GENERAL AERIAL COUNTS 1998, 2000, 2002 \& 2003 AND EVALUATION OF THE EFFECTS OF THE CIVIL WARS ON THE ECOSYSTEM

RECENSEMENTS AERIENS GENERAUX DE 1998,2000, 2002 \& 2003 ET EVALUATION DES EFFETS DES GUERRES CIVILES SUR L'ECOSYSTEME

Kes Hillman Smith, Fraser Smith, Amube Ndey, Mbayma Atalia Jean Mafuko, Paulin Tshikaya, Giningayo Panziama \& John Watkin

Version Française traduite par Jean Bigirimana Mugabushaka

GIENGEAL AERIAL, OOUN'IS 19G8, 2000, 2002 \& 2003

INTIROIDIUSION

General all species aerial censuses of the Garamba National Park and surrounding Domaincs de Chasse are carricd out as part of the ccosystem monitoring programme. This is a report of the counts carricd out in May 1998, Junc 2000, May 2002 and May 2003, with discussion on the status of the ccosystem and the effects of the civil wars during this period.

The Garamba National Park ($4,900 \mathrm{~km}^{2}$) is situated between 4° and 3° north and 29° and 30° east in the north east of the Democratic Republic of Congo (DRC). It is surrounded on three sides by rescrves, the Domaines de Chasse Azande, $2,892 \mathrm{~km}^{2}$ to the west, Gangala na bodio, $2,652 \mathrm{~km}^{2}$ to the south, and Mondo Misa, 1,983 km^{2} to the cast. All these areas were counted. On the north east, within Sudan, the park is bordered by the Lantoto game reserve. This arca was not included, duc to the political situation.

The park is situated within the sudano-guincan savama biome. The southern two thirds of the park comprises long grass savama dominated by Loudetia arundinacea with Hyparrhenia specics. The reserves are dominated by a complex of deciduous Combretum woodland and gallery forest. Within them is limited human setticment and gold mining.

The first acrial census of the arca was carricd out in 1976 (Savidge et al 1976) by an FAO project. Since then the ccosystem has been censused in 1983 during a survey of northern white rhinos (Ceratotherium simum cottomi) (Hillman ct al 1983) and since 1984 as part of the Garamba National Park Project. (Hillman Smith 1990, Smith et al 1993).

The counting technique and basic analysis has remained standard throughout, based on the systematic aerial sample count method described by Norton Griffiths (1978) and Jolly Method 2 analysis (In Norton Griffiths 1978), but the process of analysis has varicd. Analysis is now carried out with a system developed using the commercial software programme Quattro pro 4 (Borland 1992) for the 1993 count (Watkinct al 1995). The method of counting and analysis as applied at Garamba has been written up as a handbook (Hillman Smith et al 1995) to guide long term standard application of the technique in the nonitoring programme at Garamba. We hope it may also contribute a fcw guidelines for casy analysis of aerial counts elscwhere.

A UTM (universal transverse mercator) compatible system of coordinates, which was based on the transect lines used since the 1983 count has been used to locate all animal and liabitat observations since 1983 and all law enforcement monitoring observations since 1992. In conjunction with the establishment of a geographic information system (GIS) at Garamba in 1993, this has now been expanded to cover the surrounding reserves and is maintained as the basis for the positioning of the flown transects. A Garmin global positioning system (GPS) was used to navigate the transects and sub-units. The GIS programme Idrisi has been used in mapping the vegetation cover.

Counting method

The counting method is the standard aerial systematic reconnaissance flight (srf) using parallel transect sampling as described by Norton Griffiths (1978) and widely used for acrial counting of wildlife and livestock. Heights, strip widths and general application of the method have been relatively standard throughout the series of counts. Analysis is carried out using jolly's methodii (Norton Griffiths 1978) in the spreadsheet programme quattro pro, and shaded vegetation mapping uses the gis programme idrisi.

Aircraft:
Pilot:
Front seat obs.:
Middle seat obs.:

Rear seat obs.:
Training \& analysis
Analysis design:
Analysis:

Census zone:

Cessna 206, 9Q-CBR
Fraser Smith
Kes Hillman Smith 1998

2000
Mbayma Atalia Amube Ndey Amube Ndey $\begin{array}{lc}\text { Mbayma Atalia } & \text { Mbayma Atalia } \\ \text { Mafuko Girineza } & \text { Giningayo Panziama Giningayo Panziama Paulin Tshikaya }\end{array}$

Serge Iliabo
Mambo Marindo

Amube Ndey Amube Ndey	Mambo Marindo
Giningayo Panziama	

John Watkin \& KHS,, re-design for EW transect re-orientation K H.S \& Kerin Adcock Amube Ndey, Kes H. Smith, Mbayma Atalia, based on Hillman Smith et al (1995) and Watkin et al (1995)

Garamba National Park
Total arca $4,900 \mathrm{~km}^{2}$

Timing:

For greatest accuracy in population estimation the period April to mid June, just after the start of the long wet season offers best visibility. The grass is short and the air is cleared by the rain. The preparation, calibrations and counts reported here were carried out in May or in one case June.

Stratification:

The count was stratified in relation to animal distribution. Very few anmials remain in the north and central sectors and these are flown at by transects spaced at 5 km apart. The southern sector is where over 90% of the animals are currently distributed. This was flown at 2.5 km spacing for greater accuracy. Sub-units are spaced at 5 km , as measured by GPS. The stratification that has been adopted since 1993 is based on the elephant distribution observed in 1993, which is known to reflect the elephant distribution over the preceding ten years, is as follows. The count boundaries are based on sub-unit boundaries rather than those of the park and reserves. Hence they are slightly larger than the actual boundaries:
park:
Low density:

$$
\begin{aligned}
& 5,500 \mathrm{~km}^{2} \\
& \quad 1,400 \mathrm{~km}^{2}
\end{aligned}
$$

$$
14 \text { transects, } 55 \text { sub-units }
$$

Medium density: $\quad 1,925 \mathrm{~km}^{2}$
12 transects, 77 sub-units
$2,200 \mathrm{~km}^{2}$
16 transects, 88 sub-units

The counts reported here since the first war in DRC have included only the park as the objectives have been a rapid assessment of the status of the park, and fuel has always been a limiting factor.
At the start of the project transect used to be flown north south also with 5 km sub-units. In order to mare accurately and correctly analyse a stratified count, since 1998 the transects have been flown east-west with the sub-unit divisions east west. The grid system and method of analysis remain the same and the counts therefore continue to be comparable

Equipment:

King radar altimeter, Garmin global positioning system (gps), marker rods, tape recorder per observer, tapes and batteries, stopwatch, data sheets, computer for analysis.

Fibreglass fishing rod blanks mounted on a support fitting designed for the wing strut were used as marker rods.

Duties of crew
Pilot:
piloting the aireraft, navigating to the ends of transects and along transects using gps, calling out transects and sub-units at 5 km intervals based on the data sheet subunits. The gps was preprogrammed with the beginning and end waypoints of the transects, which are listed in the table gps waypoints.

Front seat observer:
recording the time and speed of each transect and maintaining the transect summary sheet (in annex). Within each sub-unit recording height a.g.l. from the radar altimeter and habitat factors as defined below. (Fso data shcet in hillman smith et al 1995)

Middle seat observers:

counting and recording into the tape-recorders all animal species and signs of human occupancy, as listed on the table: code des especes, that are seen within the strips. On return from each flight the obscrvations are transcribed onto rso data sheets (example in hillman smith et al 1995). The middle seat observers also noted the habitat in which the animals were seen. Cameras were available, but were only used on two occasions for large groups of buffaloes and of houses.

Rear seat observers:

the rear seat observers made the same observations as the middle seat observers. There were three main values to the second row of animal observers: comparison of the two data sets to verify and improve the data and to enable other methods of analysis to be applied, back-up if a tape-recorder fails and training. To make the first two objectives valid, the strip widths were adjusted to be as near as possible to covering the same strip on the ground as seen by the middle observers. Their strip markers were cords stretched from the wing struts to the tail.

Sample intensity:

sample intensity: $\quad 8-10 \%$ Low, $15-20 \%$ high
transect spacing - low 5 km
high 2.5 km
sub-unit spacing: 5 km
target flying height: 350^{\prime} a.g.l.
Overall mean actual flying height 347^{\prime} a.g.I.
Target strip width: $\quad 400-500 \mathrm{~m}$ total. (200-250 metres each side)
Strip widths are preset according to Norton Griffiths (op.cit.) and calibrated by flying at different heights over markers spaced at 20 metre and 100 metre intervals on the airstrip, simultaneous with radar altimeter readings. Observers count the numbers of spaces between markers included within the strip widths, to calculate the observcd widths. These passes were carried out both during training, before counting began and at the beginning and end of cach counting flight. The results, analyzed and plotted in quattro pro 4.0 are shown in the graph calibrations, and were used combined with measured altitudes per sub-unit to calculate strip widths for cach transect and sub-unit. On the basis of this the combined strip widths for middle seat observers are calculated per sub-unit and the sample areas per sub-unit are calculated and used in the calculation of population estimates from animals of each species seen per sub-unit:

Transects:

Transects are spaced at 5 km intervals in the low and medium intensity zones and at 2.5 km in the high intensity southern zone. They are flown east/west as shown on the map projected transect lines. The co-ordinates for the start and end points of each transect flown alternatcly north and south are given on the table gps waypoints in annex. Subunit were at 5 km intervals as measured using the gps and is used, sub-unit boundarics are located in multiples of 5 km from the end waypoint, using the tables of transect and subunits in Annex.

Species:

Animal species were counted by both middle and rear seat observers, as listed on the table: codes des espèces. Signs of human habitation and land use were also counted. Elephant and other species carcases are classified as:

1. Fresh, with flesh present
2. Recent bones, with rot patch present
3. Bones white, no rot patch
4. Bones grey old
(Douglas-hamilton \& hillman 1981)
in this high rainfall, high scavenger density environment, fresh recognisable rot patches remain for - a considerably shorter time than in cast africa. Carcases monitored have usually remained at stage 2. less than two months.

Habitat factors :

Within each sub-unit the front seat observer recorded the height a.g.l. as measured by the radar altimeter and estimates percentages of the following habitat parameters in units of 10% intervals:
tree cover, as percent of sub-unit
tree greenness as percent of trees present

$$
\begin{aligned}
& \text { bush cover, as above } \\
& \text { bush greenness, as above } \\
& \text { grass cover, as above } \\
& \text { grass grcenness, as above } \\
& \text { long old grass, as percent of grass present } \\
& \text { burn, as percent in sub-unit } \\
& \text { water availability, } \\
& \quad 0=\text { none } \\
& \quad 1=\text { available to humans and livestock } \\
& 2=\text { limited availability } \\
& 3=\text { unlimited availability } \\
& 4=\text { running water } \\
& 5=\text { floods }
\end{aligned} \text { agriculture, as percent in sub-unit } \quad \text { Vegetation zones are classified within each sub-unit. }
$$

Abstract

Analysis Analysis was carried out in quattropro according to the method described in detail in Watkin ct al (1995) and Hillman smith et al (1995). The method is based on entering the animal and habitat observations and the altitudes per sub-unit onto separate versions of a spreadsheet, which is laid out like a map of the census zone, in which each cell represents a subunit. This was printed directly, to map the distribution of animal observations, and with conversion, to map density distributions. Habitat data was entered in the same way. To produce the shaded mapping it can be transferred to idrisi. The overlay map of the park and reserves was created in arcinfo and they were combined in coreldraw.

A graph of strip width calibrations was created in quattro and the resulting regression applied to the map of altitudes per sub-unit. This enables transcct width correction per sub-unit, as opposed to an average applied to whole transects as previously. Superimposition of this on the map of animal observations calculates the densities. Within the map spreadsheet the transect and strata totals are summed and these data were transposed to a second spreadsheet, which was laid out with the formulac from Jolly (1969) and Norton Griffiths (1978) for calculating population estimates and confidence limits. This is printed directly with the dctails of the observed numbers, stratified population estimates and confidence limits.

Results

Distribution maps in the spreadsheet formats are given for each species for each of the count years. These are followed in each set by the tables calculating population estimates and Standard Errors and 95\% Confidence limits for each species. Signs of threat, ie carcasses and poaching camps are mapped for each year.

Vegetation parameters are mapped for one year. Tree cover is dense in the north of the park and relatively dense in the Domaine de Chasse, but very sparse in the south of the park due to the effects of fire and elephants. Bush cover is increasing further and further south each year as the elephants and other large mammals are pushed down or poached out from the north and now even from the centre of the park.

The summary table gives population totals and stratified totals, densities and biomasses for the period 1976 until 1995, before the war. The weights used to calculate the biomasses were those used by savidge et al (1976), haltenorth \& diller (1977) and d'huart (1978). A second summary table gives the situation since then.

DISCUSSION OF RESULTS WITH EVALUATION OF TRENDS AND TIIE STATUS OF THE ECOSYSTEM

Methods

The acrial survey manual for Garamba National Park, based on the standard methods developed during the 1993 census was applicd Uroughout as guidance and training manual. However since 1998 the transects have becn flown cast west instcad of north south in order to make more accurate the stratificd analysis. The sub-unit cells remain the same.

The fion scat observer has been standard since 1983. This therefore minimises crrors duc to obscrver bias However the two middle seat observers have varied over the four year period, and have included Guy Mbayma, the late Jean Mafuko, Jerome Amube, Gimingayo Panziama and Paulin Tshihaya. The rear seat positions have been used for training. Practice and training was given by both estimating and counting fiom digital photus of buffalos, clephants and hippos, but the need to estimate large groups because the observers are not sufficicntly practical with cameras to use them, is a potential source of bias.

Animal numbers and distribution over time in relation to external events

Historical

Table 1 gives the large mammal numbers from acrial census from 1976, when the FAO project ended throngh 1983 before the Garamba project started, to 1995, before the civil war. Table 2 gives numbers since the first war, from 1998 to 2003. The graphs Figs. 3 and 4 summarise the trends of key species. Pic chats indicate the biomasses and relative species numbers for the two periods.

PARC NATIONAL DE LA GARAMBA
LARGE MAMMAL NUMBERS 1995

PABC NATHONA DE AA GARAMBA FT DOMALNES DI CHASSE
WILDAFE NLMBERS：NONBRES DES ANIMAEX 1976－1995

1214	13＋481．	B1Rapre	H1P0	к⿺𠃊	HakTLbeeste	Wathabick！	kETBALCK	K（1，${ }^{\text {S }}$	$3+\mathrm{ETH}$ ¢	（6， 31.12 EH	RF bates	（R131－	LH\％	HYENA	Ht simes
$\ldots 1576$	1		，		－			1						1	
FLRC	53000	350	17001	7180	7750 ！	36801	640 ：	360	3340	120 ！	1	380	35	35	4
DC								－	－1		！				
1959．${ }^{\text {d }}$	42350	250		2302	1470 ！	： 330	310	\％35：	1440 ！	1001		150	40	50	
1－19E3								！							
PLRE	53312	175	1290	3978	1932	2215	183	91	1117	91		234 ！	15.	87	
DC	2850	20		765	146	455	$15!$	－	241	169	36	17			
－9540	195601	1 13	1781	2321	$8: 2$	1420	157	123：	2．4：	72	31	152	15	14	
－＿19b4：									，						
PLAC	48284	2731	448	3792	1224	568	175	0.	404	109		153 ！	33	44	
DC	75 ！	c！	$0!$	0 ：	－ 21	2.8	0		0 ：	11		0 ：	0	0	
－ 95.201	こ̧e？	14.4	442 ！	214	442	293	101		132	125		103	69	38	
1－＿1506！															
PRAC	29415！	153	2874	7222	1 1705	1322	328	34	943	12		230 ！	63.	157	
DC	Fi：	15	0.	490	： 75	655	53	0	$8{ }^{\text {c }}$	23	231	15	01	0	
－	3－EE！	148	1658	2501	1 385	256	135	25	344	2	2 C	90.	4 E ！	121	
15051S6e			－			I	！				＋				
PムFiC	32103		2851		$!$		i		！	；					
					！		！		，						
＿－1991					－		！				！				
PAFC	33970	326	2205 ！	3423	\％$\quad 967$	ife	38	43		－ 13	51	39			
DS					$!$	＋	1								
$55 i 4,01$	157．E1	42	20021	20.5	5 ！E－E	1－40	42	25		25	5	E®			
7553					！		！		！	\square	！				
P－FC	！ 30555	347	1023	6738	8 －34：4	4 － 1113	P	150	2632	75	120	90			！
Di	1.549		0	554	41 es	！					45	0			！
	iblee	$\therefore \because$	E\％	304	：	4！Eマ3	！	－	1 1024	es	1 E＊	ET			1
195							＋		－						$!$
PIRE	252：2	178	3601	6601	12819	91.168	0 ！ 57		： 560 E	1 S	107	0	14		4
DC	42	E2	39		24！ 56	¢！ 42			－		！ 105		0		01
90\％ct	$\bigcirc \quad 6520$	20	263s	3633	33 ！ 119	E ： 3	$0: 18$	！	2 2 ¢ 4		！E2		27		5

PARC NATIONAL DE LA GARAMBA

LARGE MAMMAL BIOMASSES $199{ }^{\circ}$

Between the FAO Project and the Garamba project most large mammal numbers dropped dramatically with heavy poaching. This also changed the distribution of the most valuable species, clephants and rhinos, who werc eliminated from the north and remained concentrated in the better protected south of the park. The Garamba Project/IZCN partnership was able to climinate the commercial poaching of elephants and rhinos but a continuation of poaching in the north of the park for meat maintained their unequal distribution and they did not move back to re-populate the centre or north. As the clephants increased they tended to move out more into the wooded Domaine de Chasse at night (Hillman Smith et al)

The north of the park is on the Sudan border and it is easy for poachers to cross. Elephant and rhino numbers rose through the first few years of the project, doubling in eight years, (Fig \& Table 1), but buffaloes which remained widely distributed throughout the park became the main meat prey species in the north and centre
of the park. Because of this, buffalo numbers have declined steadily throughout the project, but they acted as a buffer to the more valuable species.

The effects of wars

In 1991 the Sudancse civil war moved south, as the town of Maridi, just across the border from Garamba. was taken by the Sudan Peoples’ Liberation army. Arms and ammunition becane widely available ankd about 80,000 refugecs were settled east and west of the reserves surrombing the park. SPLA camps were set up adjacent to the border and well armed and trained militia or ex-militia becane the main souree of poacting pressure, as evidenced by the law enforeenent monitoring (LEM) results (Fig.4).

Commercial meat poaching was the main driving force. Most active anti-poaching effort was concentrated in the centre of the park, where the prey species and the poachers were concentrated. In the south, where the elcphants and thinos were concontated, there was very little poaching before the civil wars. Most patrulling focused on monitoring and on sceking any signs of incursions and on rescarch. However the strength and arms of the SPLA mititia, their long periods of inaction away from the Sudancse front line and the market for meat in the area, meant that meat poaching increased in intensity, with poacher groups increasing in size and operating with ficavier weapons, including grenades and rocket taunchers. Despite extreme efforts, the guards could not completely stop this poaching and the front line of poaching gradually moved south through the paik, as the LEM maps show. Major efforts were being made to raise higher levels of fiuds, ammmition and to bring in training and support. but in 1996 the first two thinos were lost to poaching. Towads the cond of 1996 , the civil Libcration war began in the then Zaire.

Poaching Camps \& armed contacts 1993

Armed contacts 1998
In 1997 the Liberation war forces reached Garamba, the guards were disarmed and anti-poaching was forced to stop for several months. The poachers took advantage of the situation and moved into the high concentration southern sector. The figures of poaching per unit search effort (per 100 patrol days) show how the intensity of poaching increased significantly in the first war (Fig.5).

As Table 2 shows, over half the elephants, buffaloes and hippos were killed at this time and an acrial survey of the southerm sector in 1997 showed fresh carcases and occupied poaching camps widely distributed. Major efforts by the ICCN and project personncl in Garamba, Kinshasa and internationally re-cstablished anti-poaching, cvaluated the siluation, obtained clearance for training and back-up and began re-cquipping and re-activating the conservation operations.

Table 2 Impact of the wars 1996/97 and 1998 to present

Especes	1995 Population calculation	SE	1998 Pop catc.	SE	2000 Pop. Calc.	SE	2002 Pop. Calc.	SE	2003 Pop. Calc	SE
Elephant	11,175	3,670	5,874	1,339	6,022	1,046	5,963	1,184	6,948	1995
Buffato	26,242	8,299	7,772	2,063	13,115	3,066	13,281	3,930	14,480	4231
Hippopotamus	26,242	1,299	786	207	967	485	948	787	3,036	1191
Giraffe	178	108	144	73	118	64	62	13	62	75.4
Giraffe	1,680	669	1,382	433	1,058	363	797	316	421	210
Waterbuck	1,680	590	1,685	398	1,065	218	1,139	232	1,224	260
Hartebeest	2,819	1.49	6,505	1,558	3,902	984	3,587	991	6,235	2121
Kob	6,601	1,49			1,075	213	990	254	789	155
Warthog	5,606	1,261	4,765	668	1,075	213			57	67
Roan Antelope	81	78	8	7					57	

P.N.Garamba
 Braconniers et Identites

Fig.: Identities of poachers

In August 1998, the second civil war began. This time guards were not disarmed and although the senior staff and project persomel had to leave, the guards themselves continued patrolling and law cnforcement monitoring and as soon as possible the project back paid them in relation to this. However, with Uganda being linked to the rebel forces holding the arca, and the Ugandan links with the SPLA. it became very much easier for the Sudanese to move aeross the border semi-officially. The refugec camps were raided. In August 1999 a group of SPLA came across into the Domaine de Chasse Mondo Missa to the cast of the park and began recovering weapons and "deserters". At first this had a positive cffect on reducing poaching and in December park forecs and local authorities joined them for a mixed operation supported by the project to recover more weapons. Agreement was given for a second two month operation in 2000. It delayed for several months and in the meantime, according to patrol reports, the local people were harrassed for food by the SPLA in the area and many moved away from their homes and fields. The official mixed operation involved support from the project in terms of vehicles, fuct and rations and although it was only for an agreed period of two months, at the end of which they were supposed to return to Sudan and continuc a morc limited trans border collaboration, the park warden at the time built houscs for them elose to the park border in the Domaine de Chasse in DRC to the east. They thercfore did not want to move back to their side of the border even though the project was unable to support this kind of activity in the long term, in onc area out of the park, to the detriment of the conscrvation activities within the park. The SPLA have remained there ever since, demanding support from the park or threatening to wipe out the animals if this is not given. Representation has becn made to all the concerned authorities and the park's position has been made officially clear, but the threat remains and has in 2003 become extremely scrious.

P.N.Garamba

Large Mammal Populations 1983-2003

Current trends

As noted above, although the poaching front line had been moving south through the park under pressure from Sudan, while it was still largely for meat and while buffaloes and other species were available in the centre of the park, the rhinos and elcplants in the south were relatively securc. During the most active phases of the wars, in carly 1997 and late 1998, the poachers were able to penetrate the southern sector, but at times that the guards were able to operate more effectively, they were able to push then back. The most

PARC NATIONAL DE LA GARAMBA
Rhino \& Giraffe 1983-2003

striking result of recent aerial surveys has been the almost complete lack of large mammals in the central and northern sectors of the park. The series of maps of buffalo distribution over time demonstrate this
effectively. As these have been the main prey species for meat poaching, all the attraction for poachers for either meat or rhino horn and ivory is focussed in the southerm sector. The pressure is serious. In response the guards prefer to go on patrol in very large groups, which halves or quarters the cover of the area and makes them easy to detect. In addition, with the key poachers now established close to the park in the Domaine de Chasse, they no longer have to make camps to smoke meat before travelling 100 km back to Sudan, but can move in and out in a day

Recent patrol reports indicate that the trend since May has been to kill elephants for ivory and leave the meat, which also means that many more elephants can be killed in a short space of time. In June and July there have been three instances of guards being attacked in their camps, including the new radio relay station which is at Km 15 the very centre of the southem sector and only 15 km from Nagero, the park headquarters. It is urgent that guards reccive effective training, back up and leadership. that more young guards are recruited and trained and that an effective strategy is developed and followed. A rhino and poaching recce survey of the southern sector will be carried out in August.

Parc National de la Garamba
Large Mammal numbers 1995-2003

Elephants

The table and graph of elephant numbers since 1976 show the precipitous decline between 1976 and 1984, with a low of about 4,500 and a time lag in increase as such a slow reproducing species. Numbers then rose exponentially, until they had more than doubled with over 11,000 in 1995. Despite the broad confidence limits inherent in sample counting, the difference was significant at the 5% level (anal. of variance, Cochran in Norton Griffiths 1978). The graph of elephant and buffalo populations, plotted with equally spaced years and lines of best fit calculated from the regression, show that the actual slopes of decline and increase were similar. ($r=0.18$) both were of the order of 10% per annum. The overall increase in the elephant population since the project started was largely duc to the elimination of most of the commercial poaching of internal and external origin. However, the pressure from the war across the border in Sudan, exacerbated by the civil war preventing anti-poaching in early 1997 resulted in a loss of some 5,000 elephants between the counts of 1995 and 1998. Since then eleplant numbers have remained relatively stable to slightly increasing, but the recent trends are of considerable concern and the aerial recces and next large mammal survey will be needed to assess the degree of effect.

Although the elephant population remained largely concentrated in the better protected south of the park, as their numbers increased, they increasingly used the woody vegetation in the Domaines de Chasse at night (Hillman Smith et al 1995 and Nicholas \& Amube 1995) often forming into large groups near the periphery of the park during the day. In 2003 a large aggregation of some 800 was seen in May, concentrated in long grass patches during the day and moving out into the Domaine in the evening. However no elephants are now found north of the Garamba river in their previous concentration areas. It has been shown, from the results of counts, general observation and from aerial total counts over fire experiment blocks that clephants and rhinos favour long old grass for cover. During the war periods a management effort has been made to maintain mosaics of long old grass with patches of short palatable grass. Their distribution favouring these areas indicates the value of the long grass in helping to protect the more vulnerable species.

Dead to live ratios from carcase counts were relatively low during these surveys compared with the 1 dead to 8 live ratio found in 1983 before the project started. During the recce flight in 1997 carcase numbers had been very high, but by the time of the 1998 sample count reported here, many of those carcases had disappeared and the lack of new ones indicated how the guards were pushing back the poaching. Carcases disappear extremely quickly. Rainfall is over 1300 mm per year, aiding rapid breakdown and hyena and vulture densities are high. Even clephant carcases can sometimes be so scattered as to be unrecognisable from the air a week after death. The 12% cover of termitaria clearings and the tendency of animals to use them and therefore die in them, together with the rapid rate of grass growth also makes it difficult to distinguish all rot patches for as long as in east africa.

Figures for large nammal numbers and biomasses are expressed as pie charts. The biomass contribution of clephants to the ecosystem is very striking. The relative sizes of the populations of elephants and buffaloes in 1995 were the same as those found in 1976 (savidge et al 1976).

An examination of the tree and bush cover from aerial surveys throughout the project reflects both the overall reduction in mature trees within the park compared with the surrounding domaines and the advancing bush regeneration in the north and centre of the park, as the elephant have to a large extent been absent from this area for over twenty years. This is borne out by the 1976 distribution of clephants throughout the park compared with the present and by reports of guards, who say there used to be many elephants in the north of the park, and that much of the poaching between 1978 and 1984 was done by guards themsclves. The reduction of woody vegetation is compounded by the effects of firc. The action of the elephants and the hot fires is to damage smaller trees. The elephants further prevent regeneration from old rootstocks by selection for these plants. This leads to dominance by rapidly growing coarse perennial grasses (lotidetia arundinacea and hyparrhennia spp.) that grow over 2 metres tall. In addition to competing with the woody regrowth amongst them, they provide a huge combustible biomass for the hot fires that sweep through, further destroying that year's regrowth of woody plants that might remain. The management activity of maintaining mosaics of long and old grass is therefore doubly important

Elephant distribution and use of natural woody vegetation in the domaines de chasse was found to be positively correlated with proximity to their daytime core distribution, and negatively with distance from human settement in the dry season. (Hillman smith et al 1995). This showed that they were not moving out solely to raid crops, though this appcared to be the human perception of the situation. More recent comments by guads are that eleplauts are cscaping from the poaching dangers in the park!

Rhinos

A sample count is not adequate for accurate estimation of so small a rhino population. The difference between secing 2 or 4 means the difference between population estimates of 27 or 53 . We have becn monitoring the rhino population through individual recognition over the years, and a rhino total block coumt
 minimum of 28 were accounted for in April and on the basis of earlier observations at feast 30 werc almost certainly present. With the recent poacling pressure in the southern sector, however, several may lave been lost.

Rlino numbers increased exponentially before the wars, doubling in eight years. The known population dynanics tlrough the war periods are given in the table. Throughout the wars the population has remained relatively stable and over 12 births werc recorded. However according to the rate of reproduction and the previously demonstrated rate of increase, the population should be over 60 individuals now, double current numbers. We camot be complacent about relative stability and must do all possible to improve protection combined with back up measures to avoid loss of this, the most endangered large manumal sub-species. Under the IUCN red list categorics of cadangered species (IUCN/SSC,1995), they are classed as critically endangered by reason of their low numbers.

The thinos, like the eleplants, are also found only in the south of the park. They are at an over all density of $0.003 / \mathrm{km}^{2}$, but a local density of $0.03 / \mathrm{km}^{2}$. Prior to the war, as the population had been expanding and subadults in particular lad been dispersing, there was more movement north of the Garamba river. Since 1996, however, most thinos venturing torth of the river have been eliminated.
Honc ranges for dominant inales average $188.6 \mathrm{~km}^{2}$ (124-228). For females the mean is $345 \mathrm{~km}^{2}$ (185-492), and for sub-adults $534 \mathrm{~km}^{2}$ (up to 786). These ranges are of the order of 100 time larger than those recorded for soullern white rhinos. Thir size may be related to the very low density of rhinos, which places little restriction on their movencnt, but may also be related to the dispersal of available food resources at ccrtain times of the year. The extensive movements of the animals, however maximise the chances of catcoumters between different individuals for breeding. The ecosystem has been shown to be ideal for them as demonstrated by rate of breeding. However adequate protection and monitoring is essential if they are to survive.

Buffalo

Buffalo numbers have fallen steadily throughout and the change in their distribution has been significant. Buffato are the most numerous large mannnals, but contribute less than a third of the biomass of eleplants.
However buffalo mmbers in 1995 were approximately half what they were in 1976 and are closer to one quarter in 2003. The difference is significant at the 5% level ($\mathrm{d}=2.07$, anal. of variance, Cochran in Norton Grifliths 1978). The graph of buffalo numbers shows no significant change between 1976 and 1983, followed by a gradual decline, which has steepened in recent years. During the period of the project, buffato have been the species most poached for meat. This meat poaching increased in 1994, with large, well-ammed groups of sudanese causing the majority of it. Buffaloes have now been completely climinated from the north and central sectors of the park. This insidious offake over the years, while decreasing a once extrencly numerous population, had a buffering effect on the protection of the more conumercially valuable specics, thinos and elephants. Now, with all species concentrated in the south, all poaching is also conccubated there.

Giraffe

This giraffe population is the only onc extant in DRC and probably the only representative of the sub-species (Giraffa camelopardalis cemgoensis). It is classified as endangered by the IUCN red list catcgorics
(IUCN/SSC 1995). The northern white rhinos and the giraffes were the main reason for the creation of the park in 1938 and for its world leritage status in 1981.

The population, however is very small and has been decreasing. This estimate in 2003 is only 62 ± 75. The woody habitat needed by the giraffe is only found in the north of the park or around the peripheries of the south or in the Domaines de Chasse, all areas which are very vulnerable now. A preliminary study showed their selection for acacias which are very poorly represented in this ecosystem.

Giraffe were not widely poached because the Azande believe that cating their meat confers leprosy, although their tails are used by local chiefs. However these beliefs are not shared by the Sudanese, who form the majority of the poachers now.

Hippos

Sample counting is not ideal for hippos, whose distribution tends to be in local concentrations, leading to large variations in estimates, and for whom correction factors are needed to allow for those underwater. However the specialised hippo count carried out in 1988 yeilded figures very similar to the preceding sample count. The graph of the results from all the counts shows a gradual trend of increase from 1976 to 1995. This is borne out by personal observation that the hippos appear to have been increasing, and by reports from nagero and faradje of increasing problems of crop-raiding by hippos. If the correction factor calculated in 1988 was applied to the 1995 there would have beeen over 6,000 hippos. However, as figures since the wars show, hippos were hard hit by the poaching during the 1997 war. The aerial survey we carried out in July 1997 of the southern sector confirms the reality of this, since the Garamba river was full of dead hippos floating belly up. Clearly when poachers penctrated as far as the river, they fired fairly indescriminantly at the hippos, but were unable to recover all the bodies.

The 1998 figures are lower than the subsequent figures. There are possibly at least threc contributing factors to this: Some hippos may have moved out along the rivers during the major killing of 1997, the other two reasons may be linked to count biases. After training and discussion and practice with photos, 1 suspect that observers were making some allowances for the up:down ratio in their own counting or estimating of very large dense concentrations. The third factor is the shift in count transects from north south to cast west. Transects north south cross the Garamba and Dungu rivers at near right angles. However east west transects, that are only spaced 2.5 km apart fly along relatively parallel to the river and slight drifts in course could easily lead to duplicate counting of some of the large groups. We have tried to check for any obvious duplications here and to control for obscrver bias in counting, but a spcific hippo count would give more precise figures.

Kob

Apart from an apparent high in 1986, kob appear to have followed a similar pattern to other antelope species, with a decrease between 1976 and 1983, continuation at a similar level, and an increase again in 1993 and 1995 and a decrease then relative stability since the wars. Observer bias may be one factor in their apparent fluctuations, and it will be important to try to standardise on observers for several years. They are distributed mainly in the lugh density stratum, but with several in the medium density and even the low. They were also secn in parts of the domaines de chasse. Kob tend to show a certain fidelity to areas where the grass is generally shorter all year round, for example on the shallow soils near the nauloloko/eleti confluence and at bac garamba. Their social organisation shows large harem groups, smaller, less cohcrent female and calf groups, male groups and "leks", with birth peaks in early dry season and breeding peaks in early wet.

Hartebeeste

Hartebecste were 7750 ± 1470 in 1983, and down to 1932 ± 146 in 1993. They stayed at a similar level until a major increase in 1993 and 1995. The difference between the 1991 and 1995 figures was significant ($\mathrm{d}=4.9,>5 \%$). They were raduced by about half during the first war of 1997, but since then have remained relatively stable. They tend to be relatively sedentary and their prefered habitat is on ridge tops of the savanna grassland (hp).

Waterbuck

Waterbuck are widely distributed throughout the park and domaines, in association with water courses. They did not show a major drop during the first war, but numbers have shown a steady decline since then.

Reedbuck

Recdbuck are not nuncrous. Like most of the antelopes they show a decrease from the 1976 figurcs and an apparent, but insignificant rise in 1995. Numbers are currently low. They are fairly cryptic and not casily scen miless they move. Their distribution was apparentely towards the south and east of the park, but they may have been more difficult to sce in the more bushed north and west. Numbers are undoubtedly an undercount.

Roan

Ronn antelope are represented by a very small population, which was apparentely larger in 1976 (360 ! 530). There used to be group south of nt kpaza, near the kasi, but any that remain are now only found south of the Garamba river. A small group usually occupies the region near to source Nauloko cach short grass scason, and apart from that scattered observations are made from time to time. $57+-67$ were estimated in 2003, but this could be on the high side from chance sightings of several individuals.

Bushbuck

The population cstimate for buslibuck is undoubtedly lower than the true population. They are very cryptic, preferring relatively thick bush near to water courses. The apparent reduction or lack of increase in numbers in the last two counts may be associated with lower visibility from a count later in the year than previously. From the ground, however they are fairly frequently seen and Nicholas (1995) found that they were the most munterous small autelope in the Domaines.

Oribi

Oribi are also diflicult to see and are in low numbers and only 58 were estimated in 2003, though this was higher than the population estimated of two preceding years. Their population estimate will probably aivays be lower than the actual, since they are small and not casily seen. Verschuren in 1989 (pers.conm) had a strong impression that oribi had increased since the 1950s, but he conceded that it might have boen the effect of more open vegetation.

Duikers

Population estimates for duikers will be mininal, since they are small and not casily seen. Grey duikers are mainly found within the park, but two were secn outside. Their population estimates do not show significant change over time. Red-flanked duikers are found more in the wooded areas to the north of the park and in lice dumaines. No yellow-backed duikers were seen on this count, but they have previously been seen from the air in wooded areas to the north and in the domaines de chasse. Figures within the park were apparentely higher in the 1993 and 1995 counts despite lower visibility overall. This could be associated with the increasing wordy vegetation in the north.

Warthog

The warthog population has shown a rapid decline since 1995. This may be partly due to poaching but is probably largely due to some other factor like disease. Their populations have always fluctuated widely over the years. One suggestion mooted by guards for the previous decline was lion predation, but it was more likely to be an epidemic. Warthog probably go into their burrows to die and carcases would not often be noted.

Lion and hyena

Lion and hyena are both relatively plentiful predators, but are not casily counted by acrial sample counts and their population estimates are definitely lower than true vaiues.

Monkeys, baboons and crocodiles

No reliance is placed on these population estimates that were based on chance sightings. Crocodiles are very plentiful.

Other species

Some species occur only or more conmonly in the domaines or the very north of the park, such as the chimpanzee (pan troglodytes), giant forest hog, bushpig, leopard and two of the duiker species. Other valuable species, like bongo (tragelaphus euryceros) have been reported only from the domaines de chasse (nicholas 1995) and a derby's eland was once observed walking through the park from the domaines. These differences are largely duc to habitat differences as can be seen from the vegetation maps. However, they add weight to the fact that the domaines and park support complementary and different habitats and both need to be considered to maintain maximum biodiversity of the ecosystem as a whole.

Vegetation

The vegetation maps ploted in 1995 (Hillman Smith et al 1995a) and recorded but not necessarily plotted every year on the counts, show the clear differentiation between the wooded reserves and the grassland savanna of the south of the park. The southern half of the park is long grass savanna dominated by loudetia arundinacea and hyparrhenia species, with scattered kigelia africana and vitex doniana trees. Relict gallery forest and riverine trees add further to the sparse tree cover in the south. A few arcas of sparse tree savanna usually dominted by crossopteryx febrifuga exist. They appear to be relicts of a more wooded savanna in the past. They are not favoured by elephants and are usually on patches of shallow soil, where the effect of fire may be less due to reduced grass cover. Crossopteryx has also boen found in Lope rescrve in Gabon to be the relict species remaining in savamua that has in the past been forested (White L. pers.comm). Areas of regencrating bush in the centre of the park are usually dominated by piliostigma thoningii, which is relatively fire resistant. The interactions of elephants and fire as controlling factors in the maintenance of the oper savannas of the park are dsicussed in the section under elephants. Because the count was done at the carly wet scason, the greenness factor was high throughout.

Towards the north of the park the ground rises with rocky kopjes and increasing woodland and galerry forest. Monodominant patches of lophira lanceolata are noted and other arcas domainated by terminalia mollis, isoberlinia or anogeissus leocarpus occur. The domaines support a variety of degrees and types of woodland and tree/bush savanna. In some arcas particularly towards the west, these are interspersed with dense gallery forest along the water courses. In other areas, particularly to the east and in the north of the park, many of the rivers are bounded by papyrus swamp or grassy plains. Over 104 tree specics were recorded by nicholas and ndey (1995) on their ground transects in the domames.

In the south of the domaines de chasse Gangala na Bodio are limited areas of secondary forest, and in areas. To the east. just outside the domaines, are some conserved forest patches, which indicate the climax type of vegctation of the area when protected. Rainfall averages 1400 mm per annum. Most of the region, however shows the effects of human clearing at some stage in the past. In every case where the bush was being cleared for new agriculture it was in areas of secondary forest or dense tree bush savanna, the most species rich stage of this habitat type, or in woodland. There is a positive correlation between tree density and human tree destruction. The people choose these areas because the soil is more fertile in the forest or woodland. The selection for these regions of highest biodiversity and very limited extent is having a destructive effect on the reserves, which would be probably be irrecoverable for several hundred years. Agriculture is not prohibited in the domaines de chasse, but its current method of slash and burn practice is not compatible with sustainable use of natural resources. A proper crop rotation system and the use of fertilizers, with prohibition of tree felling in specified areas is needed if the few remaining forest patches are to be protected to maintain plant and aniunal biodiversity.

Water availability

Water is not a limiting factor anywhere in the park and reserves, but more surface water appears to be available in the park. In the rescrves more of it is tied up in transpiration through trees.

Human influences

Poaching

There was a widespread distribution of poaching camps in 1998, but decreasing numbers since then. A few canps were seen in the north and central sectors on the last count, but as noted previously there is less nead for poachers to make meat smoking camps now that they are based so close to the remaining wildife. On the 2002 count a small group of poachers in military uniform were found close to the eastern border of the paik drying manioc on the rocks, and they fired at the aircraft.

Poaching is currently extremely brazen, but far more difficult to detect. The effects of the wars and instability has becn most marked where it led to disarming of the guards and reduction of their ability to conbat the poaching. As the graphs show, the majority of poaching groups are largely Sudancse and in the curcent situation in the region weapons and ammunition are readily available. It is urgent that really major effective training and teadership is given to the guards, with development of a new strategy of anti-poacling and tecruitucnt and training of an adequate numbers of guards that can be fully supported and effective in their work. Numbers aloue are not the answer.

CONCLUSIONS

There was some loss of most species execpt buffalo between 1976 and 1983. However the focus of poaching during that time appears to have been for the commercially valuable elephants and rhinos. Both species provided plenty of meat in addition to the trophies, if it was required. Since 1984 most specics increasad with the better protection, notably the rhinos and elephants, which have shown high rates of increase, and wathog. which showed a recent spectacular rise prior to 1995. The exceptions are buffalo and girafe. Both have declined stcadily. The buffalo population has dropped overall since 1983, probably as a result of meat poaching. Although carcase ratios and patrol reports show how poaching was brought down to minimal Icvels by the combited action of the project and IZCN, prior to 1991, after this time the effect of the war in adjacent Sudan has been the major influcnee on loss of animals and of the protected area of the park. The main drive for poaching has been for meat, and was hitting the buffalo population.

However the raduction in anti-poaching during the first war led to major wildlife losses in 1997. Since then major efforts by the guards and by the project personnel, principally in developing the UNF/UNESCO project to provide both financial and political support and in keeping up support on the ground, has crabled conservation work to continue as far as possible and has held many of the populations relatively stable. However there have been ahnost complete losses of wildlife in the northern and central sectors of the park. The combined effects of this is that all poaching focuses on the south, the proximity of well armed poachers to this area and the trands towards ivory and rhino horn poaching put the park in extreme danger, that must be tackled by extreme measures, now that peace is on the horizon in the DRC.

It is important for the sake of the park and its wildlife that sufficient resourees and political negotiations are mobilised to stop the trans-border poaching, and that the poaching is tackled on all fronts, including positive integration of local poople in resource conservation. For the sake of faunal and floral biodiversity and for long term conservation of the ccosystem and its particularly valuable components, it is important that the park and reserves are considered as a whole in an integrated plan backed with the resources to implement it.

REFERENCES

Burril A., Kallski K \& Douglas- Hamilton I.(1984) Aerocount, aerial survey analysis program manual Typescript
Douglas-Hamilton I. \& Hillman A.K.K. (1981) Elephant carcasses and skeletons as indicators of population trends. Low level Acrial Survey Techuiques ILC \wedge Monograph, 113-129

Haltenorth Th. \& Dilier H (1977) Mammifères d'Afrique et de Madagascar. Deiachaux \& Niestlé.
Hillman K., Borner M., Mankoto ma Oyisenzor, Rogers P., Smith F.(1983) Nerial census of the Garamba National park, 7aire, March 1983

Hillman Smith K. (1989) Ecosystem Resource Inveatory, Garamba National park. Internal docunent. [UCN/WWF/FZS/IZCN
d'Huart J.P. (1978) Ecologic de iThlochc̀re (IIylochoerus meinertzhageni Thomas) au Parc National des Virunga. l'Academie Roy.des Sci.d'Outre-mer. FFRSA

IUCN/SSC (1995) IUCN Red List Catcgories. IUCN Publication.
Nicholas A. (1995) A report on the resuits of tine transect work undertaken during the dry and wet seasons in the Domaincs de Chasse of Garamba National Park, north castern Zaire. 2. Large Mammal abundance and distribution in the Domaines de Chasse.
" \& Amube $\mathrm{N} .(1995) \wedge$ report on the results of tine transect work undertaken during the dry and wet seasons
2 in the Domaines de Chasse of Garamba National Park, north eastern Zaire. 1. Elephant distribution, density and feeding preferences in the Domaines de Chasse.

Norton Griffiths M. (1978) Counting animals, AWF handbook 1 .
Savidge, J.M. Woodford M.H. and Croze H. (1976) Report on a mission to Zaire, FAO W/K1593 KEN/7i/526 ZAV/70\%01

Smith K, Smith F., Mbayma A. Monungu L., Watkin J. de Merode E., Amube N. Eza K. (1993) Garamba National Park, General Aerial Count 1993 WWF/FZS/IZCN/IUEN/UNESCO Report

Watkin J.,de Merode E. \& Hilman Smith K. (1995) A simple method for analysis of aerial sample count data using widely available commereial software. (In press, Pachyderm)

Western D (1976) An acrial method of monitoring large mammals and their environment. FAO KEN/71/526 Project Working Document 9 .

ACKNOWLEDGEMENTS

We are extrenely grateful to the International Rhino Foundation (RF) for support to ourselves and the running costs of the project, to Frankfurt Zoological Society (FZS) for the aircraft, to ZSL/Darwin Foundation for support to KHS, to USFWS and the Elephant Foundation, for equipment to the UN Foundation/UNESCO to for guards' salaries, training funds and political and diplomatic support. and in particular to the institut Congolese pour la Conservation de la Nature (ICCN) for the the strong partnership to work together to conserve Garamba National Park and its unique species.

RECENSEMENT GENERAL SYSTEMATIQUE GENERAL AERIAL SYSTEMATIC SAMPLE COUNT

Calibration Graphs, Distribution Maps and Population Estimate Calculations

May / Mai 1998

1350. 350 $1200 \quad 300$ 1930322 2070296 2160309 2990299 $3010 \quad 300 \quad 301$ $3620 \quad 910 \quad 302$ $\begin{array}{lll}3400 & 2430 & 289\end{array}$ $3300 \quad 1210 \quad 301$ 3350 3640

PARC NATONAL DE LA GARAMBAGGARAMBA NATIONAL PARK

30/RECENSEMENT GENERAL AERIENGGENERAL AERIAL COUNT, MAI 1998 29 RHINOCEROSRHINO

TRANS HIGH STHMD NTH LOWEA NTHTOT. NORTH HIGH STHMID NTH LLOWAFES NTLTOT NTHI TOTAL HIGH STHMID NTH LOW NTH TTOT NT

IRANS HIGH STIMID NTH AREA NTHTOT NORTH/HIGH STIMID NTH ANTLLOPE ROANNE

PARC NATIONAL DE LA GARAMBA
 GARAMBA NATIONAL PARK
 RECENSEMENT GENERAL SYSTEMATIQUE GENERAL AERIAL SYSTEMATIC SAMPLE COUNT

Calibration Graphs, Distribution Maps and Population Estimate Calculations

June / Juin 2000

	0	0	0	0	0	0	0	0					
\bigcirc	0				0	0	0	0	0	0	0	0	0
∞	\bigcirc	0	0	-	\bigcirc	0	0	0	0	0	0	0	0

 $T \quad 29$ LIONS / LIONS

Low D
Med D
High D
High D
 0
0

					THEPMATS HIGK STHMONLILOWNTHIOTATH TOTAK					HiGN				
			5.75	- 5.75			0	0				0	0	
			8.62	8.62			0	0				0	0	
			12.38	12.38			0	0				0	0	
			13.50	13.50			0	0				0	0	
			13.44	13.44			0	0				0	0	
䇣效260			18.90	18.90			0	0				0	0	
		19.97	2.19	22.16		0	0	0			0	0	0	
		21.85	6.66	28.51		0	0	0			0	0	0	
		23.50	15.30	38.80		0	0	0			0	0	0	
		22.75	7.45	30.20		0	0	0			0	0	0	
		21.42		21.42		0		0			0		0	
3xay		20.75		20.75		0		0			0		0	
		20.90		20.90		0		0			0		0	
	19.00				0					1				
	16.86				55					50				
	17.87				94					28				
	17.61				38					22				
	17.83				83					20				
	18.10				68					387				
	17.14				103					180				
	22.33				58					98				
	22.69				21					66				
	29.29				24					184				
	28.51				50					44				
	25.19				54					492				
	25.50				191					160				
	18.63				47					173				
	17.75				39					100				
	17.83				2					8				
W Whathen	332.1	151.1	104.2	255.3	927.0	0.0	0.0	0.0		2013.0	0.0	0.0	0.0	
5	7163.0	3272.1	980.6	6028.1	85439.0	0.0	0.0	0.0		543747.0	0.0	0.0	0.0	
				Sum (\mathbf{Z}^{*} y)	19486.2	0.0	0.0	0.0		44138.3	0.0	0.0	0.0	
				$\mathrm{R}=\mathrm{Sy} / \mathrm{Sz}$	2.8	0.0	0.0	0.0		6.1	0.0	0.0	0.0	
				Var y	2115.4	0.0	0.0	0.0		19365.8	0.0	0.0	0.0	
	17.9	1.5	20.5	84.5	16.2	0.0	0.0	0.0	STRAT. TOTAL	156.8	0.0	0.0	0.0	STRAT. TOTAL
					ELEPHANTS					BUFFALOS				
				Pop.est.(Y)	5,896	0	0	0	5,896	12,804	0	0	0	12,804
				SE(Y)	1066.0	0.0	0.0	0.0	1066.0	O 3084.5	0.0	0.0	0.0	3084.54
				95\% C.L.	2174.5	0.0	0.0	0.0	2089.3	36292.5	0.0	0.0	0.0	6045.70
				95\% C.L.as \%	- 36.9	0.0	0.0	0.0	35.4	4.49 .1	ERR	ERR	ERR	47.22

Thans		MOQNHI	AREA LOWNTH	TOF NORTH	HIGHSTHI	COBS	LOWNTH	TOINTA	TOTAt	Wighstil		HARTBEES LoV NIT	OHNT	rotat
			5.75	5.75			0	0	-					
			8.62	8.62			0	0				0	0	
			12.38	12.38			0	0				0	0	
, 288,			13.50	13.50			0	0				1	1	
, 27			13.44	13.44			0	0				0	0	
H228			18.90	18.90			0	0				0	0	
-2, 25.8		19.97	2.19	22.16		0	0	0			0	0	0	
5\% 24\%		21.85	6.66	28.51		0	0	0			0	0	0	
- 23.		23.50	15.30	38.80		0	0	0			2	0	2	
\% 22%		22.75	7.45	30.20		0	0	0			3	0	3	
, 21,		21.42		21.42	.	0		0			0		0	
- 20.1		20.75		20.75		0		0			2		2	
199		20.90		20.90		0		0			0			
3) 88	19.00				2					3			0	
-17a,	16.86				42					6				
$\bigcirc 178$	17.87				,					0				
-16a,	17.61				24					1				
- 16	17.83				148					0				
15a	18.10				36					6				
15	17.14				48					10				
14a.	22.33				7					15				
¢14.	22.69				31					33				
-13a	29.29				5					34				
13	28.51				0					24				
12a	25.19				1					14				
1212	25.50				51					10				
, 11a.	18.63				63					7				
-11	17.75				89					0				
10a	17.83				16					0				
Strotal	332.1	151.1	104.2	255.3	564.0	0.0	0.0	0.0		163.0	7.0	1.0	8.0	
Sum squ	7163.0	3272.1	980.6	6028.1	43632.0	0.0	0.0	0.0		3573.0	17.0	1.0	18.0	
$\hat{E N T}, \mathrm{k}$				Sum ($\mathrm{Z}^{*} \mathrm{y}$)	10670.8	0.0	0.0	0.0		3957.7	156.8	13.5	223.2	
				$\mathrm{R}=\mathrm{Sy} / \mathrm{Sz}$	1.7	0.0	0.0	0.0		0.5	0.0	0.0	0.0	
Ye, ${ }^{\text {cta }}$				Var y	1583.4	0.0	0.0	0.0		127.5	1.7	0.2	1.1	
V, Varz	17.9	1.5	20.5	84.5					STRAT.					STRAT
Covar zy					-69.1	0.0	0.0	0.0	TOTAL	38.3	-3.9	0.3	4.8	TOTAL
F-kx,					COBS					HARTBEES				
				Pop.est.(Y)	3,587	0	0	0	3,587	1,037	90	12	99	1,139
Wexata				SE(Y)	990.8	0.0	0.0	0.0	990.8	222.4	51.2	9.9	38.4	231.66
W,				95\% C.L.	2021.2	0.0	0.0	0.0	1941.9	453.8	104.4	20.1	78.3	454.05
Somes				95\% C.L.as \%	56.3	0.0	0.0	0.0	54.1	43.8	115.6	170.9	78.7	39.87

		Eingemakn	TSEAK 学底絰	rexatem		 	4werkes	Mastul	tostit	Kiskekk		 	Kaskuk	woth
\％knkik			5.75	5.75			0	0				0	0	
3，\％\％			8.62	8.62			0	0				0	0	
\％ Z S			12.38	12.38			0	0				0	0	
\％，z\％i			13.50	13.50			0	0				0	0	
灾家			13.44	13.44			0	0				1	1	
，令灾，			18.90	18.90			0	0				0	0	
\％		19.97	2.19	22.16		0	0	0			0	0	0	
		21.85	6.66	28.51		0	0	0			0	0	0	
\％＜		23.50	15.30	38.80		0	0	0			0	0	0	
		22.75	7.45	30.20		0	0	0			0	0	0	
\％		21.42		21.42		0		0			0		0	
\％，n／2．		20.75		20.75		0		0			0		0	
19\％		20.90		20.90		0		0			0		0	
W，\％， 8 8．	19.00				0					0				
3	16.86				0					0				
	17.87				0					20				
，\％${ }^{\text {a }}$ \％	17.61				0					0				
\％納	17.83				0					1				
H2	18.10				0					0				
\％	17.14				0					0				
，浣：	22.33				0					6				
产 ${ }^{\text {a }}$	22.69				0					87				
䋨妥	29.29				3					4				
\％，${ }^{\text {\％}}$	28.51				0					9				
	25.19				0					3				
䜌	25.50				0					4				
	18.63				0					12				
\％ 14 K．	17.75				0					2				
受学	17.83				0					0				
\％	332.1	151.1	104.2	255.3	3.0	0.0	0.0	0.0		148.0	0.0	1.0	1.0	
Siknk	7163.0	3272.1	980.6	6028.1	9.0	0.0	0.0	0.0		8276.0	0.0	1.0	1.0	
				Sum（ ${ }^{*}$＊）	87.9	0.0	0.0	0.0		3293.9	0.0	13.4	13.4	
				$\mathrm{R}=\mathrm{Sy} / \mathrm{Sz}$	0.0	0.0	0.0	0.0		0.4	0.0	0.0	0.0	
§\％沙紋				Var y	0.6	0.0	0.0	0.0		460.5	0.0	0.2	0.1	
§\％綾	17.9	1.5	20.5	84.5					STRAT．					STRAT．
\％					1.7	0.0	0.0	0.0	TOTAL	14.8	0.0	0.3	－0．7	TOTAL
					RHINOS					HIPPPOS				
Kiskis				Pop．est（M）	19	0	0	0	19	941	0	12	12	953
				SE（Y）	16.7	0.0	0.0	0.0	16.7	486.5	50.0	9.9	12.4	486.77
				95\％C．L．	34.1	0.0	0.0	0.0	32.8	992.5	－ 0.0	20.1	25.3	954.08
				95\％C．L．as $\%$	＋ 178.9	0.0	0.0	0.0	171.8	105.4	4 ERR	171.0	203.7	100.10

	12 CW 2 a 		\％ kevkik	Kkakake	4ikekiky	Wen kik ikith		roskink	kelat	bikk 絃		ksikskx	\｛2kxak	
\％knajuk			5.75	5.75			0	0				0	0	
\％M M			8.62	8.62			0	0				0	0	
			12.38	12.38			0	0				0	0	
			13.50	13.50			0	0				0	0	
3\％／4）			13.44	13.44			0	0				0	0	
			18.90	18.90			0	0				0	0	
		19.97	2.19	22.16		0	0	0			0	0	0	
		21.85	6.66	28.51		0	0	0			0	0	0	
		23.50	15.30	38.80		0	0	0			0	0	0	
\％\％，＜\％		22.75	7.45	30.20		0	0	0			0	0	0	
		21.42		21.42		0		0			0		0	
§《4\％		20.75		20.75		0		0			0		0	
，		20.90		20.90		0		0			0		0	
	19.00				0					0				
	16.86				0					0				
	17.87				0					0				
\％，\％ A ，	17.61				0					0				
\％${ }^{\text {\％}}$	17.83				3					0				
	18.10				0					0				
3\％${ }^{\text {\％}}$	17.14				0					0				
\％kism	22.33				0					0				
4	22.69				0					0				
\％\％，	29.29				0					1				
絁	28.51				0					2				
㚾	25.19				0					0				
	25.50				0					0				
	18.63				0					0				
\％＜	17.75				0					0				
	17.83				0					0				
\％\％M	332.1	151.1	104.2	255.3	3.0	0.0	0.0	0.0		3.0	0.0	0.0	0.0	
Sidrs	7163.0	3272.1	980.6	6028.1	9.0	0.0	0.0	0.0		5.0	0.0	0.0	0.0	
				Sum（ $\mathbf{Z}^{*} \mathbf{y}$ ）	53.5	0.0	0.0	0.0		86.3	0.0	0.0	0.0	
引幻幻幻				$\mathrm{R}=\mathrm{Sy} / \mathrm{Sz}$	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
				Var y	0.6	0.0	0.0	0.0		0.3	30.0	0.0	0.0	
\％\％\％\％＝䜌	3 17.9	1.5	－ 20.5	84.5					STRAT．					STRAT．
					－0．6	0.0	0.0	0.0	TOTAL	1.6	60	0.0	0.0	TOTAL
				Pop．est．（Y）	LION 19	0	0	0	19	19	0	0	0	19
				SE（Y）	17.4	0.0	0.0	0.0	17.4	－ 11.9	0.0	0.0	0.0	17.87
				95\％C．L．	35.4	0.0	0.0	0.0	34.0	24.2	20.0	0.0	0.0	23.26
	－			95\％C．L．as \％	－ 185.7	－ 0.0	0.0	0.0	178.4	4126.9	ERR	ERR	ERR	121.92

	Wevo			人		2 4 ig 		点				 		\%		 			
			5.75	5.75			0	0				0	0				0	0	
			8.62	6.62			0	0				0	0				0	0	
			12.38	12.38			0	0				0	0				0	0	
			13.50	13.50			0	0				0	0				0	0	
\％＊＊．			13.44	13.44			0	0				0	0				0	0	
			18.90	18.90			0	0				0	0			0	0	0	
		19.97	2.19	22.16		0	0	0			0	0	0			0	0	0	
		21.85	6.66	28.51		0	0	0			0	0	0			0	0	0	
		23.50	15.30	38.80		0	0	0			0	0	0			0	0	0	
		22.75	7.45	30.20		0	0	0			0	0	0			0	0	0	
		21.42		21.42		0		0			0		0			0		0	
		20.75		20.75		0		0			0		0			0		0	
		20.90		20.90		0		0			0		0			0		0	
	19.00				0					0					0				
	16.86				0					0					1				
\％\％\％\％	17.87				2					0					0				
	17.61				0					0					0				
	17.83				0					0					4				
	18.10				0					1					0				
	17.14				2					1					3				
	22.33				0					1					1				
\％	22.69				2					0					0				
	29.29				0					2					3				
	28.51				0					0					0				
	25.19				0	－				0					1				
	25.50				0					0					4				
	图 18.63				0					0					0				
	17.75				0					0					0				
＊＊＊	\％ 17.83				0					0					1				
	332.1	151.1	104.2	255.3	6.0	0.0	0.0	0.0		5.0	0.0	0.0	0.0		18.0	0.0	0.0	0.0	
	菻 7163.0	3272.1	980.6	6028.1	12.0	0.0	0.0	0.0		7.0	0.0	0.0	0.0		54.0	0.0	0.0	0.0	
				Sum（ \mathbf{Z}^{\prime} y）	115.4	40.0	0.0	0.0		116.1	0.0	0.0	0.0		394.8	0.0	0.0	0.0	
				$\mathrm{R}=\mathrm{Sy} / \mathrm{Sz}$	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.1	0.0	0.0	0.0	
				Var y	0.7	0.0	0.0	0.0		0.4	0.0	0.0	0.0		2.3	0.0	0.0	0.0	
\％isk\％	获 17.9	9 1.5	－ 20.5	84.5					STRAT．					STRAT．					STRAT．
					－0．6	60.0	0.0	0.0	－total	L 0.8	0.0	0.0	0.0	TOTAL	1.4	0.0	0.0	0.0	TOTAL
					ORIBI					ELEPHANTS	CARCAS	SES，STAGE			ELEPHA	CARC	S，STA		
				Pop．est．（Y）	） 38	80	0		－ 38	3832	0	0	0	32	2114	0	0	0	114
\％＊＊＊					18.9	900	0.0	00	－ 18.9	9 13.4	0.0	－ 0.0	0.0	13.39	－ 33.6	0.0	0.0	0.0	33.59
				95\％C．L．	． 38.5	50.0	0.0	0.0	37.0	． 27.3	0.0	0.0	0.0	26.25	58.5	0.0	0.0	0.0	65.84
				95\％C．L．as \％	\％ 100.8	80.0	0.0	0.0	－ 96.9	． 85.9	ERR	ERR	ERR	82.55	$5 . \quad 59.9$	ERR	ERR	ERR	57.51

PARC NATIONAL DE LA GARAMBA GARAMBA NATIONAL PARK

RECENSEMENT GENERAL SYSTEMATIQUE GENERAL AERIAL SYSTEMATIC SAMPLE COUNT

Calibration Graphs, Distribution Maps and Population Estimate Cälculations

May / Mai 2002

P.N.Garamba, Recensement Aerien 2002

CALIBRATIONS

CALIBRATION , May 2002
Alt agl Strlp Wldth

1	330	470
2	315	580
3	370	600
4	290	525
5	270	460
6	270	530
7	320	560
8	350	450
9	350	590
10	320	450
11	270	560
12	350	480
13	320	470
14	390	720
15	310	460
16	300	400
17	300	420
18	380	560
19	425	620
20	330	600
21	300	700
22	300	650
23	330	540
24	360	680
25	420	660
26	320	520
27	400	660
28	400	620
29	340	750
30	220	380
31	320	510
32	360	540
33	340	610
34	350	640
35	430	660
36	350	600
37	360	540
38	225	380
39	250	340
40	240	300
41	240	360
42	290	420
43	310	580
44	325	460
45	320	580
46	350	620

		0	0	
		0	0	
		0	0	
		0	0	
		0	0	
		0	0	
	0	0	0	
	0	0	0	
	0	0	0	
	0	0	0	
	0		0	
	0		0	
	0		0	
0			0	
0			0	
48			48	
${ }_{4}^{42}$			42	
98			-8888989	
45			45	
37			37	
39			39	
3			3	
38			38	
35			35	
4 197			$\stackrel{4}{4}$	
197			197	
39			39	
-			4	
0	0	0		Total Nord
\% ${ }^{0}$	0	0		Total Centre
635 635	0	0	635 635	Total Sud

31 PARC NATIONAL DE LA GARAMBAGGARAMBA NATIONAL PARK

 30 RECENSEMENT GENERAL AERIEN/GENERAL AERIAL COUNT, MAIMAY 2002 T 29 RHINOCEROS BLANC / WHITE RHINO R 28 COMPTAGE DIRECT$$
\begin{aligned}
& \text { A } 27 \\
& \hline
\end{aligned}
$$

$\stackrel{\rightharpoonup}{\omega}$

Total 1 Total Total S

31 PARC NATIONAL DE LA GARAMBAGARAMBA NATIONAL PARK

30 RECENSEMENT GENERAL AERIENGENERAL AERIAL COUNT. MAI 2002


```
Low D
llllllllllllllllllllllllllllllllllll
```


TRANS	HGHSTL	MID NTH	AREA LOWNT	TOTNO	HIGH STH\|		ELE CARC LOWNTH	CASES	TOTAL	HIGH STH		NOWN	CARCASE TOTNTH			
-35\%	(8.58	8.58			-	-			MD NTHILC					
+30-			12.38	12.38			0	0				0	0			
29			17.37	17.37			0	0				0	0			
- 28			21.39	21.39			0	0				0	0			
-27.			20.45	20.45			0	0				0	0			
28			30.62	30.62			0	0				0	0			
25		28.88	2.86	31.73		0	0	0			0	0	0			
24		33.94	8.72	42.66		0	0	0			0	0	0			
23		34.30	22.94	57.24		0	0	0			0	0	0			
22		34.38	11.43	45.81		0	0	0			0	0	0			
21.		30.43		30.43		0		0			1		1			
20.		31.52		31.52		0		0			0		0			
19.8180		29.09		29.09	00						0		0			
18		27.57								0 0						
1768	26.82				0					0						
H17,	25.36				1					0						
16\%	26.16				0					0						
-16,	26.09				0					0						
15a	25.36				1					0						
-15	25.73				0					0						
148	251.7331.37				0					1						
\% 14	34.16				0					0						
139	34.10				1					0						
13..	38.93				2					0						
128.	38.9337.52				0					0						
12	37.60				0					0						
118	26.16				0					0						
\%11	24.64				0					0						
10a	24.71				0					0						
- Ioxal	481.3	222.5	155.7	379.3	5.0	0.0	00	0.0		1.8	1.0	0.0	1.0			
Sumisqu	15040.7	7109.8	2341.3	13309.4	7.0	0.0	0.0	0.0		1.0	1.0	0.0	1.0			
, K				Sum (${ }^{*}$ \%	171.7	0.0	0.0	0.0		31.4	30.4	0.0	30.4			
, St				$\mathrm{R}=\mathrm{Sy} / \mathrm{Sz}$	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0			
,				Var y	0.4	0.0	0.0	0.0		0.1	0.1	0.0	0.1			
$\text { Covar } 2 y$	37.6	5.9	59.2	- 187.1					STRAT.					STRAT.		
covar 2 y					1.4	0.0	0.0	0.0	TOTAL	0.1	-1.3	0.0	-0.1	TOTAL		
	Pop.est.(Y)				$\begin{gathered} \text { ELE CARCASES } \\ 22 \end{gathered}$					UNKNOWN CARCASES						
\%					0	0	22	4	9	0	8	13				
				SE(Y)			13.3	00	0.0	0.0	13.3	5.7	14.1	00	12.0	
+				95\% C.L.	27.1	0.0	0.0	0.0	26.1	11.7	28.8	0.0	24.5	38.07		
-1.				95\% C.L.	122.9	0.0	0.0	0.0	118.1	264.2	329.0	ERR	293.2	28889		

PARC NATIONAL DE LA GARAMBA

 GARAMBA NATIONAL PARK
RECENSEMENT GENERAL SYSTEMATIQUE GENERAL AERIAL SYSTEMATIC SAMPLE COUNT

Calibration Graphs, Distribution Maps and Population Estimate Calculations

May / Mai 2003
P.N.Garamba Aerial Count 2003

Mid seat observers Calibrations

Regression Output:	
Constant	218.1045
Std Err of Y Est	59.65976
R Squared	0.480829
No. of Observations	75
Degrees of Freedom	73

X Coefficient(s)	0.87003
Std Er of Coef.	0.105812

$y=m x+c$
$y=\quad 0.87003$ *alt $+\mathbf{2 1 8 . 1 0 4 5}$

		0	0	
		0	0	
		0	0	
		0	0	
		0	0	
		0	0	
	0	0	0	
	0	0	0	
	0	0	0	
	0	0	0	
	0		0	
	0		0	
	0		0	
1			1	
81			61	
2			2	
5			5	
501			501	
466			466	
298 418			296	
468 162			468 162	
15			15	
427			427	
303			303	
274			274	
50			50	
43			43	
0			0	
0		0		Total Nor
0 3024	0	0	0 3024	Total Cer
3024	0	0	3024	TOTAL

[^0]

[^1]

$\begin{gathered} \text { PRANS } \\ \hline 31 \\ \hline \end{gathered}$	HKHSTH	$A D N T H$	AREA LOW NHI	TOT.NOR	HKCH STH	GRAFFES IM1O NTH	LOW NTH	TOTNTH TOTAL	HIGH STH	RHMCO MID NTH	LOW NTH	TOT:NTH	Toral		mpprep	TAMEEn	pos	
$3{ }^{3}$			1032	${ }_{10} 8.07$			0	0			- ${ }^{0}$	0		Lemelt	mel AIH	Low NTH	OTNTH	rotal
29,			15.74	15.34			0	0			0	0				0	0	
28			18.99	18.99			\bigcirc	0			0	0				0	0	
27			18.68	18.68			0	0			0	0				0	0	
26			26.57	26.57			0	0			0	0				0	0	
25		26.65	2.59	29.24		0	0	0			0	0				0	0	
24\%		31.62	7.82	39.44		0	0	0.		0	0	0			0	0	0	
23 -		31.60	21.06	41.92		0	0	0		0	0	0			0	0	0	
$\underline{22}$		31.49	10.74	42.22		0	0	0		0	0	0			0	0	0	
21.		28.81		28.81		0		0		0	0	0			0	0	0	
- 18 -		29.22		29.22		0		0		0		0			0		0	
48	26.57	25.87		25.87		0		0		0		0			0		0	
478.	23.32				0				0					0	0		0	
17.	23.54				0				0					0				
189.1	23.37				13				0					48				
38.	23.47				0				0					42				
159.	23.50				0				0					6				
15	23.12				0				0					98				
149,	31.84				0				2					45				
14.	31.66				0									37				
. 138	39.46				0				1					39				
13.	36.89				0				0					3				
.12a-	33.84				0				0					38				
42	34.45				0				0					35				
$\frac{116}{17}$	23.84 23.69				0				0					4				
109	2114				0				0					197				
Total	444.39	205.26	98.32	98.32	13.0				0					39 4				
Sumen	12862.49	205.26	42.20	236.72	1690	0.0		0.0	9.0	0.0	0.0	0.0		635.0	0.0			
, ${ }^{\text {a }}$		0.00	0.00	444.39	303.8	0.0		0.0	31.0	0.0	0.0	0.0		61663.0	0.0	0.0	0.0	
,		205.26	140.52	779.43					2779	0.0	0.0	0.0		16587.5	0.0	0.0	0.0	
				$\mathrm{R}=\mathrm{Sy/Sz}$	0.0	0.0	0.0	0.0	0.0	0.0								
$v e z$	34.6	5.7	446	Var 125	10.6	0.0	00	0.0	1.7	0.0	0.0	0.0		1.4	0.0	0.0	0.0	
Covar zat					-3.8	0.0	00	0 STRAT				0.0		2430.8	0.0	0.0	0.0	
¢,					CRAFFES			0.0 TOTAL	NOCERO	0.0	0.0	0.0	TOTAL	. 70.0	0.0	0.0	00	strat. total
			Pop.est(\%)		62	0	0	062	43	0	0	0		HipPOS				
				SEM	754	00								3,036	0	0	0	3,036
\%				95\% C.L.	153.7	0.0	0.0	$\begin{array}{rrr} \\ 0 & 147.4 \\ \end{array}$	29.6	0.0	0.0	0.0	25.59	1190.9	00			
				95\% C.L.	247.3	0.0	0.0	0.0 237.6	60.4 1403	0.0	0.0	0.0	58.00	2429.4	0.0	0	0.0	1190.9
									140.3	0.0	00	0.0	134.77	80.	0.0	0.0	0.0	2334.2

TRANS	HIGH STH	MLD NTH	AREA LOWNTH	TOT.NOR	$\text { HIGH STH }{ }^{B}$	BUBALES / H MO NTH LLOW	$\begin{aligned} & \text { QRTE } \\ & \text { NTI } \end{aligned}$	Beest TOT.NTH		HIGH STH	GUB'B HAR	RNACHE FB	Bus	tauck			CEPMALO	0	AKER覓	
31			8.01	8.01			Nib	${ }_{8}$						INTH	TOTAL	HIGH STH\|	Wmo NTH\|		TOT.NTH	total
-30			10.32	10.32			0						O	0				O	0	
29			15.74	15.74			0	0					0	0				0	0	
28			18.99	18.99			0	0					0	0				0	0	
$\underline{27}$			18.88	18.68			0	0					0	\bigcirc				0	0	
28			28.57	26.57			0	0					-	0				0	0	
25		28.65	2.59	29.24		1	0	0			0			0				0	0	
24.		31.62	7.82	39.44		5	0	0			0			0			0	0	0	
23.		31.60	21.06	41.92		0	0	0					0	0			0	0		
22		31.49	10.74	42.22		0	0	0			0			0			0	0	0	
22^{-1}		28.81		28.81		9		0			-		0	0			0	0	0	
29		29.22		29.22		0		0			0			0			1		0	
19		25.87		25.87		24		0			0			0			0		0	
18.	26.57				0						0			0			0		0	
17 a	23.32				18					\bigcirc						0				
17.	23.54				8					0						1				
189	23.37				14					0						0				
18	23.47				17					2						0				
159.	23.50				4					0						0				
15	23.82				32					0						0				
144.	31.84				24					5						0				
14.	31.68				17											0				
139	39.46				12					0						0				
13.	36.89				51											0				
124.	33.84				19					1						0				
12.	34.45				15											0				
119	23.84				25					2						0				
11	23.69				0					\bigcirc						0				
10a.	21.14				0					3						0				
Total	444.39	205.26	99.32	98.32	256.0	39.0	00									0				
Sum sque	12862.49	205.26	42.20	236.72	6734.0	6830	00	0.0		43.0	0.0	0				1.0	1.0	0.0	0.0	
-			0.00	444.39	7603.4	1064.9	0.0	0.0				0.0		0.0		1.0	1.0	0.0	0.0	
, ${ }^{\text {e }}$		205.26	140.52	779.43										0.0		23.3	28.8	0.0	0.0	
				$\mathrm{R}=\mathrm{Sy/Sz}$		0.2	0.0	0.0		0.0	0.0	0.0		0.0		0.0				
$v=2$	34.6	57	446	Var y	175.9	77.6	0.0	0.0		2.2	0.0	0.0		0.0		0.1	0.1	0.	0.0	
Covar zi					32.9	539	00	0.0	STRAT total						STRAT.					
					BUEALES ${ }^{\text {P/ }}$	TARTEBEEST				IEHARN		SHEO 0		0.0	TOTAL	0.3	- 1.1	0.0	0.0	total
are			Papest(Y		8,224	371	0	0	1,595	Han	-rasus	-				CEPHALOP	PES S / DO			
\cdots																			0	14
,				SE(280.1	356.0	0.0	0.0	453.0	33.6	0.0	0.0		0.0	33.55	5.8	14.7	00	00	
				95\% C.L.	571.5 46.7	726.2 0.0	0.0	0.0	867.8	68.5	0.0	0.0		0.0	65.84	11.8	29.7	0.0	0.0	15.2
					- 46.7	0,0	0.0	0.0		110.2	0.0	0.0		0.0	105.91	2473	0.0	0	0.0	$\underline{208.8}$

TRANS	HIGHSTH	$M \mathrm{NTH}$	$\begin{aligned} & \text { AREA } \\ & \text { LOMNESTI } \end{aligned}$	TOT.NOF	HICH STH	CARCASS MIO NTHLL	$\begin{aligned} & \text { sES CAT } 3 \\ & \text { LOW NTH } \end{aligned}$	TOT:NTH	total	$\text { HOGH STH } / \mathrm{M}$	$\begin{aligned} & \text { CROCOD } \\ & \text { MIDNTH } \end{aligned}$	IEs LOW NTH	TOT.NTH\|	TOTAL	\|HGH STH	POTAMO MD NTH	CHERES LOW NTH		
- 4			8.01	8.01			-	-				LOW NTH	TOT.NTH\|	TOTAL			LOW NTH	TOT.NTI	TOTAL
-30			10.32	10.32			0	-				0	0				0	0	
28.			15.74	15.74			0	0				0	0				0	0	
27			18.99	18.99			0	0				0	0				0	0	
28			28.57	18.68 26.57			0	0				0	0				0	0	
25		26.65	2.59	29.24		0	0	0				0	0				0	0	
24		31.62	7.82	39.44		0	0	0			0	0	0			0	0	0	
23.		31.60	21.06	41.92		0	0	0			0	0	0			0	0	0	
22.-3		31.49	10.74	42.22		0	0	0			0	0	0			0	0	0	
21.4		26.81		26.61		0					0	0	0			0	0	0	
20.		29.22		29.22		0		0			0		0			0		0	
192\%		25.67		25.67		0		0			0		0			0		0	
18	26.57							0			0		0			0		0	
178.	23.32				0					0					0				
17.	23.54				0					0					0				
$18{ }^{2}$	23.37				1					1					0				
188	23.47				0					0					0				
160..	23.50				2					0					0				
1812	23.82				0					0					0				
144.4	31.84				4					1					0				
14.	31.66				0					0					0				
13,	36.89				0					0					0				
129.4	33.84				2					0					0				
	34.45				0					0					0				
410,	23.84				0					0					0				
11.818	23.69				0					0					0				
109:	21.14				0					0					0				
Totat	444.39	205.26	98.32	98.32	12.0	0.0	0.0								70				
Scment	12862.49	205.26	42.20	236.72	34.0	0.0	0.0	0.0			0.0	0	0.0		7.0	0.0	00	0.0	
, ${ }^{3}$		0.00	0.00	444.39	351.2	0.0	00	0.0		55.2	0.0	0.0	0.0		49.0	0.0	0.0	00	
, 4		205.26	140.52	779.43				0.0		55.2	0.0	0.0	0.0		1480	0.0	0.0	0.0	
, 1				$\mathrm{R}=\mathrm{Sy} / \mathrm{Sz}$	0.0	0.0	0.0	0.0		0.0	0.0	0.0	00		0.0	0.0	00		
$\mathrm{y}=2$	34.6	5.7	44.8	Var y	1.7	0.0	00	0.0		0.1	0.0	0.0	0.0		3.1	0.0	00	0.0	
Coverzy					1.2	0.0	0.0		Strat.					STRAT					STRAT.
\%					CARCASSE	SCAT 3 EA				0.0	0.0	0.0	00	TOTAL.	-3.9	0.0	0.0	0.0	TOTAL
			Pop.est.(Y)		57	0	0	0	57	10	0	0	0	10		HERES	0	0	33
				SE(M)	29.2	0.0	0.0	0.0	29.2	7.9	0.0								
, \%				95\% C.L.	59.6	0.0	0.0	0.0	57.3	16.0	0.0	0.0	00	15.40	832	00	0.0	0.0	40.8
				95\% C.L.	103.9	0.0	0.0	0.0	99.8	167.6	0.0	0.0	00	181.02	248.8	0.0	0.0	$0 \cdot 0$	79.9

PARC NATIONAL DE LA GARAMBA, RECENSEMENT GENERAL PILOT SUMMARY SHEET

Survey...........Garamba N.P. General large mammal systematic sample survey

Dates: From.. 14 May 2003
Pilot.....Fraser Smith.

To: 18th May 2003
Aircraft....9Q-CBR C 206

DATE	TAKE OFF	LAND	HOURS	PURPOSE	FUEL
14.5 .2003	$15: 40$	$16: 05$	0.4	Calibrations	
15.5 .2003	$08: 25$	$10: 50$	2.4	Transect 31-26	
15.5 .2003	$16: 08$	$17: 38$	1.5	Transects 25-24	
16.5 .2003	$08: 22$	$11: 20$	2.8	Transects 23-18	
16.5 .2003	$16: 02$	$17: 52$	1.8	Transects 17A-16	
17.5 .2003	$08: 10$	$10: 37$	2.5	Transects 15A-13A	
17.5 .2003	$16: 29$	$17: 25$	0.9	Transects 11-10A	
18.2003	$08: 20$	$10: 45$	2.4	Transects 13A-11A	
4 days					

SURVEY. General systematic large mammal survey
DATES: From. 14 May 2003....... To. 18 May 2003. \qquad Aircraft..C206 9Q-CBR
AREAS.... Garamba National Park
($5,000 \mathrm{~km} 2$)

Nominal flying height.......350........feet
Target strip width (L+R)...... 500 \qquad metres
Pilot. \qquad Fraser Smith \qquad FSO \qquad Kes Hillman Smith
RSO R.M..... Paulin Tshikaya
RSO R.R...... Mambo Marindo

RSO L.M. Arrube Ndey
RSO L.R. Serge lliabo

TRANS	DIR	ORDER FLCWN	DATE	SUBUNITS	FRCM-TO	DISTANCE (km)	$\begin{aligned} & \text { THE } \\ & \text { (mins) } \end{aligned}$	SPEED (keh)
31	W-E	1	15.5.03	3	22-24	15	4.5	200
30	E-W	2	15.5 .03	4	25-22	20	6.38	188
29	W-E	3	3) 15.5.03	6	22-27	30	9.42	191
28	E-W	4	15.5 .03	7	27-21	35	11.18	188
27	W-E	5	15.5 .03	7	21-27	35	11.08	190
26	E-W	6	15.5 .03	10	27-18	50	16.25	185
25	W-E	7	15.5.03	11	18-28	55	17	194
24	E-W	8	15.5.03	15	30-16	75	25	180
23	W-E	9	16.5 .03	16	16-31	80	27.2	176
22	E-W	10	16.5.03	16	31-16	80	24.38	197
21	W-E	11	16.5 .03	11	16-26	55	17.6	187
20	E-W	12	16.5.03	11	15.25	55	16.12	205
19	W-E	13	16.5.03	10	15-24	50	15.25	197
18	E-W	14	16.5.03	10	24-15	50	14.1	213
17A	W-E	15	16.5.03	9	15-23	45	15.1	179
17	E-W	16	16.5.03	9	23-15	45	11.57	233
16A	W-E	17	16.5.03	9	15-23	45	15.25	177
16	E-W	18	16.5.03	9	23-15	45	13.18	205
15A	W-E	19	17.5.03	9.	15-23	45	14.58	185
15	E-W	20	17.5.03	9.	23-15	45	13.26	204
14A	W-E	21	17.5.03	12	12-23	60	19.04	189
14	E-W	22	17.5.03	13	23-11	65	19.4	201
$3 A$	W-E	23	17.5 .03	15	9-23	75	23.29	193
13	E.W	26	18.5.03	15	23-9	75	24	188
$2 A$	W-E	27	18.5.03	13	10-22	65	20	195
12	E-W	28	18.5.03	13	23-11	65	19	205
1 A	W-E	29	18.5.03	11	12-22	55	17.4	190
11	E-W	24	17.5.03	9	20-12	45	14.45	187
0 A	W-E	25	17.5.03	9	12-20	45	14.22	190
					Trans.tot.km	1505	Avg kph	193

COUNT EAST-WEST WAYPOINTS

EAST NORTH

-29	31.84957	4	37.94531	$31-22$
-29	39.96121	4	37.94466	$31-25$
-29	42.66391	4	35.24904	$30-26$
-29	31.84957	4	35.25033	$30-22$
-29	31.84989	4	32.55535	$29-22$
-29	48.06996	4	32.55246	$29-28$
-29	48.06449	4	29.85877	$28-28$
-29	29.14204	4	29.86263	$28-21$
-29	29.14204	4	27.16797	$27-21$
-29	48.06352	4	27.16379	$27-28$
-29	48.05902	4	24.47010	$26-28$
-29	21.03007	4	24.47815	$26-18$
-29	21.03007	4	21.78317	$25-18$
-29	50.76011	4	21.77352	$25-29$
-29	56.15972	4	19.07307	$24-31$
-29	15.62145	4	19.09109	$24-16$
-29	15.62145	4	16.39612	$23-16$
-29	58.85984	4	16.37584	$23-32$
-29	58.85727	4	13.68118	$22-32$
-29	15.62113	4	13.70114	$22-16$
-29	15.62017	4	11.00616	$21-16$
-29	45.34312	4	10.99683	$21-27$
-29	42.63849	4	8.30314	$20-26$
-29	12.91714	4	8.31248	$20-15$
-29	12.91231	4	5.61750	$19-15$
-29	39.93031	4	5.61010	$19-25$
-29	39.92903	4	2.91512	$18-25$
-29	12.91264	4	2.92252	$18-15$
-29	12.93291	4	1.57487	$17 \mathrm{~A}-15$
-29	37.24789	4	1.56876	$17-24$
-29	12.91264	4	0.22754	$17-15$
-29	37.22600	4	0.22175	$17-24$

-29	37.22472	3	58.87443	$16 \mathrm{~A}-24$
-29	12.91264	3	58.88022	$16 \mathrm{~A}-15$
-29	12.91264	3	57.53289	$16-15$
-29	37.22472	3	57.52678	$16-24$
-29	37.22343	3	56.17945	$15 \mathrm{~A}-24$
-29	12.91264	3	56.18524	$15 \mathrm{~A}-15$
-29	12.91264	3	54.83792	$15-15$
-29	37.22343	3	54.83180	$15-24$
-29	37.22182	3	53.48190	$14 \mathrm{~A}-24$
-29	4.80904	3	53.49220	$14 \mathrm{~A}-12$
-29	4.80871	3	52.14487	$14-12$
-29	37.22150	3	52.13457	$14-24$
-29	37.21957	3	50.78209	$13 \mathrm{~A}-24$
-28	56.70544	3	50.79787	$13 \mathrm{~A}-9$
-28	56.70576	3	49.45054	$13-9$
-29	37.21924	3	49.43477	$13-24$
-29	34.51654	3	48.09130	$12 \mathrm{~A}-23$
-28	59.40621	3	48.10289	$12 \mathrm{~A}-10$
-28	59.40621	3	46.75556	$12-10$
-29	34.51654	3	46.74365	$12-23$
-29	29.11339	3	45.40180	$11 \mathrm{~A}-21$
-29	4.80743	3	45.40759	$11 \mathrm{~A}-12$
-29	4.80743	3	44.05994	$11-12$
-29	29.11339	3	44.05447	$11-21$
-29	29.09151	3	42.70553	$10 \mathrm{~A}-21$

P.N.Garamba RECENSEMENT GENERAL 2003 Centre 1998, 2000,2002,2003

24	E-W	23	W-E	22	E-W	21	W-E	20	E-W	19	W-E	18	E-W
Dist(km)	Subunit	Dist(km)	Subunit	Dist (km)	Subunit	Dist ${ }^{\text {chm }}$	Subunit	Dist ${ }^{\text {ckm }}$	Subunit	Dist(km)	Subunit	Dist(km)	Subunit
	goto 24-31E	480	3tart 23-16		goto 22-32	55.	start 21-16		goto20-26	50	start 18-15		goto18-25
75	start 24-30	75.	-4. 17	80	start 22-31	50	17	55	start su 25	45	- 16	45	start 18-24
70	29	70.	18	75	30	45	18	50	24	40	17	40	23
65	28	65	19	70	29	40	19	45	23	35	18	35	22
60	27	60	20	65	28	35	20	40	22	30	19	30	21
55	26	55	21	60	27	30	21	35	21	25	20 .	25	20
50	25	50	22	55	26	25	22	30	20	20	21	20	19
45	24	45	23	50	25	20	23	25	19	15	22	15	18
40	23	14.40. ${ }^{\text {a }}$	- 24	45	24	15	24	20	18	10	23	10	17
35	22	3 35]	-25	40	23	10	25	15	17	5	24	5	16
30	21	- 3018	26	35	22	5	26	10	16	0	end 19-25	0	end 18-15
25	20	- 25.	- 27	30	21	-0,	end 21-27	5	15	,	-		
20	19	420,	238	25	20	\% ${ }^{\text {a }}$		0	end 20-15	+	तF,		
15	18	15.	-29	20	19	T3				\cdots	-		
10	17	10	- 30	15	18	5\% 4				उ*	T\%		
5	16	5	$\bigcirc 31$	10	17	, 4	\%			\%	\%		
0	end 24-18	0	end 26-32	5	16	4				, $4 \times$,		
		4	\%	0	end 22-16	स4.				\%	त		
											4		
											-		

P.N.Garamba RECENSEMENT GENERAL 2003 Sud 1998,2000,2002,2003

17A	W-E	17	E-W	16A	W-E	16	E-W	15A	W-E	15	E-W	14A	W-E
Dist(km)	Subunit	Dist(km)	Subunt	Dist(km)	Subunit								
45	start 17A-15		goto 17.24	45	start16A-15		goto 16-24	45	start 15A-15		goto 15-24	60	start 14A-12
+40	16	45	start 23	40	16	45	start 23	40	16	45	start 23	-55.	- 13.8
- 35	17	40	22	35	17	40	22	35	17	40	22	50	4 414
- 30	18	35	21	30	18	35	21	30	18	35	21	\bigcirc	- 15.
25	19	30	20	25	19	30	20	25	19	30	20	40	416
20	20	25	-19	20	20	25	19	20	20	25	19	35	, 17
15	21	20	18	15	21	20	18	15	21	20	18	30	18
10	22	15	17	10	22	15	17	10	22	15	17	25	19
5	23	10	16	5	23	10	16	5	23	10	16	20	20
0	end17A-24	5	15	0	end16A-24	5	15	0	end15A-24	5	15	15	21
, ,		0	end 17-15			0	end 16-15			0	end 15-15	10	$\underline{22}$
-	4						.					- 5 ,	23
\%-\%	\cdots											E, 0,	end14A-24
-													\cdots

[^0]: 00
 00
 00
 00
 00
 $0 \quad 0$
 000
 000
 00
 00

 0
 $\begin{array}{rr}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 13 & 13 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
 $0 \quad 0$ Total Nord
 0
 0
 0
 13
 Total Centre
 13 Total Su

[^1]: 00
 00
 00
 00
 00
 00
 00
 $\begin{array}{lll}0 & 0 & 0\end{array}$
 00
 $0 \quad 0$
 $0 \quad 0$
 $0000000000 \mu \operatorname{HNNOOOOO}$
 0000
 Total Nord
 0 Totai Centre
 9 Total Sud 9 Totar Sui

