  This is consistent for values of   [   ] 

for decreasing   values in the range [   ].  We provide a summary of the key results 
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from our numerical analysis in Table 2.2 for each of the economic and biological 

parameters in our model.   

 

 

 

 

 

 

 

 
 

Figure 2.9: Qualitative behavior of the resource stock,   , for combinations of values 

of the skew parameter   {       } and the anti-poaching effectiveness parameter 

  {       }.   ̅: average value of resource stock.   
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Table 2.2: Summary of key numerical results.  

 

Parameter Effect of 

increasing 

parameter value 

on time spent 

poaching (  
 ) 

Effect of 

increasing 

parameter value 

on resource stock 

(  ) 

  -point cycles 

observed? 

Additional 

comments 

Wage rate ( )     High-amplitude 

dynamics for 

      a
 

Deterministic 

chaos for 

       

Fine ( )     Low-amplitude 

dynamics for 

       

Deterministic 

chaos for 

       
Black market 

price ( ) 

    High-amplitude 

dynamics for 

   .  

Deterministic 

chaos for higher 

values of   

(  ), when 

    

Intrinsic growth 

rate ( ) 

n.a. n.a. High-amplitude 

dynamics for 

low-  values 

when    .  

Greater anti-

poaching 

effectiveness 

needed to protect 

low-  species if 

steady state 

preferred to 

high-amplitude, 

chaotic, 

population 

dynamics by 

policy maker.  

Anti-poaching 

effectiveness 

( ) 

        Bifurcation when 

    and 

  [   ].  

For     low   

values (i.e. 

   ) reduce 

steady state   

values.   
a
 Refer to Table 2.1 for the set of base-case parameter values.  

  indicates an increase;   indicates a decrease;     indicates an ambiguous effect.  

  

 

2.4   Conclusion  

Robert  (May RM, 1976) introduced the idea of how small parameter changes in a 

logistic growth equation leads to very complicated dynamics or   -point cycles in the 

evolution of resource stocks.  In discrete-time models of single species ecologists have 

shown how dynamical systems can exhibit seemingly random or chaotic behavior, 

which results when the stability of steady states are dependent on the values of model 
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parameters  (Edelstein-Keshet, 1988; Hale, Jack K.,Koçak, Hüseyin., 1991; Hastings 

& Powell, 1991).  Erwin  (Bulte, 2003) shows that multiple equilibria or steady states 

might exist in open access systems, and that equilibria are affected by small changes in 

the underlying economic parameters.  The analysis and results of our chapter serves as 

an extension of previous studies of ecological-economic dynamic systems.  We have 

shown, through extensive comparative static exercises, how small changes in both 

economic parameters and biological parameters can lead to complicated dynamics in 

the behavior of a protected species’ population.  

Given the nature of Equations (2.7) and (2.8) – a Schaefer production function 

and a logistic growth function – in our open access model, bifurcation diagrams reveal 

important behavioral aspects of poaching and its effects on population or renewable 

resource stock dynamics.  Bifurcation diagrams have the potential to provide insight to 

policy makers who are considering changes in parameters as part of conservation 

policy.  Simply increasing the wage rate,  , or lowering the black market price,  , 

might not always lead to higher steady state stock levels of a protected species.  The 

resource stock can exhibit high-amplitude chaotic dynamics for even small changes in 

policy parameters.  The economic and ecological aspects of our bio-economic model 

are readily apparent when we record the bifurcation points of the resource stock,  , for 

combinations of values of   (intrinsic growth rate) and   (effectiveness parameter of 

anti-poaching enforcement), as well as for combinations of values of   and   (skew 

parameter in logistic growth function).  The results in Figures 2.8 and 2.9 suggest that 

there is no “one-size-fits-all” conservation policy when it comes to protecting species, 

as represented by different intrinsic growth rates and skew parameters.  When 
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protecting large mammal species with high   values, lowering the effectiveness of 

anti-poaching enforcement leads to decreasing steady state resource stock levels.  

However we found that increasing the effectiveness of anti-poaching enforcement 

beyond a certain critical point could result in counterintuitive dynamics wherein the 

steady state stock value declines.  The relevance of policy-induced bifurcation in the 

long-term behavior of renewable resources subject to opportunistic harvest merits 

careful consideration in the design or the study of conservation policy.  
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CHAPTER 3 

 

CIVIL UNREST AND THE POACHING OF RHINOS IN THE KAZIRANGA 

NATIONAL PARK, INDIA 

 

 

3.1 Introduction  

The Kaziranga National Park (KNP), spread over an area of three hundred 

and seventy eight square kilometers, is located in the north-eastern state of Assam 

in India.  The state of Assam shares international borders with Bangladesh and 

Bhutan, and is geographically close to Myanmar.  A flagship species of the KNP is 

the greater one-horned rhinoceros (Rhinoceros unicornis) – also known as the 

Indian rhinoceros.  Concerns over rhino poaching led to the declaration of 

Kaziranga as a national park in January of 1974 in accordance with the Assam 

National Park Act, 1968 (Saikia, 2011).  Rhino poaching increased significantly in 

the 1980s through the mid-1990s in the state of Assam (refer to Table 3.1).  This 

time period coincided with extensive civil unrest in Assam.  The war of 

independence of Bangladesh (East Pakistan until March 1971) from West Pakistan 

in 1971 led to an exodus of ten million refugees to neighboring parts of India, 

including the state of Assam (UNHCR, 2012).  The large influx of refugees 

changed the demographics of Assam and made the task of identifying illegal 

residents difficult (ICM, 2012).  In 1979 mass movements led by native Assamese 

separatists campaigned for the detection of illegal migrants, for their removal from 

state voter lists, and for their deportation to Bangladesh   (Thakur & Pandey, 2009).  
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Secessionist tendencies began to form amongst the native Assamese in the late 

1970s and a militant organization called the United Liberation Front of Assam was 

established with the goal of separation from the Indian state (ICM, 2012).  This 

network of militant separatists was speculated to have carried out rhino poaching in 

Assam during the period of civil unrest in order to fund arms purchases through the 

illicit sale of rhino horn  (Agarwal, Narain, & Sen, 1999; Menon, 1996)  

During the late 1970s the Assam state government, led by the Congress (I) 

party, was more favorable to illegal immigrants because the immigrants formed a 

significant electoral voting block  (Thakur & Pandey, 2009).  Disagreement 

between the native Assamese separatists and the state government led to a 

breakdown of state administration, and Assam was brought under President’s rule 

in December of 1979 (ICM, 2012).  In 1980 the Indian Army was deployed in the 

state to maintain law and order.  Talks between the separatists and the central 

government made no progress between 1980 and 1983.  Elections were imposed by 

the Indian central government in 1983 despite opposition by the Assamese 

separatists.  The Congress (I) party came back to power, but the election result was 

deemed unacceptable by the separatists.  Attempts to force the separatists to accept 

the election result led to a breakdown of the state administration, and violence led 

to the deaths of over three thousand people   (Thakur & Pandey, 2009).   

A peace accord was signed between the separatists and the central 

government in 1985, which led to the dissolution of the Congress (I) state 

government, and the agreement to deport illegal immigrants.  A new regional 

political party, the Asom Gana Parishad (AGP), came to power after the signing of 



 

 

35 

 

the peace accord.  Secessionist sentiments remained strong despite the peace accord 

and new political leadership, which led to the continuation of civil unrest and armed 

conflict.  A lack of clearly defined rules to identify illegal immigrants meant that 

the provisions of the peace accord were not implemented meaningfully, and this 

only strengthened the secessionist sentiment.  In 1990, President’s rule was once 

again enforced and the Indian Army was used to subdue the militant separatists  

(Thakur & Pandey, 2009).  In 1993 another peace accord was signed between the 

state government (under the Congress (I) party) and the separatists, wherein army 

operations were suspended and amnesty was granted to surrendering militants.  The 

remaining militant separatists moved across the international border to Myanmar 

and Bhutan (ICM, 2012).   

This chapter studies an important but inadequately understood relationship 

between civil unrest and endangered species protection.  Animal species in tropical 

countries have been subject to poaching in regions that have witnessed political 

instability and civil unrest.  For instance, the Central African region has seen a 

prolonged period of civil strife along with escalated levels of poaching in the 

elephant range states (UNSC, 2013).  Civil unrest in the Democratic Republic of 

Congo is associated with gorilla poaching (WWF, 2014).  Given the political nature 

of extensive civil unrest in Assam during the 1980s and 1990s and the associated 

increase in rhino poaching, this chapter attempts to identify this relationship.  In the 

next section I describe the data on which the empirical analysis is based.  Section 

3.3 discusses a suitable biological model of population dynamics of the Indian 

rhinoceros.  Section 3.4 presents an identification strategy for quantifying the 
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relationship between rhino poaching and civil unrest, while accounting for several 

other variables that are probably associated with poaching – including black market 

rhino horn prices, the potential size of black markets, and anti-poaching efforts in 

the KNP.  The predicted associations of these variables with rhino poaching are 

described in Section 3.4.  Section 3.5 provides a discussion of the regression 

results, and section 3.6 concludes.   

 

3.2 The Data  

Census enumerations of the rhino population have been carried out by 

Assam’s State Forest Department every few years since the declaration of 

Kaziranga as a national park.  These data are listed in Table 3.1.  Civil unrest in 

Assam is indicated as a binary variable assuming a value of 1 in periods of 

extensive unrest and political instability, and a value of 0 in other time periods.  In 

addition I define an alternative variable representing civil unrest in Assam, which 

assumes integer values between 1 and 10 – with higher values representing periods 

of greater political instability, unrest, and militancy.  Rhino poaching incidents in 

the KNP are regularly recorded every year by Assam’s Forest Department.  The 

mean poaching level during the extensive civil unrest period (1980–1993, i.e. 14 

periods) is 32 rhinos per year compared to an average of 8 rhinos per year in the 

other time periods (1972–1979; 1994–2012, i.e. 27 periods).  The difference in 

means of rhino poaching per year in these two periods (samples) is 24.  A t-test of 

this difference derives a t-statistic of 7.62, which is statistically significant at the 

99% confidence level.     
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As a measure of the opportunity cost of poaching in Assam I consider two 

variables: agricultural labor wage rates and gross state domestic product per capita.  

Data on wage rates, gross state domestic product, and Assam’s human population 

are made available from various economic and population census reports.  A 

penalty or fine is imposed by Assam’s Forest Department for poaching.  The 

penalty as per the Indian Wildlife (Protection) Act (1972) and its subsequent 

amendments are listed in Table 3.1.  Assam’s Forest Department employs anti-

poaching staff or armed forest guards who regularly patrol the KNP to intercept and 

apprehend poachers (AFD, 2008).  The Forest Department has a de facto shoot-to-

kill policy, and more than one hundred poachers have been killed or arrested by 

forest guards since 1985 (Dutta, 2013).  At present there are one hundred and fifty 

two anti-poaching camps in the KNP with approximately six armed forest guards in 

each camp  (Gray, 2013).  In earlier time periods there were fewer anti-poaching 

camps and forest guards in the KNP.  Moreover, the anti-poaching camps’ 

infrastructure – including communication, anti-poaching equipment, and staff 

survival kits – has improved significantly in the 2000s  (AFD, 2008; Mathur, Sinha, 

& Mishra, 2005).  Table 1 lists the political party and chief minister in power in 

Assam.  Different categorical values are assigned to the political parties under the 

different chief ministers in order to account for variation in state policy over time.  I 

also note when President’s rule was enforced in the state.  The Muslim population 

is listed as per census reports and  (Sachar et al., 2006).      

There is evidence of organized crime in the supply side of the rhino horn 

black market.  Crime syndicates coordinate rhino horn supply through a network of 
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poachers and middlemen who source horns from national parks in South Asia and 

South Africa, and ship them to China and Vietnam  (Dutta, 2013; Sas-Rolfes, 2012; 

Somerville, 2012).  Table 3.1 lists the gross domestic products of China and 

Vietnam as a measure of the external market demand.  The few data of rhino horn 

price that poachers receive are listed in Table 3.1.  Given that there are no regular 

time-series estimates of horn prices, I consider two such measures.  As a first 

measure I assume a linear trend in the available information on horn prices to 

estimate the missing data points in Table 3.1.  As a second measure I estimate a 

horn price index using a structural model of horn supply and demand through an 

organized crime network (see APPENDIX 3.1).  Demand is assumed to be a 

function of horn price and income in China and Vietnam.  Supply is a function of 

horn price.  Given that crime syndicates source horns from South Africa and South 

Asia, I use time-series data on rhino poaching in South Africa as an instrument for 

index estimation.  Supply and demand functions are calibrated based on the 

assumption that the crime syndicate seeks to minimize the difference between 

supply and demand.  This presumably ensures that horns move as quickly as 

possible from poacher to end consumer, and lowers the risk of getting caught by 

authorities (for instance, poachers are known to sell horns as quickly as possible to 

smugglers to avoid interception by authorities (Sas-Rolfes, 2012)).  The index 

increases over time (see Table 3A.1) – reflecting the trend in the limited data on 

horn prices available to poachers.   
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Table 3.1: Empirical data 

 
a Talukdar (2000, 2002, 2003, 2006), Vigne & Martin (1998), and various Forest Department Annual Reports.  

b  (Agarwal et al., 1999; Thakur & Pandey, 2009) 
c Integer variable indicating extent of civil unrest based on Assam's history.  Higher values indicate periods of 

President’s rule, Indian Army deployments, and civilian deaths due to unrest. Lower values (1 – 2) indicate time 

periods of relative political stability in Assam.  

d Real daily agricultural wage rate in 2005 Indian Rupees (INR); time-series data on wage rates are available from 

various census reports for Assam.  Conversion to real rates using consumer price indices (CPI) for Assam  

(Directorate of Economics and Statistics, Various years; Jose, 1988; Rao, 1980). 
e GDP per capita (2005 INR; sources – various Assam state population and economic census reports).  With no 

population census conducted in 1981 the population estimates are interpolated using growth rates between the 

1971 and 1991 Census. 
f Poaching penalties (2005 INR) as per Indian Wildlife Protection Act (1972) Section 51 and its Amendments in 

2003 and 2010 (MoEF, 2013).  
g Assam’s Forest Department set up 152 anti-poaching camps in KNP by 2012 (Gray, 2013) and 121 camps during 

the late 1990s and early 2000s (Mathur et al., 2005).  In the 2000s there were improvements made to the anti-

poaching camps’ infrastructure and equipment; additional staff/guards were also employed – this doubled from 

three armed guards per camp in earlier periods to six armed guards per camp in the 2000s (sources:  (AFD, 2008; 
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Gray, 2013), and author’s personal communication with Principal Chief Conservator of Forests (Wildlife) Assam 

office).  Given this doubling of number of armed guards per camp the number of anti-poaching camps in earlier 

periods is taken to be half of that in the 2000s to reflect the improvement in KNP’s anti-poaching efforts.  In 2006 

KNP was declared a tiger reserve, which facilitated additional staff employment (Dutta, 2013).  Information on 

poachers arrested/killed based estimates from  (AFD, 2008; Dutta, 2013; Gray, 2013; Talukdar, 2000).   
h GDP ('0,000,000s US$) of China and Vietnam in 2005 CPI prices:     

http://www.ers.usda.gov/datafiles/International_Macroeconomic_Data/Historical_Data_Files/HistoricalCPIsValues

.xls (accessed September 2013).  
i Reports of rhino horn prices (US$/kg) available to poachers: 1978-1981, 1985 (Sas-Rolfes, 1997); 1993  

(Milliken, Nowell, & Thomsen, 1993); 1997  (Vigne & Martin, 2000); 2002 (Talukdar, 2002); 2012 (Eustace, 

2012; Sas-Rolfes, 2012).  Missing data interpolated using linear trends.  US$ converted to 2005 INR using 

exchange rates (http://fx.sauder.ubc.ca/etc/USDpages.pdf (accessed September 2013)).      
j Political party ruling Assam; INC_Sinha: Congress (I) under S.Sinha; JP_Borbora: Janata Party under G.Borbora; 

INC_Kesab: Congress (I) under K.Gogoi; INC_Saikia: Congress (I) under H.Saikia; AGP_Mhnta: Asom Gana 

Parishad under P.Mahanta; Pres_rule: President’s rule; INC_Gogoi: Congress under T.Gogoi.  
k Assam census reports and  (Sachar et al., 2006). 

 

3.3 A Population Model of Rhinos in the KNP  

Using the limited data on rhino census numbers I adopt the methodology of   

(Cromsigt et al., 2002) to estimate rhino population for the intervening years during 

which no census was conducted.  I estimate a rhino population model that best fits the 

observed data.  The approach adopted by  (Cromsigt et al., 2002) is to assume the 

relationship between the modeled population,   , and the observed census population, 

  , as Equation (3.1), where    is the error term with an assumed expected value of 

zero, and a variance of   .  For a given initial population size,      , the best possible 

estimates of the population model parameters can be computed by minimizing the sum 

of squared errors, ∑  
  (for the years when census data is available, i.e.   1972, 

1978, 1984, 1991, 1993, 1995, 1997, 1999, 2006, 2009, 2012).  A non-linear solver 

was used to find the parameters of the population model that minimized the sum of 

squared errors.    

 

         
(3.1) 

 

http://www.ers.usda.gov/datafiles/International_Macroeconomic_Data/Historical_Data_Files/HistoricalCPIsValues.xls
http://www.ers.usda.gov/datafiles/International_Macroeconomic_Data/Historical_Data_Files/HistoricalCPIsValues.xls
http://fx.sauder.ubc.ca/etc/USDpages.pdf
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For a population growth function  (Cromsigt et al., 2002) find that the 

modified logistic growth function gives the best fit to population data on South 

African black rhinos (Diceros bicornis).  Their modified logistic growth function fit 

observed black rhino population data better than other growth functions such as the 

exponential growth function, which has a constant specific growth rate  , and the 

ordinary logistic growth function.  The modified logistic growth function assumes the 

form:  (  )     (  (   ⁄ ) ), where   is the carrying capacity and   (  ) is a 

skew parameter that allows for non-linearity in the relationship between    and the 

strength of density-dependence (     ⁄ ).  When modeling mega-fauna there is 

empirical support for     because density-dependence becomes more important 

when the population is closer to carrying capacity  (Cromsigt et al., 2002).  I use the 

time series data on poaching levels,   , to account for harvest subtracted from yearly 

growth,  (  ).  The iterative map (3.2) describes rhino population dynamics in the 

KNP: 
3
  

 

           (  (   ⁄ ) )     
(3.2) 

  

                                                 
3
 Alternatively one can consider another growth function:  

         (     )(  ((     )  ⁄ ) ) 

Harvest,   , is not just a deductible term, as in Equation (3.2), and influences both   and  .  This is 

plausible when poaching takes place before species reproduction, or when poachers target only mature 

rhinos with larger horns for instance.  Calibrated values for this growth function are:    0.03132,    

109.795.  The two estimated populations have a correlation coefficient   0.9921.   



 

 

42 

 

Table 3.2: Population model’s parameter calibration  

Census populations (  ) Initial value guesses  Calibrated values 

         ,           
          ,           , 

          ,           , 

          ,           , 

          ,           , 

           

                

             

              

∑  
          ∑  

         

 

I use the given initial population level,      , as the starting value for the 

iterative map, i.e.        658.  I then assign initial guesses for the demographic 

model’s parameters      and   as per Table 3.2.  The optimized values for the 

parameters are reported in Table 3.2.  The best-fit value I obtain for    0.0484.  

Other studies – (Mason C.F. et al., 2012; Milner-Gulland & Leader-Williams, 1992)– 

have used an intrinsic growth rate of        to model population dynamics of 

African black rhinos.  The best-fit skew parameter value I obtain for    7.5676.   

(Mason C.F. et al., 2012; Milner-Gulland & Leader-Williams, 1992)use a skew 

parameter value of    ;  (Cromsigt et al., 2002) estimate a   value between 10 and 

28.  Rhino population estimates derived using the method of least squared errors are 

plotted in Figure 3.1.  These data are used to estimate a poaching model in the next 

section.    
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Figure 3.1: Estimated rhino population for      and   that minimizes ∑   

 
 .  The 

square blocks on the trend line indicate the census enumeration years.  

 

3.4 Estimating a Harvest Function and Identifying the Relationship between 

Civil Unrest and Rhino Poaching  

I assume an exponential harvest function (Spence, 1973) to model poaching, 

  :   

     (     )    (  e   (    )) (3.3) 

    rhino population in year   

  : harvesting effort (         ; as     ,      )  

 : catchability parameter (   ) 

Poudyal et al., (2009) use time-series data on rhino poaching in Nepal to 

estimate a reduced-form harvest function under the assumption of zero-profits with de 

facto open access.  The variables they consider in the profit function are the price 

received by local poachers for rhino horn ( ), quantity of horns harvested ( ( )), and 
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anti-poaching effort ( ).  Harvest,  ( ), is a function of the anti-poaching effort, 

poaching effort ( ), and the rhino population ( ).  They net out both the expected 

poaching fine ( (   )[    ]), where  ( ) is the probability of getting caught, and 

the cost of poaching ( ( ) ), where  ( ) is a function of the opportunity cost of 

poaching such as local wage rates ( ).  Under the assumption of zero profits, they 

solve for the reduced-form equilibrium poaching effort,   , which is a function of 

          .  There are other characteristics that might be pertinent to estimating 

poaching effort, for which one must rely on proxy information.  Poudyal et al. proxy 

the fines imposed on convicted poachers by poaching fines set as per Nepalese law.  

They proxy the international demand for rhino horn by East Asian gross domestic 

product, given that an inverse demand relationship determines black market horn 

price.   

I assume aggregate harvesting effort to be represented by a composite term 

   (                                            ), which is 

estimated econometrically using the data in Table 1 and the estimated rhino population 

from the previous section.  I define the individual terms of   :  

    civil unrest in Assam (binary and discrete [1, 10]) 

  : number of anti-poaching camps in KNP (or number of armed forest 

guards) 

  : poaching penalty in Assam 

    gross domestic product (GDP) per capita in Assam  

    agricultural labor wage rate in Assam  

  : GDP of China/Vietnam 
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  : black market horn price for poachers 

  : estimated price index (see Appendix)  

  : error term 

Rearranging the terms of Equation (3.3) yields an estimable Equation (3.4):  

  

  [      ⁄ ]    (                                

            )  

(3.4) 

 

The natural log term on the left-hand side of Equation (3.4) is taken to be the 

dependent variable in the regression models.  The exponential harvest function, 

Equation (3.3), requires that the constant term,  , be greater than zero.  Given the 

observed increase in rhino poaching during the period of extensive civil unrest in 

Assam, I predict that the coefficient of    will be positive (    ).  The presence of 

more anti-poaching camps and armed forest guards would increase the likelihood that 

poachers get caught and thereby reduce poaching (    ).  Poaching is predicted to 

decrease with the poaching penalty (    ).  I expect that Assam GDP per capita 

(  ) would have a negative effect on poaching (    ).  Similar to  (Poudyal, 

Rothley, & Knowler, 2009) I predict that since income of China and Vietnam would 

have a positive effect on poaching (    ).  Higher black market horn prices would 

create additional incentive to poach (    ).  Alternatively the horn price index,   , is 

predicted to be positively related to   , i.e.     .     should be used as a covariate in 

regression models without    and    to avoid the problem of multi-collinearity 

because    is used to estimate   .  Since    is multiplied through the parenthesis in 
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Equation (3.4) the regression coefficient estimates should be the opposite of the signs 

predicted:       , –      , –      , –   
 

  , –      , –      , 

–      , –      .   

Since poaching was higher during civil unrest one might encounter omitted 

variable bias in the regression coefficient estimates.  Such bias might occur when there 

is some variable that is correlated with both the dependent and the independent 

variables, and for which there are usually no data available   (Angrist & Pischke, 

2009).  To provide an unbiased estimate of the effect of the independent variable of 

interest (civil unrest) on the dependent variable (rhino poaching) an econometric 

model should include any determinants of the dependent variable that are also 

correlated with the independent variable of interest  (Angrist & Pischke, 2009).  I 

consider two instrumental variables to identify the relationship between civil unrest 

and rhino poaching: “ruling political party in Assam,” and “Muslim population in 

Assam”.  Given Assam’s historical context these instruments are probably associated 

with civil unrest, but not correlated with other independent variables that affect rhino 

poaching.   

 

3.5 Results and Discussion  

Equation (3.4) is econometrically estimated and the results are listed in Table 

3.3.  In the first model, (OLS_0), ordinary least squares (OLS) is used to examine the 

relationship between civil unrest and poaching.  The catchability coefficient,  , 

estimated at 0.0056, has the expected positive sign and is statistically significant.  The 



 

 

47 

 

civil unrest coefficient,   , has the predicted positive sign and is statistically 

significant.  The regression coefficients,   , are calculated by dividing      by –  , 

   1,…,8.  I calculate     -0.025 -0.006   4.46, which suggests that the unrest 

period in Assam was associated with at least four times more poaching effort per year 

as compared to the non-unrest time period.  This interpretation of    follows from the 

binary definition of civil unrest,   , in Equation (3.4).  One needs to consider 

additional covariates; this is done in model (OLS_1).  A higher number of anti-

poaching camps in the KNP appear to significantly reduce poaching.  Poaching 

penalty has an expected negative effect but is not statistically significant.  Other 

controls of GDP per capita and agricultural wages in Assam are not statistically 

significant.  The external demand for rhino horn appears to rise with income in China 

as predicted, but the coefficient (  ) is not statistically significant.  Similarly horn 

price coefficient (  ) is positively related to poaching.  I find that the relationship 

between unrest and rhino poaching is positive (    ) and significant.  The Durbin-

Watson statistic indicates that the error terms are not serially correlated.   

In model (OLS_2) I consider different covariates and again find the 

relationship between unrest and poaching to be positive and significant:     -0.022 -

0.0117   1.89, i.e. the unrest period is associated with nearly twice as much poaching 

effort per year.  A higher number of armed forest guards in KNP’s anti-poaching 

camps appear to significantly reduce poaching.  I also consider the GDP of both China 

and Vietnam,   , and find that income in these two countries is positively associated 

with poaching.  Similar to OLS_1 horn price,   , is positively related to poaching 

effort.  The poaching penalty coefficient (  ) has the predicted negative sign but is not 
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statistically significant.  In model (OLS_3) I consider the effect of the horn price 

index,   , which is estimated using the income of China and Vietnam.  The effect of 

the price index has the predicted positive effect and is significant.  Poaching penalty 

and anti-poaching camps reduce poaching significantly.  The catchability coefficient, 

 , is however not statistically significant.  In models (OLS_4) and (OLS_5) I note that 

   and    significantly increase poaching.  I check for endogeneity in the regression 

results by calculating the correlation between the error terms from the biological 

parameter calibration,    (equation (1)), and the regression residuals,   .  The    value 

(last row of Table 3.3) indicates very low correlation between these error terms.   

I now check for endogeneity caused by omitted variable bias.  Model (IV_1) 

uses the instrumental variable indicating the category of the political party ruling 

Assam.  The argument for using this instrument is that civil unrest was political in 

nature and there is no correlation between political parties and the other independent 

variables affecting rhino poaching.  The signs and statistical significance of the 

coefficients are similar to model (OLS_1).  Civil unrest and the catchability 

coefficients are positive and significant.  The test of the null hypothesis of over-

identifying restrictions is satisfied, given that there are more instruments (eight 

categories of political parties) than the endogenous variable.  The first stage F-statistic 

exceeds the benchmark of 10, which indicates a strong instrument  (Stock, Wright, & 

Yogo, 2002).  Including additional covariates appears not to change the magnitude of 

the civil unrest coefficient by much, which implies the instruments aren’t correlated 

with the covariates – a condition that satisfies the exclusion restriction in instrumental 

variable regression  (Angrist & Pischke, 2009).  The endogeneity test reports a 
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probability value of 0.6673 – indicating that civil unrest is not endogenous.  Model 

(IV_2) uses the instrument indicating population of Muslims in Assam.  The argument 

for using this instrument is that since unrest was the response of Assamese separatists 

to the illegal immigration of Muslims from neighboring Bangladesh, this population 

presumably affected poaching effort only indirectly through the unrest variable, and is 

not correlated with the other independent variables.  The results suggest that civil 

unrest was associated with twice as much poaching on average (i.e.     -0.021 -

0.011   2).  The first stage F-statistic is less than 10, which suggests that the 

instrument of Muslim population is not strong.  The Cumby-Huizinga test statistic 

produces a probability value of 0.321 suggesting that the error terms are not serially 

correlated.  
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Table 3.3: Regression estimates with dependent variable =   [      ⁄ ]  

 

 Observations   41; robust standard errors in parentheses; statistical significance at 1% (***), 5% (**), 10% (*) error levels.   
a 
Durbin-Watson test statistic for auto-correlation.  
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b
 Cumby-Huizinga chi-square test statistic’s p-value; null hypothesis: error terms not serially correlated at order one.  

  

c 
Hansen’s J-statistic for test of over-identifying restrictions when there are more instruments than endogenous variables.  

d 
Durbin-Wu-Hausmann test of endogeneity (p-value reported); null hypothesis: variables are exogenous. 

  

e 
Kleibergen-Paap LM test statistic for under-identification under null hypothesis (p-value reported). 

 

f
 First stage F-statistic of instrumental variable regression.  

                      g
 Correlation between residuals (  ) from equation (1) and regression residuals.  
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I conduct robustness checks using the alternative (non-binary) definition of 

civil unrest (see Table 3.1), and the alternative rhino population estimates (using 

growth equation in footnote 3).  In Table 3.4 under model (OLS_ 6) I use the same 

covariates as model (OLS_1) except that the unrest variable is non-binary.  Unrest is 

still positively and significantly associated with poaching except that the magnitude of 

   is lower because of the non-binary definition.  I note that the coefficients of 

catchability, anti-poaching, income in China, and horn prices have the same signs and 

magnitudes as those in OLS_1.  Model (OLS_7), which uses the alternative rhino 

population estimates and the same covariates as model (OLS_2), yields similar signs 

and magnitudes of the regression coefficients as the other models.  In model (IV_3) I 

use the political party instrument to check for omitted variable bias.  The results are 

similar to those in model (IV_1).  In model (OLS_8) I find no significant effect of the 

number of poachers arrested/killed by forest guards on reducing poaching.  Model 

(OLS_9), using the same covariates as model (OLS_5), shows that the difference 

between external GDP and domestic GDP (i.e. China+Vietnam–Assam) has a positive 

and significant effect on rhino poaching.  In model (OLS_10) I consider interactive 

terms of unrest with anti-poaching camps, GDP of China, and horn price for poachers.  

The interactive terms show the effect of these variables on poaching during civil 

unrest.  GDP of China is a significant determinant of poaching.  The poaching penalty 

coefficient is negative and significant.  The coefficient (    ) of the interactive term, 

unrest   horn price, is positive and significant, thus suggesting that price had a 

stronger effect on poaching during the civil unrest period.   
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Table 3.4: Robustness checks for regression estimates 

 

a
 Rhino population estimated using alternative growth function (see footnote 3 in the rhino population model section).  
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The main result of this chapter is that civil unrest is positively and 

significantly associated with rhino poaching in Assam – the unrest period is 

associated with up to four times more poaching effort per year compared to other 

time periods.  The results in this chapter are similar to those of  (Poudyal et al., 

2009) who find that civil unrest (defined as Maoist insurgency in Nepal) led to 

significantly higher rhino poaching; that anti-poaching by the Nepalese Forest 

Department significantly reduces poaching; that GDP in East Asia has a positive 

but insignificant effect on poaching; and that poaching penalty insignificantly 

reduces poaching.  In this chapter I find that anti-poaching efforts of the Assam 

Forest Department significantly reduce poaching; poaching penalty reduces 

poaching (significantly in OLS models 3,4,5,9,&10); Chinese and Vietnamese GDP 

are positively associated with poaching (significantly in OLS models 5,9,&10); and 

that both measures of horn price are positively associated with poaching 

(significantly in OLS models 3,4,&10).  

Having estimated Equation (3.4) I now fit the data on rhino poaching and 

population to the estimated trend to examine the goodness of fit of the regression 

results. The coefficients of the regression models (  &   ,    1,…,8) can be used 

to estimate rhino poaching levels,   , as given by Equation (3.3):    

  (       ), where    (                                

            ). Given that the actual rhino poaching data (  ) is 

econometrically estimated as   , the rhino population estimates can now be 

calculated using Equation (3.2):            (  (   ⁄ ) )    .  This 

provides estimates of rhino population and poaching levels from 1972 through 
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2012.  I examine the goodness of fit between the data and estimates from models 

(OLS_1), (OLS_2), (IV_1), and (IV_3).  I plot the data and the estimates of 

poaching and population as per these regression models in Figures 3.2, 3.3, 3.4, and 

3.5 respectively, and list the correlation coefficients between the data and the 

estimates.  I find that the ordinary least squares regression model, (OLS_1), 

suggests a correlation coefficient of 0.8668 between the poaching data and their 

estimates, which is higher than that in the instrumental variable regression models 

(IV_1) and (IV_3).  Model (OLS_2) does not appear to provide as good a fit in the 

poaching data and their estimates as the other models.  The correlation coefficient 

between the poaching data and their estimates from model (IV_2) that uses the 

Muslim population instrument is 0.7800; this is lower than 0.8636 – the 

corresponding correlation coefficient in model (IV_1) that uses the political party 

instrument.  This suggests that the model using the political party instrument yields 

better explanatory power than that using the Muslim population instrument.     
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Rhino Poaching: Data (blue line) & Estimation (red line) 

Correlation = 0.8668 

Rhino Population: Data (blue line) & Estimation (red line) 

Correlation = 0.9997 

Figure 3.2: Rhino poaching and rhino population fit between data and estimates (model OLS_1).  
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Rhino Poaching: Data (blue line) & Estimation (red line) 

Correlation = 0.8018 

Rhino Population: Data (blue line) & Estimation (red line) 

Correlation = 0.9994 

Figure 3.3: Rhino poaching and rhino population fit between data and estimates (model OLS_2).  
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Rhino Poaching: Data (blue line) & Estimation (red line) 

Correlation = 0.8636 

Rhino Population: Data (blue line) & Estimation (red line) 

Correlation = 0.9997 

Figure 3.4: Rhino poaching and rhino population fit between data and estimates (model IV_1); instrument = political party 
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Rhino Poaching: Data (blue line) & Estimation (red line) 

Correlation = 0.8033 

Rhino Population: Data (blue line) & Estimation (red line) 

Correlation = 0.9994 

Figure 3.5: Rhino poaching and rhino population fit between data and estimates as per (model IV_3); instrument = political party 
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3.6 Conclusion  

In this chapter I have examined the historical context of extensive civil unrest 

in Assam and the concurrent increase in rhino poaching.  Using data on rhino 

poaching in the Kaziranga National Park I have undertaken two exercises.  The first 

exercise is a calibration of the biological parameters of a rhino population growth 

function.  Given that animal census enumerations are expensive and not undertaken 

regularly in Assam, I have adopted the methodology of previous studies to estimate 

rhino population levels for time periods in which data aren’t available.  The 

empirically calibrated parameters are similar to those derived in other studies of rhino 

populations.          

In the second exercise this chapter identifies the relationship between extensive 

civil unrest and rhino poaching in Assam.  Given the illicit nature of rhino poaching 

one would encounter the problem of missing relevant data – such as regular time-

series data on black market rhino horn prices and international market demand for 

rhino horn.  Data unavailability could lead to omitted variable bias in econometric 

estimations.  In this chapter I have estimated proxies of such data.  Incomes of China 

and Vietnam, which proxy the market demand for rhino horn, are positively associated 

with poaching.  Both measures of horn prices (one being a linear trend in the limited 

data on horn prices, and the other being a novel index estimated using a structural 

model of supply and demand through an organized crime network) are also positively 

related to poaching.  In addition to including several covariates in the regression 

analyses – poaching penalties, Assam’s GDP, and agricultural wages – I have 
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considered anti-poaching policy of Assam’s Forest Department, which is seen to 

significantly reduce poaching.  Given that civil unrest is associated with political 

instability in Assam, and an unchecked influx of Muslim refugees from Bangladesh, I 

have accounted for probable endogeneity in the regression results by using two 

instruments – political party and Muslim population.  I find no evidence to suggest 

that the OLS models are endogenous.  This chapter finds that civil unrest in Assam is 

positively and significantly associated with rhino poaching in the KNP.  The results 

are robust to different specifications of the civil unrest variable, alternative rhino 

population estimates, and to the inclusion of several additional covariates.  This 

chapter studies an important and inadequately understood relationship between civil 

unrest, political instability, and the conservation of endangered species.   
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APPENDIX 3.1 

 

Estimating a Rhino Horn Price Index:  

Given the presence of organized crime networks in the supply of rhino horn from 

South Africa and Asia, and that demand comes primarily from China and Vietnam, 

I define the following terms:  

  (     )

  

Demand for Indian rhino horn;   : income in China and 

Vietnam;     0 is the estimable horn price index.  

  (     )    Number of Indian rhinos killed by poachers in year  ;    

represents civil unrest in Assam.   

     Total number of rhinos killed by poachers in South Africa.   

     (  )  Horn price index.  I treat    as an instrument for    because I 

assume that black market price is a function of poaching in 

South Africa.   

     Unobservable inventory of Indian rhino horn held by the crime 

syndicate.  

            (     )    (     ): change in Indian rhino horn inventory 

held by the syndicate over time.   

 

I assume the following functional forms for supply,   , and demand,   :  

  (     )    (  (  )   )     
  

  ,      0,    0 (3A.1) 

  (     )    (  (  )   )     
 
  ,         0,    0 (3A.2) 
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As noted in The Data section the crime syndicate presumably has an incentive to 

maintain as low a difference between horn supply and demand levels.  This could 

ensure that horns move as quickly as possible from poacher to end consumer – 

presumably lowering the risk of getting caught by authorities.  Function parameters 

are calibrated by minimizing the sum of squared differences between   ( ) and 

  ( ):  

 

       e
       

∑(   
  

      
 
  )

 
 

   

 (3A.3) 

 

Time-series data on rhino poaching in South Africa’s national parks,   , are listed in 

Table 3A.1   (Knight & Emslie, 2012; Milliken & Shaw, 2012).  Data on GDP of 

China and Vietnam,   , and civil unrest in Assam,   , are listed in Table 3.1.  

These data are used in a non-linear solver to yield the calibrated values as per 

(3A.3):    1.04418,    2.03751,    4.58e-08,    0.05082.  These values are 

used to derive the market price index for rhino horn as:      (  )     
 
 by using 

Equation (3A.2).   
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Table 3A.1: Data on rhino poaching in South Africa,   , as an instrument for horn 

price index,     
 

Year Rhino poaching in South 

Africa,    

Estimated Price index, 

      
 
 

1990 14 0.5240481540 

1991 5 0.4973286495 

1992 18 0.5307850539 

1993 14 0.5240481540 

1994 27 0.5418372794 

1995 14 0.5240481540 

1996 6 0.5019587467 

1997 6 0.5019587467 

1998 12 0.5199582682 

1999 13 0.5220779407 

2000 12 0.5199582682 

2001 9 0.5124107389 

2002 25 0.5397219137 

2003 22 0.5362264970 

2004 12 0.5199582682 

2005 17 0.5292452588 

2006 36 0.5498182454 

2007 13 0.5220779407 

2008 83 0.5736644738 

2009 122 0.5850060943 

2010 333 0.6156377863 

2011 448 0.6249906309 

2012 455 0.6254833376 
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CHAPTER 4 

 

ORGANIZED CRIMES AGAINST NATURE:  

ELEPHANTS IN SOUTHERN AFRICA  

 

   

4.1   Background and Overview 

In early 1981, the elephant population in Africa was estimated at 1.2 million animals.  

There are two subspecies of elephant on the African continent; the forest elephant 

(Loxodonta cyclotis), predominantly found in the forested areas of Central Africa, and 

the savanna elephant (Loxodonta africana), found primarily in Eastern and Southern 

Africa.  During the 1980s an estimated 675,000 elephants were poached and by 1989 

the elephant population had declined to just over 600,000 animals  (Barbier, Burgess, 

Swanson, & Pearce, 1990).  In 1989 the African elephant was listed as an Appendix I 

(endangered) species by the Convention on International Trade in Endangered Species 

(CITES) and a ban was placed on the trade of elephant products.  Recent estimates 

place the total elephant population in African range states at 423,000 in the year 2012 

(IUCN, 2012).   

There is considerable evidence to suggest that the poaching of elephant tusk 

and rhino horn in Africa is planned and financed by international syndicates using 

organized crime as a business model.  These syndicates sponsor poaching gangs with 

aircraft and high-powered weapons, and also arrange for rapid shipment of tusk and 

horn to markets in Asia  (Mullen & Zhang, 2012; Sas-Rolfes, 2012; Shukman, 2013; 

Wassener, 2013; S. K. Wasser et al., 2008). Based on data from seizures of illegal 
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ivory shipments amounting to roughly 24 tons in the year 2006 Wasser et. al. (2007) 

use DNA analysis to estimate that  approximately 23,000 savannah elephants were 

illegally harvested from the southern African range states.  In June 2002 authorities in 

Malawi seized a shipment of 6.5 tons of ivory that was bound for Hong Kong; (S. K. 

Wasser et al., 2008) estimate that approximately 6,500 elephants were illegally 

harvested for that shipment alone.  Based on the evidence from the ivory seizures (S. 

K. Wasser et al., 2008) suggest that at least two syndicates were associated with 

poaching at the time in different regions of the African range states.   

The change in elephant populations has varied widely by country.  

Government corruption and the number of armed anti-poaching patrols have been 

considered important variables when explaining country-level changes in elephant 

populations.  Balmford et al. (2003) use ordinary least squares to regress the change in 

elephant populations in 20 African countries on a subjective index of corruption.  

They show that a higher index of corruption had a significant negative effect on the 

change in a country's elephant population between 1987 and 1994.   Frank & Maurseth 

(2006) find that there are significant “neighborhood effects” that may reduce the size 

of the coefficient on corruption.  Corruption still causes a significant negative effect, 

but neighborhood effects may also influence the change in a country’s elephant 

population.  Neighborhood effects account for the migration of elephants between 

countries, and the presence or lack of poaching in a neighboring country.  

In a provocative article Messer (2010) plots the estimated elephant populations 

in Kenya and Zimbabwe after those countries adopted a “shoot-on-sight” policy when 

dealing with poachers going after elephant ivory or rhino horn.  For the period 1984 
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through 2002, elephant populations increased in countries that adopted the shoot-on-

sight policy, and declined in countries that did not.  The decline of elephant 

populations in countries not adopting a shoot-on-sight policy continued even after 

1989, when CITES listed Loxodonta africana in Appendix I.  Messer contends that 

low wages in developing countries impose limits on the potential economic costs for 

poachers of fines and imprisonment.  

In a model where elephant ivory is a storable commodity Kremer & Morcom 

(2000) show that rational expectations may lead to multiple equilibria in a dynamic 

open-access model.  There could be equilibria where elephant are driven to extinction.  

In their model, the cheapest way for a government to eliminate extinction equilibria 

may be to commit to tough anti-poaching measures if the population falls below some 

threshold.  For governments without a credible anti-poaching threat, the cheapest way 

to eliminate extinction equilibria may be to accumulate a sufficient stockpile of ivory 

and threaten to sell it should the elephant population fall below some threshold.  Their 

analysis assumes that the black-market price would fall when a government sells a 

large amount of stockpiled ivory.   

While strategic selling of accumulated stockpiles of ivory might seem rational 

to economists, it has been opposed by many African leaders and conservation 

organizations.  On July 18
th

 1989, then President Daniel Arap Moi of Kenya ignited 

twelve tons of ivory, much of it confiscated from poachers, as a gesture in support of 

the Appendix I listing of Loxodonta africana by CITES (Perlez, 1989).  In 1997, 

CITES voted to down-list elephant populations in Botswana, Namibia, and Zimbabwe 

to Appendix II (Burton, 1999).  Down-listing to Appendix II allows these countries to 



 

 

71 

 

engage in a tightly monitored sale of stockpiled ivory.  In 2010 a similar request by 

Tanzania and Zambia was denied (IUCN, 2013).  These two countries had 

accumulated approximately one hundred and twelve tons of ivory.  The majority of 

CITES members, and most conservation groups opposed the change to Appendix II 

for Tanzania and Zambia on the grounds that it would “flood the ivory market,” 

increase the use ivory, and make the detection of illegally poached ivory more 

difficult.  The effectiveness of the CITES ban in the recovery of elephant populations 

has been questioned by several other studies, including  (Barbier et al., 1990; E. Bulte 

& Van Kooten, 1996; Kreuter & Simmons, 1995; Sugg & Kreuter, 1994).  For the 

CITES ban to be effective it would have to stigmatize the trade and use of ivory so 

that demand and the black-market price fall (Burton, 1999).  The lack of time-series 

data on black-market prices and the volume of ivory traded make it impossible to 

develop accurate estimates of the price flexibility of ivory.  Burton (1999) is skeptical 

that either the stigma created by the CITES ban or the sale of government stockpiled 

ivory would lower the black-market price sufficiently to reduce poaching.  According 

to Burton’s open-access simulations, the price of ivory on the black market would 

have to fall by ninety percent for elephant populations to increase under open-access 

equilibrium.  The model in this chapter identifies why the sale of stockpiled ivory may 

not reduce poaching.   

The incentive to poach has been studied under various conservation policies 

including trade bans  (E. H. Bulte & van Kooten, 1999a; E. H. Bulte & van Kooten, 

1999b; Burton, 1999), fines for poaching  (E. H. Bulte & van Kooten, 1999a; E. H. 

Bulte & van Kooten, 1999b; Damania, Milner-Gulland, & Crookes, 2005; Damania, 
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Stringer, Karanth, & Stith, 2003; Milner-Gulland & Leader-Williams, 1992; Skonhoft 

& Solstad, 1998), alternative livelihoods when there is conflict between land use and 

species conservation  (Fischer, Muchapondwa, & Sterner, 2011; A. Johannesen & 

Skonhoft, 2005; Skonhoft, 2007), and price-control through supply restrictions 

(Brown & Layton, 2001; Kremer & Morcom, 2000; Mason C.F., Bulte E.H., & Horan 

R.D., 2012).  Models of poaching assume open access harvest conditions where, with 

imperfect property rights, poachers myopically maximize short-run profit, and 

entry/exit occurs until rents are dissipated.  Economic models of poaching predict how 

the steady-state equilibrium stock, harvest, and enforcement levels change with 

economic parameters such as price, poaching cost, and detection probability  (E. H. 

Bulte & van Kooten, 1999b; A. Johannesen & Skonhoft, 2005; A. B. Johannesen & 

Skonhoft, 2004; Milner-Gulland & Leader-Williams, 1992; Skonhoft & Solstad, 

1998).  In linking economics and ecological theory (E. Bulte, Damania, Gillson, & 

Lindsay, 2004; Skonhoft, 2007) have noted that models should expand their scope 

beyond the notion of steady state equilibrium by incorporating uncertainty, ecological 

variability, complexity, scale.   

In this chapter I introduce uncertainty through stochastic poaching, and study 

its effects on elephant population dynamics.  In the next section I construct a biomass 

(lumped-parameter) model of the elephant population in Southern African range 

states.  In section 4.3 I focus on the optimization problem for the leader of a poaching 

organization (gang).  I identify the plausible conditions under which the number of 

planned poaching expeditions will be insensitive to the black-market price of ivory.  I 

also identify a critical value for the annual number of poaching expeditions.  If this 
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number is consistently exceeded, the elephant population will slowly decline to 

extinction.  Section 4.4 reports on the stochastic implications of poaching by more 

than one gang with free entry/exit under open access until profits are driven to zero.  I 

also conduct a sensitivity analysis of our results by changing the values of economic 

parameters including the probability of interception by an anti-poaching patrol, the 

cost of poaching expeditions, and the black market price of ivory.  Section 4.5 

concludes.  

 

4.2   An Aggregate Model of Elephant Poaching in Southern Africa 

Let    denote the number of elephants in the population in Southern Africa and    the 

number killed by poaching organizations, both in year  .  The dynamics of the 

elephant population will be described by the iterative map (4.1):  

 

     (   )    (  )     (4.1) 

 

      is an average annual mortality rate, and  (  ) is a purely 

compensatory growth function.  An age-structured model, or a model with delayed 

recruitment to an adult population might be more appropriate, but this biomass 

(lumped-parameter) model has been used in previous studies  (E. H. Bulte & van 

Kooten, 1999b; Cromsigt, Hearne, Heitkonig, & Prins, 2002; Milner-Gulland & 

Leader-Williams, 1992), and has the advantage of providing analytic benchmarks for 

stochastic poaching.   
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The number of elephant killed by poachers in any year is determined in part by 

the number of poaching expeditions planned by the leaders of the various poaching 

gangs.  In deciding the likely number of poaching expeditions, a leader must balance 

expected net revenue with the probability that members of a unit might be captured, 

plea-bargain, and provide information leading to the destruction of the organization.  

The details of this optimization problem will be presented in the next section.  For 

now, I simply note that if poachers are intercepted by an anti-poaching unit, our model 

assumes that the organization is “decommissioned” for the rest of the year.  Early 

detection and dismantling of the poaching organization will reduce the number of 

elephant killed in that year.  However, I assume that poaching can never be eliminated 

entirely, and that a new poaching organization reappears at the start of the next year, 

with a new leader who again optimizes the number of planned poaching expeditions.  

At the start of year   the organization leader gathers information on the size of 

the elephant herd as well as the number of anti-poaching units.  Let    denote the 

average value of two ivory tusks from a single elephant when sold on the black 

market.  The kill rate of a poaching unit for a single expedition is assumed 

proportional to the elephant population and is given by     , where        is an 

efficiency parameter for hunters in a poaching expeditions deployed in year  .  The 

value of    has likely increased in the last decade given reports  (Mullen & Zhang, 

2012; Shukman, 2013; Wassener, 2013; S. K. Wasser et al., 2008) of poaching 

organizations using high-tech equipment like aircraft, darting guns, and knock-down 

drugs for their operations.  
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To make the biomass model more concrete, I specify a form for the growth 

function in Equation (4.1) and calibrate its parameters.  Following  (Milner-Gulland & 

Leader-Williams, 1992) I adopt a skewed logistic where  (  )     [  (   ⁄ ) ].  

Because the average survival rate of the elephant population is given by (   ), I 

treat     as the pregnancy rate of adult females giving birth to approximately one 

offspring every third year.  This implies       .  The average mortality rate varies 

across countries and depends on the abundance of water and forage.  Under normal 

years, the average mortality rate (including juveniles) has been estimated at         

(Armbruster & Lande, 1993).  These values would imply a net intrinsic growth rate of   

(   )      , a value very close to the estimate used by (Calef, 1988).  A skew 

parameter greater than one (   ) will cause the population level supporting peak 

growth to lie to the right of   ⁄ .   (Milner-Gulland & Leader-Williams, 1992)set 

   .  With mortality occurring after growth, the parameter     will influence the 

steady-state elephant population in the absence of poaching, but it should not be 

interpreted as environmental carrying capacity.   

The no-poaching, steady-state population can be shown to equal   

 [(   )  ⁄ ]
 

 ⁄ .  This steady-state population will be locally stable provided 

|   (   )|      If           elephants for all of Southern Africa,       , 

      , and    , the no-poaching, steady-state elephant population is calculated 

to be            this value is locally stable since |   (   )|        .  

According to (Blanc, 2007), the combined elephant population in the Southern African 

range states (i.e. Angola, Botswana, Mozambique, Namibia, South Africa, Zambia, 

and Zimbabwe as shown in Figure 4.1) in 2006 was approximately 297,718.  If this 
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number represented the steady-state elephant population with poaching (   

       ) then   [     (   ⁄ ) ]          would be the steady-state 

number of elephants killed by poachers.  In reality, the elephant population in 

Southern Africa will never be in steady state because of stochastic poaching and 

droughts.  However these "counterfactual" steady-state values,           , and 

          are useful because they give us a benchmark from which to assess the 

consequences of organized, stochastic, criminal poaching.  As mentioned earlier in 

this chapter Wasser et. al. (2007) estimated that  approximately 23,000 savannah 

elephants were illegally harvested from the Southern African range states in the year 

2006. These results are summarized in Table 4.1.  

 

 

Figure 4.1: Southern African elephant range states.  
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Table 4.1: Population dynamics, biological parameters, steady-state, and stability.  

Parameter  Value 

Intrinsic growth rate    0.33  (Armbruster & Lande, 1993) 

Natural mortality rate    0.27  (Armbruster & Lande, 1993) 

Logistic growth skew 

parameter  
   7  (Bulte & van Kooten, 1999b; Milner-Gulland & 

Leader-Williams, 1992) 

Initial elephant 

population in 2006 
    297,718 in the Southern African range states (Blanc, 

2007) 

Carrying capacity    500,000 

 

Iterative map (4.1):      (   )      [  (   ⁄ ) ]     

Steady-state elephant population with no poaching (    ):    [(   )  ⁄ ]
 

 ⁄  
        
 

Elephant population in Southern African range states in 2006:            (i.e. steady-state 

elephant population with deterministic poaching) 

Steady-state elephant population killed by poachers:   [     (   ⁄ ) ]          

 

Approximately 23,000 savannah elephants illegally harvested in Southern African range states 

in 2006 (Wasser et. al. 2007).  

 

 

4.3   Optimal Poaching 

Let us now develop the optimization problem for the leader of a poaching organization 

and show how it leads to a target number of planned poaching expeditions.  Let 

     denote the number of anti-poaching units that the leader of a poaching 

organization thinks will be deployed in year  .  Let     (  ) be the subjective, 

Bernoulli probability, held by the leader of the poaching organization, that any single 

poaching expedition will be intercepted by a government anti-poaching unit. Let us 

assume that     (  ) is identical and independent for all poaching expeditions in a 

given year.
4
  

                                                 
4
 It would be possible to allow the probability of interception by an anti-poaching unit to increase with 

each completed (i.e. successful) poaching expedition.  One would then need a model of how the 

conditional probability of success for the next poaching expedition depends on the fact that all previous 
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 Let      denote the cost of deploying a single poaching expedition in year  .  

This would be the cost of gasoline, food, ammunition, and other supplies.  The 

poaching unit is comprised of hunters, carriers, drivers, and perhaps pilots. Assume 

that these individuals collectively receive the net revenue from a poaching expedition, 

provided that it has not been intercepted by an anti-poaching unit.  At the beginning of 

each year the gang leader determines the number of planned poaching expeditions,   
 , 

a non-negative integer,
 
as per Equation (4.2):

5
    

 

  
        

   {       }
{(   (  ))

  
          } (4.2) 

 

One can think of the poaching expeditions as being sent out sequentially 

during a given year.  If the gang leader sets a target of   
  expeditions in year  , then 

(   (  ))
  

 

 would be the probability that none of the expeditions will be 

intercepted by an anti-poaching unit.  The actual number of poaching expeditions 

“successfully” completed in year   will be less than or equal to   
 .  The number of 

elephants killed by poaching units in year   is thereby a random variable given by 

                                                                                                                                             
poaching expeditions were successful. 

5
 The non-linear nature of equation (4.2) does not permit the derivation of an analytical expression for 

  
 .  The optimal number of planned expeditions   

  can be numerically solved for a positive integer 

value.  The first-order condition of the maximization process is implicit in a numerical solution of the 

optimal number of planned poaching expeditions,   
 , in time period  . 
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         , where      
  is the “realized” number of successful poaching 

expeditions in year  .   

The gang leader’s decision-making process can be summarized with the help 

of the schematic in Figure 4.2.  At the beginning of time period   the gang leader 

forms an assessment of the elephant population (  ).  Given the parameters of black-

market price ( ), probability of interception ( (  )), cost per expedition ( ) and the 

poaching technology or catchability coefficient ( ), the leader maximizes the expected 

profit expression, Equation (4.2), by numerically solving for the optimal number of 

planned poaching expeditions (  
 ).  With a given probability of interception ( (  )), 

one can simulate for a resulting number of realized poaching expeditions, denoted by 

   [    
 ].  The elephant population in the next time period,    , will evolve as per 

the iterative map (4.1), after a realization of poaching/harvest,          , in time 

period  . 
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Figure 4.2: Poaching gang leader’s decision process of planned expeditions (  
 ). 

 

Having laid out the theoretical optimization process, I now turn to numerical 

simulations using parameter values from the literature.  (Milner-Gulland & Leader-

Williams, 1992) estimated an average “detection rate” for poaching expeditions in 

Zambia for the period 1980 to 1983 to be  ( )      .  It is difficult to determine 

whether this probability is appropriate for our model of organized poaching circa 

2013.  Assuming that the investment in the number of anti-poaching units in the 

Southern Africa range states has significantly increased since the early 1980s I set a 

base-case probability of  (  )      .  However, the use of high-tech equipment by 

poaching organizations might also result in a lower probability of detection by anti-

Population (𝑋𝑡) Ivory price (𝑃), expedition cost (𝑐), catchability (𝑞) 

Equation (4.2): 𝑛𝑡
        𝑛𝑡 {       }{(  𝜋(𝑎𝑡))

𝑛𝑡
𝑃𝑞𝑋𝑡𝑛𝑡  𝑐𝑛𝑡} 

Planned expeditions (𝑛𝑡
 ) 

Realized expeditions (𝑛𝑡  𝑛𝑡
 ) 

Iterative map (4.1): 𝑋𝑡   (  𝑚)𝑋𝑡  𝑟𝑋𝑡(  (𝑋𝑡 𝐾⁄ )𝑧)  𝑛𝑡𝑞𝑋𝑡 

Interception probability 𝜋(𝑎𝑡) 
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poaching patrols.  In the next section the dynamic consequences of more sophisticated, 

high-tech poaching with lower probabilities of detection will be examined.  

The black-market price for two ivory tusks, weighing twenty kilograms, may 

be as high as           (Messer, 2010).  The cost of outfitting a single poaching 

expedition will be set at          .  The efficiency of a poaching unit, as measured 

by   , was estimated by  (Milner-Gulland & Leader-Williams, 1992) to be      

     for organized gangs in Zambia in 1985.  Given the technology available today I 

multiply this efficiency parameter by a factor of ten and set             .   

If            
 

and   (  )      , then   
           {       }{(  

 (  ))
  

          }   .  If  (  )      ,   
           {       }{(  

 (  ))
  

          }    .  

With  (  )      ,   
   .  If all 9 expeditions were completed without 

interception by an anti-poaching unit, net revenue accruing to “management” of the 

poaching organization would be  $7,158,998 from the killing of 6,859 elephants.  With 

 (  )      ,   
    .  If all 19 expeditions were completed without interception, a 

single poaching organization would kill 14,481 elephants for a profit of $14,719,839.  

These results are summarized in Table 4.2.   
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Table 4.2: Economic parameters and optimal poaching when  (  )       and      

Parameter  Value 

Black market ivory price     $3,000 per set of two tusks (Messer, 2010) 

Harvest efficiency               (Milner-Gulland & Leader-Williams, 1992) 

Detection probability  (  )= 0.10; 0.05  (Milner-Gulland & Leader-Williams, 1992) 

Expedition cost    $2,000  

For           :  

If  (  )      , then   
           {       }{(   (  ))

  
          }    

Expected net revenue of poaching gang = $7,158,998 from harvest of 6,859 elephants.  

 

If  (  )      , then   
           {       }{(   (  ))

  
          }     

Expected net revenue of poaching gang = $14,719,839 from harvest of 14,481 elephants.  

 

 

While Equation (4.2) would imply that  (  ),   ,   ,   , and    would all play 

a roll in determining   
 , the sensitivity of   

  to these parameters is not uniform.  In 

fact, Equation (4.2) has an interesting property. 

 

Proposition:  If {(   (  ))
  

          }    and   (    )⁄    but 

sufficiently small, then   
  only depends on  (  )   

 

Proof:  Define the expected net revenue from    planned poaching expeditions as 

 [   ]  {(   (  ))
  

          }.  Divide both sides by        so that 

 [   ] [    ]  (   (  ))
  

   [  (    )⁄ ]  ⁄ .  Then, if   (    )⁄   , the 

integer value of    which maximizes  [   ]  {(   (  ))
  

          } is the 

integer that maximizes (   (  ))
  

   and   
  only depends on  (  ).  
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For the parameter values in Table 4.2,   (    )⁄          , which is 

sufficiently small so that changes in   ,   ,   , and    may not change   
 .  

Specifically, a drop in    from $3,000 to $1,000 will not change the optimal number of 

planned poaching expeditions.  If  (  )       and    falls from            to 

         , poaching still generates a positive profit and the number of planned 

poaching expeditions remains at   
    .  The relative insensitivity of   

  to changes 

in the black-market price of ivory or to the elephant population will have important 

implications for system dynamics and anti-poaching policy. 

With poaching the dynamics of the elephant population are determined by:   

 

     (   )      (  (   ⁄ ) )        (4.3) 

 

Insight can be gleaned on the behavior of elephant population with stochastic 

poaching from the deterministic case where     , and     is a constant.  Equation 

(4.3) can be solved for a steady state at    [(      )  ⁄ ]      

(provided         ).  This steady state locally stable if and only if |  

 (      )|   .  If   (   )  ⁄ , we would have    , and the elephant 

population will ultimately become extinct as a result of poaching.  With stochastic 

poaching, if    is frequently above    (   )  ⁄ , the population may go to 

extinction as    ; this may however take a long time to occur.  For       , 

      , and             we calculate           .  Because I restrict the 

realized number of poaching expedition to be a non-negative integer, if       is 

frequently above   , the elephant population will ultimately go extinct.  In Figure 4.3 I 
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show the elephant population starting from            when          , 

      ,       ,            ,    , and    {    } with equal 

probability,   (    )    (     )     , ultimately goes extinct over 500-time 

periods.  In this case the expected value for    is 25, which exceeds           . 

 

 

Figure 4.3.  A single realization depicting extinction of elephant population with 

 [  ]   25, which exceeds the critical value,    (   )  ⁄         .  Time 

period shown on the horizontal axis, and elephant population shown on the vertical 

axis.   

 

I now examine the dynamics of the elephant population in Southern Africa 

with multiple poaching gangs where under open access conditions there is free 

entry/exit until profits are driven to zero.  I examine the dynamics of elephant 

population and the economic choices of the poaching organizations when the 

probability of interception/detection by an anti-poaching unit on any particular 

expedition is initially set at the base-case value of  (  )      .  I also examine the 

dynamics of elephant population and economic choices when, because of more 

evasive, high-tech poaching, the probability of interception assumes lower values.  
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4.4   The Elephant Population with Multiple Poaching Organizations  

Recall that at the start of each year, the leader determines   
 , the optimal number of 

planned expeditions.  The number of elephant killed in year   becomes the realization 

        , where        
  is a random variable.  I consider now the possibility 

of additional poaching gangs operating independently in the Southern African range 

states.  Each gang to carry out the same maximization process, as determined by 

equation (4.2).  I examine the possibility of multiple gangs under the open access 

conditions of myopic poaching, and free entry/exit until profits are driven to zero for 

the poaching industry.  Accordingly, each gang leader chooses his/her own optimal 

planned number of expeditions     
 , where   denotes the gang.  Expeditions are sent 

out by each gang leader independently and sequentially.  The probability of 

interception of any expedition of any gang remains  (  ).  In this event the total 

realization of harvest or poached elephants will be the sum ∑     (         )
 
   , 

where   is the total number of operating gangs in time period  .  This sum is 

subtracted from the growth of elephant population as per the modified iterative map 

(4.4):  

 

     (   )      (  (   ⁄ ) )  ∑        
 
     (4.4) 

 

Numerical simulations are carried out for time periods             

according to Equations (4.2) and (4.4).  I report the relevant economic and population 

statistics of the simulation exercises for one, two and three operating gangs.  In 
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addition I determine the number of poaching gangs that would operate under open 

access conditions when the elephant population settles into a low-population-level 

steady state, or goes to extinction, and it is no longer profitable for more gangs to 

operate.  The simulated elephant population of the first 100 years is disregarded to 

eliminate the influence of the initial condition,           .  Each of the one 

thousand time period simulations are iterated one thousand times and the average 

number of realized poaching expeditions is calculated as   ̅̅̅  (      )∑     
     
    

for            .  Also calculated is the average elephant population in year  , that 

is   
̅̅ ̅  (      )∑     

     
    for            .  These averages are plotted in 

Figures 4.4 through 4.9.  
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Distribution of realized number of trips:  

  ̅̅̅  (      )∑     
     
     

for             . 

 

Mean = 5.5179 

Variance = 0.1181 

Minimum Value = 4.18 

Maximum Value = 6.63 

Distribution of realized population: 

  
̅̅ ̅  (      )∑     

     
      

for             . 

 

Mean = 376,975 

Variance = 205,145 

Minimum Value = 375,790 

Maximum Value = 378,522 

  
Figure 4.4: Summary statistics for one poaching gang;  (  )      ,   

    

 

Over the one thousand iterations of the one thousand year realization time 

period I find that for the one poaching gang, with  (  )       and   
   , the mean 

number of realized poaching expeditions is 5.51 with a variance of 0.118.  The 

elephant population, for the interval            ,  is centered at a mean of 

376,975 with a variance of 205,145.  None of the one thousand iterations resulted in 

elephant population extinction.   

The corresponding descriptive statistics and distributions with two poaching 

gangs are shown in Figure 4.5.  I note that the mean and variance of the number of 

realized poaching expeditions approximately double while the average elephant 

population declines to 357,384.  The variance of the elephant population more that 

doubles to 451,586.  The planned poaching expeditions remains at   
   9, and the 
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average number of realized expeditions increases to 11.  Similar to the case with one 

gang none of the 1,000 simulations resulted in extinction.  

 

Distribution of realized number of trips:  

  ̅̅̅  (      )∑     
     
     

for            . 

 

Mean = 11.014 

Variance = 0.2383 

Minimum Value = 9.43 

Maximum Value = 12.39 

Distribution of realized population: 

  
̅̅ ̅  (      )∑     

     
      

for            . 

 

Mean = 357,384 

Variance = 451,586 

Minimum Value = 355,413 

Maximum Value = 359,969 

  
 

Figure 4.5: Summary statistics for two poaching gangs;  (  )      ,   
    

 

The results with three poaching gangs are shown in Figure 4.6.  The 

distribution of poaching expeditions shifts to the right (it is now centered at a mean of 

16.53 realized expeditions).  The elephant population shifts downward to a time series 

with a mean of 327,857 a variance of 1,025,570.  With the detection probability set at 

its base-case value of  (  )      , the qualitative behavior of the system remains 

similar for one, two, and three gangs; each gang attempts   
    planned poaching 

expeditions over the one thousand year time horizon.  With three poaching gangs 
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operating the average number of realized expeditions increases to 16.53.  I note that 

this is lower than the critical value of expeditions,           .  This provides 

insight into why the elephant population does not result in extinction for any of the 

simulations with the base-case parameter values. 

 

Distribution of realized number of trips:  

  ̅̅̅  (      )∑     
     
     

for             . 

 

Mean = 16.53 

Variance = 0.3466  

Minimum Value = 14.50 

Maximum Value = 18.49 

Distribution of realized population:  

  
̅̅ ̅  (

 

    
)∑     

     
     

for             . 

 

Mean = 327,857 

Variance = 1,025,570 

Minimum Value = 324,805 

Maximum Value = 331,049 

  

Figure 4.6: Summary statistics for three poaching gangs;  (  )      ,   
    

 

I now examine how the dynamics of elephant population and the poaching 

organizations’ economic decision-making change as a result of more high-tech 

poaching.  More high-tech poaching is represented by a lower probability of detection 

given the use of modern equipment by the poaching gangs.  One can also argue that 

more high-tech poaching would increase the cost of poaching expeditions from the 



 

 

90 

 

base-case value listed in Table 4.2.  In this chapter I examine this in a sensitivity 

analysis of the results where the economic parameters are varied.   

Reducing the interception probability to  (  )       causes the optimal 

number of planned poaching expeditions to increase to   
     as noted in Table 4.2.  

As more poaching gangs participate in the illegal business of elephant poaching, the 

frequency with which       increases, and so does the likelihood that the 

population is driven to extinction.  In Figure 4.7 I show the distributions of average 

realized poaching expeditions and average elephant populations with just one 

poaching gang.  The annual average of the realized number of poaching expeditions is 

11.79, which is below the critical value,     23.4375.  Thus here again I note that the 

elephant population does not decline to extinction, and attains a stationary distribution 

much like the previous three cases.  The average elephant population fluctuates around 

a mean of 353,456 with a variance of 1,057,366.     
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Distribution of realized number of trips:  

  ̅̅̅  (      )∑     
     
     

for             . 

 

Mean = 11.79 

Variance = 0.501  

Minimum Value = 9.66 

Maximum Value = 13.88 

Distribution of realized population: 

  
̅̅ ̅  (      )∑     

     
      

for             . 

 

Mean = 353,456 

Variance = 1,057,366 

Minimum Value = 350,782 

Maximum Value = 356,553 

  
Figure 4.7: Summary statistics for one poaching gang;  (  )      ,   

     

 

An interesting mathematical phenomenon occurs when one considers the 

addition of a second poaching gang when  (  )      .  The results are shown in 

Figure 4.8 where a stochastic bifurcation seems to occur causing a change in the 

stochastic behavior of the resource system.  One way to analyze a stochastic 

bifurcation is through the statistical analysis of the time to cross a critical value for the 

state variable (Diks and Wagener, 2006).  I assume a critical value for the state 

variable (elephant population) of     150,000.  Then I examine the number of 

simulations (realizations) out of 1,000 where the elephant population drops below 

    150,000, and the median time to drop below     150,000.  Figure 4.8 is one 

such realization out of 1,000.  In this realization the elephant population undergoes a 
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steep decline but appears to stabilize at a new stationary distribution for 500     

1,000 centered at a mean of 105,067 with a standard deviation of 15,359.  Due to the 

insensitivity of   
 , the optimal number of planned poaching expeditions remains at 19 

for both gangs.  

A more detailed analysis of the crossing statistics reveals that the median time 

for the elephant population to drop below     150,000 is   (  )     
         

 

three out of the one thousand stochastic simulations remained above     150,000 for 

500     1,000.  In contrast, when  (  )   0.10 none of the stochastic simulations, 

with one, two, or three poaching gangs, caused the elephant population to drop below 

    150,000.  This was also true for  (  )   0.05 when there was only one poaching 

gang (see Figure 4.7).   
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Harvest:  

 

Mean = 9,926 

St. Dev. = 5,954 

Minimum Value = 0  

Maximum Value = 28,367 

Elephant population: 

 

Mean = 166,013 

St. Dev. = 65,602  

Minimum Value = 78,600  

Maximum Value = 303,163 

  
  

Figure 4.8: Harvest and elephant population with two poaching gangs (single 

simulation;  (  )      ).  

 

To continue our line of analysis adopted for the previous cases, we plot the 

average of 1,000 simulations for the case of two gangs operating under  (  )      .  

One sees a mean average for realized poaching expeditions increase to 23.63, which is 

higher than the critical value,           .  The variance of the average elephant 

population is split into two parts:  432,267,466 for   = 100 to 500, and 121,045,740 for 

  = 501 to 1000.  The results are shown in Figure 4.9.  This difference in the variance 

for the two time periods shows that the initial decline is steeper than the latter.  The 

frequency with which       is such that the elephant population exhibits a slow 

decline toward extinction although none of the 1,000 realization resulted in extinction 
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before    1,000.  The stochastic nature of realized poaching expeditions, where in 

some years      , can significantly slow the descent toward extinction.  In years 

where       the elephant population may increase in the following year.  The 

average harvest of the two poaching organizations combined is estimated to be 8,896 

elephants over the 1,000 year time horizon.  A maximum average harvest of 23,932 

occurs at the starting period in the simulations, which corresponds to the year 2006.  I 

note that this average maximum realized harvest of 23,932 is close to the estimated 

23,000 elephants killed in the empirical study of Wasser et. al. (2007).   

 

Distribution of realized number of trips:  

  ̅̅̅  (      )∑     
     
     

for             . 

 

Mean = 23.63 

Variance = 1.039 

Minimum Value = 20.36 

Maximum Value = 27.24 

Distribution of realized population: 

  
̅̅ ̅  (      )∑     

     
      

for             . 

 

Mean = 131,872 

Variance (  = 100 to 500) = 432,267,466  

Variance (  = 501 to 1000) = 121,045,740 

Minimum Value = 88,922 

Maximum Value = 208,919 

  
Figure 4.9: Summary statistics for two poaching gangs;  (  )      ,   
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When the number of poaching gangs increases to three, the descent to low 

population levels is much more rapid.  Here too I note the occurrence of a stochastic 

bifurcation.  The median crossing time occurs sooner when there are three gangs as 

opposed to two gangs, given a probability of detection and interception of 

 (  )  

  (  )     
           

 182, and the elephant population dropped below the chosen critical 

value of    150,000 in all simulations. 

In Figure 4.10 most of realized poaching expeditions are above            

with a maximum annual average of   ̅̅̅   39.26.  The elephant population goes into an 

immediate and steep decline and by period    200, the population has declined below 

14,000 elephants and the three poaching gangs have reduced their number of planned 

poaching expeditions to between   
   10 and 12.  This alters the dynamics of the 

elephant population.  A reduction in the planned poaching expeditions by all three 

gangs may stabilize the population at a low steady-state level of 1,497 after    150.  

The variance of the average elephant population for the years    100 to 150 is 

7,664,541, while for the years    151 to 1,000 the variance is much lower at 130,024.  

The average harvest level with three poaching organizations is estimated to be 897 

elephants over the time period   151 to 1,000.  The maximum average harvest was 

estimated to be 26,806 elephants at the beginning time period of these simulations.  

This is higher than the corresponding 23,932 elephants killed under the previous case 

of two gangs, each facing  (  )   0.05.  

 



 

 

96 

 

Distribution of realized number of trips:  

  ̅̅̅  (      )∑     
     
     

for             . 

 

Mean = 25.54 

Variance = 17.14 

Minimum Value = 21.46 

Maximum Value = 39.26 

Distribution of realized population: 

  
̅̅ ̅  (      )∑     

     
      

for             . 

 

Mean = 1,497 

Variance (  = 100 to 150) = 7,664,541 

Variance (  = 151 to 1000) = 130,024 

Minimum Value = 1,001 

Maximum Value = 13,540 

  
Figure 4.10: Summary statistics for three poaching gangs;  (  )      ,   

      

 

Given the dramatic changes in system dynamics with additional gangs in 

operation under different levels of detection and interception probability, I summarize 

the qualitative dynamic behavior of the above six cases in Table 4.3. 

 

Table 4.3: Stochastic Behavior of the Elephant Population with One, Two, and Three 

Poaching Gangs when  (  )   0.10 and  (  )   0.05 

 One Gang Two Gangs Three Gangs 

 (  )   0.10 Stationary 

distribution 

Stationary 

distribution 

Stationary 

distribution 

 (  )   0.05 Stationary 

distribution 

Apparent stochastic 

bifurcation 

Stochastic 

bifurcation 
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One can potentially determine the number of poaching organizations that 

might operate under “open access” conditions with our base-case set of model 

parameter values.  Despite the small population levels with three gangs in operation, 

poaching is still profitable with median net revenue of $26,295 per year.  With the lure 

of profits additional organizations may enter the illegal business of elephant poaching 

in the Southern African range states.  This would occur until it is no longer profitable 

for additional organizations to operate, or the elephant population goes extinct.  It was 

noted in Figure 4.10 that the minimum population was 1,001 over the time period    

151 to 1,000.  There might still exist economic incentive for additional poaching 

organizations to enter the illicit poaching market.  This might happen even though the 

elephant population settles into a low steady state value.  Poaching gangs might target 

smaller sub-populations of elephant, and this would potentially lead to extinction.   

In Table 4.4 I report the average statistics from simulation exercises with an 

increase in the number of poaching gangs in operation to ten, fifteen, and twenty 

gangs.  This is done for the two values of the probability of detection,  (  )   5% and 

10%.  I note that extinction of the elephant population in the Southern African range 

states occurs in each of the scenarios considered.  The number of planned poaching 

trips/expeditions drops down to 3, 2, and 1 when the number of gangs increases to 10, 

15, and 20.  However in the beginning time periods of the simulation when the 

population is high the total harvest increases to as much as 166,226 by 20 gangs.  As a 

result of high harvest levels initially, the total harvest by these poaching gangs 

eventually declines to 14 for 20 gangs under    5%.  The total number of realized 

poaching trips/expeditions declines to little as 17, which implies that for 20 gangs the 
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average is less than 1 poaching expedition per year.  With the possibility of elephant 

populations settling into low levels, it may be unviable to support high-tech, organized 

poaching, and there might be an evolution back to small-scale, local, low-tech, gangs 

operating under open access conditions.  

 

 

Table 4.4: Elephant extinction under open access in the Southern African range states 

 10 gangs 15 gangs 20 gangs 

    5%    10%    5%    10%    5%    10% 

Population (median) 363 680 324 417 318 405 

Total Harvest (minimum) 18 33 14 20 14 17 

Total Harvest (median) 21 41 19 25 19 24 

Total Harvest (maximum) 92,144 43,519 131,396 65,164 166,226 90,468 

Total Poaching trips 

(minimum) 22 21 18 20 18 17 

Total Poaching trips 

(median) 26 26 25 25 24 24 

Total Poaching trips 

(maximum) 131 61 184 90 243 118 

Profit minimum (per gang) 984 5,097 406 1,024 315 847 

   3 3 2 2 1 1 

Elephant extinction Yes Yes Yes Yes Yes Yes 

 

 Lastly, in Table 4.5 I consider changing the economic parameter values in our 

model to analyze how they affect the key results of this chapter.  The economic 

parameters include the black market ivory price,  , the cost per poaching expedition, 

 , and the catchability coefficient,  .  The sensitivity analysis is conducted for a single 

poaching gang.  For the black market price I consider an increase and a decrease from 

the base-case value of    $3,000 for a pair of ivory tusks in Table 4.2.  I note that the 

number of planned poaching expeditions does not change for either of these cases, and 

remains at     9.  Only the profit increases significantly when the price is raised to 

$4,000.  Changing the cost parameter also does not affect the key results of this 
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chapter.  The planned number of poaching expeditions remains at     9.  I also 

examine what happens when the catchability coefficient doubles from    2.56*10
-3

 

to 5.12*10
-3

.  The median harvest increases to 10,035 and the median population 

declines to 356,849 compared to their respective base-case values.  However there is 

no change in the planned poaching expeditions.  When the catchability coefficient 

decreases from    2.56*10
-3

 to 2.56*10
-4

 I note that median harvest declines 

dramatically to 550.  Again there is no change in the planned poaching expeditions, 

and it remains at     9.   
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Table 4.5: Sensitivity analysis of model parameters for the case of one poaching gang. 

 

Base case 

parameters 
a
    500    4,000    3,000    500    5.12*10

-3
    2.56*10

-4 

Population (minimum) 375,790 371,920 372,448 373,296 373,638 348,187 390,205 

Population (median) 376,975 376,948 376,741 377,005 376,921 356,849 390,586 

Total Harvest (minimum) 1,637 2,024 2,021 2,305 1,910 3,413 270 

Total Harvest (median) 5,307 5,304 5,412 5,364 5,330 10,035 550 

Total Harvest (maximum) 8,028 8,107 8,075 8,105 8,513 15,770 889 

Total Poaching trips 

(minimum) 4 2 2 2 2 1 2 

Total Poaching trips (median) 5 5 5 5 5 5 5 

Total Poaching trips 

(maximum) 6 8 8 8 8 8 9 

Profit minimum (per gang) 8,982,000 1,478,000 12,091,000 9,108,200 8,895,000 16,716,000 924,480 

   9 9 9 9 9 9 9 

Elephant extinction No No No No No No No 
a
 Refer to Table 4.2 for the base-case values of the economic parameters of the model.   
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4.5   Conclusions and Caveats  

This chapter has developed a model of high-tech, stochastic poaching where the 

number of elephant killed by poachers is a random variable determined by the realized 

number of completed poaching expeditions.  Stochastic poaching induces a stochastic 

evolution in the elephant population.  The salient results of this chapter are as follows.  

First, the optimal number of planned poaching expeditions may be relatively 

insensitive to the black-market price for ivory and the elephant population, but quite 

sensitive to the probability of detection and interception by anti-poaching patrols.  

Second, increasing the number of poaching gangs not only lowers the mean of the 

elephant population but also increases the variance of its stationary distribution, when 

a stationary distribution exists.  Third, if poaching gangs were to become more high-

tech and thereby lower the probability of detection by anti-poaching patrols, the 

number of planned poaching expeditions increases and the frequency with which 

realized expeditions exceed the critical value,    (   )  ⁄ , may increase.  This 

may cause the elephant population to start a slow descent toward extinction.  Fourth, 

when the probability of interception is low (i.e.  (  )      ), the addition of a third, 

high-tech poaching gang results in a stochastic bifurcation where the elephant 

population permanently drops below a critical threshold.  This can cause the poaching 

gangs to lower the number of planned poaching expeditions to below the critical 

threshold of           , and thereby allow the elephant population to stabilize at a 

low level.   
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Under open access conditions there is incentive for additional poaching gangs 

to operate as long as positive profits are expected, or the elephant population is not 

extinct.  I examined this possibility for up to twenty poaching gangs.  The planned 

number of poaching expeditions declines to one trip per year when twenty gangs 

operate.  There are high levels of poaching in the beginning time periods of our 

simulations, and this causes the population to rapidly decline towards extinction.  With 

rapidly declining elephant populations the planned expeditions eventually begin to 

decline.  The expected profits also decline and this decreases the incentive for 

additional gangs to operate.      

The simulated estimates of poaching or illegal harvest levels are corroborated 

by anecdotal evidence and reports of elephant poaching in the Southern African range 

states.  I noted earlier in this chapter that Wasser et. al. (2007) estimated that  

approximately 23,000 savannah elephants were illegally harvested from the southern 

African range states in 2006.  The closest simulated result that I derived was an 

average of 23,932 elephants killed per year across the Southern African elephant range 

states.  This was the scenario of two poaching gangs that became more high-tech, 

thereby lowering the probability of detection to  (  )   0.05.  The planned number of 

expeditions increased to   
   19 from the base-case value of 9.  In this scenario I also 

noted that the elephant population begins a slow descent towards extinction.   

The model in this chapter has no spatial dimension; more realistic models 

should incorporate spatial differences between the range states in Southern Africa, 

including suitable habitat, the current size of elephant populations in those countries, 

the migration of elephant between countries, and most importantly, the country-
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specific investment to prevent poaching.  Based on the location of elephant and the 

expected number of anti-poaching patrols, a poaching gang would need to determine 

not only the number of planned expeditions but their location.  The resulting model 

might be viewed as a repeated game between poachers and anti-poaching patrols with 

sub-game strategies that would depend on the location of elephant herds and the 

expected deployment of anti-poaching patrols.  High-tech poaching will require a 

high-tech, game-theoretic strategic response.  In the next chapter of this dissertation I 

develop a model of strategic interaction between poachers and anti-poachers in terms 

of their location choices in space.    
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CHAPTER 5 

 

POACHING AND THE PROTECTION OF AN ENDANGERED SPECIES:  

A GAME-THEORETIC APPROACH 

 

 

5.1 Introduction 

As noted in Chapter 4 the poaching of endangered species has increased significantly 

over the last decade.  Species such as elephants and rhinos have been subject to 

increasing levels of poaching, which pose a significant threat to their sustainability (Sas-

Rolfes, 2012; Wasser et al., 2007; Wasser et al., 2008).  Endangered species are often 

distributed over large areas of Africa and Asia.  Anti-poaching or protection units have 

limited resources at their disposal, which makes it unlikely that they can choose to 

simultaneously protect all areas inhabited by the endangered species.  Anti-poaching 

units would have to behave strategically by choosing where to devote patrolling activities 

so as to increase the chances of intercepting and destroying poaching units.  Poaching 

units might also behave strategically by choosing where to poach so as to increase the 

chances of avoiding anti-poaching units.  In this chapter we propose a novel theoretical 

framework to examine such strategic interaction and relate it to the ecological aspects of 

endangered species – including population growth over time and population dispersal 

over space.  This chapter asks the following questions:  (1) “What anti-poaching strategy 

can best combat the best strategy of a poaching unit in terms of location choices?” and (2) 

“How do these strategies affect the population sustainability of an endangered species?”   

The biological literature provides interesting insight into strategic interaction 

between opposing entities.  For instance, in host-parasite systems such interactions have 
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been modeled as zero-sum games, which provide a framework to study the evolutionary 

fitness of strategies for hosts and parasites (Adami, Schossau, & Hintze, 2012; Cohen & 

Newman, 1989; Kerr et al., 2002; Kirkup & Riley, 2004).  A parasite may favor one 

distribution of possible strategies so as to maximize the mean change in its net 

reproductive rate.  The host, in defending itself from the parasite, will favor a different 

distribution, one that minimizes the net reproductive rate of the parasite (Cohen & 

Newman, 1989).  The value of the host-parasitic interaction may be defined as the mean 

change in net reproductive rate when evolutionary fitness forces the parasite to maximize 

the mean change in its net reproductive rate, given that the host is evolving (choosing 

strategies) by minimizing the net reproductive rate that the parasite can achieve.   Cohen 

& Newman (1989) find that the best mean change in the parasite’s net reproductive rate 

results from the randomization of strategies from stable distributions for parasites and 

hosts.  In the context of this chapter we provide a framework to examine the strategic, 

antagonistic interaction between opposing units – poachers and anti-poachers.  

Economists usually model poaching as optimal harvesting decisions under open 

access, steady-state equilibrium i.e. species population growth is exactly offset by species 

population harvest in bio-economic models.  Such models predict how steady-state levels 

of endangered species populations respond to conservation policies and changes in 

economic parameters.
6
  Other studies note that ecological systems are often in a state of 

flux and therefore models should extend their scope beyond steady-state equilibrium  

                                                 
6
 A number of studies analyze how poaching is affected by various conservation policies – including trade 

bans (Bulte & van Kooten, 1999, Burton, 1999), fines for poaching (Bulte & van Kooten, 1999, Damania, 

Milner-Gulland, & Crookes, 2005, Damania et al., 2003, Milner-Gulland & Leader-Williams, 1992, 

Skonhoft & Solstad, 1998), alternative livelihoods options when there are conflicting land use and species 

conservation priorities(Fischer, Muchapondwa, & Sterner, 2011, Johannesen & Skonhoft, 2005, Skonhoft, 

2007), price-control through supply restrictions(Brown & Layton, 2001, Kremer & Morcom, 2000, Mason, 

Bulte, & Horan, 2012), and the controversial shoot-poachers-on-sight policy (Messer, 2010).  
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(Barrett & Arcese, 1998; Skonhoft, 2007).  Moreover species populations are known to 

disperse over large areas by virtue of population movements or migration.  When 

studying ecological systems that have resources distributed heterogeneously in space 

(Sanchirico & Wilen, 1999a) note that a considerable amount of economic behavior of 

resource harvesters is unaccounted for when a model ignores such heterogeneity.  Bulte 

et al. (2004) and Skonhoft (2007) note that models linking ecology and economics should 

incorporate variability, complexity, scale, and uncertainty; thereby emphasizing the need 

for further research on the interaction between ecological variability and the economic 

behavior of individuals.  With ecosystems continually changing models should 

incorporate ecological variability of interconnected habitats and the opportunity costs of 

protecting them (Bulte et al., 2004).  For instance, in a spatial econometric study Frank & 

Maurseth (2006) find that elephant population changes in one country positively affect 

population changes in neighboring countries or habitats.   Frank & Maurseth (2006) 

hypothesize that poachers account for variations in anti-poaching enforcement in 

different habitats; thereby emphasizing that economic behavior is dependent on the 

spatial aspects of resource distribution.  Natural resource models allow for spatial 

heterogeneity of the resource and connectivity between meta-populations through 

population dispersal (Conrad & Smith, 2012; Sanchirico & Wilen, 1999a; Skonhoft, 

2007).
7
   

                                                 
7
 (Sanchirico & Wilen, 1999a) show how the dispersal of meta-populations can be modeled in several 

ways – such as fully integrated systems, closed systems, sink-source systems, and spatially linear systems.  
In a fully integrated system biomass disperses directly from one patch to any other patch in the system.  In 
a closed system the maintenance of biomass density within each region is only determined by its own 
production and no dispersal occurs anywhere in the system.  In a sink-source system one or more patches 
provide unidirectional biomass movement to other patches.  In a spatially linear system one can have 
dispersal in a pairwise fashion between adjacent patches.  Animal population dispersal is often observed as 
being of the sink-source variety – for instance the African savannah elephant (Muchapondwa & Ngwaru, 
2010; Van Aarde et al., 2008), the wildebeest (Johannesen & Skonhoft, 2004), reindeer and moose 
(Skonhoft, 2007) usually migrate seasonally depending on food availability in different climatic regions.   
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In this chapter we do not examine resource harvesting and protection decisions in 

terms of their optimal magnitudes or levels (since this has been dealt with extensively by 

previous studies as noted).  Instead we focus on the strategic interaction between 

poachers and anti-poachers in terms of choosing locations (i.e. patches or habitats) to 

poach and protect respectively in the presence of a spatially distributed resource.  

Successful poaching (unsuccessful protection) versus unsuccessful poaching (successful 

protection) will be the stochastic outcome of a repeated game.  Using insights from the 

biological literature on antagonistic interactions, we will consider how randomization 

might lead to higher evolutionary fitness, or higher payoffs, for both poaching units as 

well as anti-poaching units.  We will also examine the effects of different location choice 

strategies on species population dynamics and sustainability.  In section 5.2 we lay out 

the components of the game, the payoffs and potential strategies of the opponents, a 

solution for a Nash equilibrium, and simulations of the model.  In section 5.3 we provide 

a discussion of the model’s simulation results, some caveats, and a conclusion.   

 

5.2.1 A Model of Poaching and Protection 

Consider a “space” represented by a three-by-three grid as shown in Figure 5.1.  The 

protected species population is distributed spatially and temporally across the nine 

patches or cells as and when seasonal migration takes place.  In season one of the first 

year the population is distributed over seasonal patches 1, 2, & 3 in the row denoted 

season    1.  In season two migration of the meta-populations in the three seasonal 

patches takes place from row    1 to row    2, when the meta-populations flow to the 

subsequent three seasonal patches.  Migration routes follow a northward direction from 
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season one through season three, and then turn southward in season four, returning to the 

seasonal patches 1, 2, & 3 at the beginning of season one in the subsequent year.  

Migration coefficients determine the population distribution across the grid, over the four 

seasons, in each year.  Thereby the meta-populations are distributed in the seasonal 

patches 1, 2, & 3 in seasons one, two, three, and four in the rows denoted by season    

1,    2,    3, and    4 respectively.  The migration cycle continues year after year.   
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Figure 5.1: Space within which seasonal migration, poaching and anti-poaching 

patrolling take place.  

 

A poaching unit and an anti-poaching unit choose patches to operate in each 

season.  The poaching unit wants to choose a patch that has no anti-poaching unit in it in 

order to successfully harvest the patch population.  At the same time the anti-poaching 

unit wants to choose the same patch as the poaching unit in order to intercept it, and 

thereby successfully preserve the resident patch population.  If the poaching unit selects a 

different patch from the anti-poaching unit , the poaching unit kills some proportion of 

the resident patch’s animal population.  If both choose the same patch then the poaching 

unit is decommissioned for the rest of that year, and a new poaching unit forms in season 
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one of the following year.  In each season both units know the population distribution in 

the three seasonal patches.  We use the following notation for our model:  

 

         : seasonal patch index,  

         : number of seasons within a year, 

         : year index, 

      : species meta-population in time period  , in season  , in patch  .  

      : migration coefficient for meta-population flowing from patch   in season  , to 

patch   in season    ;           , ∑       
 
     , 

     : kill rate of the poaching unit, 

                : population lost to poaching in year  , in season  , in patch  ,  

               (             )  ∑       (             )   : species meta-population in 

year  , in season    , in patch  , 

      : initial population distribution in    , in    , in patch  ,  

In season one of each year the population is augmented by the offspring of 

population that survives poaching and natural mortality in the previous year.  The 

surviving meta-populations in season one of the next year,    , can be denoted as per 

the iterative map (5.1), with  (⋅) being a population growth function:  

 

         {      [        (⋅)        ]  ∑       [        (⋅)        ]   }  (5.1) 

 

Given the seasonal location of the species’ meta-populations, the poaching unit 

and the anti-poaching unit must make binary decisions        {   } and        {   } in 
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season      1, 2, 3, and 4, in patch   1, 2, and 3.  With only one patch chosen by the 

poaching unit and the anti-poaching unit we impose the restriction that ∑           and 

∑          .   

 

5.2.2 Payoffs and Strategies 

Location or patch choice strategies could potentially depend on the population 

distribution in the seasonal patches.  We assume the poaching unit is myopic and 

maximizes the expected payoff in each season given the chosen strategy of the anti-

poaching unit.  With myopic poaching in each season the anti-poaching unit maximizes 

its own expected payoff, or equivalently minimizes the expected loss to poaching for a 

given population distribution.  Similar to how hosts and parasites choose to randomize 

strategies for their own evolutionary fitness (as noted in section 5.1) we will now 

consider whether randomization of patch choice strategy by poaching and the anti-

poaching units lead to higher payoffs when the game is repeated.  The poaching unit 

might consider randomizing using the population in the seasonal patches to generate a 

discrete distribution for selecting a patch in which to poach.  The anti-poaching unit 

similarly generates a discrete distribution for selecting a patch to patrol.  For ease of 

notation we can ignore the season ( ) and time ( ) subscripts of the meta-populations in 

the seasonal patches and refer to       ,       , and        simply as   ,   , and   . 

As payoffs let us consider the following.  If, for instance, in a given season the 

poaching unit chooses seasonal patch   and the anti-poaching unit chooses another 

seasonal patch   (  ) then the poaching unit achieves a payoff of    , which is the 

population killed since the poaching unit would have successfully evaded the anti-
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poaching unit.  The anti-poaching unit therefore loses     of the population to poaching.  

If however both choose the same patch then the poaching unit is destroyed and there is no 

loss of that patch’s resident population to poaching.  Consequently the poaching unit is 

destroyed and there are no gains for the poaching unit.
8
  We assume that the cost of 

choosing a patch is zero for both the poaching unit and the anti-poaching unit.  We 

further assume that the gain to the anti-poaching unit when choosing the same patch as 

the poaching unit is only the amount of the resident species population that is not lost to 

poaching, i.e. zero.  We can thereby formulate the payoffs and losses, to the poaching 

unit and anti-poaching unit respectively, as a zero-sum game.  Since the kill rate of the 

poaching unit ( ) is a common term we can ignore it in the payoff matrix shown in 

Figure 5.2.  

 

  Anti-poaching unit  

  Patch   (  ) Patch   (  ) Patch   (  ) 

 Patch   (  )                   

Poaching unit  Patch   (  )                   

 Patch   (  )                   

Figure 5.2: Payoff matrix of the seasonal game.  

We denote the set of possible actions (patch choices of the poaching unit and the 

anti-poaching unit) as   {     }   We denote    {(        )    |(        )  

   ∑    
 
     } as the set of probability distributions of the poaching unit on  .  

Similarly we denote    {(        )    |(        )     ∑    
 
     } as the set 

                                                 
8
 We ignore any monetary cost (such as poaching fines) to the poaching unit when decommissioned since 

this could be considered as a transfer from the poaching unit to the patrol with the same property of a zero-
sum payoff in the game.  
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of probability distributions of the anti-poaching unit on  .    (     ) is the poaching 

unit’s payoff associated with the action pair (     )     .  The poaching unit’s 

expected payoff for a pair of mixed strategies (   )        would equal 

 [  (   )]  ∑  (  ) (  )(     )      (     ).   Similarly the anti-poaching unit’s 

expected payoff for a pair of mixed strategies (   )        would equal 

 [  (   )]  ∑  (  ) (  )(     )      (     ).   

The payoff matrix in Figure 5.2 shows that there are no dominant strategies for 

either the poaching unit or the anti-poaching unit.  We use the property that any two-

player game must have at least one Nash equilibrium (Gibbons, 1992) to derive a solution 

to the game.  With no dominant strategies for either player the solution is that of a mixed 

strategy Nash equilibrium.  We list the associated Nash equilibrium probabilities over the 

action spaces for the poaching unit and the anti-poaching unit.  The derivation of the 

mixed strategy Nash equilibrium and a proof of its uniqueness are provided in Appendix 

5.1.  
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In a system with two seasonal patches we can similarly derive the associated 

mixed strategy Nash equilibrium probabilities over the action spaces of the poaching unit 

and the anti-poaching unit.  The derivation and the uniqueness proof are provided in 

Appendix 5.1.    
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In order to derive the intuition behind this result we turn to the two-player game 

of rock-paper-scissors.  In the two player zero-sum game of rock-paper-scissors 

Nouweland (2007) analytically proves that, with equal payoffs for each of the three 

actions, the unique mixed strategy Nash equilibrium is to play each action with equal 

probability, i.e. one-third each.  If however one were to modify the game of rock-paper-

scissors with unequal payoffs then it can be shown that on average the players will each 

choose an action depending on the chances of that action defeating their opponent’s 

chosen action in such a way that expected payoffs for each action tend towards zero in 

equilibrium.
9
  Drawing from the zero-sum game of rock-paper-scissors with uneven 

payoffs we can infer an interpretation of the mixed strategy Nash equilibrium 

((  
    

    
  ) (  

    
    

  )) in the economic game of poaching and protection.  The 

poaching unit’s probability of choosing a location depends on how often he expects the 

anti-poaching unit to choose the other location(s), given the seasonal population 

distribution.  The anti-poaching unit’s probability of choosing a location to patrol 

depends on how often it expects the poaching unit to choose that location, thereby 

minimizing the expected loss of population to poaching given the seasonal population 

distribution.  We note that if the meta-populations were to be evenly distributed in a 

season then the mixed strategy Nash equilibrium values would be exactly (( ⁄    ⁄

                                                 
9
 For example if the wining payoffs to rock, paper, and scissors are 1, 3, and 5 (i.e. rock beating only 

scissors with a payoff of 1, paper beating only rock with a payoff of 3, and scissors beating only paper with 
a payoff of 5), then it can be shown that players would choose to play rock with 5/9

th
 probability, paper 

with 1/9
th

 probability, and scissors with 3/9
th

 probability. 
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   ⁄  ) ( ⁄    ⁄    ⁄  )) in the three seasonal patches system, and (( ⁄    ⁄

 ) ( ⁄    ⁄  )) in the two seasonal patches system.      

 

 

5.2.3 Simulations of the Game 

Having derived a mixed strategy Nash equilibrium in our game of poaching and 

protection we proceed to study the effect of this strategy on the population dynamics of 

an endangered species.  The model is applied to the case of the migratory savannah 

elephant (Loxodonta africana).  The logistic growth function is often used to model 

elephant population dynamics (Bulte & van Kooten, 1999; Milner-Gulland & Leader-

Williams, 1992).  Following Milner-Gulland & Leader-Williams (1992) we adopt a 

skewed-logistic specification for the population growth function  ( )    

  (  (  ⁄ ) ).    is the population,   is the intrinsic net growth rate of population,   is 

the habitat carrying capacity, and   is a skew parameter.  The surviving adult population 

at the end of season four of year   is augmented by the birth of juveniles in season one of 

the next year     as per the iterative map previously defined in (5.1):  

 

         {      [      (   (  (        ⁄ )
 
))        ]

 ∑       [      (   (  (        ⁄ )
 
))        ]

   
} 

 

 

Adult female elephants give birth to approximately one offspring every three 

years, which implies a population pregnancy rate of approximately 0.33 per year 

(Armbruster & Lande, 1993).  The average natural mortality rate of elephants has been 
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estimated at 0.27, which implies a net intrinsic growth rate of    0.06 (Armbruster & 

Lande, 1993).  A skew parameter greater than one (   1) is used to model population 

dynamics of large mammals (Cromsigt et al., 2002); Bulte & van Kooten (1999) and 

Milner-Gulland & Leader-Williams (1992) set    7.  We normalize the carrying 

capacity of the seasonal “space” to one (i.e. ∑      1), and assume it to be equally 

divided between the seasonal patches.   

Using the data of Bulte & van Kooten (1999) on illegal off-take of elephants in 

African range states we calculate the off-take rates as varying between 0.03% and 3.8% 

of the resident elephant population in the mid-1990s.  Noting the reports of organized 

criminal syndicates involved in elephant and rhino poaching in African range states 

(Mullen & Zhang, 2012; Sas-Rolfes, 2012; Shukman, 2013; Wassener, 2013; Wasser et 

al., 2008) it is likely that the scale and intensity of poaching has increased since the 

1990s.  Blanc (2007) estimates the savannah elephant population in Southern Africa as 

approximately 300,000 individuals.  Based on data from seizures of illegal ivory 

shipments amounting to roughly 24 tons in the year 2006.  Wasser et. al. (2007) use DNA 

analysis to estimate that  approximately 23,000 savannah elephants were illegally 

harvested from the southern African range states.  This evidence suggests an illegal off-

take rate of approximately 7% to 8% in the year 2006.  For the base-case set of 

parameters in the model we assume a poaching off-take/kill rate of    0.07.  Table 5.1 

lists the base-case values of the model’s parameters.  
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Table 5.1: Model base-case parameter values  

Parameter  Value Source 

Intrinsic growth rate    0.06 (Armbruster & Lande, 1993) 

Logistic growth skew 

parameter  
   7 (Bulte & van Kooten, 1999; Milner-

Gulland & Leader-Williams, 1992) 

Poaching/off-take rate     0.07 Based on data from Wasser et. 

al.(2007) 

Initial meta-

populations  
        0.15  

(   1,2,3) 

 

Carrying capacity ∑       1  

Number of time 

periods 
   100  

 

 

We assume an evenly distributed initial elephant population of            , 

           , and            .  Table 5.2 lists the migration coefficients for the spatial-

temporal dispersal of the meta-populations in our space (Figure 5.1).  For simplicity these 

migration or dispersal coefficients are held constant over time.   

 

Table 5.2: Seasonal migration coefficients 

   :                                  

                                  

                                  

   :                                  

                                  

                                  

   :                                  

                                  

                                  

   :                                  
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As noted previously in the setup of the game the poaching unit wants to choose a 

patch with no anti-poaching unit, and the anti-poaching unit wants to choose the same 

patch.  If different patches are selected the poaching unit kills some proportion ( ) of the 

resident population.  If both choose the same patch then the poaching unit is 

“decommissioned” for the rest of that year, but a new poaching unit forms in season one 

of the next year.  Given initial conditions, the model parameters in Table 5.1, and the set 

of migration coefficients in Table 5.2, the random process of poaching and protection 

will cause the elephant population to evolve stochastically over   years.  We simulate 

approach paths for a period of    100 years (i.e. 400 seasons) to garner insight of the 

long-term effects of location strategies on species population dynamics.  Qualitatively 

different approach paths would arise depending on the type of strategy chosen by the 

poaching unit and anti-poaching unit.  

We first study the effect on elephant population dynamics when the poaching unit 

and the anti-poaching unit randomize their seasonal location choices based on their 

respective mixed strategy Nash equilibrium probabilities.   

 

Mixed strategy Nash equilibrium randomness: 

((        ) (        ))  ((  
    

    
  ) (  

    
    

  )) 

 

Next we study the effect on elephant population dynamics when the poaching unit 

and the anti-poaching unit randomize their location choices uniformly with equal 

probability of choosing any of the seasonal locations. 
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Mixed strategy uniform randomness:  

((        ) (        ))  ((  ⁄    ⁄    ⁄ ) (  ⁄    ⁄    ⁄ )) 

 

Given the previous two sets of strategies we consider two possible combinations 

of them.  This can be used to determine if there is incentive for either the anti-poaching 

unit or the poaching unit to deviate from the Nash equilibrium.  In the first combination 

the anti-poaching unit chooses the mixed Nash equilibrium strategy and the poaching unit 

deviates by choosing the uniform mixed strategy.  In the second combination we look at 

the opposite case where the anti-poaching unit deviates by choosing the uniform mixed 

strategy and the poaching unit plays the Nash mixed strategy.       

 

Mixed strategy: Uniform and Nash equilibrium randomness 

((        ) (        ))  ((  ⁄    ⁄    ⁄ ) (  
    

    
  )) 

or 

((        ) (        ))  ((  
    

    
  ) (  ⁄    ⁄    ⁄ )) 

 

Lastly we consider the effect on population dynamics when the strategy of the 

anti-poaching unit is to patrol the patch with the highest species meta-population.  The 

strategy of the poaching unit is to select in the patch with the next highest meta-

population.  

 

Non-random strategy:  

                          (   ) 
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                          (   ) 

 

Population dynamics and the average payoffs to the anti-poaching unit and 

poaching unit under the different strategies as listed are compared with that of the mixed 

strategy Nash equilibrium.  Figure 5.3 charts the results of a single simulation for each of 

the strategy sets over the one hundred year time horizon for the set of base-case model 

parameters.  The simulations are repeated one thousand times and the average population 

and poaching levels are reported on the right-hand side panel of Figure 5.3.  The mixed 

Nash strategy is shown in green; the uniform random strategy is shown in blue; the 

combination of the anti-poaching unit playing the Nash mixed strategy and the poaching 

unit playing the uniform random mixed strategy is shown in purple; the combination of 

the poaching unit playing the Nash mixed strategy and the anti-poaching unit playing the 

uniform random mixed strategy is shown in red; and finally the non-random strategy is 

shown in black.  Each of the random strategies appear to have the effect of leading to 

higher elephant population over time when compared with the non-random strategy.  For 

each of the strategy sets we list the average values of population and poaching from 

season two hundred to season four hundred, or the period of time when a stable 

distribution of population is attained.  This reduces the effect of the initial conditions on 

the average values.   

Let us study the average values of population and poaching of Figure 5.3 a little 

more closely.  The average values of population and poaching are 0.82516 and 0.00745 

in the mixed strategy Nash equilibrium.  This is what the anti-poaching unit and the 

poaching unit can expect on average.  Now we ascertain if there is incentive for either 
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party to deviate from playing the Nash mixed strategy.  If the poaching unit deviates by 

playing the uniform strategy while the anti-poaching unit continues playing the Nash 

strategy we note that the average poaching level declines to 0.00739 and the average 

population increases to 0.82657 which is statistically greater than the Nash equilibrium 

value at the ten percent error level.  There is therefore no incentive for the poaching unit 

to deviate from playing the Nash strategy.  If the anti-poaching unit deviates from playing 

the Nash strategy by playing the uniform random strategy, while the poaching unit 

continues to play the Nash strategy the anti-poaching unit is better off since the average 

population increases to 0.83374 and the average poaching level declines to 0.00724.  The 

average population level is also statistically greater than the Nash equilibrium value at the 

one percent error level.  Since the poaching unit is worse off it will consider playing the 

uniform random strategy as well and increase its average payoff- poaching value- to 

0.00761.  The average population value declines to 0.81551, which is statistically lower 

than the Nash equilibrium value at the one percent error level.  This creates a disincentive 

for both the anti-poaching unit and the poaching unit to deviate from playing the mixed 

strategy Nash equilibrium.   

We carry out further numerical analyses by varying the poaching unit’s kill rate, 

 , between 3% and 12% to account for a wide range of poaching efficiency rates.  The 

simulation results are plotted in Figures 5.4 through 5.8 for    3%, 5%, 8%, 10%, and 

12%.  We note that for   between 3% and 8% the broad results are similar to the base-

case when    7%.  The differences in average population levels are statistically 

different from the Nash equilibrium average values.  Apart from    3% we note that the 

random strategies achieve higher average payoffs for both the anti-poaching unit and the 
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poaching unit . Similar to the results in Figure 5.3 the simulated average values of 

population and poaching in Figure 5.4, Figure 5.5, and Figure 5.7 suggest that the Nash 

mixed strategy is a unique equilibrium on average.  When the poaching off-take/ kill rate 

is increased to    10% we begin to notice that the differences in average poaching 

become statistically significant when compared with the average Nash equilibrium 

values.  The population distributions are no longer stable and the variance increases 

dramatically.  One thing that we do note is that the uniform random strategy does worse 

than the Nash for both units.  In Figure 5.8 when    12% we note that the elephant 

meta-populations begin a slow decline towards extinction for each of the random location 

choice strategies.  The non-random location choice strategies always result in very quick 

declines towards the meta-populations’ extinction.   
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Average Poaching 
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Random: 

Uniform 

0.81551 

(9.0997)*** 

0.00761 

(-0.4540) 

Random: Nash 0.82516 0.00745 

Anti-poaching 

unit (Nash); 

Poaching unit 

(Uniform) 

0.82657 

(-1.3756)* 

0.00739 

(0.1409) 

Anti-poaching 

unit 

(Uniform); 

Poaching unit 

(Nash) 

0.83374 

(-8.4142)*** 

0.00724 

(0.5557) 

Non Random 

 

0.02395 

(649.97)*** 

0.00059 

(26.89)*** 
 

Figure 5.3: Population and poaching dynamics with initial population set at 0.45, and poaching off-take set at        

t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in (parentheses).  *** statistically significant mean 

difference at 1% error level;  ** statistically significant mean difference at 5% error level;  * statistically significant mean difference at 10% error level. 
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Average Poaching 
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Random: 

Uniform 

0.91152 

(1.7298)** 

0.00363 

(-0.4554) 

Random: 
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Anti-poaching 
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Poaching unit 
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(0.2926) 

Anti-poaching 

unit 

(Uniform); 

Poaching unit 

(Nash) 

0.91349 

(-2.4717)*** 

0.00346 

(0.5369) 

Non Random 

 

0.80046 

(123.8)*** 

0.00856 

(-35.94)*** 
 

Figure 5.4: Population and poaching dynamics with initial population set at 0.45, and poaching off-take set at        

t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in (parentheses).  *** statistically significant mean 

difference at 1% error level;  ** statistically significant mean difference at 5% error level;  * statistically significant mean difference at 10% error level. 
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Random: 
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(298.3)*** 

0.00309 

(13.22)*** 
 

Figure 5.5: Population and poaching dynamics with initial population set at 0.45, and poaching off-take set at        

t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in (parentheses).  *** statistically significant mean 

difference at 1% error level;  ** statistically significant mean difference at 5% error level;  * statistically significant mean difference at 10% error level. 
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(1030.9)*** 
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Figure 5.6: Population and poaching dynamics with initial population set at 0.45, and poaching off-take set at        

t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in (parentheses).  *** statistically significant mean 

difference at 1% error level;  ** statistically significant mean difference at 5% error level;  * statistically significant mean difference at 10% error level. 
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Figure 5.7: Population and poaching dynamics with initial population set at 0.45, and poaching off-take set at        

t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in (parentheses).  *** statistically significant mean 

difference at 1% error level;  ** statistically significant mean difference at 5% error level;  * statistically significant mean difference at 10% error level. 
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Figure 5.8: Population and poaching dynamics with initial population set at 0.45, and poaching off-take set at        

t-statistics of difference of means between Nash equilibrium value and other strategy’s equilibrium value in (parentheses).  *** statistically significant mean 

difference at 1% error level;  ** statistically significant mean difference at 5% error level;  * statistically significant mean difference at 10% error level. 
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5.3   Discussion and Conclusion  

The model simulation exercises provide some key results in this chapter.  We observe 

that when both the anti-poaching unit and the poaching unit play their mixed strategy 

Nash equilibrium strategies they achieve higher payoffs on average as compared with 

the uniform random strategy.  This holds true for a wide range in values for the 

poaching efficiency parameter,  .  The numerical analysis also reveals that on average 

there is no incentive for either the anti-poaching unit or the poaching unit to deviate 

from the Nash equilibrium.  This occurs in the range 3%     8%, i.e. when we 

observe stable distributions of population over a long time horizon.  This corroborates 

the analytical proof of the uniqueness of the mixed strategy Nash equilibrium.  The 

base-case value of    7% is estimated from secondary data in the literature.  We 

have considered what would occur if   were to increase i.e. poaching units become 

more effective.  The population distributions are no longer stable, the variances in the 

distributions increase significantly, and the meta-populations start to descend towards 

extinction over time.   

The different random strategies achieve higher payoffs for both the units 

compared to the non-random strategy.  This result mirrors findings from other studies 

on evolutionary fitness of strategies in zero-sum antagonistic games between strategic 

opponents  (Adami et al., 2012; Cohen & Newman, 1989; Kerr et al., 2002; Kirkup & 

Riley, 2004).  The numerical results also suggest that non-random strategies lead to 

extinction of meta-populations when   increases.  The incentive for both the anti-

poaching unit and the poaching unit to deviate from playing the Nash strategy is 
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stronger once the poaching off-take rate increases beyond eight percent.  The 

differences in average payoffs between the Nash strategies and other random strategies 

become statistically significant.  At the same time however we observe that the 

population stocks decline rapidly, and that population distributions are no longer 

stable.   

We noted earlier that the mixed strategy Nash equilibrium probabilities would 

be identical to those of the uniform random strategy if the meta-populations were 

evenly distributed across seasonal patches in the conceptual space.  The probabilistic 

nature of choosing patches by both the anti-poaching unit and the poaching unit, in 

conjunction with the set of migration coefficients, leads to uneven seasonal population 

distributions in our numerical analyses.  We have confirmed that the Nash strategy is 

superior to the uniform random strategy for both the anti-poaching unit and the 

poaching unit.  The superiority of the Nash strategy stems from the nature of the game 

of poaching and protection, in that the players behave strategically with each other.  

Deviations from the Nash for either player would merit careful consideration.  

This chapter has considered the theoretical implications of optimal strategies 

on the population dynamics of an endangered species.  The model is generally 

applicable to other species, and it can also be scaled up for more realistic analysis.  

Different growth functions and biological parameters can be used in the model to 

better suit the modeling of different species’ population dynamics.  The set of 

migration coefficients in Table 5.2 can be modified to reflect different proportions of 

the meta-populations that migrate from one patch to another.  For simplicity we 

assumed a costless choice of patch to poach and patrol in the conceptual space.  The 
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model can be modified to account for heterogeneity in patrolling and poaching costs in 

the different seasonal patches.  The model can be applied to an empirical setting if 

data were to be made available on poaching and patrolling.  In scaling up this model 

one could think about adding more seasonal patches in the space, adding more anti-

poaching units, and adding more poaching units to reflect a more realistic setting. 

As we noted earlier Bulte et al., (2004) state that models which link ecological 

theory and natural resource economics should expand their scope beyond the notion of 

steady state equilibrium by incorporating variability, complexity, scale, and 

uncertainty into economic models.  This chapter has considered purely the strategic 

aspects of poaching and protection when smart opponents face each other.  We 

introduced uncertainty into our model through the strategic location choices of a 

poaching unit and an anti-poaching unit.  Spatial-temporal strategic decisions by the 

poaching unit and the anti-poaching unit caused the number of elephants killed to 

become a stochastic process.  The model provides insight into the effects of different 

strategies on the long-term population dynamics of an endangered species, and thereby 

links the spatial-temporal dynamics of species migration with the economic game of 

poaching and protection.   
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APPENDIX 5.1 

 

Derivation of the mixed strategy Nash equilibrium, and a proof of its uniqueness:  

 

Nouweland (2007) lists three conditions for the existence of a mixed strategy Nash 

equilibrium in two-player zero-sum games.  We adapt the definition for the game in 

this chapter.  

Condition 1:  A pair of mixed strategies (   ) is a mixed Nash equilibrium if 

and only if the strategy of one player (poaching unit ) is a best response to the strategy 

of the other player (anti-poaching unit ) and vice-versa.    

Condition 2:  If (   ) ((   )) is a strategy profile and every action      

(    ) that the poaching unit (anti-poaching unit) plays with positive probability 

 (  )    ( (  )   ) is at least as good a response to   ( ) as every other action, 

then   ( ) is a best response to   ( ).  For the poaching unit (anti-poaching unit) this 

would mean  [  (    )]   [  (  
   )]  ( [  (    )]   [  (  

   )]) for all 

  
    (  

   ).  

Condition 3:  If      (    ) is a best response to      (    ) and 

the poaching unit (anti-poaching unit) plays action      (    ) with a positive 

probability, i.e. (  )    ( (  )   ), then    (  ) is at least as good a response to   

( ) as every other action.  For the poaching unit (anti-poaching unit) this would mean 

 [  (    )]   [  (  
   )]  ( [  (    )]   [  (  

   )]) for all   
    (  

   ).  

Using Condition 1 we can state that a pair of mixed strategies (   ) is a mixed 

strategy Nash equilibrium if, for the poaching unit (anti-poaching unit) and every 
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alternative mixed strategy       (     ) of the poaching unit (anti-poaching unit) 

, it holds that  [  (    )]   [  (   )] ( [  (    )]   [  (   )]).  This entails 

that at a Nash equilibrium a player in the game will be indifferent between the action 

choices when the expected payoffs from these actions are equal to each other i.e. 

 [  (   )]   [  (   )] and  [  (   )]   [  (   )] where             and 

   . Given the payoff matrix in Figur we can define the associated expected payoffs 

to the poaching unit and the anti-poaching unit for the individual location choices or 

actions.  When there are two seasonal patches i.e.    , we have the expected 

payoffs for the poaching unit of choosing patches 1 and 2.   

 [  (   )]             (1) 

 [  (   )]             (2) 

  

Similarly we define the expected payoffs for the anti-poaching unit of choosing 

patches 1 and 2.  

 [  (   )]             (3) 

 [  (   )]             (4) 

 

Setting (1) = (2) and (3) = (4) we solve for the Nash equilibrium values of the 

system with two seasonal patches.  

  
  

  

     
 ,   

  
  

     
 ,    

  
  

     
 , and    

  
  

     
 .  

When there are three seasonal patches i.e.    , we have the expected payoffs 

for the poaching unit of choosing patches 1, 2, and 3.  
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 [  (   )]                   (5) 

 [  (   )]                   (6) 

 [  (   )]                   (7) 

 

Similarly we define the anti-poaching unit’s expected payoffs for its actions of 

choosing seasonal locations        .  

 [  (   )]                        (8) 

 [  (   )]                        (9) 

 [  (   )]               (10) 

 

Setting (5) = (6) = (7), and (8) = (9) = (10), and using that            

and            we solve for the Nash equilibrium values of the system with 

three seasonal patches.  

  
  

    

              
 ,   

  
    

              
 ,   

  
    

              
 ,  

   
  

              

              
 ,   

  
              

              
 ,   

  
              

              
 .   

 

First we prove the uniqueness of the Nash equilibrium for the system with two 

seasonal patches.  We use the approach followed by (Nouweland, 2007) who uses 

Condition 2 and Condition 3 to show that a mixed strategy, which is not the Nash 

equilibrium, cannot be a best response to any strategy that is a best response to it.  We 

derive the following useful identities, which equal zero at the Nash equilibrium values.  
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Any deviations from the Nash equilibrium values would mean that the identities 

would no longer equal zero.  

 

(1) – (2):  [  (   )]   [  (   )]               

(3) – (4):  [  (   )]   [  (   )]               

 

Consider the first case of the poaching unit deviating from the Nash 

equilibrium:    
  

     
 ,    

  

     
 .  We will accordingly have (3) – (4)   0, and by 

Condition 2 we know that     .  But if      then we will have (1) – (2)   0, and 

by Condition 3 we know that     , which contradicts    
  

     
 for   ,     .  In 

the second case of the poaching unit deviating from the Nash equilibrium we consider 

   
  

     
 ,    

  

     
 .  We will accordingly have (3) – (4)   0, and by Condition 2 

we know that     .  But if      then we will have (1) – (2)   0, and by Condition 

3 we know that     , which contradicts    
  

     
 for   ,     .  The other two 

cases of the poaching unit deviating from the Nash equilibrium i.e.    
  

     
 & 

   
  

     
 , and    

  

     
 &    

  

     
 are mathematically not feasible since 

        by definition, and the latter two cases violate this condition.   

Let us now consider the first case of the anti-poaching unit deviating from the 

Nash equilibrium:    
  

     
 ,    

  

     
 .  We will accordingly have (1) – (2)   0, 

and by Condition 2 we know that     .  But if      then we will have (3) – (4)   

0, and by Condition 3 we know that     , which contradicts    
  

     
 for   , 
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    .  In the second case of the anti-poaching unit deviating from the Nash 

equilibrium we consider    
  

     
 ,    

  

     
 .  We will accordingly have (1) – (2) 

  0, and by Condition 2 we know that     .  But if      then we will have (3) – 

(4)   0, and by Condition 3 we know that     , which contradicts    
  

     
 for 

  ,     .  The other two cases of the anti-poaching unit deviating from the Nash 

equilibrium i.e.    
  

     
 &    

  

     
 , and    

  

     
 &    

  

     
 are 

mathematically not feasible since         by definition, and the latter two cases 

violate this condition.  This proves that a mixed strategy other than the Nash 

equilibrium is not a best response to any mixed strategy that is a best response to it.  

Using Condition 1 we have shown that there is no mixed strategy Nash equilibrium in 

which the anti-poaching unit and poaching unit plays a strategy that is different from 

((  
    

  ) (  
    

 )) in a system with two seasonal patches.       

 Now we prove the uniqueness of the Nash equilibrium for a system with three 

seasonal patches.  Again we make use of the following identities that equal zero at the 

Nash equilibrium values.  

 

(5) – (6):  [  (   )]   [  (   )]                     

(5) – (7):  [  (   )]   [  (   )]                        

(8) – (9):  [  (   )]   [  (   )]               

(8) – (10):  [  (   )]   [  (   )]               
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Consider the first case of the poaching unit deviating from the Nash 

equilibrium:    
    

              
 ,    

    

              
 , &    

    

              
 .  The 

sign of (8) – (9) is ambiguous, while the sign of (8) – (10) is unambiguously greater 

than zero.  Suppose (8) – (9)    and (8) – (10)   .  Then by Condition 2 we know 

that      and     .  This would imply that (5)   , (6)   , & (7)   .  This in 

turn would imply that (5) – (6)    and (5) – (7)   .  Using Condition 3 we know 

that     , which contradicts    
    

              
.  Now suppose (8) – (9)    and 

(8) – (10)   .  By Condition 2 we know that      and     .  This implies that 

(5)   , (6)   , & (7)   .  This would imply that (5) – (6)   , and using Condition 

3 we would have     , which contradicts    
    

              
 .  

The proof by contradiction in the case of    
    

              
,    

    

              
 , &    

    

              
 holds by symmetry.  The case of    

    

              
 ,    

    

              
 , &    

    

              
 is straightforward since 

the signs of (8) – (9) and (8) – (10) would be unambiguously greater than zero.   

Consider next the case of   
    

              
,    

    

              
 , & 

   
    

              
 . The sign of (8) – (9) is unambiguously less than zero, but the 

sign of (8) – (10) is ambiguous.  Suppose (8) – (9)    and (8) – (10)   .  Then by 

Condition 2 we know that      and     .  This would imply that (5)   , (6)  

 , & (7)   .  This in turn would imply that (5) – (6)   , and by Condition 3     , 

which contradicts     
    

              
 .  Now suppose (8) – (9)    and (8) – (10) 
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  .  By Condition 2 this implies      and        , and thereby (5)        

        .  We also derive (6)         , and (7)         .
10

  Thereby we 

derive (5) – (6)   ,
11

 and we can infer from Condition 3 that     , which 

contradicts    
    

              
 .       

The proof by contradiction in the case of    
    

              
,    

    

              
 , &    

    

              
 holds by symmetry.  The case of    

    

              
,    

    

              
 , &    

    

              
 is straightforward since 

the signs of (8) – (9) and (8) – (10) would be unambiguously less than zero.  We have 

shown that (        )  (  
    

    
  ) is not a best response to (  

    
    

  ).  Next we 

prove that any deviation from (  
    

    
  ) is not optimal for the anti-poaching unit.   

Let us begin with the case of    
              

              
 ,    

              

              
 , 

   
              

              
.  The sign of (5) – (7) is unambiguously less than zero while the 

sign of (5) – (6) is ambiguous.
12

  Suppose (5) – (6)    and (5) – (7)   .  Then by 

Condition 2 we know that      and     .  This would imply that (8)    , (9) 

   , and (10)   .  This is turn implies that (8) – (10)    and (9) – (10)   .  

Using Condition 3 we can infer that      and     , which contradicts    

              

              
 and    

              

              
 .  Now suppose (5) – (6)    and (5) – (7)  

                                                 
10

 Note that since   
  

              

              
   is only possible when               , we will have 

      
              

              
    (

                   

              
)     

       

              
  .  

11
 (5) – (6)     

       

              
 

  (              )        

              
 

  (         )        

              
   (see 

footnote 10).   
12

 Note that the sign and magnitude of    does not matter since it drops out of identities (5) – (6) and 

(5) – (7).    
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 .  Then by Condition 2 we know that      or that        .  This would imply 

that (8)                 , (9)            , and (10)        .  Therefore 

(8) – (9)   , and (8) – (10)   .  Using Condition 3 we can infer that     , which 

contradicts    
              

              
.  In the case of    

              

              
 ,    

              

              
 and    

              

              
 , we note that (5) – (7)    always and that 

since    enters as a positive term in (5) – (6) we have the same case of ambiguity in 

the sign of (5) – (6).       

Next we consider the case of    
              

              
 ,    

              

              
 and 

   
              

              
.  The sign of (5) – (6) is unambiguously greater than zero while 

the sign of (5) – (7) is ambiguous.  Suppose (5) – (6)    and (5) – (7)   .  Then by 

Condition 2 we know that      and      or that     .  This in turn implies that 

(8)   , (9)     , and (10)     .  Therefore we would have (8) – (9)      , 

and (10) – (9)      .  Using Condition 3 we can infer that     ,      , and 

    .  Now suppose (5) – (6)    and (5) – (7)   .  Then by Condition 2 we know 

that      and      or that     .  This in turn implies that (8)    , (9)     , 

and (10)   .  Therefore we would have (8) – (10)    and (10) – (9)   .  Using 

Condition 3 we can infer that     .   

Finally we consider the case of    
              

              
 ,    

              

              
 and 

   
              

              
.  The signs of both (5) – (6) and (5) – (7) are unambiguously 

greater than zero.  By Condition 2 we know that      and      or that     .  
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This implies (8)    and (10)        .  We now have (8) – (10)    and by 

Condition 3 we know that     .     

We have shown that a mixed strategy other than the Nash equilibrium is not a 

best response to any mixed strategy that is a best response to it.  Using Condition 1 we 

have shown that there is no mixed strategy Nash equilibrium in which the anti-

poaching unit and poaching unit plays a strategy that is different from 

((  
    

    
  ) (  

    
    

  )) for the system with three seasonal patches. 
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CHAPTER 6 

 

SUMMARY 

 

 

This dissertation has attempted to provide the reader with insights into the economics 

of endangered species harvesting and protection.  In the first essay (Chapter 2) the 

integrated economic and ecological model facilitated a numerical estimation of 

changes in poaching effort and protected population levels over time.  The Schaefer 

harvest function and the modified logistic growth function allow for both oscillatory 

convergence to steady state and period-doubling bifurcation.  The model reveals that 

the protected population dynamics goes through bifurcation for changes in both 

economic and biological parameters, and in some cases gives way to “deterministic” 

chaos.  We find that the economic or policy parameters – wage rates in and around the 

PA, fines for poaching, and black market prices – have qualitatively different effects 

on the protected species’ population dynamics.  The effectiveness of anti-poaching 

enforcement has different qualitative effects on population dynamics depending on the 

biological parameters.  The model reveals interesting and sometimes counterintuitive 

results for the economic and biological parameters, driven largely due to changing 

marginal products of harvest.   

 

In Chapter 3 we examined the relationship between civil unrest and rhino poaching.  

We found the relationship to be positive and statistically significant.  The analysis 

factored in the relationship between poaching and several additional variables that are 
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probably associated with it – including black market rhino horn prices, potential size 

of black markets, and anti-poaching efforts.  These variables are seen to have their 

predicted associations with poaching in the regression models.  They also help to 

isolate and identify the relationship between poaching civil unrest.  We find 

reasonably good fits between the rhino population data, poaching data, and the 

model’s estimates of the same.   

 

In Chapter 4 we examined an economic model of organized crime in elephant 

poaching in the Southern African range states.  We have seen that under plausible 

economic and biological parameters, the number of planned poaching expeditions is 

insensitive to the black-market price of ivory, but quite sensitive to the probability that 

a poaching expedition will be intercepted.  We ascertained a critical value for the 

number of poaching expeditions as approximately twenty-three per year, above which 

the elephant population may exhibit a slow decline to extinction.  The presence of 

multiple poaching organizations leads to a decline in elephant population and 

increased variance in the distribution.  The mathematical phenomenon of stochastic 

bifurcations occurs for the case of two or more poaching gangs operate with higher 

technology (as represented by lower probabilities of interception by anti-poaching 

patrols).   

 

In Chapter 5 we examined the effects of different location choice strategies on 

elephant population dynamics over time.  It is seen that random location choice 

strategies that account for spatial population distribution are superior to non-random 
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location choice strategies for both poachers and anti-poachers.  We derived a mixed 

strategy Nash equilibrium in location choice strategies, and also provided an analytical 

proof of optimality and uniqueness of this strategy.   

 

 

 

 


	2.1   Introduction and Background
	2.2   A Model of Risky Open Access
	2.4   Conclusion
	In this chapter I have examined the historical context of extensive civil unrest in Assam and the concurrent increase in rhino poaching.  Using data on rhino poaching in the Kaziranga National Park I have undertaken two exercises.  The first exercise ...
	In the second exercise this chapter identifies the relationship between extensive civil unrest and rhino poaching in Assam.  Given the illicit nature of rhino poaching one would encounter the problem of missing relevant data – such as regular time-ser...
	Table 4.4: Elephant extinction under open access in the Southern African range states
	Table 5.1: Model base-case parameter values
	Table 5.2: Seasonal migration coefficients

