GERALD SCOTT BALES

A MULTIVARIATE MORPHOMETRIC STUDY OF LIVING AND FOSSIL RHINOCEROS SKULLS

UNIVERSITY OF SOUTHERN CALIFORNIA

.

A MULTIVARIATE MORPHOMETRIC STUDY

OF LIVING AND FOSSIL REINOCEROS SKULLS

Ъy

Gerald Scott Bales

A Dissertation Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

(Anatomy and Cell Biology)

MAY 1995

Copyright 1995 Gerald Scott Bales

UMI Number: 9616934

UMI Microform 9616934 Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI 300 North Zeeb Road Ann Arbor, MI 48103

UNIVERSITY OF SOUTHERN CALIFORNIA THE GRADUATE SCHOOL UNIVERSITY PARK LOS ANGELES, CALIFORNIA 90007

This dissertation, written by

GERALD S. BALES

under the direction of his...... Dissertation Committee, and approved by all its members, has been presented to and accepted by The Graduate School, in partial fulfillment of requirements for the degree of

DOCTOR OF PHILOSOPHY

alie C. Parke

Dean of Graduate Studies

Date January 25, 1995

ACKNOWLEDGEMENTS

I gratefully thank:

- -> the Curators of the various Museums of Natural History for allowing me to study the materials under their care.
- -> Dr. Richard L. Wood and the Department of Anatomy & Cell Biology for invaluable logistical support.
- -> the members of my Ph.D. Guidance Committee for their individual and combined time and efforts:
 - Dr. Judy A. Garner for helping so far from the nervous system.
 - Dr. Stanley Azen for statistical oversight so late in the process.
 - Dr. Mikel E. Snow for always encouraging my anatomy skills.
 - * Dr. Donald R. Prothero for directing me to the venerable rhinoceroses.

and especially,

* Dr. Gene H. Albrecht, Committee Chairman, for giving so much time to unfamiliar ungulates.

but most of all:

-> I thank my mother and father.

This dissertation is dedicated to Consuelo Lorenzo.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSii.
LIST OF TABLES
LIST OF FIGURES
ABSTRACTxi.
Chapter 1. INTRODUCTION1.
Overview
Research Questions
Within-group Studies
Among-groups Studies4.
Background4.
Superfamily Rhinocerotoidea4.
Morphometric Methods
Chapter 2. MATERIALS AND METHODS
Materials17.
Methods
Measurements
Data and Statistics
Chapter 3. WITHIN-GROUP RELATIONSHIPS - PRINCIPAL COMPONENTS ANALYSIS (PC)40.
Multivariate Variation and PC
Strategy and Significance of PC
Sex Dimorphism42.
Analyses of Individual Genera

iii.

Living Genera
<i>Diceros</i>
Ceratotherium84.
Rhinoceros94.
Dicerorhinus102.
Fossil Genera1G8.
Aceratherium108.
Атупоdon
Aphelops115.
Diceratherium124.
Forstercooperia131.
Hyrachyus134.
Hyracodon140.
Indricotherium146-
Menoceras
Peraceras159.
Subhyracodon167.
Teleoceras171.
Trigonias183.
Zaisanamynodon187.
Pooled Within-group Dispersions
Skull
Mandible

iv.

Chapter 4. AMONG-GROUPS RELATIONSHIPS - CANONICAL VARIATES ANALYSIS (CV)
Multivariate Variation and CV
Strategy and Significance of CV
Interpretation of CV206.
Ordination - Specimens By Genus
Ordination - Means and Concentration Ellipses225.
Taxonomic Patterns - Genera
Taxonomic Patterns - Families and Subfamilies240.
Taxonomic Patterns - Character States
Functional Patterns - Norn Arrangement
Functional Patterns - Herbivory Type
Temporal Patterns - Intergeneric
Temporal Patterns - Intrageneric
Chapter 5. OISCUSSION
REFERENCES
APPENDIX 1. Specimen Identification
APPENDIX 2. Data Sheet
APPENDIX 3. Measurement Descriptions
APPENDIX 4. Raw Data
APPENDIX 5. Univariate Statistics
APPENDIX 6. SAS-IML Programs

v.

LIST OF TABLES

Table Number

Description

Page

1. Skull and mandible sample sizes19.
2. Generic and subgeneric information for skulls
3. Generic and subgeneric information for mandibles
4. Short definitions of linear measurements
5. Eigenvalues for Principal Components analyses
6. Eigenvalues for Canonical Variates analyses
7. Canonical variate means for skulls
8. Canonical variate means for mandibles
9. Generalized distances for skull canonical means
10. Generalized distances for mandible canonical means $\dots \dots 216$.
11. Summary of intersubgroup generalized distances

vi.

LIST OF FIGURES

Figure Numbe	er Description	Page
1. Cladist:	ic relationships of the Rhinocerotoidea	.6.
2. Geograph	hic distribution of the Rhinocerotoidea	8.
3. Phyloger	ny and geochronology of the Rhinocerotoidea	11.
4. Linear (measurements of the skull	
5. Linear (measurements of the mandible	34.
6. Multiple	e regression method for missing data estimation .	37.
7. Summary	of Principal Components (PC) plots for skulls	45.
8. Summary	of Principal Components (PC) plots for mandibles	a 50.
9. PC - Di	ceros skulls by country	59.
10. PC - Di	ceros skulls by locality	62.
11. PC - Di	ceros skulls by subspecies (labels)	64.
12. PC - Di	ceros skulls by subspecies (after Groves)	67.
13. PC - Di	ceros skulls by sex	70.
14. PC - Di	ceros mandibles by country	73.
15. PC - Di	ceros mandibles by locality	75.
16. PC - <i>Di</i>	ceros mandibles by subspecies (labels)	78.
17. PC - Di	ceros mandibles by subspecies (after Groves)	80.
18. PC - <i>D1</i>	ceros mandibles by sex	82.
19. PC - Ce	eratotherium skulls by locality	87.
20. PC - Ce	eratotherium skulls by sex	89.
21. PC - Ce	eratotherium mandibles by locality	92.
22. PC - Ce	eratotherium mandibles by sex	95.

vii.

23. PC - Rhinoceros skulls by locality
24. PC - Rhinoceros mandibles by locality
25. PC - Dicerorhinus skulls104.
26. PC - Dicerorhinus mandibles106.
27. PC - Aceratherium skulls110.
28. PC - Aceratherium mandbles112.
29. PC - Amynodon skulls116.
30. PC - Aphelops skulls119.
31. PC - Aphelops mandibles122.
32. PC - Diceratherium Bkulls126.
33. PC - Diceratherium mandibles129.
34. PC - Forstercooperia skulls132.
35. FC - Forstercooperia mandibles135.
36. PC - Hyrachyus ekulle138.
37. FC - Hyrachyus mandibles141.
38. PC - Hyracodon skulls
39. PC - Hyracodon mandibles147.
40. PC - Menoceras skulls by locality
41. PC - Menoceras Bkulls by sex
42. PC - Menoceras mandibles157.
43. PC - Peraceras skulls
44. PC - Peraceres mandibles165.
45. PC - Subhyracodon skulls168.
46. PC - Subhyracodon mandibles172.

ł

viii.

47.	FC - Teleoceras skulle175.
48.	PC - Teleoceras mandibles180.
49.	PC - Trigonias skulls184.
50.	PC - Trigonias mandibles188.
51.	PC - Zaísanamynodon mandiblea191.
52.	Pooled within-groups PC, skulls by genera
53.	Pooled within-groups PC, skulls by subgeneric groups 197.
54.	Pooled within-groups PC, mandibles by genera200.
55.	Pooled within-groups PC, mandibles by Subgeneric groups .202.
56.	Canonical variates (CV) plot of skull data -
	individual specimens
57.	Canonical variates (CV) plot of mandible data -
	individual specimens223.
58.	CV plot of skull subgroup means -
	90 percent concentration ellipses227.
59.	Canonical variates (CV) plot of mandible subgroup means-
	90 percent concentration ellipses231.
60.	CV - Skull subgroups by genus235.
61.	CV - Mandible subgroups by genus238.
62.	CV - Skull subgroups by family and subfamily242.
63.	CV - Mandible subgroups by family and subfamily245.
64.	CV - Skull subgroups by phylogenetic character states249.
65.	CV - Mandible Bubgroups by phylogenetic character states 253.
66.	CV - Skull subgroups by horn arrangement

ix.

67.	CV - Mandible subgroups by horn arrangement
68.	CV - Skull subgroups by herbivory type264.
69.	CV - Mandible subgroups by herbivory type268.
70.	CV - Skull subgroups with intergeneric phylogenies271.
71.	CV - Mandible subgroups with intergeneric phylogenies 274.
72.	CV - Skull subgroups with intersubgroup time vectors277.
73.	CV - Mandible subgroups with intersubgroup time vectors .279.
74.	Thin-plate spline analysis of shape transformation+

x.

ABSTRACT

The Rhinocerotoidea is a Superfamily of perissodactyl mammals whose evolutionary history extends from the Eocene epoch to the Present. This history is represented by a collection of fossils which is qualitatively and quantitatively one of the best among vertebrates. Such a fossil record allows study of larger scale aspects of morphological evolution in vertebrates, particularly in large mammalian herbivores. Rhinocerotoid diversity comprises fifty-five genera in three families with four extant genera. This study is a multivariate morphometric investigation of within-group and among-groups variation in the skulls and mandibles of the living and fossil genera. The living genera are biological analogues by which the fossil genera may be more confidently interpreted. Osteo-dental landmarks provided 19 linear measurements for skulls and 11 linear measurements for mandibles. Adult skulls (83 living; 101 fossil) and adult mandibles (80 living; 117 fossil; were analysed for four living and fourteen fossil genera. Measurements and sample sizes were maximized under the constraints required by complete data. Some measurements were estimated by a multiple regression technique. Each genus was analyzed by the principal components method (PC, within-group analyses) where specimens are ordinated along axes of maximum variation. Living genera were analysed first: geographic, taxonomic, and sex dimorphic correlations with morphometric

xi.

differences were identified. These results were included as part of the total information used to analyse the variation within fossil genera. In several fossil genera, subgeneric groups were identified using geographic, taxonomic, temporal\stratigraphic, and analogue variation data. Overall PC results indicate that variational patterns in fossil genera are similar to those in living analogues. The PC subgroups were analyzed by canonical variates (CV, among-groups analyses) where PC means are ordinated along orthogonal, variance maximizing axes. Determination of these axes relies on an estimate of average within-group variation provided by pooling of the PC subgroups. The CV ordination was analysed with respect to morphometric affinites, and correlations with taxonomy, qualitative characters, diet, horn type, and temporal patterns. Results show that morphometric affinites are most uniquely correlated with horn type, least correlated with diet. Temporal patterns show that general morphological trends occur at the genus level. Evolutionary changes at the subgeneric level indicate more irregular pathways. In general, morphology and size change simultaneously.

xiį.

CHAPTER 1.

INTRODUCTION

OVERVIEW

The perissodactyl superfamily Rhinocerotoidea is one of the many mammalian groups which evolved in the Cenozoic Era. Like other mammalian radiations, rhinocerotoids evolved from a few, small, primitive forms to a variety of more specialized, often larger, forms resulting in a large diversity of taxa most of which have become extinct. Among vertebrates, the Rhinocerotoidea has one of the largest fossil records and is thus amenable to studies of morphological (skeletal) evolution within a long-lived, higher taxon. This abundance of fossils increases the probability that all groups (primitive, derived, and transitional) are included and that the range of normal variation within groups or populations is represented. A further important advantage of the rhinoceros superfamily is the persistence to the present of five species that can serve as analogues of the fossil taxa. Morphological variation in analogue taxa, correlated with ecogeographical, physiological, behavioral, and other biological factors, provides the most appropriate measure for interpreting intraspecific, intrageneric, and intergeneric morphological variation in extinct taxa.

This study is a multivariate morphometric analysis of skull and mandible morphology both within and among 15 fossil and 4

living rhinocerotoid genera. Genera are the initial focus of analysis because generic-level taxonomies are more complete, accurate, and stable than are species-level assignments. Multiple measurements of osteological features from representative samples of skulls and mandibles provide the data for analysis. Withingroup analyses seek to: (a) compare living and fossil generic variation, (b) dissect the variation in each genus using geographic, temporal/stratigraphic, taxonomic, and variational data relevant to subgeneric level variation, and (c) provide a standard of within-group variation for use in comparative studies of amonggroups variation and relationships. Among-groups analyses seek to be both descriptive and explanatory by observing the patterns and correlates of morphology with respect to morphometric affinities, taxonomy, phylogenetic character states, horn types, diet, and temporal sequences.

The Rhinocerotoidea has been less studied relative to the size of its fossil record than a comparable group, the Equoidea (horses). The latter group has played a prominent role in discussions of vertebrate evolution. This study of rhinocerotoid skull morphology will contribute to those discussions by providing further insights into the evolution of vertebrates in general and of large mammalian herbivores in particular.

RESEARCH QUESTIONS

Within-group Studies

- (1) What is the pattern of variation in living taxa across genera and species?
- (2) How does morphological variation in fossil rhinoceros genera compare to that of living genera and species?
- (3) Is fossil generic variation reducible to subgeneric groups based on factors known to be correlated with species-level variation (e.g., time/stratigraphy, ecogeography, diet, or other biological factors)?
- (4) Is variation in fossil subgeneric groups consistent with species-level variation in living analogues and with previous species-level taxonomic assignments?
- (5) Are size and shape differences among demes and between sexes consistent with those in living analogues?
- (6) What evolutionary size-shape changes occurred within fossil genera?

з

Among-groups Studies

- (1) What are the morphometric affinites of specimens and group means observed in the canonical variates space?
- (2) What are the morphometric relationships of the genericsubgeneric groups with respect to recent taxonomies and taxonomic characters?
- (4) Are there morphological relationships based on anatomical/functional/behavioral groupings such as mode of herbivory or horn arrangement?
- (5) What are the patterns of size and shape evolution relative to hypothesized intrageneric and intergeneric phylogenies?

BACKGROUND

The following is a brief discussion of the rhinocerotoid superfamily and its component families. Detailed discussions of genera are given in Chapter 3 as prefaces to the within-group studies of each genus.

Superfamily Rhinocerotoidea

The Rhinocerotoidea is a large, diverse superfamily of perissodactyl mammals comprised of three monophyletic families:

Amynodontidae, Hyracodontidae, and Rhinocerotidae (Figure 1). Four genera have survived to the Recent and comprise the living African and Asian rhinocerotids. In North America, rhinocerotoids populated much of the western interior (Intermontane and Great Plains regions) from the early Eccene through the Miccene as documented by relatively numerous fossils. During much of this time, various species were believed to have been ecologically dominant by virtue of their large body-sizes and relative abundances. Understanding the pattern of rhinoceros evolution in North America is complicated by migrations to and from Europe and Asia via continental land bridges (Figure 2). During most of the Cenozoic, an above sea-level connection between Alaska And Siberia (Bering Land Bridge) provided an ice-free route for bidirectional movement of respective biotas. Rhinocerotoids which may have used this route were Hyrachyus (from Asia), Forstercooperia (to Asia[?]), and Trigonias (from Asia). Several routes of migration were open between Europe and North America (McKenna, 1972, 1975) and may have been used by Menoceras (and possibly Trigonias).

FIGURE 1. Most current phylogentic classification of the genera of Rhinocerotoidea (after Prothero et al., 1986). Genera used in this study indicated by asterisks (*). Hyrachyus is the primitive ancestor.

6

ļ

÷

ł

1

ļ

FIGURE 2. Historical distributions of living and fossil rhimocerotoid genera. Arrows indicate potential migration routes (land bridges) during periods of lowered sea level.

Previous studies of rhinocerotoid systematics and phylogeny include those of Osborn (1903, 1904), Matthew (1931, 1932), Wood (1941), Radinsky (1967a), Hooijer (1976, 1978), and Groves (1983), and Groves and Chakraborty (1983). Descriptive studies of specific genera including living forms include Cooper (1911, 1924, 1934), Matthew, (1924), Osborn (1923, 1924). Wood (1931), Granger and Gregory (1936), Tanner (1969), Groves (1972), Groves and Chakraborty (1983), Groves and Kurt (1972), Yatkola and Tanner (1979), Lucas et al. (1981), Russell (1982), Laurie et al. (1983), and Hanson (1989).

Recent reviews of the Rhinocertoidea and its families include, Prothero (in press, a and b), Prothero and Manning (1987), Prothero et al., (1986, 1989), Wall (1989), and Lucas and Sobus (1989). This study relies primarily on these most current views about rhinocerotoid systematics (Figure 1) and phylogeny (Figure 3).

<u>Hyrachyus</u> -- The most primitive rhinocerotoid genus is Hyrachyus, comprised of small animals (Great Dane-sized) resembling Hyracotherium, the most primitive equid. The status of Hyrachyus as the primitive sister-taxon to the three rhinocerotoid families is based primarily on dental characters (Prothero et al., 1986). Radinsky (1967b) considered this genus to be a helaletid tapiroid, but acknowledged its ancestry to the rhinocerotoids. In this study, Hyrachyus is used as the basal group ("primitive

FIGURE 3. Phylogeny and geochronology of the rhinocerotoid genera in this study (after Prothero, in press a). North American Land Mammal Age (NALMA) boundaries are approximate (after Tattersall et al., 1988).

11

morphotype") for comparisons of ancestor-descendent size-shape changes in each of the families. Although believed to be an emigrant from Asia, Hyrachyus is known predominantly from middle Eocene beds in the Bridger Formation of Wyoming where it is one of the most common genera of fossil mammals of this period.

<u>Amynodontidae</u> -- Amynodontids appeared in the middle Eocene where some had already achieved the Size of cattle (Amynodon). Subsequent evolutionary size increases - to the Size of modern rhinoceroses - made them among the Largest land maxmals of the late Eocene holarctic region (Wall, 1989). Family characters of amynodontids include conical incisors, enlarged male canines, reduced premolars, and preorbital fossae (Prothero et al., 1986). Other specializations within the family included high-crowned cheek teeth, convergence to hippopotamus-like proportions in the semiaquatic riverine genus Metamynodon, and (possibly) a tapir-like proboscis in the terrestrial genus Cadurcodon (Wall, 1980).

<u>Hyracodontidae</u> -- The hyracodontids evolved in the late Eocene and Oligocene from *Hyrachyus* or a *Hyrachyus*-like form. Primitively sheep-sized and adapted for running (cursorial), this family evolved larger body sizes (cow-sized in North America). In Asia, *Paraceratherium* achieved a size greater than that of elephants but paradoxically retained limb proportions indicative of cursoriality. Members of this family have equal-sized incisors and small canines (i.e., tuskless) among other features upon which

their classification is based (Radinsky, 1966). More recently, Prothero et al. (1986) considered limb characters to be more important taxonomically.

Rhinocerotidae -- Primitive rhinocerotids were sheep-sized animals which probably immigrated from Asia. Beginning in the early Oligocene, rhinocerotids became larger, culminating in Diceratherium which reached the size of modern rhinoceroses. Diceratherium was the only known genus of rhinocerotid in North America for approximately 14 million years. During this period (mid-Oligocene to mid-Miocene), they were the largest mammals found in terrestrial communities (with regard to large size, they were preceded by the titanotheres and paraceratheres, and followed by the mastodons). In the mid-Miocene, sheep-sized representatives of the divergent aceratherine (Aphelops) and teleoceratine (Teleoceras) lineages immigrated to North America from Europe or Eurasia. Species in both groups evolved to the size of modern rhinoceroses but dwarfing also occurred. Ecological diversity in later rhinocerotids is exemplified by a dichotomy between teleoceratine grazers and aceratherine browsers (Prothero, in press a). Characters which distinguish rhinocerotids from other families include facial bone arrangement and tooth size, shape and enamel patterns (Prothero et al., 1986). Horns are not a universal characteristic of the family, but occur in all extant genera.

Multivariate Morphometric Methods

This study relies primarily on the methods of principal components analysis (PC) and canonical variates analysis (CV) as ordination techniques where multivariate relationships of specimens or centroids (means) are observed in two or three variancemaximizing dimensions. These two methods are among the diversity of methods that have been developed for the analysis of multivariate morphometric data. Applications of these methods to diverse problems and organisms are discussed in several reviews and general references (Blackith, 1965; Sneath and Sokal, 1973; Reyment et al., 1984; Bookstein et al., 1985; Foote, 1991; Reyment, 1991). Mathematical background and discussions of multivariate methodology with examples can be found in many sources (Anderson, 1958; Bartlett, 1965; Marcus, 1990, Morrison, 1967; Cooley and Lohnes, 1971; Davis, 1973; Harris, 1975; Timm, 1975; Green, 1976, 1978; Pimentel, 1979; Neff and Marcus, 1980; Campbell and Atchley, 1981; Johnson and Wichern, 1982; Rohlf, 1990). Important early papers on both method and application have been collected into several volumes (Atchley and Bryant, 1975; Bryant and Atchley, 1975). The field of morphometrics currently is dynamic and growing as evidenced by a number of recent symposia and publications (Rohlf and Bookstein, 1990; Sookstein, 1991; Marcus et al., 1993; Rohlf and Marcus, 1993).

Among living vertebrates, PC has been applied to fish (Bookstein et al, 1985), painted turtles (Jolicoeur and Mosimann, 1960), birds (Schnell, 1970; Blondel et al., Vuilleumier, Marcus, and Terouanne, 1984), bats (Freeman and Lemen, 1991), voles (Flury and Riedwyl, 1988), martens (Jolicoeur, 1963), and primates (Albrecht, 1978, 1980). Studies of fossils using PC include horses (Winans, 1989) and Dinosauria (Chapman et al., 1981; Weishampel and Chapman, 1981).

Т

Canonical variates analysis of living vertebrates include shrews (Gower and Ross, 1969), primates (Ashton et al., 1965; Oxnard, 1967; Albrecht, 1978; reviewed by Albrecht and Miller, 1991), anteaters (Reeve, 1941), and canids (Wayne, 1986). Applications of CV to fossil vertebrate groups, or to groups with both fossil and living representatives, have been less numerous than PC studies. Such groups include primates (Oxnard, 1969; Bilsborough, 1984) and moas (Cracraft, 1976).

CHAPTER 2.

MATERIALS AND METHODS

MATERIALS

Four hundred ninety seven specimens of extant and fossil rhimocerotoid taxa were measured in mammalogy and paleontology departments of the following museums: American Museum of Natural History (New York), National Museum of Natural History (Washington, D.C.), Museum of Comparative Zoology at Harvard University (Boston) Field Museum of Natural History (Chicago), Denver Museum of Natural History. At each museum, all specimens except the most fragmentary were measured, including both juveniles and adults.

Data for a given specimen was recorded on a single data sheet (Appendix 2) whose page number is the specimen number. Each specimen consisted of either: (1) skull and associated mandible (matched elements of the same animal), (2) skull only, or (3) mandible only. Most of the specimens of extant rhinoceroses were complete, with all or most measurements present. Many of the fossil specimens were partial (fragmentary) and had some regional plaster reconstruction. Most of the fossil mandible specimens were hemimandibles (partial or complete), representing one side of the

mandible. When both sides of the mandible were present, one side was chosen for measurement based on completeness and other factors.

Sample sizes of measured living and fossil skulls and mandibles are given in Table 1. Because skulls and mandibles were treated separately and independently, total numbers of skull and mandible elements exceed the total number of specimens (data sheets). Aging of specimens was based on: (1) absence of deciduous teeth, (2) at least 3/4 eruption of the third molar (relative to a fully erupted second molar), and (3) presence of some first molar wear. The subsample of adults used in this study was derived by reduction of the sample of measured adults. Captive epecimens of extant taxa were excluded. Incomplete fossil adult specimens were excluded because of the statistical need for complete data sets (discussed below under methods). The data reductions resulted in the following samples for analysis: skulls - 83 extant, 101 fossil; mandibles - 80 extant, 117 fossil. Identification of these specimens by museum number is given in Appendix 1. Individual specimen numbers arranged by genus are listed in Table 2 (skull) and Table 3 (mandible), with associated taxonomic, geographic, temporal, and sample size information.

TABLE 1. Comparison of sample sizes for numbers of specimens measured versus number of specimens used in analyses.

	SKULL		<u>Maria D</u>	<u>(BLE</u>
	Extant	<u>F0551L</u>	EXTART	<u>F0551L</u>
JUVENILES MEASURED	90	26	74	29
ADULTS MEASURED	117	131	119	133
ADULTS ANALYZED	83	101	80	117

Genus	Code ¹	N ²	Species ³	Local ity ⁴	Age ⁵	Specimen #'s ⁶
Ceratother lun	CERAS	19	¹¹ 8 jag.m ⁴¹	EBSt Africa	Recent	22, 59, 99,101, 102,103,104,141, 142,298,360,366, 367,368,369,370, 371,372,431
Dicerorhinus	SUMAS	2	"SUMAL FEILS ÎS"	Southeast Asia	Recent	21, 46
Biceros	BICOS	48	"bicornía"	East Africa	Recent	147, 149, 150, 151, 152, 155, 157, 161, 166, 167, 168, 169, 170, 174, 176, 177, 178, 181, 295, 305, 379, 382, 384, 389, 390, 393, 394, 305, 396, 397, 398, 402, 404, 405, 607, 408, 409, 410, 611, 412, 414, 418, 436, 437, 641
Rhinoceras	UNICS	8	"unicornis"	India/Kepal	Recent	48, 53, 55,303, 348,426,427,430,
	JAVAS	4	"sonda i cus"	jeve	Recent	17, 10,299,351

TABLE 2. Generic and subgeneric group information for skull specimens used in the analysis. The four living genera are listed first alphabetically and are followed by 13 fassil genera, listed alphabetically.

. . . .

N Q

- - --

.

Genus	Code	N	Species	Locality	Age	Specimens
Aceratherium	ACER15	1	"depereti"	Hongolia	Hemphillian	245
	ACER2s	۱	"incisivium"	Europe	Blancan	124
Ammodon	AMYNS	2	"advenus"	Washakle Basin, Wyoming Uinta Co., Utah	Uinten Uinten Uinten	111 461
Aphelops	APNE1S	1	mega (odus	9ox Butte Co., Nebraska	Nemingfordian	205
	APHEZS	8	mega Lodus	Cherry Co., Nebraska	Clarendonian	268,269,270,271, 272,330,334,335
Dicerotherium	DICEIS	3	BAREC LENS	Oregon	Olfgocene	239
			"nan(#1	ityani ng	Arikareean	203,204
	DICE2S	1	niobrarense	Nebraska	Arikareean	266
	DICE35	2	"annatum"	Niobrara Co, Wyoming	Artkarecen	240, 267
Forstercooperia	FORSS	2	¹⁹ sheramuranens i s ¹⁹	inner Kongolia	Uintan-Duchesnean	127, 30
Nyrachyus	BYRAIS	2	"modestus"	Wyoming	Aridgerian (82)	4, 5
	HYRA2S	3	"princeps"	7	Bridgerian (C4)	10
			"eximius"	lityoming.	Bridgerian (05)	6, 12
lyracodon	HYCOS	4	"rebraakenals"	South Dakota & Nebraska	Orellan	116,117,120,460

.

_ ..

Genus	Code	N	Species	Locality	Age	Specimens
Indricatherium	INDRS	1	transouralicum	7	7	250
Menoceras	MENDS	18	"er (karense"	Sioux Co., Nebrasks	Arikarecan	171, 195, 194, 197 198, 200, 201, 453 454, 456, 457
			7 7	Platte Co., Wyoming	Arikareenn	452 143,158,172,186, 187,188,
Peraceras	PERAIS	2	"hease i " "profectum"	New Mexico New Mexico	Bersto∀lan v	324 276
	PERAZS	3	"superciliosum"	Nebraska	Clarendonian	326,327,329
Subhyrecodon	SUBN15	5	mitia "triaonodum"	South Dakota	Chedronien	28, 29, 31
			™itis" "copefi"	South Dakota Vyoming	Ørellan ?	27 32
	SUBH25	4	occidental is "occidental is"	South Dakata	Oreilan "	38, 64 35, 63
	SUBH3s	7	"tridactylum"	South Dakota	Whitneyan	228,229,231,233, 236,278,458

____ _

Genus	Code	N	Spec i es	Locality	Age	Specimens
Teleoceras	TELE 1S	2	americanum	Nebraska	Hemingfordian	341,342
	TELEZS	4	medicarnutum medicornutum "thomsoni"	Nebraska	Barstovian "	317, 318, 344 255
	1ELE3S	6	major	Nebraska	Clarendonian	311,312,313,314, 315,316
	TELE4S	3	"hicksi"	Calarado	Lote Hemphillian	281,496,497
	TELE5\$	6	fossiger fosoiger fassiger #fassiger#	Nebraska Kansas Texas Calorado	Early Hemphillian # # #	284 287 291 424
Trigonias	TRICS	13	osborni osborni	Washington Co., Colorado Weld Co., Calarado	Chadronian N Ji	462 422,483,468,469, 470,471,472,476
			osborní **cockí* Asborní		и	475
			"preoccidental (s" osborni		bi	492
			"hypostylus"		14	490
			"osborni"	Shannon Co., South Dakota	i a	23

1. Codes refer to the subgeneric groups determined in Chapter 3.

2. Sample sizes of the groups indicated under the Code column.

3. Species names in quotes are those associated with museum tags.

4. Localities are derived from information associated with museum specimena.

5. Age is given as Narth American Land Mammal Age where possible (see Figure 3).

6. Specimen numbers were assigned sequentially as specimens were measured and correspond to page numbers in the original data book.

Genua	Code	۳ ₅	Species ³	Local ity ⁴	Age ⁵	Specimens #, s
Ceratotherium	CERAN	19	"Simun"	East Africa	Recent	22, 59, 99,101, 102,103,104,141, 142,297,298,360, 366,367,368,369, 370,371,431
Dicerontinus	SUMAN	2	¹¹ 9 uno trens 9 ⁴⁴	Sumetre	Recent	21, 46
Dicer#s	BICOM	47	"bicBrnlø"	East Africa	Recent	147, 149, 150, 151, 155, 157, 161, 166, 167, 168, 169, 170, 174, 176, 177, 178, 181, 294, 295, 305, 379, 382, 384, 386, 387, 388, 389, 390, 397, 398, 602, 405, 407, 408, 410, 411, 412, 414, 418, 436, 437, 441, 443
Rhinoceres	UNICH	9	"unicernie"	Jndia/Nepal	Recent	48, 53, 55,303, 348,349,426,427, 429
	JAVAN	3	"sonda i cus"	Java	Recent	17, 18,299

TABLE 3. Generic and subgenberic group information far mandible specimens used in the analyses. The four living genera are listed first alphabetically and are followed by 13 fossil genera, listed alphabetically.

..

24 4

Genus	Code	N	Species	Locality	Åge	Spec Imens
Aceratherium	ACERTH	2	"deparet!"	Mongolia	Hemphillan	206,245
	ACER2H	2	"facis(v(un"	Europe	Slancari	124,212
Aphelops	APHE IN	4	mega i odus "mega i odus"	Hebraska	Barstovian "	209,211 207,208
	APHE2H	6	meĝis Lodus.	Nebraska	Clarendon i an	213,273,274 330,331,333
	АРНЕ ЗМ	4	matcorhinus " matacarhinus "Longipes"	Oklahoma Texas Florida	Early Xemiphilian " "	214 215 216,275
	APHE4M	4	∩mutilis⊓ mutilis "P. ponderia"	Гелар Colorado	Lote Hemiphiilian	322, 338 339, 494
Diceratherium	DICEN	1	^v armatum ⁴	Niobrara Co., Wyoming	Arikareean	241
	DICE2N	1	"niobrarense"	Nipbrana Co., Wyoming	Arikareean	451

.

Genus	Code	R	Species	Local (ty	Age `	Specimens
forstercooperia	FORSIM	1	"sharamurahensis"	Inner Mongalia, China	U(ntan-Duchesnian	126
	FORS2H	2	"confluens"	Hongolia	?	128, 129
Hyrachyus	HYRA 1M	2	"modestus"	Wyoming	Bridger (8)	4,323
	HYRA2M	2	^н ея (mius ^н	?	Øridger (D)	ó, 8
Hyracodon	HYCOM	4	nebraskensis	South Dakota, Nebraska	Orettan	117,120,280,460
Indn i cother i un	INDRM	1	transuraticum	?	?	258
lenoceras	MENDIM	10	erikarense 7	Nebraska Myoning	Arikarecon	189, 190, 191, 192 194, 454, 457 158, 172, 186
	NENOZN	1	' banbour 1 "manal and i ensi a"	New Mexico	Kemingfordian	132

··· ·--

_. . _ _

. . . .

26

.

...

....

Genus	Code	N	Species	Locality	Age	Specimens
Penetrigonias	PENE IN	1	"dakotense"	South Dekota	Oligocene	15
Peracerss	PERAIM	3	"profectum" "heasei"	New Nexico	Serstovian N	276, 340 324
	PERA2M	2	"superciliosum"	New Mexico	Barstovien	319,325
Subhyracodon	SUBH TH	ß	"occidentalis"	South Dekota	Oreilon	35, 43, 44 28, 29, 38 46, 65
	SUBH2M	2	"mit is "	Wyoming	7	32, 33
	SUBH3M	6	"tridectylum"	South Dakota	Whiteyan	231,232,234,27
			N ()	14 15	Whitneyon	458
			U	92	?	425
feleoceras	TELETH	3	omericanum	Nebrasko	Hemingfordion	249,250,253
	TELE2H	6	medicornatum	New Mexico	Barstovian	346,347
			**	4	H	259,260
			medicornutum "thomson]"	Nobraska	14	254,255

· · · · _

Genus	Code	H	Species	Locality	Age	Specimens
Teleocerss (ctd)	TELESH	12	maj er	Nebraska	Clerendonian	217,218,219, 2214,2218,262, 263,264,312, 313,314
				South Dakota	b e	261
	TELE4M	4	hickel	Colorado	Late Hemphillian	226,261,262,28
	TELESM	2	"fossiger"	Kenses	Early Hemphillian	256, 424
		6	fossiger	Oklahoma, Texas		223,224,225 227,290,292
Trigonies	TRICM	13	osborni	South Dakote	Chedronian	421
			esborni "tayleri"	Colarado	и	491
			asborni	Colorado	о п	423,470,474, 477,479,480, 461,483,484, 485,486
Zalesnammodon	ZAISIN	1	7	Inner Mongolia	Chadronian	107
	ZATS2N	1	7	Oregon	Chadronian	114

1. Codes refer to the subgeneric groups determined in Chapter 3.

2. Sample sizes of subgeneric groups.

3. Species names in quotes are those associated with museum tags.

4. Localities are derived from information associated with museium specimens.

5. Age is given as American Land Mammal Age where possible (see Figure 3.)

6. Specimen numbers were assigned sequentially as specimens were measured and correspond to page numbers in the original data book.

METHODS

Measurements

A morphometric suite of 83 linear measurements (57 skull; 26 mandible) was designed to include both global and local information about size and shape, and to include information from Bagittal, coronal, and horizontal planes. A major constraint on measurement design was the ease and probability of finding landmarks on fossil specimens. Heasurement of horns was not considered because many fossil taxa are hornless, horns are not preserved in fossil taxa with horns, and rhinoceros horns are epidermal (keratinous), not osteological features. To maximize data retrieved from fragmentary and reconstructed specimens, measurements were estimated when: (1) bilateral symmetry allowed doubling of a measurement made to the median plane, (2) caliper placement could be done by eye, or (3) when a feature (landmark) could be reconstructed using clay. Further, measurements were noted as estimates when: (1) a landmark was part of a questionable reconstruction, (2) a landmark was good but distortion evident, or (3) a landmark was poorly defined on a good specimen. All measurements were taken to the nearest millimeter using a standardized sequence. Complete descriptions of instruments, landmarks, and all original measurements are given in Appendix 3. Of the original measurement suite, a subset (19 skull; 11 mandible) was used for analysis. Many original measurements

were excluded to reduce the number of missing values in the data set (discussed below). Brief definitions and abbreviations of the measurements used are listed in Table 4 and are illustrated in Figure 4 (skull) and Figure 5 (mandible).

Data and Statistics

Initial screening of the data included inspection of means, standard deviations, skewness, kurtosis, histograms, bivariate plots, and preliminary principal components results. Identification of transcription and gross measurement errors resulted in some data corrections. In cases where simple mistakes were not obvious, modifications or exclusions of suspect data were based on all available biological, statistical, and procedural information available. When possible, measurements were checked against specimen photographs of known scale.

The incompleteness of fossil specimens resulted in many missing values in the data set. Because of the requirement for complete data by multivariate methods, the number of missing values was reduced by excluding: (1) specimens with many missing values across measurements, and (2) measurements with many missing values across specimens. Exclusions were done until no more than five percent of values were missing for any given specimen or measurement. The remaining 19 skull and 11 mandible measurements (Table 4) indicate which structures and landmarks have most often

TABLE 4. Short definitions of linear measurements used for analysis. Measurements are illustrated in Figures 4 (skull) and S (mandible). A complete list of all 83 original measurements with full definitions is given in Appendix 3.

```
SKULL (19 measurements)
```

AEAE - Articular eminence to articular eminence AEOR - Articular eminence to orbit AEP2 - Articular eminence to second upper premolar BICN - Bicondylar breadth BI2Y - Outer bizygomatic breadth LFHT - Lower face height LOXB - Lower occipital breadth MIM1 - Breadth across upper first molars M3M3 - Breadth across upper third molars MGAE - Foramen magnum to articular eminence MXGT - Maxillary grinding tooth row length MXMO - Maxillary molar tooth row length OCP2 - Occipital condyle to upper second premolar OXAE - Occiput to articular eminence OXOR - Occiput to anterior orbital margin PORB - Postorbital constriction width TFLN - Temporal fossa length ZYHT - Zygomatic process height ZYLN - Zygomatic process length MANDIBLE (11 measurements) ANGD - Mandibular angle depth ANGW - Mandibular angle width BDBR - Mandibular body breadth BDM1 - Mandibular body plus M1 height BDHT - Mandibular body height CNM3 - Mandibular condyle to third lower molar LM1L - Lower first molar length LM1W - Lower first molar width MNMO - Mandibular molar tooth row length RAMD - Mandibular ramus depth RAMH - Mandibular ramus height

FIGURE 4. Illustration of the linear measurements taken on skulls. Endpoints of open rectangles indicate the landmarks for caliper placement. Measurement codes and short definitions are given in Table 4.

ł

FIGURE 5. Illustration of the linear measurements taken on mandibles. Endpoints of open rectangles indicate the landmarks for caliper placement. Measurement codes and short definitions are given in Table 4.

survived the geological burial-exposure cycle in fossil rhinoceroses.

The small number of remaining missing values were estimated by a multiple stepwise regression technique illustrated in Figure 6. Skull and mandible data sets were treated separately and independently. For each data set, all living and fossil genera were simultaneously mean-centered about the origin, producing a pooled within-group dispersion. For each measurement with missing values, a multiple regression equation was fit to the pooled data, where the measurement being estimated was the dependent variable and the remaining measurements were the independent variables. This resulted in a number of equations equal to the number of measurements with missing data. Missing values within each genus were estimated using the mean of that genus and the parameters of the appropriate multiple regression equation. A total of 39 values (27 skull; 12 mandible) were estimated and are indicated in the complete data sets for skulls and mandibles (Appendix 4).

Subsequent principal components analysis of the complete data sets (Chapter 3) resulted in the identification of subgeneric groups more closely representing species-level variation. Missing value estimation was repeated using a pooled within-group dispersion based on these new subgeneric groups. Estimates from the second iteration were used for all subsequent multivariate analyses, including reanalysis of the principal components results.

FIGURE 6. Bivariate example of the regression technique for estimating missing values. X_1 is the independent variable, X_2 is the dependent variable. (a) The raw data dispersions of all groups (generic or subgeneric) are mean-centered at the origin, producing a pooled within-group dispersion. (b) The least-squares regression line is determined for the pooled dispersion. (c) The pooled regression line is forced through the mean of each group and used to obtain estimates of missing values (X_2 predicted from X_1).

A series of tests was run on the skull and mandible data to determine whether logarithmic transformation was required or advantageous. Means versus standard deviations for both raw and base-ten log-transformed data were plotted across all groups for each measurement. No consistent patterns of high correlation were observed between means and standard deviations for raw data. Additionally, no systematic reductions of correlation were observed as a result of logarithmic transformation. The assumption that larger animals exhibit greater relative variation was not supported by the rhinoceros data sets. Therefore, all analyses were performed on the raw, untransformed data.

i

CHAPTER 3.

WITEIN-GROUP RELATIONSHIPS - PRINCIPAL COMPONENTS ANALYSIS

MULTIVARIATE VARIATION AND PRINCIPAL COMPONENTS ANALYSIS

Multivariate cranial and mandibular variation of living and fossil genera were analysed using principal components analysis (PC). This method allows the multivariate data to be "observed" from the perspective of orthonormal (mutually perpendicular), variance maximizing axes, derived as linear combinations of the original variables. The PC axes are ordered such that variation explained is greatest along the first axis, next greatest along the second axis, and so on until all of the variation of the original variables is accounted for by the new axes. Principal components is a dimension reduction technique because much of the original sample variation (and variation of interest) is usually included in the first two or three PC axes. Size differences among specimens often contribute much to the total variation and are usually maximized along the first PC axis. Specimens with large size differences but subtle shape differences will be separated more along the first axis, less on higher axes. Specimens of similar size but with greater shape differences may be separated in different ways across a number of PC axes. Because the PC axes

define a unique morphological space, the closer specimens or group means plot together, the more similar they are in overall morphology as defined by the particular measurement suite used.

STRATEGY AND SIGNIFICANCE OF PRINCIPAL COMPONENTS RESULTS

The variation of skulls and mandibles for each genus of living and fossil rhinoceros was observed in the plane defined by the first (PC1) and second (PC2) principal component axes (first principal component plane, PCP1). For most genera, these two axes account for 50% or more of the variation originally dispersed among the 19 skull variables or 11 mandible variables. The generic dispersions of individuals were subdivided where possible into biologically significant subgroups based on geographic, chronologic, taxonomic, and variational information. These subgeneric groups represent estimates of biological populations separated by time and/or space, and in most cases approximate the species-level variation shown by the living analogues. A secondary purpose for dissection of the generic variation was to obtain a pooled within-group dispersion whose variation is an estimate for an "average" rhinoceros population (species?). This pooled dispersion is used by canonical variates analysis to maximize among group variation (Chapter 4). To summarize, the analyses of generic and subgeneric variation, described in detail below, provide: 1) insight about the nature and extent of variation within and among

the genera of a large, diverse, and evolutionarily significant vertebrate taxon, and 2) provide a standard (pooled within-group variation) by which the morphological relationships among groups can be assessed.

SEX DIMORPHISM

Systematic differences in size and/or shape of males and females may contribute to intraspecific osteometric variation. It may, thus, be important in comparisons of interspecific and intergeneric differences both within and between living and fossil groups. Taxonomic errors can occur (especially in fossils) when males and females are so dissimilar as to be interpretated as two taxa (Kurten, 1969). Among the living rhinos, Nowak and Paradiso (1983) state bluntly that females are smaller than males. Because many of the living rhino specimens were sexed at the time they were shot, it was possible to investigate multivariate sex dimorphism in two of the living genera (Diceros and Ceretotherium). Among the fossil taxa, evidence for multivariate morphometric sex dimorphism can be assessed by correlation of morphological clustering of specimens with qualitative characters believed to represent dimorphism a priori. In this study it was possible to investigate sex dimorphism of skull morphology in the fossil genus Menoceras.

PRINCIPAL COMPONENTS ANALYSES OF INDIVIDUAL GENERA

Total PC variation (sum of all eigenvalues) and the first three eigenvalues for each genus are summarized in Table 5. Among the living genera, Diceros and Ceratotherium have similar amounts of total variation for both skull and mandible data sets. Since these two taxa represent good single species and the sample sizes are reasonably large (n=48 and n=19, respectively), their total variation is the best estimate by which the fossil samples may be compared. Also significant is the higher total variation in Rhinoceros, representing two species. Least significant for comparison with fossile is the total variation for Dicerorhinus skulls and mandibles. The large total variation is probably an artifact of inadequate sample size (n=2). Thus, when comparing total variation between living and fossil genera, sample sizes must be considered. For smaller sample sizes, it is the relative dispersion of the points rather than the numeric value of the total variation which is important.

Scatter plots of PCl versus PC2 for each genus are summarized in Figure 7 and Figure 8. Axes were set to include the extremes of the most variable genera and are the same across all of the generic PC plots. They thus allow direct comparisons of multivariate

TABLE 5. Eigenvalues, percent of total, and total variation for the first three axes of each generic principal components analysis. Total variation is for all axes (19 skull; 11 mandible).

SRULL

GENUS	PC1	2	PCZ	z	PC3	X	Total
Dicerorhinus	11445.0	100.0	0.0	0.0	0.0	0.0	11445.0
Diceras	1996.1	60.Z	263.9	7.9	218.1	6,5	3314.4
Ceratotherium	1978.6	59.9	335.5	10.1	Z14.5	6,5	3298.8
Rhinoceros	6176.8	82.2	416.7	5.5	378.9	5.0	7512.3
Aceratherium	12120.0	100.0	0,0	0.0	Q.0	0,0	12120.0
Amynodon	3570.0	100.0	0.0	0.0	0.0	0.0	3570.0
Aphelops	6178,2	73.9	1017,8	12.1	472.3	5.6	8353,2
Diceratherium	10276.6	88.8	809.1	6.9	351.3	3.0	11669.0
Forstercooperia	3731.5	100.0	0.0	0.0	0.0	0.0	3731.5
Nyracodon	718.8	65.9	313.3	28.7	57.4	0.1	1089.7
Hyrachyus	7896.3	88.3	839.7	9.3	128.3	1.4	8939.4
Menoceras	1316.3	53.9	353.3	24.4	186.9	7.6	2437.9
Peraceras	43566.0	96.8	555.9	1.2	481.7	1.0	44969.1
Subhyracodon	5529.3	79.2	439.7	6.3	346.2	4.9	6980.5
Teleoceras	5988.3	61.2	1273.1	13.0	1068.1	10.9	9775.2
Trigonias	2106.2	43.2	1309.1	26.8	515.8	0.1	4869.6

MANDIBLE

GERUS	PC1	x	PUZ	×	PC3	x	Tatal
Dicerorhinus	3958.5	100.0	0.0	0.0	0.0	0.0	3958.5
Diceros	373.7	50.7	152.0	20.6	72.2	9.E	735.8
Ceratotherium	342.2	44.1	155.1	19.9	123.7	15.9	775.7
Rhinoceros	2069.1	87.8	130.2	5.5	68.7	2.9	2354.3
Aceratherium	294.5	59.3	135.4	27.3	65,6	13.2	495.9
Aphelops	3204.8	86.1	206.6	5.5	160.7	4.3	3720.0
Diceratherium	1204.7	85.9	121.0	8.6	33.6	2.3	\$401.0
Forstercooperia	1769.9	93.2	127.0	6.6	0.0	0.0	1897.0
Hyracodon	140.0	66.6	41.5	19.7	28.6	13.6	210.1
Hyrachyus	1461.3	96.5	33.3	2.1	19-1	1.2	1513.9
Menoceras	308.4	69.7	56.5	17.0	49.9	9.8	507.9
Peraceras	2512.4	92.8	151.0	5.5	36.4	1.3	2722.4
Subhyracodon	696.9	71-3	112.7	11.5	79.5	8.1	977.4
Teleoceras	1120.7	61.6	301.9	16.5	136.2	7.4	1819.3
Trigonias	212.9	47.1	85.3	18.9	84.0	18.6	451.2
Zaisenamynodon	1008.0	100.0	0.0	0.0	0.0	0.0	0,0

FIGURE 7. Summary of principal components plots of skulls for living and fossil genera. Living genera are shown first followed by fossil genera in alphabetical order. All plots are to the same scale.

6

 \leq

.

48

FIGURE 8. Summary of principal components plots of mandibles for living and fossil genera. Living genera are shown first followed by fossil genera in alphabetical order. All plots are to the same scale.

1

.

ង

54 4 _____

variation for skull and mandible characters. For example, among the skull samples, patterns range from Diceros, with the most homogeneous clustering of points, to Peraceras with a few widely scatterd points. Significantly, among all genera, Rhinoceros with its two component species shows the clearest bimodal clustering of apecimens.

The PC analyses of each genus are discussed in detail below. Living rhinos are discussed first followed by the fossil genera. Each genus discussion begins with a brief introduction to the taxon followed by separate discussions of skull and mandible morphometric results.

Living Rhinoceroses

Locality data on the living rhinoceroses varies from relatively precise (e.g, the name of a town or river) to overly broad (e.g., "Africa"). Most often, the localities given indicate the political units in effect at the time the rhinos were collected (e.g., "British East Africa" or "Tanganyika"). Such regional geographic designations represent maxima since species inhabit patches within a given range at a given scale. For example, Goddard (1970) reported that the largest population of black rhinos existed within the 23,500 km² confines of Tsavo National Park (Kenya) and that within this range thirteen habitat types with local populations were recognized. In the Serengeti (Tanzania), "green regions",

driven by rainfall, vary spatially and temporally (Sinclair, 1979), and this probably influences the ranges of local populations of rhinos. When the name of a town is given for the locality of several rhinos, it only indicates they are from the same region but not necessarily from the same local population. The locality data allow a limitied analysis of regional differentiation among the rhinoceros Specimens.

Diceros

Diceros is comprised of a single species, D. bicornis, the black rhinoceros. It inhabits primarily brush and scrub transitional zones between grassland and forest where it browses on a variety of bushes and shrubs. Historically, the black rhino ranged over much of sub-Saharan Africa (Kingdon, 1979; Meester and Setzer, 1971, cited in Nowak and Paradiso, 1983). The specimens used were collected in "British East Africa" which was comprised mostly of the modern countries Kenya and Tanzania. Areas <u>not</u> sampled or included in this study include (1) South Africa and the Limpopo River drainage, (2) southwestern Angola, (3) the Zambesi River drainage, (4) Sudan (upper Nile), and (5) the Lake Chad region. Thus, the morphological variation represented by the specimens used may not represent the total range of variation for the species. As a standard of comparison for the fossils, therefore, the black rhino variation must be considered relative to

the geographic range of sampled specimens as well as the amount of environmental heterogeneity within that range.

Two modern studies of black rhinoceros variation are those of Zukowsky (1964) and Groves (1967). Zukowsky proposed at least 16 "well differentiated" subspecies for D. bicornis based on observations of 95 skulls from European museums, zoo animals, photographs, and bibliographic sources. This amount of subspecific variation is questionable because of the small sample sizes (averaging Bix skulls per subspecies) and Zukowsky's own admission of great individual variation in the shape and structure of black rhino skulls. Groves criticized Zukowsky's work on the above grounds and noted that skull measurements do not often discriminate between the proposed subspecies. Using additional material, Groves studied East African populations in more detail and reported the existence of two size clines within the region formed by several subspecies and "intergrades" (Groves, 1967). The locality information for the specimens used in this study was insufficient for a detailed analysis of geographic variation in the black rhino. However, this study shows evidence of some geographic differentiation, supporting two of Grove's subdivisions (see below).

Neither Groves (1967) nor Zukowsky (1964, English summary) discussed sex dimorphism in the black rhino. Jarman (1983) suggested that male and female black rhinos reached similar weights

and shapes. Ralls (1976), in a review of mammal species with larger females, did not include rhinoceroses. Evidence for sex dimorphism in the black rhino is presented below under separate discussions of skull and mandible.

Skull (Figures 9-13) -- Principal components ordination of the black rhino skulls with respect to PC1 and PC2 is shown in Figure 9 (same result as Diceros plot in Figure 7). This multivariate dispersion represents 68.1 percent of the total variation in the sample. Generally, in PC studies, specimens are ordinated by size along the first PC axis (size axis). This was confirmed here and is true for all subsequent plots. Higher axes (PC2, PC3, etc.) are related to aspects of specimen shape. This basic ordination plot (Figure 9) is used several times (Figures 10 - 13) where the only difference in is how the individual specimens are labelled.

Figure 9 also shows the provenience of the specimens with respect to the geographical units within which they were collected. The extremes of variation on both PC axes are represented by the Kenyan specimens. Both sets of specimens from British East Africa (BEA) and Tanzania (Tanganyika) are overlapping within the Kenyan cloud of variation. Whether or not BEA specimens are Kenyan or Tanzanian, these data suggest that there are no significant factors contributing to morphological differentiation between rhinos

FIGURE 9. Principal components plot of *Diceros* (black rhino) skulls with specimens identified to the largest geographic political unit based on museum tag information: B - British East Africa, K - Kenya, T - Tanzania. Scales are the same as all other skull plots in this chapter (see Figure 7). Corresponding plot of mandibles is shown in Figure 14.

.

60

•

collectively inhabiting Kenya versus those inhabiting Tanzania. A more detailed analysis of geographic variation is shown in Pigure 10, based on limited locality data associated with the specimens. Although nothing can be concluded about differences between specimens from N. Guaso Nyiro and Kasarongai River, or between specimens from Tana River and Charangani Hills, N. Guaso Nyiro and Tana River specimens are distinct with respect to size. This Supports Groves' (1957) observation of a west-to-east size cline among East African rhinos. The position of the Lakiundu River Specimens confirms Grove's statement that Lakiundu populations are intermediate in the cline.

1

ł

As mentioned previously, the nature and number of black rhino subspecies is not well established. Two relatively recent studies varied from 7 subspecies (Groves, 1967) to at least 16 subspecies (Zukowsky, 1964). The former study relied more on osteometric data, the later study on skull morphology and visual appearance. Many, if not most, of the original subspecific classifications of wild-caught specimens are probably meaningless in terms of biological information about real subspecies. More likely, in many cases, they represent local populations and were classified arbitrarily by non-experts. However, although the subspecific names may be wrong, there may be other important information confounded with them, such as geographic variation. Figure 11 shows specimens identified according to the subspecific

FIGURE 10. Principal components plot of *Diceros* (black rhino) skulls with specimens identified to regional locality based on museum tag information. Shaded areas include all specimens from the same locality. Dots represent specimens for which no locality data is known. Corresponding plot of mandibles is shown in Figure 15.

FIGURE 11. Principal components plot of *Diceros* (black rhino) skulls with specimens identified by subspecies designations given on museum tags. Shaded areas include all members of the same subspecies. Dots represent specimens for which no subspecies designation was given: $\mathbf{H} = D$. b. holmwoodi, $\mathbf{B} = D$. b. bicornis, $\mathbf{S} = D$. b. somaliensis. Corresponding plot of mandibles is shown in Figure 16.

64

.

•

designations given on museum tags. Based on Groves' analysis, the subspecific epithets of Figure 11 would be mostly incorrect for the following reasons: (1) D. b. holmwoodi, now synonymous with D. b. minor, probably represented a wastebasket taxon since few of the orginal holmwoodi specimens are attributable to D. b. minor, (2) D. b. someliensis is now a synonym of D. b. brucii, and found only in northern Somalia, and (3) D. b. bicornis is now restricted to animals from southern and southwestern Africa. Of interest morphometrically, however, is the separation of specimens labelled D. b. bicornis versus those labelled D. b. somaliensis which may indicate that the original subspecific classifications of those two groups were based on real biological differences. Further analysis of subspecific variation is shown in Figure 12 where locality data was used to matched specimens with Groves' (1967) subspecies and intergrades. The majority of identifiable specimens were assignable to D. b. michaeli or to a D. b. michaeli - D. b. ladoensis intergrade category. The morphometric separation of these two groups lies along an oblique axis (upper left to lower right) and suggests that the intergrade category is perhaps more of a real group than Groves gave it credit for. Conversely, the D. b. ladoensis specimens appear not to be distinguishable from either group.

FIGURE 12. Principal components plot of *Diceros* (black rhino) skulls with specimens identified to subspecies based on those of Groves (1967). Shaded areas include all specimens of the same subspecies. Dots indicate specimens for which no subspecific assignment was determinable: M = D. b. michaeli, N = D. b. minor, I = D. b. michaeli\ladoensis intergrade, L = D. b. ladoensis. Corresponding plot of mandibles is shown in Figure 17.

An analysis of sex dimorphism of the black rhino skulls is shown in Figure 13 based on museum tag information. Sexing of the rhinos probably occurred at the time of collection but was not consistently recorded. The largest specimens in the analysis (right side of PC1) were not sexed. Most or all of these specimens could be males if males are actually larger than females on average and if there was a bias by the expeditions to take the larger (presumably bull) members during hunts. The following discussion of the pattern of the sexed specimens takes the data at face value. Inspection of the first axis indicates a tendency for females to be larger than males, contrary to Nowak and Paradiso (1983) who state that females are smaller than males (for all rhinos). The hypothesis that the female sample represents generally larger animals was tested using a Wilcoxan Rank Sum Test which gave a marginally insignificant result (SUM male = 67; SUM female = 104; $T_{T_1} = 66; T_{T_2} = 105$). The suggestion that females are larger than males in black chinos would place this species among the minority of mammals exhibiting this phenomenon (Ralls, 1976). Although there is no significant size dimorphism, there is evidence for sex dimorphism in terms of shape or of size and shape combined. The principal component separation of males and female skulls shown in Figure 13 lies along an oblique axis (upper left to the lower right) which would be a linear composite of PC1 and PC2. The

FIGURE 13. Principal components plot of *Diceros* (black rhino) skulls with specimens identified by sex based on museum tag information. Shaded areas include specimens of the same sex. Dots represent specimens for which sex was not determined: M - male, F female. Arrow represents an approximate axis (vector) of skull Bex dimorphism in the PC morphospace. Corresponding plot of mandibles is shown in Figure 18.

i

details of these shape differences and their possible explanations have not been determined.

In summary, species level variation in Diceros skulls includes variation associated with geographic factors (interlocality and subspecific level variation) and with sex differences in skull shape. Demonstration of these factors of variation in this living analog is important and useful because fossil species can be expected to have exhibited these same kinds of variation.

<u>Mandible</u> (Figures 14-18) -- Principal components ordinations for black rhinoceros mandibles are given in Figures 14-18, which are different versions of the same PC plot. These plots parallel those of the skull studies in terms of the way specimens are labelled. Similarly, PC1 appears to be largely a size axis with smaller specimens on the left.

The results of geographic analyses are generally similar to those of the skull. At the lowest geographic resolution (country, Figure 14), Kenyan specimens determine the ranges of PC1-PC2 variation, while Tanzanian and BEA specimens lie within that dispersion. The Tanzanian mandibles, however, are more dispersed relative to the Kenyan mandible variation than are the Tanzanian skulls relative to Kenyan skull variation. Locality data for the black rhino mandibles (Figure 15) supports the skull data with respect to: existence and extent of local geographic variation,

FIGURE 14. Principal components plot of *Diceros* (black rhino) mandibles with specimens identified to the largest geographic political unit based on museum tag infromation. B - British East Africa, K - Kenya, T - Tanzanian. Scales are the same as all other mandible plots in this chapter (see Figure 8). Corresponding plot of skulls is shown in Figure 9.

FIGURE 15. Principal components plot of *Diceros* (black rhino) mandibles with specimens identified to regional locality based on museum tag information. Shaded areas include all specimens from the same locality. Dots represent specimens for which locality was not determined. Corresponding plot of skulls is shown in Figure 10.

similarity of Charangani Hills and Tana River specimens, and an east-west size cline (N. Guago Nyiro - Tana River). The pattern of morphological variation of the mandibles differs from that of the skulls in the following ways: Lakiundu River specimens are not intermediate in the size cline, Kasarongai River specimens are not similar to N. Guaso Nyiro specimens, and there is relatively more PC2 variation with respect to localities.

Results of subspecies analyses on the mandibles are also similar to the skull results. Figure 16 supports the morphological difference between those specimens originally assigned to D. b. bicornis and those assigned to D. b. somaliensis. Figure 17 supports the skull result that the D. b. michaeli\ladoensis intergrades form a group distinct from D. b. michaeli while D. b. ladoensis is not distinct. This result is less convincing because of the greater overlap in the mandible plot. It is interesting, however, that the separation of the intergrades and D. b. michaeli, to the extent that it is real, lies predominantly along the second axis. Thus, as in the locality analysis, mandibles appear to differ more by shape while skulls differ more by size.

Sex dimorphism was not observed in the black rhino mandibles (Figure 18). Both the largest and smallest sexed specimens were females, and the results of a Wilcoxan Rank Sum Test relative to PCl were not significant (SUM_{male} = 77; SUM_{female} = 76; $T_L = 54$; T_R = 90). Thus, the sex dimorphism in black rhinos observed in

1

FIGURE 16. Principal components plot of *Diceros* (black rhino) mandibles with specimens identified by subspecies designations from museum tags. Shaded areas include all members of the same subspecies. Dots represent specimens for which no subspecies designation was given: $\mathbf{E} = D$. b. holmwoodi, $\mathbf{E} = D$. b. bicornis, $\mathbf{S} =$ D. b. someliensis. Corresponding plot of skulls is shown in Figure 11.

FIGURE 17. Principal components plots of *Diceros* (black rhino) mandibles with specimens identified to subspecies based on those of Groves (1967). Shaded areas include all specimens of the same subspecies. Dots indicate specimens which were not assignable to one of Grove's subspecies: M = D. b. michaeli, N = D. b. minor, I =b. b. michaeli/ladoensis intergrade, L = D. b. ladoensis. Corresponding plot of skulls is shown in Figure 12.

FIGURE 18. Principal components plot of Diceros (black rhino) mandibles with specimens identified by sex based on museum tag information. Shaded areas include all specimens of the same sex. Dots represent specimens for which sex was not determined. Corresponding plot of skulls is shown in Figure 13.

this study is regionalized to some features of the craniorostral skeleton (see discussion under Ceratotherium).

In summary, as compared to the skull sample, species level variation of the mandible sample appears to be less confounded by geographic and sex differences and is more often associated with PC2. It should be noted that, unlike the fossils, the living analog samples represent matched skull-mandible pairs. Mandibles might give systematically different results, perhaps due to regionalized differences in development and selection (mosaic evolution). This should be considered when interpreting the fossils.

Ceratotherium

Ceratotherium is represented by a single species, C. simum, the white rhinoceros. It primarily inhabits grassland and open forest (bushweldt in southern Africa) where it grazes unselectively on grasses. Historically, this species' geographic distribution consisted of two disjunct regions in Africa including a northern range (Chad, Central African Republic, S.W. Sudan, N.E. Zaire, and N. W. Uganda) and a southern range (S.E. Angola, S. W. Zambia, Mozambique, Rhodesia, Botswana, E. Namibia, and W. and E. South Africa) (Groves, 1975; Nowak and Paradiso, 1983). Each of the two geographic groups is considered a single subspecies with C. s.

cottoni in the morth and C. s. simum in the south (Groves, 1972; 1975). Groves found differences between these subspecies to be very slight, but stressed the flatter skull and shorter maxillary tooth row in C. s. cottoni. All of the specimens in the sample studied here are C. s. cottoni from the region northwest of Lake Victoria including parts of Zaire, Uganda, and Sudan. The two most important collecting centers were Faradje (N.E. Zaire) and Lado Rhino Camp (Albert Nile, Uganda). This range is approximately similar in area to that for the black rhino sample, and similarly, may only represent a subsample of the total white rhino variation. Because no studies have suggested that C. s. cottoni represents more than one true subspecies, it was not possible to demonstrate variation due to subspecific variation in Ceratotherium. PCl and total variation in the white rhino skull and mandible samples at the species level are approximately the same as that of the black rhino samples (Figure 7) despite differences in subspecific differentiation. This similarity of total variation between two distinct species lends support for the use of the living analogues as a gauge of specific level variation in fossil groups. Total variation for the white rhino skulls is second lowest among all the genera (only Menoceres is lower) and, among the mandible groups, only four fossil genera have lower total variation (Table 5).

Skull (Figures 19-20) -- The principal components results for Coratotherium skulls were analyzed with respect to locality (Figure 19) and sex (Figure 20). These plots have the same scales (as for all skull plots), and PCl is a size axis. The white rhino sample was collected, as noted above, from two relatively specific geographic foci: Faradje and Lado Rhino Camp. Although it is not known how far, nor in how many directions collectors may have forayed from these hubs, the PC results indicate that the regional populations being sampled were morphologically different. As shown in Figure 19, the Faradje and Lado specimens, which are separated along PC2 with little overlap, are distinguished by significant interlocality shape variation. Interlocality differences (in both black and white rhinos) suggest that rhino populations are sensitive to habitat heterogeneity and/or are partially isolated by barriers to gene flow. Fossil species are presumed to have the same potential for interlocality variability depending on the various biological and physical factors operating at the time.

Evidence for sex dimorphism in white rhino skulls is shown in Figure 20. Females are smaller than males (Wilcoxan Rank Sum Test: $SUM_{female} = 43$; $SUM_{male} = 77$; $T_L = 49$; $T_R = 79$) but appear to be similar in shape. This supports Jarmans (1983) conclusion that male rhinos are larger than females but similar in shape, but is

FIGURE 19. Principal components plot of Ceratotherium (white rhino) skulls with specimens identified to the most specific geographic locality known. Shaded areas include all specimens from the same locality: F - Faradje (Zaire), L - Lado Rhino Camp, (Upper Nile, Uganda), W - Wadelia Rhino Camp (?), S - Sudan, U - Uganda, V - Vanckerhovenville (Zaire).

Ceratotherium - SKULLS Locality data.

FIGURE 20. Principal components plot of Ceratotherium (white rhino) skulls with specimens identified by sex. Shaded areas include all specimens of the same sex. Dots indicate specimens for which sex information is unavailable: M - Male, F - Female.

different than the dimorphism in the black rhino which includes a significant shape aspect.

In summary, the multivariate variation of white rhino skulls includes both interlocality and sex differences within a widely dispersed subspecies. In comparison with the black rhino, white rhino locality differences are similar in magnitude, sexes differ more in size than shape, and subspecific differentiation is less well-developed. Thus, although the black and white rhinos exhibit similar multivariate variation in the principal components space, the nature and causes underlying that variation are substantially different.

Mandible (Figures 21-22) -- Locality results for the mandible sample are shown in Figure 21. Overlap of Faradje and Lado specimens indicates that the mandibles are not as different in shape as are the skulls from these two localities. This discordant result between mandible and skull samples (consisting mostly of matched pairs) has important consequences for interpreting fossils. Since fossils are less often found as matched pairs, regional geographic differences in variation are less testable, but should be considered in interpretations based on only one element. Additionally, fossil mandibles and skulls might be susceptible to different kinds or amounts of distortion during burial.

FIGURE 21. Principal components plot of Ceratotherium (white rhino) mandibles with specimens identified to the most specific geographic locality known. Shaded areas include all specimens from the same locality: \mathbf{F} - Faradje (2aire), \mathbf{L} - Lado Rhino Camp (upper Nile, Uganda), W - Wadelia Rhino Camp, \mathbf{S} - Sudan, U - Uganda, V -Vanckerhovenville.

Ceratotherium mandibles (Figure 22) show the same sex difference with respect to size as seen in the skulls (Figure 20). Males are larger than females (PCL) with little dimorphism in shape along PC2.

Rhinoceros

The genus Rhinoceros comprises two species of Asian onehorned rhinoceroses: R. unicornis, the greater Indian rhinoceros, and R. sondaicus, the Java rhino. Nowak and Paradiso (1983) state that both species live in the tall grass or reed beds of swampy jungles and eat grass, reeds, and twigs. Whitten et al. (1987) reported the diet of the Javan rhino as succulent secondary growth.

The historical range of the Indian rhino included northern Pakistan, northern India, Nepal, and Assam. Recorded localities for the specimens of this study are "India", "Nepal", and "Royal Chittawan National Park" (Nepal). The Indian specimens are most likely from the Ganges River Valley or from the Brahmaputra River Valley in the eastern province of Assam. The historical range of the Javan rhino included Sikkim, eastern India to Viet Nam and southern China, the Malay Peninsula, Sumatra, and Java. The specimens of this study were collected in western Java in the area of Bantam.

FIGURE 22. Principal components plot of Ceratotherium (white rhino) mandibles with specimens identified by sex. Shaded areas include all specimens of the sam sex. Dots indicate specimens for which sex data is unavailable. M - Male F - Female

PC results for skulls and mandibles are similar and are. discussed together. No analysis of sex dimorphism was posssible for *Rhinoceros* because of the absence of sex data.

<u>Skulls and Mandibles</u> (Figures 23-24) -- Principal components results for *Rhinoceros* are shown in Figure 23 (skulls) and Figure 24 (mandibles). The two species are clearly distinct and, in the context of this study, are considered subgeneric groups based on taxonomy, locality, and morphology (size). Within species, little can be said about the nature of the variation because of the paucity of data. *R. unicornis* has a larger dispersion than *R. sondaicus*, at least partly due to a larger sample size, and among the specimens, those from Chittawan park are identified as the largest. The lesser variation among Javan specimens might be a sampling artifact, but several other factors may be involved, including the relict status and insular distribution of the species. Groves and Guerin (1980) state that the entire size range of the Javan rhino is represented on Java but it is not known whether the Bantam specimens represent that size range.

More important for this study is the larger generic variation associated with two well-defined species. The total variation among the Rhinoceros skulls is more than twice that of Diceros or Ceratotherium and total variation among the mandibles is more than three times that of the black or white rhinos (Figure 7, Table S).

FIGURE 23. Principal components plot of *Rhinoceros* (Indian and Javan rhinos) skulls with specimens identified to locality. Shaded areas include all specimens from the same locality.

Rhinoceros - SKULLS Locality data.

99

FIGURE 24. Principal components plot of *Rhinoceros* (Indian and Javan rhinos) mandibles with specimens identified to locality. Shaded areas include all specimens from the same locality.

~

Because Rhinoceros is the only multispecies genus among the living analogues, it provides a valuable contribution as a clear example of interspecific level variation. Thus, the Asian one-horned rhinos together with the black and white rhinos, as living analogues, provide a gauge of subspecific, specific, and interspecific (intrageneric) variation to which the fossil genera may be compared.

Dicerorhinus

Dicerorhinus, like Diceros and Ceratotherium, is a single species genus comprised of D. sumatrensis, the Sumatran rhino. The generic name 18 derived from the two-horned condition which distinguishes it from the one-horned Asian rhino. Historically, this species was found in Assam, southeastern Bangladesh to the Malay Peninsula, and perhaps Vietnam, Sumatra, and Bornea. This rhino is found in areas of secondary growth in tropical forests across a range of elevations, but prefers more hilly habitats where it feeds on fruits, leaves, twigs, bark, and bamboos (Nowak and Paradiso, 1983). Only two adult specimens were available for this study, one collected from Burma (just north of Rangoon) and one from peninsular Malaysia (near Kuala Lumpur). Results for skulls and mandibles are similar and are discussed together.

Skull and Mandible (Figures 25-26) -- Principal components results for Dicerorhinus are shown in Figure 25 (skulls) and Figure 26 (mandibles). The small sample size and wide separation of the two specimens make Dicerorhinus one of the most problematic genera. The large total variation (Table 5) associated with this result is not useful as an indicator of either interspecific or large intraspecific levels of variation. If the specimens are normal individuals from a single species with variation similar to that of the black or white rhino, then they must be representative of the extremes of that variability. This is consistent with the geographic disjunction (approximately 1000 miles) between the specimens. Differences in habitat and limitations to gene flow could result in geographic/subspecific variants at these localities. A larger sample size in such a case might reveal the bulk of the variation in intermediate forms and intergrades as in the case of the black rhino. Alternatively, these two specimens might have been sampled from distinct groups representing incipient or unidentified species with a variational pattern similar to the Indian and Javan rhinos. A third possibility is that one or both of the specimens are abnormal outliers, falling outside the range of normal variability for that group. There is evidence that the Malay specimen is abnormal, and perhaps pathological. Notations taken during measurement indicate that this skull is highly rugose

FIGURE 25. Principal components plot of *Dicerorhinus* (Sumatran rhino) skulls with specimens identified to locality. Shaded area includes all specimens of the same spries.

ł

Dicerorhinus - SKULLS Locality data.

FIGURE 26. Principal components plot of *Dicerorhinus* (Sumatran rhino) mandibles with specimens identified to locality. Shaded area includes all specimens of the same species.

i

Dicerorhinus - MANDIBLES Locality data.

(almost ornately sculptured), is very light for its size, and has an abnormally curved tooth row. Justification for including it derives from the fact that it survived well into adulthood and was wild caught. Bizarre pathological or mutational variations occasionally occur in nature and are an aspect of variation to be considered when assessing fossil samples.

Fossil Rhinoceroses

Aceratheriza

Accratherium is a Miocene genus of the family Rhinocerotidae related to Aphelops and Peraceras. These genera are included in the Subfamily Accratheriinae, which was contemporaneous, and often sympatric, with primitive members of the Subfamily Rhinocerotinae (especially Teleoceras). Accratherium is a hornless rhino with reduced premaxillae, relatively low-crowned teeth, and a deeply incised nasal notch. The latter two features and other evidence suggest that members of this taxon were browsing feeders with prehensile upper lips or perhaps short probosci. Prothero et al. (1986) state that many of the specimens assigned to Accratherium actually belong to other genera, and that this has been a "wastebasket" genus for primitive hornless fossil rhinoceroses.

Because taxonomic revision is not the purpose here, the two specimens used are considered to represent Aceratherium.

Skull (Figure 27) --- The small sample size precludes grouping of specimens based on subgeneric variational patterns. Separation of the two specimens is similar to that of the Sumatran rhino skulls and, in the absence of other information, the same arguments would apply. The two specimens might be extremes of a single species or they might represent distinct taxa. The geographic and temporal information associated with the specimens indicates that they are from distinct populations in time and space, and probably represent species level variation consistent with the species classifications of the specimens. Each specimen is retained as a subgeneric group (ACER1S; ACER2S).

<u>Mandible</u> (Figure 28) -- The total variation (Table 5) and PCI-FC2 dispersion for this sample are similar to those of *Menoceras* (discussed below) which is one of the least variable of the fossil genera and is mostly comprised of a single-species quarry sample. The similarity with *Menoceras* and the absence of obvious clustering of the specimens would not lead to subdivision of this generic sample. However, the two specimens on the left of Figure 27 are from the late Miocene of Inner Mongolia and classified as A. depareti (ACER1M), while the two specimens on the right are from the late Miocene of Europe and classified as A. *incisivum* (ACER2M). The separation of the two subgroups is similar

FIGURE 27. Principal components plot of Aceratherium skulls with specimens identified by species, locality, and age. Shaded areas include all specimens in the same subgeneric group.

.

....

111

... ...

FIGURE 28. Principal components plot of Aceratherium mandibles with specimens identified by species, locality, and age. Shaded areas include all specimens of the same subgeneric group.

Aceratherium - MANDIBLES

to that of some of the geographic subgroups in Diceros. Thus, Aceratherium mandibles exhibit some minor levels of morphological variation related to time and geography, which has been reflected in their taxonomic assignments.

Asynodon

Amynodon is an evolutionarily and morphologically intermediate genus in the family Amynodontidae, falling between basal forms (more like Hyrachyus) and more derived genera (cadurocodonts and metamynodonts). Amynodontids are characterized in part by relatively large sagittal crests, enlarged canines, shortened facial regions, and well-developed preorbital fossae. Members of Amynodon were hornless rhinocerotoids restricted to the North American Eocene (Uintan A - Uintan C) and divided into two species, A. reedi and A. advenus, of which the latter was significantly larger (Wall, 1982, 1989). The peleoecology of amynodons has been little studied; they probably browsed on soft vegetation with their relatively low-crowned cheek teeth (molars and reduced non-molariform premolars). Two skulls of Amynodon were measured; no mandibles are included in the analysis.

<u>Skulls</u> (Figure 29) -- Both specimens are from middle Eocene (Uintan) strata in adjacent western states and are classified as A. advenus (the larger specimen is tagged "Advenus", the smaller unlabelled specimen was assigned to the species by Wall, 1982). The PCl variation and dispersion of the Amynodon sample is consistent with that for single-species living analogs and supports Walls' conclusion. Based on the preceding evidence, Amynodon was not divided into subgeneric groups.

Aphelops

Aphelops is a common early Miocene to late Miocene rhinocerotid found from the Rocky Mountains to Florida, often dominating high plains quarries in association with abundant and probably sympatric Teleoceras. Generally, Aphelops is characterized by relative brachydonty, absence of incisors, molarized premolars, medium to long skull with a dorsally arched naso-frontal profile, deep narial notch with retracted nasals, modern rhino-like limb proportions, and absence of horns. From the late Hemingfordian to the late Hemphillian, a series of Aphelops species progressively increased in size accompanied by increases in relative tooth height and nasal retraction. Moderately low-crowned grinding (cheek) teeth and a deep nasal notch (and/or nasal hone

FIGURE 29. Principal components plot of Amynodon skulls with specimens identified by species, locality, and age. Shaded area includes all specimens in the same subgeneric group.

Amynodon - SKULLS

117

retraction) are characters associated by inference with a browsing lifestyle (Matthew, 1931; 1932; Prothero et al., 1989, in press a).

Among all the genera analysed, principal components results for Aphelops show the greatest difference between the skull and mandible samples in terms of locality-time diversity and subgeneric groupings (2 skull subgroups at 2 times, 4 mandible subgroups at 4 times). This is at least partly due to the larger numerical and broader geographic sampling represented by the mandible specimens.

Skull (Figure 30) -- The total variation is intermediate among the genera and is most similar to that of *Rhinoceros* which suggests that the fossil skulls may represent more than one species. The single Hemingfordian specimen (APHELS), which is distinct temporally and morphologically, represents earlier, smaller forms within the *Aphelops* lineage. The other eight specimens are from Clarendonian localities (three quarries) in Nebraska (Harrison Formation, Cherry Co.). The majority (6 of 8) of the Clarendonian specimens are from the Xmas quarry. It is reasonable to assume that these skulls represent a single species given the temporal and geographic constraints of terrestrial sediments and the similarity in size of the morphometric dispersion compared to both the black and white rhinos. Quarry samples such as this one potentially provide the best overall estimate of within

FIGURE 30. Principal components plot of Aphelops skulls with specimens identified to locality and age. Shaded areas include all specimens in the same subgeneric group.

Aphelops - SKULLS

species variation (catastrophic burials such as volcanic ash falls only sample a single deme at one point in time). Intraquarry variation may include interdemic to subspecific or even chronospecific variation depending on the amount of time-averaging and size of the area sampled by the depositional system. The Kat and Leptarcus quarry specimens were grouped with the Xmas quarry skulls because of their temporal, geographic, and morphological similarity (APHE2S). Although the Kat specimen is an outlier, there is no other information to suggest that it represents a separate subgroup.

<u>Mandible</u> (Figure 31) -- Total and PCl variation of the sample (Table 5), which is among the largest, is similar to that of Peraceras. Dissection of this large amount of variation into reasonable subgeneric groups consistent with living analog variation resulted in four groups showing minimal overlap. APHELX unites four Barstovian specimens attributed to A. megalodus. APHE2M unites six Clarendonian specimens, including four from one quarry (Xmas), also attributed to A. megalodus (Prothero, personal communication). These two groups are straightforward and satisfactory based on their temporal, geographic, and morphological patterns. The fact that they are currently classified as one apecies may be interpreted in two ways: either significant, localized mandible size evolution occured within the species, or these two subgroups actually represent two species. Compared with

FIGURE 31. Principal components plot of Aphelops mandibles with specimens identified to locality and age. Shaded areas include all specimens in the same subgeneric group.

:

.

variation within and among other subgroups, the latter interpretation is not unreasonable. The remaining specimens are all Hemphillian and account for much of the Aphelops mandible variation. Subdivision of these specimens was based on timetaxonomic correlations such that some geographic confounding is present. APHE3M includes mandibles classified as A. malacorhinus from several early Hemphillian localities including Texas. The great size range of this subgroup might suggest two species by comparison with living forms, but much of this range is spanned by two specimens from the same locality (Florida). The wide separation of the Florida specimens is itself problematic but is accepted here, given the other problems. APHE4M comprises specimens attributable to an A. mutilis - late Remphillian correlation and also includes specimens from Texas. The dispersions of APHE3M and APHE4M, as single species, are less satisfactory in comparison with other groups and probably represent compromises given limited data and sample sizes. Explanations for the large early Remphillian diversity of Aphelops mandibles might include rapid size evolution within the species or, as indicated by the Florida specimens, greater than average variation.

Diceratherium

The genus *Diceratherium* is currently considered to include those fossil rhinoceroses exhibiting (probably in males only)

paired (side-by-side), subterminal, antero-posteriorly elongated nasal flanges (ridges). These boney characters are believed to have underlain epidermal horns. Earlier definitions of the genus included all rhinoceroses with paired nasal protuberances (diceratheres sensu obsoletum). Those forms with terminal, spherical horn bosses are now classified as Menoceras (discussed below). Diceratherium is further separated from Menoceras by retaining simple, primitive cheek teeth lacking much development of crochets and cristae. Diceratherium species are found in upper Oligocene to lower Miocene localities (Whitneyan - Arikareean) from Oregon to the Great Plains. These species differ mostly in size, with later forms achieving relatively large size. For example, the holotype D. armatum from the John Day formation of eastern Oregon was approximately two-thirds the size of the Indian rhino. Rhinoceroses were not generically diverse during the time Diceratherium was extant. Rather, Diceratherium species were the predominant rhino members of faunas for approximately 10 million years spanning the Whitneyan and Arikareean ages. Prior to extinction, Diceratherium coexisted with Menoceras during the mid to late Miocene (Matthew, 1931; Peterson, 1920; Prothero, in press a; Prothero et al., 1986, 1989; Tanner, 1969; Troxell, 1921). Skull (Figure 32) -- The total and PC1 variation, which is fourth highest among the skulls, is associated with a fairly wide scatter of a few data points. The small sample size results in relatively

FIGURE 32. Principal components plot of *Diceratherium* skulis with specimens identified by species, locality, and age. Shaded areas include all specimens in the same subgeneric group.

unsatisfactory subgroups in terms of dispersion. Two specimens are grouped as DICE3S representing Oligocene D. armatum. DICE1S and DICE3S are well separated and consistent with interspecies variation. However, DICE3S and two specimens of DICE1S are from the same quarry (77 Hill) in Wyoming. Thus, this interpretation accepts a polyphyletic sample from that locality. The single specimen of DICE2S is problematic. Although, consistent in time with DICE1S, it may be a distinct species (D. niobrarense). It's inclusion with DICE1S would also be consistent with variation in single species subgroups.

Mandible (Figure 33) -- The scatter of this small sample does not suggest any subgeneric morphometric grouping. Available data for three of the specimens suggests that they are taxonomically unique. Although similar in locality and age, the morphometric separation of *D. niobrarense* (DICE2M) and *D. armatum* (DICE1M) supports the notion of two species occurring at that time (also suggested by the skull analysis). In the absence of other data, locality alone was not considered sufficient to unite DICE3M and DICE4M. In summary, each of the specimens was retained as a single-specimen subgeneric group (DICE1M, DICE2M, DICE3M, DICE4M).

FIGURE 33. Principal components plot of *Diceratherium* mandibles with specimens identified by species, locality, and age. Shaded areas include all specimens in the same subgeneric group.

Torstercooperia

Forstercooperia is one of the three genera representing the family Hyracodontidae. It includes small, relatively primitive, hornless, cursorial rhinocerotoids from the middle Eocene of central Asia and North America. This lineage is believed to have later produced the largest known land mammals (see Indricotherium below). The primitiveness of Forstercooperia is illustrated by its inclusion of species once referred to the stem genus of rhinocerotoids (Hyrachyus grandis). Diagnostic features of the skull include nasal inclusion above the canine and an unreduced dentition with nonmolariform premolars. (Lucas et al., 1981; Prothero et al., 1986, 1989; Radinaky, 1967 b).

<u>Skull</u> (Figure 34) -- The two specimens are united by taxonomy, age, and locality (FORSS). The total skull variation, associated entirely with PCL, is similar to that of the black and white rhinos. It is not known whether the specimens are from the same quarry, from same level in the formation, or even from the same formation. The Shara Marun beds are tentatively assigned a mid to late Eocene (Lucas et al., 1981) which is consistent with the standard stage (Bartonian = upper Uintan-mid Eocene) age assigned to one of the specimens. Some authors have considered F. *Sharmuranense* to represent a separate genus (Juxia).

FIGURE 34. Principal components plot of Forstercooperia skulls with specimens identified by species, locality, and/or geologic age. Shaded area includes all specimens in the same subgeneric group.

1

i

This taxonomic confusion is not important for this study since the two specimens represent smaller, more primitive hyracodontids regardless of their name.

<u>Mandible</u> (Figure 35) -- Total variation, greater than in Diceros but less than in Rhinoceros (Table 5), is marginally consistent with a two-species hypothesis. The three specimens were divided into two subgeneric groups: FORS1M, a single specimen of F. sharamuranense, and FORS2M, two specimens classified as F. confluens. Variation within FORS2M is consistent with a single species when compared against the monotypic living taxa. In summary, total variation, taxonomic data, and morphological separation support the division of the mandibles into two subgeneric groups.

Syrachyus

The Bocene genus Hyrachyus represents the most primitive rhinocerotoid condition. It is similar in size and shape to the most primitive members of other perissodactyl superfamilies, for example, Hyracotherium, a basal form of the Equoidea (horses), and Heptodon, a basal form of the Tapiroidea. Primitive features in Hyrachyus include small size, distinct sagittal crest, narrow posterior projecting occiput, convex dorsal skull profile, smooth

FIGURE 35. Principal components plot of Forstercooperia mandibles with specimens identified by species, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

Forstercoopería - MANDIBLES.

nasal bones (hornless), long basicranial region relative to the palate, unflared zygomatic arches, and an unspecialized anterior dentition. In the late Eocene, three families (Amynodontidae, Hyracodontidae, and Rhinocerotidae) evolved from this primitive condition. Species of Hyrachyus, differing mostly in size, were moderately cursorial browsers which achieved at least a holarctic distribution. It is among those taxa believed to have utilized the Euro-American land bridge (Wood, 1935; Radinsky, 1967b; Prothero et al., 1986, 1989).

<u>Skull</u> (Figure 36) -- The scatter of the small sample has an intermediate total variation, comparable to that of *Rhinoceros*. Because the data were not log-transformed, there remains the possibility that the variation of the very small *Hyrachyus* may not be comparable to the much larger living rhinos. Cenerally, larger species are expected to have larger variances. However, *Hyrachyus* skulls have a greater dispersion than *Diceros*, opposite of theoretical expectation, which adds weight to the conclusion that the *Hyrachyus* specimens comprise more than one species. This hypothesis is supported by the associated taxonomic and stratigraphic data. Two specimens labelled *H. modestus*, one of which is from the Bridger B2 stratum, were grouped as HYRAIS. The remaining specimens (HYRA2S) occur in higher beds (C and D) of the Bridger formation. Two of these are classified as *H. eximius*. The inclusion of the specimen labelled *H. princeps* (from Bridger C) in

İ

I

FIGURE 36. Principal components plot of Hyrachyus skulls with specimens identified by species, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

HYRA2S was based in part on the affinities of C and D faunas and on its morphological affinity with H. eximius. The H. princeps specimen is probably H. eximius (Prothero, personal communication). Several authors (Wortman, 1901, Wood, 1934, and Gazin, 1976) have considered the faunal differences between beds A-B and C-D sufficient to divide the Bridger Formation into two members (West, 1987). Their conclusions support the division of Hyrachyus skulls into two subgeneric groups.

<u>Mandible</u> (Figure 37) -- This analysis parallels that for the skulls. Two specimens of *H. modestus* from Bridger B form a group (HYRAIM) distinct from two specimens of *H. eximius* from Bridger D (HYRA2M). This pattern is consistent with the variation seen in the polytypic living analog *Rhinoceros*. Among the fossil genera, *Hyrachyus* shows the highest similarity between the skull and mandible principal components plots.

Hyracodon

Hyracodon is the most commonly found genus of hyracodontid. Skeletons and teeth are known from many localities spanning one of the longest time ranges of any mammalian genus (mid Eccene to late Oligocene). Hyracodon retained many of the primitive features of Hyrachyus including absence of horns and retention of a full complement of incisors and canines. Derived characters include: distinctive conical shape of incisors, flared

FIGURE 37. Principal components plot of Hyrachyus mandibles with specimens identified by species, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

zygomatic arches, and molarization of premolars. Though mediumsized in general, Hyracodon species differed mostly in size with the average or commonest forms usually described as sheep or great dane sized. Slender, elongated limbs and other postcranial features indicate that Hyracodon was very cursorial, a lifestyle usually associated with relatively open habitats such as savanna or grassland. The latter inference would suggest that Hyracodon was a grazer, which is supported by its relatively hypsodont cheek teeth. However, the teeth are otherwise simple and primitive which suggests a browsing habit. Further confusing this issue is the lack of any well-defined ecological facies associated with the fossils (Troxell, 1921; Sinclair, 1922; Wood, 1926; Radinsky, 1967b; Prothero, 1987, in press b; Prothero et al., 1986, 1989).

Skull (Figure 38) -- Hyracodon was the least variable of all genera with total variation considerably less than Diceros. This pattern is consistent with single-species variation in the context of this study and is consistent with the classification of all four specimens as H. nebraskensis. Relative to the living analogs, H. nebraskensis (as represented by these specimens) appears to be a well-defined morphologic species. The small separation between the South Dakota and Nebraska specimens may indicate some geographic differentiation within the species or temporal differentiation within the Orellan.

FIGURE 38. Principal components plot of *Byracodon* skulls with specimens identified by species, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

i

<u>Mandible</u> (Figure 39) -- The pattern of the mandible plot is very similar to that for the skulls and is based on the same four specimens (mandibles are matched with the skulls). They are therefore grouped similarly as HYCOS. However, in this case the "outlier" is a South Dakota specimen while the Nebraska mandible is more closely associated with other South Dakota specimens. The mandible results support the conclusions stated in the skull analysis.

Indricotherium

The Indricotherium specimen used in this study represents a lineage of Oligocene hyracodontids which became the largest land mammals yet discovered (approximately 15 to 18 feet at the shoulder). These rhinocerotoids retained many primitive characters including relatively long narrow skulls (dolichocephaly) without horns, long limbs with slender proportions, and retention of incisors. The incisors form a well-developed functional complex (vertical I^1 and procumbent I^2) considered to be an evolutionary novelty which unites the members as a monophyletic group. Slightly hypsodont, but otherwise primitive teeth, combined with large size suggest that indricotheres browsed on soft tree-top vegetation. Occipital and postcranial features indicate they fed in a head down position. Members of this group have historically been placed in

FIGURE 39. Principal components plot of Hyracodon mandibles with specimens identified by species, locality, and/or geologic age. Shaded area includes all specimens in the same subgeneric group.

three genera: Indricotherium, Baluchitherium, and Paraceratherium all of which belong to the subfamily Indricotheriinae. The similarity of specimens in these genera has led to arguments for the synonymy of Paraceratherium and Baluchitherium (both are more similar in size and smaller than Indricotherium), or of all three genera. In either case Paraceratherium has priority (Forstercooper, 1911, 1924, 1934; Granger and Gregory, 1935, 1936; Lucas and Sobus, 1989; Osborn, 1923; Prothero et al., 1986, 1989, in press b).

Skull and Mandible (no figures) -- Single specimens cannot be analysed by PC since no axes can be found which maximize variance among specimens (a minimum of two specimens is required for PC). Hence, there are no principal components plots for the Indricotherium skull or mandible. However, the single specimen does represent a real population of indricotheres and is therefore an estimate of the mean of that population which will be used in later canonical variates analyses (Chapter 4). The amount and kind of variation represented in the indricotheres by this one specimen depends on systematic opinion: Lucas and Sobus (1989) considered the cranial differences between Indricotherium and Paraceratherium (= Baluchitherium) not to be of generic level importance and therefore the specimens constitute a single genus, Paraceratherium. Further, they argue that any differences which do exist between the forms can be interpreted as representing sex dimorphism.

Regardless of what taxonomic level is assigned to the differences between the originally defined genera, the specimen used here represents all of the indricotheres.

Renoceras

Menoceras comprises pig-sized, herding animals found in North America from New Mexico to Florida and in the Great Plains. This genus appeared suddenly in the latest Arikareean age and is believed to be an immigrant derived from unknown ancestors in Europe or Asia. This genus, and Diceratherium, which was already established in North America when Menoceras arrived, are often found at the same localities. This faunal association led to some taxonomic confusion because both have paired nasal swellings (presumably underlying horns). The two genera were subsequently shown to be only distantly if at all related, and the side-by-side nature of the horn bosses is considered to be an evolutionary parallelism at best, or an evolutionary convergence. The shape and position of the bosses are unique: in Diceratherium they are subterminal and ridge or flange-like, in Menoceras they are spherical (bulbous) and located at the tips of the nasal bones. Other features of the skull indicate that Menoceras is much more derived than Diceratherium and more closely related to the ancestors of modern rhinoceroses. These features include a shorter, broader skull, a broader non-overhanging occiput, reduced

premaxillary bones, reduced sagittal crest, shortened basicranium, and heavy lower jaws with everted, rugose angles. Additionally, *Menoceras* and the higher rhinoceroses developed extensions of their molar cross-lophe resulting in crochets, antecrochets, and cristae, which fused to form fossettes and lakes in the dentine. The disappearance (extinction) of both *Diceratherium* and *Menoceras* in the Hemingfordian age is correlated with the appearance of aceratherine and teleoceratine rhinoceroses which were also probably immigrant taxa (Peterson, 1920; Prothero, in press a; Prothero and Manning, 1987; Prothero et al., 1986, 1989; Tanner, 1969; Troxell, 1921).

<u>Skull</u> (Figures 40-41) -- Principal components results for Menoceras skulls are shown in Figure 40. Among the fossil genera, Menoceras is one of the more homogeneous groups. Total variation among the skulls is below that of *Diceros* and therefore consistent with a hypothesis of a single species. This is further supported by the fact that the skull sample was not divisable into subgeneric groups by any criteria. The sample is primarily composed of specimens from two localities, the Agate Springs and Roll quarries. The Agate specimens are classified as *H. arikarense*. The unclassified specimens from Roll quarry form a nearly nonoverlapping cluster separated from the arikarense group along the second FC axis. If the Roll specimens are *arikarense*, which is

FIGURE 40. Principal components plot of Menoceras skulls with specimens identified by species, locality, and/or geologic age. Shaded area includes all specimens in the same subgeneric group.

consistent with the single species hypothesis suggested by the variation pattern, then the small differences in shape between the quarries may be attributed to geographic and/or temporal factors. Confounding the total variation in Menoceras is variation due to sex dimorphism. Several specimens were labeled as to sex, which was probably determined by relative size differences of horn bosses. Mixed specimens from the same locality have either large horn bosses (presumably males) or little to no horn bosses (presumably females). Sexing of specimens was checked against photographs from which additional sexing was accomplished. An analysis of sex dimorphism in Menoceras is shown in Figure 41. The Roll quarry group is male except for one large female and does not provide evidence for sex dimorphism by itself. Dimorphism in the M. arikarense Agate quarry sample appears to be obvious when observed graphically (Figure 41b) and is marginally supported by a Wilcoxan Rank Sum Test (SUM_p=38; SUM_p=40; T_L =41; T_R =63). When sexes of the total sample are grouped (Figure 41c), the dimorphism is less obvious but the larger sample size results in a significant Wilcoxan test for differences between males and females (SUM $_{W}$ =60; $SUM_{M} = 111; T_{L} = 66; T_{R} = 105).$

<u>Mandibles</u> (Figure 42) -- Principal components results for Menoceras mandibles are shown in Figure 42. Except for a single specimen (MENO2M), the mandible results are similar to those for

FIGURE 41. Principal components plot of *Menoceras* skulls with specimens identified by sex. Shaded areas include all specimens of the same sex.

FIGURE 42. Principal components plot of Menoceras mandibles with specimens identified by taxonomy, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

Menoceras - MANDIBLES

158

.

the skull. Within an Arikareean group of relatively low variation, the Agate (N. arikarense) and Roll specimens are distinct morphologically to a degree consistent with geographic and/or temporal variation within a species. Although the MENO2M specimen is not significantly outlying morphologically from MENO1M, it was retained as a subgeneric group based on information that suggests it represents a different biological population in time and space. Sex dimorphism was not analysed in the mandibles because of the lack of any characters comparable to the horn bosses for sexing specimens.

Feraceras

Peraceras probably migrated to North America from Eurasia in the early Miocene (late Hemingfordian), as did Aphelops and Teleoceras. These three genera displaced Menoceras and Diceratherium as the dominant rhinoceroses for most of the Miocene. For unknown reasons, Peraceras was the rarer of the three genera. It is found less often in local faunal association with the very common Teleoceras than is Aphelops. Characters which contribute to the uniqueness of Peraceras include brachycephaly, procumbent lambdoid creats and occiput, shortened and flattened nasal bones, retracted nasal incision, flat dorsal profile, reduced premaxillae with loss of the upper first incisor, brachydont teeth, and a short mandibular diastema. Significant size differences within the genus

are associated with other characteristics. Smaller members (P. profectum and P. hessei) were primitive hornless browsers while larger members (P. superciliosum) had small terminal horns and may have been grazers (Osborn, 1904; Prothero in press a; Prothero et al., 1986, 1989; Prothero and Manning, 1987; Prothero and Sereno, 1982).

Skull (Figure 43) -- The total and PC1 variation for Peraceras skulls are the largest of all the genera. This suggests, by comparison with the living analogs and fossil genera analyzed thus far, that multiple species may be represented by the sample. Most of the variation is along the PCl size axis. Indeed, the extremes of the PC1 scale were set for all of the skull PC plots by the Peraceras sample. It was possible to divide Peraceras into two subgeneric groups, but not without confounding information within each group. PERALS consists of the two smallest specimens. Both are from the Barstovian of New Mexico but are classified as different species. This confounding of taxonomy (P. hessei and P. profectum) into a subgeneric group was based on geography, time, morphology, and variation. First, they are more morphologically similar to each other than either is to the three specimens of P. superciliosum (PERA2S). Second, the range of variation shown by the two specimens is consistent with that of a single species in

FIGURE 43. Principal components plot of *Peraceras* skulls with specimens identified by taxonomy, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

į

i

İ

Peraceras - SKULLS

the context of this study, and is no greater than that shown by the extreme specimens of P. superciliosum. Peraceras hessei was reported by Prothero and Manning (1987) as a new species of dwarf Peraceras; they described the specimen used in this study as "the best preserved of any skull referrable to this species". Peraceras profectum is described as a 20% larger, contemporary sister species. Species recognition by size difference alone is not compelling since two adult specimens of the black rhino may differ by this much. PERAIS may represent two species (given sample size and sampling error), but these specimens are sufficiently similar in time, space, and morphology in the context of this study to be considered as a single subgeneric group. PERA2S consists of three larger specimens whose dispersion is similar in size to the black rhino. All are classified as P. superciliosum and all are from Nebraska. Because two of the specimens are from different ages, time is confounded in this subgroup. The smallest specimen of PERA2S is from an older stratum than one of the larger specimens. This may be interpreted two ways: either P. superciliosum decreased in average size over time, or it maintained a wide range of adult size variation during the time represented by the sample. In summary, although each subgeneric group confounds some information, the two subgroups represent the most reasonable partitioning of the great variation exhibited by the Peraceras skulls.

Mandible (Figure 44) -- Total PC variation, which is among the highest of the genera (Table 5), suggests the presence of multiple subgeneric groups. Two subgeneric groups were identified based on taxonomy, geography, morphology, and relative amounts of variation. PERAIM (like PERAIS) includes specimens from the New Mexico Barstovian which are classified as either P. profectum or P. hessei. These specimena form a morphometric group, consistent with other fossil and living groups, which supports the grouping of P. hessei and P. profectum. Here, the two profectum specimens exhibit a range of size nearly inclusive of the hessel specimen, with one of the P. profectum more similar to hessel than to the other P. profectum. PERALM is clearly distinct from PERA2M which represents P. superciliosum from the New Mexico Barstovian. The separation of PERALM and PERA2M is similar to the separation of PERAIS and PERA2S but an important difference is that the P. superciliosum mandibles are from the same locality and time as the hessei/profectum subgroup. The relative contemporaneity and sympatry of PERALM and PERA2M, combined with the size difference between the two groups, further emphasizes the morphometric similarity of P. profectum and P. hessei. Prothero (1989) recognized hessei as a valid species.

FIGURE 44. Principal components plot of Peraceras mandibles with specimens identified by taxonomy, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

ł

1

Subhyracodon

Subhyracodon is a primitive rhinocerotid genus which evolved in the late Eocene of North America, probably from Trigonias or a similar form, and was a dominant group across the High Plains during the early Oligocene. It disappeared by the late Oligocene and was probably ancestral to Diceratherium. Among the largest rhinos of its time, Subhyracodon reached a medium, horse size, exceeded only by Amphicaenopus (not included in this study). Paleoecologically, Subhyracodon fossils are associated with forested areas near streams where they lived as relatively unspecialized hornless browsers. Craniodental features of this genus include a generally flat dorsal skull profile, narrow pointed nasal bones, a low, broad sagittal crest, flaring lambdoid crests, incipient (i.e., inconstant) loss of upper canines, and broad, flat, nearly horizontal mandibular condyles. (Prothero, 1987, in press; Prothero, et al., 1986, 1989; Russell, 1982; Wood, 1929].

<u>Skull</u> (Figure 45) -- Total and PCl variation (Table 5) are intermediate with respect to the living taxa. Diceros and Coratotherium are less variable, Rhinoceros is more variable. This generic variation pattern does not by itself support a hypothesis that the sample consists of more than one subgeneric group. Further, the data is well-constrained geographically (South Dakota and Wyoming) which is consistent with a single group (but not

FIGURE 45. Principal components plot of Subhyracodon skulls with specimens identified by species and age. Shaded areas include all specimens in the same subgeneric group.

÷

!

Subhyracodon - SKULLS

169

.

inconsistent with multiple groups). However, most of the specimens of Subhyracodon are identified to species and represent localities temporally spread across the early Oligocene (Chadronian, Orellan, Whitneyan). The Whitneyan Subhyracodon are considered by some to be Diceratherium (Prothero, personal communication). Because these specimens are well defined morphometrically and show a clear temporal sequence of size increase with the other Subhyracodon species they are retained within Subhyracodon for the purposes of this discussion. Further, canonical variates results (see Chapter 4) show that Diceratherium and Subhyracodon are very similar morphometrically. Subhyracodon might therefore be an intermediate transitional form between the two genera. Dissection of the variation based on the taxonomic and temporal data produced three nearly nonoverlapping subgeneric groups in the morphometric space. SUBHIS consists of all the Chadronian specimens attributable to S. mitis, including two specimens labelled S. trigonodum. SUBH2S includes all Orellan S. occidentalis specimens. SUBH3S comprises the Whitneyan S. tridactylum specimens. The morphometric uniqueness of the three time-taxonomic groups, illustrated by nonoverlapping boundaries, supports the subgeneric groupings. The variation in each of the subgroups is relatively low compared with the black and white rhinos. Sampling problems notwithstanding, Subhyracodon may have maintained lower than average variation in its populations. SUBHIS, SUBH2S, and SUBH3S are temporally

sequenced from left to right (earlier to later) indicating evolution of larger size with time.

<u>Mandible</u> (Figure 46) -- Total and PC1 variation is slightly larger than that of the black or white rhinos (Table 5). The specimens form a cloud of variation approximately equal to that of the white rhino but represent the same three time taxonomic groups as determined for the skull data. They were thus subdivided into analagous subgeneric groups (SUBHIM, SUBH2M and SUBH3M) on the same basis. However, overlap is significant here with *S. mitis* entirely within the size range of *S. occidentalis* such that the temporal pattern seen in the skulls is seen here only between *S.* occidentalis and *S. tridactylum*.

Teleoceras

Teleoceras is a common mid-to-late Miocene genus which probably immigrated to North America from Eurasia. Abundant fossils are found in many localities, especially those of the northern Great Plains. These localities are usually interpreted as river channel deposits, suggesting that Teleoceras frequented riparian habitats and perhaps was significantly aquatic in its behavior. Body proportions similar to those of the living hippopotamus (i.e. barrel-like trunk and stumpy limbs) have been cited as aquatic adaptations. However, there are no unusual

FIGURE 46. Principal components plot of Subhyracodon mandibles with specimens identified by species and age. Shaded areas include all specimens of the same subgeneric group.

:

I

Subhyracodon - MANDIBLES

173

adaptations of the Teleoceras skull which might correlate with an aquatic lifestyle (in contrast, the hippopotamus has dorsally shifted orbits, nares, and auditory meati). Among Miocene rhinoceroses, Teleoceras has hypsodont (high-crowned) teeth, a character traditionally associated with grazing and cursorial habits. Teleoceras is thus paradoxical vis-a-vis the hypsodontycursoriality correlation. A further convolution is the grazing analogy between Teleoceras and the hippopotamus, since the hippopotamus is a brachydont (low-crowned) grazer. The same localities which yield Teleoceras usually also contain a brachydont, browsing rhinoceros which is typically Aphelops or a related form (these browsers have not been hypothesized as aquatic). Size changes in Teleoceras were irregular such that later forms were not the largest. At least one small form may have been a dwarfed lineage. Diagnostic features of the Teleoceras skull include: brachycephaly, hypsodonty, broad lambdoid crests and zygOmatic arches, fused and laterally downturned nasal bones, shallow magal incision, reduced premolars, and retained upper incisors. Most, but not all, Teleoceras had a small terminal rugosity on the masal tip indicating the presence of a single, median horn (Osborn, 1904; Prothero, 1987; Prothero et al., 1986, 1989; Prothero and Manning, 1987; Prothero and Sereno, 1982; Hooijer, 1978; Voorhies and Thomasson, 1979; .

FIGURE 47. Principal components plot of Telecceras skulls with epecimens identified by species and age. Shaded areas include all specimens in the same subgeneric group.

ł

i

|

Ì

1

4

I.

<u>Skull</u> (Figure 47) -- Total PC variation is greater than in Rhinoceros and similar to Diceratherium among the fossils. PCL variation is slightly less than in Rhinoceros. Taking both PC axes into account, Teleoceras has one of the largest scatter of points among all the genera. Dissection of this variation resulted in five subgeneric groups, principally distinguished by age and taxonomy. Geographically, the sample is from plains states (see Table 2), and none of the subgeneric groups represent large or complex ranges, especially when compared with the range of the black rhing. TELEIS comprises two morphologically similar Hemingfordian specimens (T. americanum). The association of these smallest specimens with the earliest time interval is similar to the patterns of size evolution observed in other rhinocerotoid genera. TELE2S unites Barstovian specimens from Nebraska classified as T. medicornutum (including one specimen labeled as T. thompsoni). The dispersion of this group is similar to other subgroups in other genera based on the same types of information. In comparison with living rhinos, no more than single-species variation is indicated. TELE3S represents T. major from the Clarendonian of Nebraska. Dispersion size and minimal overlap with other groups suggest that TELE3S is a morphometrically distinct group, different from other Teleoceres at other times, and probably a single species. TELE4S comprises late Remphillian group of T. hicksi. It is morphometrically distinct from TELE3S and TELE4S and

its dispersion is consistent with those groups. TELESS is a timetaxonomic group representing early Hemphillian T. fossiger. This is a problematic group because of the morphometric overlap with TELE4S and its odd dispersion. In such cases of overlap, morphometric distinctiveness might be revealed by analyses of variation along higher axes.

Because the five subgeneric groups represent five consecutive land mammal ages, some tentative statements about size-shape evolution in Teleoceras may be attempted. This assumes that the groups (populations) at any one time are derived from the previous group (or very similar, but unknown, group). Because there is no temporal unidirectionality among the Teleoceras groups in terms of size and shape change, the subgeneric pattern may be analysed pairwise with the following results. Teleoceras increased in size from the Hemingfordian to the Barstovian (TELE1S to TELE2S). From the Barstovian to the Clarendonian (TELE2S to TELE3S), there appears to have been some significant shape change since these two groups are separated along the second PC axis by as much as any two groups in this study. It also appears that a size decrease may have acompanied this change. From the Clarendonian to the early Hemphillian (TELE3S to TELE5S), size increased but without any apparent change in average shape. The youngest group, TELE4S (late Hemphillian), appears to be slightly smaller than TELESS (but not smaller than T. hicksi within TELE4S). The temporal (and

evolutionary?) pattern of the subgeneric groups is consistent with earlier observations by Prothero and Sereno (1987) that Teleoceras does not simply follow a gradient of gradual increase in size through time. A statement by the same authors that T. fossiger is unusually large is not supported by the skull results presented here. Lastly, it should be noted that some specimens from three of the groups (TELE2S, TELE3S, and TELE5S) are clustered near the center of the plot and are morphometrically similar.

Mandible (Figure 48) -- The total PC variation associated with the Teleoceras mandibles is intermediate (somewhat less than Rhinoceros). This amount of variation, not by itself indicative of multiple species, is associated with the largest PCI-PC2 scatter of any genus (skull or mandible) in the study. Accordingly, the variation in this sample was the most difficult to analyse of all the genera (skull or mandible) and produced the least satisfactory results. Generally, the subgeneric groups have more "irregular" and larger dispersions, and exhibit more morphometric overlap, than any other sample. As with the skull sample, the Teleoceras mandible variation was grossly reducible by grouping specimens to age and age-associated taxonomies; dispersion and geoegraphy were not helpful. Five subgeneric groups were determined. TELEIM represents the earliest specimens and are among the smallest in the sample (Hemingfordian T. americanum). TELE2M is a Barstovian group of T. medicornutum (which includes two specimens labeled as T.

FIGURE 48. Principal components plot of Teleoceras mandibles with specimens identified by species and age. Shaded areas include all specimens in the same subgeneric group.

ł

ł

:

thomsoni as in the skull analysis). This group significantly a overlaps the Clarendonian group (TELE3M), which was not the case with the skulls (i.e., Barstovian and Clarendonian mandibles appear to be more similar in size and shape than are the skulls). TELE3M unites Clarendonian specimens of T. major, but as is typical in this genus, it has a large dispersion indicative of polyspecific variation. As previously stated, the significant overlap with specimens from the Barstovian (TELE2M) was not observed in the skulls. Specimens from the Hemphillian were subdivided into early (TELE5M - T. fossiger) and late (TELE4M - T. hicksi) groups. TELESM is fairly distinct from TELE3M (Clarendonian) along the second axis, reflecting morphometric shape differences, but they overlap greatly in size. If the large outlier in TELE5M were removed from this group, the remaining dispersion would be very consistent with single species variation as shown by the living analogues and well-defined fossil groups. TELE4M is problematic because of its small sample size and odd dispersion. Little can be said except that it overlaps in both shape and size with three other groups. Temporally, the only obvious evolutionary change observed is a shape change between the earlier T. major and the later T. fossiger assuming they are more or less linked in a lineage. These unsatisfactory results for Teleoceras mandibles, given good results elsewhere, suggest either that their

classifications and stratigraphy are less accurate, or that they are evolving in more mosaic, less patterned ways.

Trigonies

Trigonias is the most primitive genus among the rhinocerotids, or true rhinoceroses, and probably evolved in North America within a lineage leading back to Hyrachyus and including Teletaceras and Penetrigonias. By the early Oligocene, Trigonias was distributed over the High Plains and is best known from abundant quarry samples in Colorado. Trigonias was a medium-sized rhinoceros with a relatively long, narrow skull (dolichocephalic), a concave or saddle-shaped dorsal skull profile, an extended occiput with flared lambdoid crests, low broad sagittal crests, long nasal bones, retained canines, and a dorsally convex, medially tilted mandibular condyle with straight anterior and posterior borders. Highly variable premolars among the specimens within quarry samples led to typological taxonomic splitting by early paleontologist (Matthew, 1931; Prothero in press a; Prothero et al., 1989; Russell, 1982; Wood, 1931).

<u>Skull</u> (Figure 49) -- Total variation is intermediate to low among the fossil genera and is interemediate between *Diceros* and *Rhinoceros* among the living analogues (Table 5). All of the specimens are late Eccene (Chadronian) in age, and all but one are from Weld County, Colorado. Neither taxonomic nor morphometric

FIGURE 49. Principal components plot of *Trigonias* skulls with specimens identified by taxonomy, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

evidence suggests any distinct subgeneric groups. Therefore, the sample was united as a single subgroup (TRIGS). The most outlying specimen was noted as being particulary distorted. Exclusion of this specimen would result in a more satisfactory dispersion for a single subgeneric group. However, most of the specimens are probably at least somewhat distorted. Because distortion is difficult to judge objectively, the specimen was not arbitrarily excluded. Additionally, varying degrees of distortion can be expected to contribute to the "normal" variation within most fossil samples and should be considered. The second most outlying specimen, labeled as "Type", may also be distorted. The significance of the "Type" label is undetermined, but probably refers to an invalid species. The remaining specimens are fairly uniform in size and more consistent with living species in terms of overall dispersion. The small morphometric cluster of labeled specimens are individuals originally given species status based on small differences in premolar tooth morphology (this was quickly corrected by other investigators, but the specimens still retain their original labels). It would not be unreasonable, within the context of this study, to hypothesize that those specimens represent a single sex of one species from a single microgeographic locality and preserved within a short time span.

ł

Mandible (Figure 50) -- Total variation is less than that for any of the extant rhinoceroses and suggests that the multivariate variation of the sample is consistent with that found in single species. This is supported by the size and shape of the dispersion in the principal components space (compare with Diceros and Henoceras, Figures 9 and 41). Additionally, the sample is geographically and temporally constrained with no taxonomic differentiation indicated. Thus, there is no combination of evidence to suggest that more than one distinct subgeneric group exists. All of the Trigonias mandibles were therefore retained as a group (TRIGM) for subsequent among-groups analyses. At least one of the two specimens classified to species is invalid because there is no evidence that they represent different populations. Complete morphometric overlap of mandibles labelled only "Weld, Co." with those from Horsetail Creek suggests that they represent the same populational-variational unit, contrary to the result seen in the skulls. However, the five "Weld" specimens are fairly well clustered in a pattern that would perhaps suggest some locality differentiation.

Zaisanamynodon

Zaisanamynodon is the only representative in this study of the more derived genera of the atypical family Amynodontidae. It

FIGURE 50. Principal components plot of Trigonias mandibles with specimens identified by taxonomy, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

Ì

is found in the late Eccene of both Inner Mongolia (Sannoisian) and North America (Chadronian) indicating a successful dispersal of one or more species across the Bering Land Bridge route. Little is known about *Zaisanamynodon*; more is known about its close relative Metamynodon, a large, stocky form known from river-channel sandstone deposits. Like Teleoceras, its sedimentary setting and hippopotamus-like body shape have led to interpretations of an aquatic lifestyle. The same interpretation may apply to *Zaisanamynodon*. Craniomandibular characteristics of the *Zaisanamynodon* skull include brachycephaly, reduced preorbital region, small preorbital fossae present, thickened lower jaws and zygomatic arches, orbit high on skull, shortened nasal bones, enlargement of canines, high-crowned but narrow Cheek-teeth, and concave palate (Prothero et al., 1986; Wall, 1989). No skulls and only two mandibles of *Zaisanamynodon* were available for analysis.

<u>Mandible</u> (Figure 51) -- Morphometrically, the separation of the two Zaisanamynodon mandibles is within, but near, the limits of a single-species dispersion. However, the specimens were divided (ZAISIM, ZAIS2M) on the basis of their large geographic difference.

FIGURE 51. Principal components plot of Zaisanamynodon mandibles with specimens identified by taxonomy, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

GENERIC AND SUBGENERIC POOLED WITHIN-GROUP DISPERSIONS

The subgeneric groups determined in the preceding analyses will be used in the among-groups analyses of Chapter 4 to derive a pooled within-group dispersion. This dispersion is used as a standard by which to judge among-groups variation in the canonical variates analyses. Here, the pooled generic and pooled subgeneric dispersions for both skull and mandible are presented. They graphically show the effect of dissecting the generic variation into subgeneric groups.

Skull

Pooled Genera (Figure 52) -- This figure shows a principal components analysis of pooled skull data for all living and fossil genera. The data set is derived from Figure 7 by centering the mean of each genus at the origin such that all the genera are superimposed. The greater variation in the fossils is consistent with the variances of Table 5 and provides a posteriori support for the dissection of the genera into subgeneric groups. Especially significant in Figure 52 are the positions of the Rhinoceros specimens. The four specimens of the Javan rhino (dotted outline, upper left) and many of the specimens of the Indian rhino (dotted outline, lower right) are on the periphery of the main cloud. Because Rhinoceros is the only multi-species genus among the living

FIGURE 52. Principal components plot of all living and fossil skull specimens, pooled by mean-centered genera. Axes are the same as for Figure 53. Fossil - dark circles. Living - open triangles. Specimens of the Javan rhinoceros (upper left) and Indian rhinoceros (lower right) are indicated by dotted lines.

analogues, the pooled pattern suggests that much of the size and shape variation of the fossil genera is equal to or less than that found in *Rhinoceros*. The small number of very outlying specimens (far left and far right) belong to only a few of the more variable fossil genera (Teleoceras, Diceratherium, and Peraceras).

Pooled Subgeneric Groups (Figure 53) -- All of the subgeneric groups identified in Chapter 3 were superimposed by centering their means (centroids) on the origin. This plot dramatically shows the effect of controlling for biological and geological factors such as stratigraphy, time, geography, and character-based taxonomy when investigating morphometric variation. When this is done, the overall variation in the pooled fossil rhinoceros Subgroups becomes relatively homogenous and similar in degree to that of the living species. The limits of the pooled variation are still determined by fossils (i.e., Teleoceras distributed cicumferentially and Diceratherium on left and right extremes). This is reasonable because at least some the fossil subgroups are probably still polytypic, but undivided due to lack of data. Additionally, the variation of the living rhinos most likely does not represent a maximum or minimum. Given the diversity of fossil rhinos, different groups would be expected to have more or less variation. In summary, the variation in the

FIGURE 53. Principal components plot of all living and fossil skull specimens, pooled by mean-centered subgeneric groups. Axes are the same as for Figure 52. Fossil - dark circles. Living open triangles.

analogues is a reasonable measure of species/population level variation in rhinocerotoids generally. When fossil genera are dissected into hypothesized population or species level subgeneric groups, the overall fossil variation conforms well to that of the living analogues. Therefore, the pooled subgeneric data set provides a good estimate of within-group variation by which to maximize variation among those groups.

Mandible

<u>Pooled Genera</u> (Figure 54) -- In general, the results for mandibles are similar to that for skulls (discussed above). That is, variation in most of the fossils is not much greater than that of the living forms (some living specimens are peripheral). The more extreme outlying specimens belong to a few of the more variable fossil genera. Most of the circumferential fossils are *Teleoceras* specimens, but unlike the pooled skull dispersion, the extreme left and right cutlying mandibles are *Aphelops*.

<u>Pooled Subgeneric Groups</u> (Figure 55) -- As in the skull analysis, when the genera are subdivided based on known correlates of population or species level variation, the pooled dispersion becomes more homogenous and suggests that the living analogues are good measures of species level variation in rhinocerotoids generally.

FIGURE 54. Principal components plot of all living and fossil mandible specimens, pooled by mean-centered genera. Axes are the same as for Figure 55. Fossil - dark circles. Living - open triangles. Specimens of the Javan rhinoceros (left) and Indian rhinoceros (right) are indicated by dotted lines.

FIGURE 55. Principal components plot of all living and fossil mandible specimens, pooled by mean-centered subgeneric. Axes are the same as for Figure 54. Fossil - dark circles. Living - open triangles.

CHAPTER 4.

AMONG-GROUPS RELATIONSHIPS - CANONICAL VARIATES ANALYSES MULTIVARIATE VARIATION AND CANONICAL VARIATES ANALYSIS

Each of the subgeneric groups determined in the previous chapter may be represented by its multivariate mean (centroid). The resulting set of group means may then be treated as data points analogous to the specimens in principal components analysis. Similarly, the variation among the group means can be partitioned among a new set of mutually orthogonal, variance-maximizing axes (Campbell and Atchley, 1981; Albrecht, 1980, 1992). However, canonical variates analysis (CV) is not simply a principal components analysis of group means. Two features distinguish CV from PC: (1) CV maximizes the proportion of Among-groups variation relative to within-group variation (hence, the emphasis on withingroup variation in Chapter 3); and (2) the CV axes are scaled such that they represent equivalent units of within-group variation, effectively eliminating within-group correlations. The overall effect of CV is to maximally separate groups along each respective axis. Because the new CV axes define a morphospace (as do the PC axes), means reflecting similar morphologies plot more closely together, while means reflecting different morphologies plot more distantly from each other.

STRATEGY AND SIGNIFICANCE OF CANONICAL VARIATES RESULTS

The strategy in Chapter 3 of dissecting the variation of living and fossil genera resulted in subgroups whose variation approximates the range of individual differences at the population or species level. The relative homogeneity of the living and fossil subgroups provides the basis for pooling of these presumably similar groups. The pooled within-group dispersion is a better estimate of within-group variation across all rhinoceros genera. Canonical variates (CV) analysis uses this pooled within-group estimate to maximize among-groups variation in the multivariate morphospace.

Canonical variates are usually presented as a plot of the means (centroids) of the groups being considered. Individual specimens may be plotted by finding their scores (projections) on the axes which are determined by the variation among the means. In both cases, the group means are ordinated so as to maximize their separation relative to a pooled-within group dispersion (as discussed above). In the following section, the canonical variates ordination is first presented with individuals identified by genus (Figures 56 and 57). This is followed by plotting of subgroup means with 90% concentration ellipses around each mean (Figures 58 and 59). These two set of plots indicate the significance of the pooled-within group dispersion determined in Chapter 3.

Once the pattern of group relationships is established in the CV morphospace, the morphological affinities of groups can be interpreted in terms of various biological correlates. This analysis of among-groups variation is analogous to the dissection of the specimens in the principal components analyses. In the following section, the morphological relationships in CV space are analysed in three major ways. First, the multivariate morphology is observed relative to more traditional, character-based taxonomic investigations (including postcranial and non-morphological characters). Taxonomic correlations are analyzed with respect to genera, families and subfamilies, and cladistic character states. Second, the multivariate morphology is observed relative to two structural-functional aspects of rhinoceros skull biology, in particular, horn arrangement and feeding strategy. Third, temporal patterns of morphological change are analysed with respect to intergeneric and intrageneric variation.

INTERPRETATION OF CANONICAL VARIATES RESULTS

For each data set (skull or mandible), one CV analysis was done, based on the appropriate pooled within-group dispersion. Each CV analysis resulted in an ordination of the subgeneric means along a new set of variance-maximizing axes. Within skulls or mandibles, the same equally scaled-CV axes are used for all plots. Figures 58-73 are based on the wame fundamental canonical variates result where the means of the subgeneric groups are shown in the

plane of the first two canonical axes. The subgroups correspond to those in Table 2 (skull) and Table 3 (mandible).

Eigenvalues (variances) of the canonical variate axes are summarized in Table 6. The first two canonical axes include much of the total variation for both skulls and mandibles (82% and 86%, respectively). The first CV axis, like the first PC axis, is a size axis (discussed below). The canonical variate means of subgroups are given in Tables 7 (skull) and 8 (mandible) for all CV axes on which there is among-groups variation. These means represent the scores of the group centroids on the respective axes. The range of mean values for a given axis decreases from lower to higher axes, as indicated by the decreasing eigenvalues of Table 6.

Because the group means exist within a multidimensional hyperspace, the separation of the means in the plane of two CV axes may not always accurately reflect the true distances between them. The more the first two axes account for the total variation, the more the distances will reflect the true distances. One measure of the distances between means in the multidimensioanl space is the generalized distance (GD), D^2 . Generalized distances are given in Table 9 (skull) and Table 10 (mandible). For those genera with subgroups, inter-subgroup distances are summarized in Table 11.

TABLE 6. Summary of eigenvalues, percent of total variance, and cumulative percent of total variance for skull and mandible canonical variates.

SKULL

CV	Eigenvalues	% of Total	Cumulative %
cv1	93.4	61,7	61.7
CVZ	33.3	21.8	83.1
cv3	6.3	4.1	87.2
CV4	4.6	3.0	90.2
CVS	3.0	z.0	92.2
CV6	2.9	1.9	94.2
cV7	1.7	1.1	95.3
EV8	1.7	1.1	96.4
CV9	1.2	0.8	97.3
CV10	0.8	0.6	97.8
CV11	0.7	0.5	98.3
CV12	0.7	0.5	98.E
CV13	0.5	0.4	99,2
CV14	0.5	0.3	99,5
CV15	0.3	0.2	99.7
CV16	0.2	0.1	99.8
CV17	0.1	0.1	99,9
CV18	0.1	0.1	99.9
CV 19	0.1	0.1	100.0

MANDIBLE

CV	Eigenvalues	% of Totel	Cumulative X
CV1	69.9	77.3	77.3
CV2	10.5	17.1	88.4
CV3	3.8	4.2	92.7
CV4	2.4	2.7	95.4
CV5	1.2	1.3	96.8
CV6	1.1	1.2	98.7
¢v7	0.5	0.6	98.7
CV8	0.5	0.5	99.5
CV9	0.Z	0.3	99.5
CV10	5-0	0.2	99.B
CV11	0.1	0.2	100-0

TABLE 7. Canonical variate means for skull subgroups. Genera and subgroups are listed in the same order as in Table 2. Eigenvalues (EIGEN) and percentages of total among-subgroup variance (%) are given at the bottom.

......

SUBGROUP	P CV1	CV2	CV3	CV4	CV5	CV6	CV7	CV8	CV9	CV18	CV11	CV12	CV13	CV14	CV15	CV16	CV17	cv18	cvts
CERAS	9.8	-0,6	2.3	-7.4	-1,0	-2,1	-1.4	-1.2	-0.2	-0,2	+0.8	-0.7	-0,1	0.5	-0.0	0.1	0.2	0.0	0.0
SUMAS	-2.9	1.6	4.9	-1.0	-1.0	3.7	0.6	3.2	0.5	0.3	1.2	0.4	0.3	-0.3	-0.3	0.0	-0.2	-0.2	-0.1
giCOS	4.8	1.1	2.2	-1.6	1.6	- 0.3	-1.8	-1.2	-1.5	0.7	-1.2	1.2	-8.1	-0.1	-0,0	-0.5	-0.2	-0.0	8.1
UNICS	7.3	6.9	2.7	D.9	-0.3	-1.7	-0.3	-0.3	0.4	-1.2	-0.4	-0.6	-8,2	1.2	-0.3	-0.2	0.9	-0.1	-0.1
JAVAS	3.5	6.2	2.6	6.3	-0.1	-0.3	-3.3	-0.6	-2.1	0.1	-0.3	-0.1	-0,5	-0.0	0,2	-0.1	-0.2	-0,1	0.0
ACERIS	4.0	1.7	0.3	1,2	-1.0	-3.6	1.0	-3.6	0.2	1.1	-0.2	0.1	0.4	-0.6	0.0	-0.1	-0,3	-0.1	0. (
ACER2S	6.3	-1.3	8.5	1.1	-0.8	2.4	3.5	-0.2	·1.0	8,8	1.2	0.1	-0,1	0.0	0.0	0.3	0.1	0.3	0.0
MYHS	-5.3	-5.9	-0.9	0.3	-2.5	0.7	0.0	-0.9	0.6	0.7	0.4	3.1	0.0	0.2	0.2	0.5	0.0	·0.2	-0,1
APHE1S	-0,9	-0.a	-0.4	-1.8	-2.0	4.1	0.3	8.7	0.2	1.3	-2.0	-0.9	0.2	0.7	-0.3	0.3	-0.5	0.3	0.1
LPHE2S	2.7	2.4	1.1	-2.0	1.2	2.5	-1.8	-1.1	1.5	0,9	1.5	-0.3	-0.5	0.6	0.0	0.2	0.3	-0.5	·0.6
213016	-5.8	-2.3	-0.2	1.0	a,9	2.8	0.3	0.1	-0.3	-1.6	-2.0	-D.2	0,2	0.5	0.1	0.5	0.3	0,4	-0,3
10625	-3.1	-3.2	-1.3	-0.4	0.5	0.4	0.3	0.9	-0.1	0.6	-1.3	-0.Z	-1.0	-0.6	0.0	-0.1	0.2	-0.4	0.3
DICE35	0.1	-3,3	-2.9	-0.5	3.8	1.6	·D.6	-1.5	-0.3	1.0	0.2	D.6	1.1	1.1	0.3	-0.5	0.6	0.2	0.5
OUSS	-5,2	-4.1	-0.4	-2.1	1.5	1.8	0.1	-0.2	-2.3	-1.4	1.0	0,3	-0.2	-1.3	-D,8	-0.1	•0.2	0.2	-0,3
YRA15	-16.0	•3.4	-0.0	0.8	-1.1	-0.7	-1.8	1.1	0.4	-0.0	0.1	-0.6	-0.2	-D.1	~0.2	0.4	-0.3	0.1	0.1
YRA2S	-15.0	-3.0	-0.4	0.4	-2.0	-0.8	-8.7	0.9	-0.0	-1.0	-0.1	0.3	0.9	-0.0	-8.3	- D. O	0.3	-0.1	-0,4
IYCOS	-13.0	-5.4	0,5	0.6	-1.5	-1.2	0.2	0.0	0.3	-0.6	0.9	·1.2	-0.9	0,9	0.5	-0.4	-0.5	8.2	0.4
NDRS	37.7	-18.0	-1.8	2.1	-0.4	-0.5	-0.6	1.0	D.4	-0.4	0.0	-0.3	0.3	-0.0	0.0	·D.1	-0.1	-8.1	-0.Q
IENOS	-7.7	-0,3	-8.1	0.3	1.1	0.9	-0.2	0.0	0.5	0.5	0.9	-1.0	1.2	-0.7	0.6	-0.1	-0.3	-0.4	0.2
ERAIS	·1.6	2.7	0,1	-1.0	-1.8	-1.4	0.0	-0.5	0.5	-0.7	-0.2	-0.1	1.5	0.1	-0.9	-0,8	-0.5	·0,5	·0,2
PERA2S	7.8	8.0	5°0	0.6	-0,0	2.5	·0.5	-1.0	2,5	-2,4	-0.0	0.8	-0.5	-1.0	0.3	-0.2	-0.3	0.3	0.4
UBH1S	-6.3	-5.0	-0,9	-0.2	-0.5	-0.3	0.7	0,3	-0.4	0.8	-0,1	-0.5	-0.7	-0.9	0.8	-0,8	0.6	-0.2	·0.2
JUBH2S	-4.2	-2.6	-0.5	-0.4	-0.6	-0.1	0.6	-0,8	0,2	-0,1	-0.1	-0.7	D.7	-1.0	0.1	1.0	0. 6	-0.4	0,3
SUBH3S	-3.1	-2.0	-1.9	-0.1	2,1	0.1	0.4	0.4	0.8	0.9	-0.2	0.2	-0.8	-0.2	0.7	-0.7	0.2	0.5	-D.5

209

SUBOROUP	CV1	CV2	CV3	CV4	CV5	CV6	CV7	CV8	¢V9	CV10	CV11	CV12	CV13	CV14	CV15	CV16	CV17	CV18	_CV1
TELEIS	·0.0	5.9	-1.2	1.5	2.9	0.7	-0.1	-0.9	-0.1	-0.0	0.9	-0.0	1.2	0,8	0.1	-0.0	·0.1	0.6	-0,2
TELE25	5.6	8.6	•3.7	2.6	0.3	-0.4	2.2	0.3	-0.0	0.7	0.3	-0.6	-0.9	0.2	-0.6	0.2	-0.3	-0.5	-0.4
TELE3S	4.7	6.9	-3.7	-0.0	-1.8	-1.1	-0.2	1.5	0.3	1.0	0.4	0.1	0.1	-0.9	-1.3	-0.2	0.6	0.5	0.5
TELE4\$	6.5	9.3	-2.4	·2.7	.1.3	-1.4	-1.1	1.0	0.0	0.4	-0.1	-0.3	0.7	-0.7	1.0	0,6	+0.3	0.7	•0.4
TELESS	7.8	8.9	-3.4	-0.8	-0.3	-0.3	1.3	1_4	-1.5	-1,2	0,1	0.8	-0.1	0.5	0.8	0.3	-0.1	-0.6	0.3
TRIGS	-4.0	-3.0	-1.6	.0.6	-0,5	-0. 6	2.2	-0,6	-0.0	-0.4	0,2	0.3	-0.1	Ŭ. U	-0.4	-0.2	-0.4	0.0	0.1
EIGEN.	93.4	33.3	6.3	4.6	3.0	2.9	1.7	1.7	1.2	0.8	0.7	0.7	0.5	0.5	0.3	0.2	0.1	0.1	0.1
x	61.2	21,8	4.1	3,0	2,0	1.9	1.1	1.1	0.8	0,5	0.3	0.5	0.4	0.3	0.2	0.1	0.1	0.1	0.1
					_														

210

SUBGROUP	CV1	CV2	CV3	CV4	CVS	CV6	CV7	cva	CV9	CV10	CV11
CERAN	7.6	-5.9	0.5	2.2	0,5	0.8	-1.9	2.0	-1.0	-0.4	0.2
SLIMAN	1.6	-7.9	1.2	-0.9	-5.8	0.5	1.3	0.1	-0,2	0.8	-0,3
BICON	3.6	-4.8	1.4	-0.2	0.3	1.9	-0.2	0.3	1.2	-0.3	0.3
UNICM	5.8	-2.5	2,1	0.9	·2.0	-2.2	-0.4	-1.2	-0.5	-0.4	0.1
HAVAH	0.1	-1.6	2.2	0.7	0.5	0.0	0.6	0.0	1,0	-0.5	0,2
ACERIN	2.5	-0.3	0.0	0.1	-0.3	0,2	0.3	0.3	-0.1	•0.1	-0,1
ACER2M	1.1	-0.2	2.0	1.B	-2.7	0.2	0.1	0.5	0.1	0.6	-0.4
APHE 1M	0.6	-1.3	-1.6	1.1	-0.9	0.7	0.4	-0.6	-0.7	-0.1	·0.2
APHE2N	1.7	-0.7	0.1	0,7	-1.7	-0.2	-0.4	0.6	-0.2	.0.5	-0.2
APHE3M	7.7	-0.7	-1.2	1.2	-0.7	0.7	1.0	~D.O	0.2	0,3	-0.4
APHE4M	10.6	-1.1	-3.6	-0.6	-1.0	-0.2	1.7	0.9	1.0	1.0	-0.0
OICEIM	-0.7	1.5	-1.1	-3.3	0,2	-0.3	1.0	0.5	0.8	-0,6	-0,3
01CE2M	-7.8	-0.7	4.9	-0.9	0.0	-1.1	-1.6	0.2	-0.6	-0.0	0.1
FORS1N	-5.1	4.3	1.2	-1.7	0.8	0.9	0.1	1.2	•0.6	-0.2	-0.2
FORS2N	-9.7	1.9	-0.5	0.2	0,1	1.0	0.4	0.4	0.0	-0.5	-0.3
HYRA IN	-17.0	-0.1	0.5	0.6	0.6	0.5	0.1	0.2	0.4	-0.0	-0.2
HYRA2M	-13.2	1.6	-0.2	0.6	0.7	-0.1	-0.1	0.8	0,2	0.6	-0.0
HYCOM	-14.0	D. 3	·1.0	1.6	-0.3	0.6	-0.2	-0.3	0,5	0.3	-0.2
INDRM	23.2	3.2	4.9	0.0	0,8	0.6	1.6	0.2	0.2	0.5	0,1
NENDIM	-7.8	-0.2	3.9	-0.9	0.0	-0.9	-1.5	-0.7	0,5	0,3	0.Z
NENOZN	-3.7	-2.2	1.0	-1.3	-0.1	-1.7	-0.5	-1.9	0.2	0.3	-0.2
PENE1M	-11.0	-1.6	-0.9	-0.7	-0.8	-0.1	1.3	-0.5	-0.1	0.7	0.2
PERAIN	0.6	-1.8	-2.3	-1.2	0.0	0.6	1.3	-0.5	-0.1	0.7	0.2
PERAZM	6.6	-1.1	·2.2	-0.1	1.4	0.3	1.5	-0.5	-0,7	0.1	0.0

TABLE 6. Canonical variate means for mandible subgroups. Genera and subgroups are listed in the same order as in Table 3. Eigenvalues (EIGEN) and percentages of total among-subgroups variance are given at the bottom.

· _ _ - - - - _ _

_ - -- -- -----

SUBGROUP	CV1	CV2	CV3	CV4	CV5	CV6	CV7	CVA	CV9	CV10	CV1
SUBH 1M	-6.4	0.2	-0.4	-0.5	0.1	0.2	0.4	·0.3	-0.2	-0.3	0.2
SUSH2M	-6,8	0.7	-1.4	0.7	0.1	0.2	-0,0	0.2	0.0	0.4	0,6
SUSH 3 M	-4.4	0.9	-0.3	-0.1	1.4	1.5	0.5	-0.3	0.0	-0,2	0.2
TELE 1M	2.5	-0.1	-0.9	-0.8	1.5	-0.1	1.2	0.3	·0.2	-0.4	-0.2
TELE2M	5,4	-0.5	-1.1	-0.1	-0.1	0.1	-0.1	-0.6	-0.4	0.5	0,4
TELE3H	4.7	-1.8	•1.2	-1.2	0.3	0.0	0.1	-0.5	0.1	-1.1	-0.1
TELE4M	7.5	·2.9	-0.0	·8.5	-1.1	-0.4	-0.1	-0.4	0.5	-1.1	9.2
TELESH	7.7	-2.1	-1.9	-0.6	-0.6	0.6	-1.0	-1.1	·0,2	0.1	-0.2
TREGM	-4.1	0.3	-1.4	-0.1	0,2	·0,0	0.4	-0.1	-0.4	0.0	0.8
2A1\$1M	5,3	8.2	-0.8	5,3	1.9	2.2	-1.0	-1.0	0.2	-0.0	-0.0
ZA I SZM	7,1	11.1	-0.5	-2.7	-1.8	-1.9	-0.6	0.2	-0,2	-0,3	0.2
EIGEN.	69.9	10.5	3.6	2.4	1.2	1.1	0.5	0.4	0.2	0.2	0.1
*	77.3	11.1	4.2	2.7	1.3	1.2	0.6	0,5	0.2	0.2	0.2
											_

•

TABLE 9. Generalized distances (vD^2) for skull CV means. D^2 matrix is shown in two panels (left and right halves). Subgroup symbols correspond to those in Figure 58 and are listed below.

A1	-	ACER15	Aceratherium
A2	-	ACER2S	Aceratherium
λн	-	AMYNS	Amynodon
BI	-	aicos	Diceros (black rhino)
CE	-	CERAS	Ceratotherium (white rhino)
D1	-	DICE1S	Diceratherium
D2	-	DICE2S	Diceratherium
D3	-	DICE35	Diceratherium
FO	-	FORSS	Forstercooperia
ĦY	-	HYCOS	Hyracodon
IN	-	INDRS	Indricotherium
JV	-	JAVAS	Rhinoceros (Javan rhino)
l1	-	APHE1S	Aphel0ps
L1	-	APHE2S	Aphelops
ЮS	-	MENOS	Nenoceras
P1	-	PERAIS	Peraceras
PZ	-	PERA2S	Peraceras
S1	+	SUBH1S	Subhyracodon
S 2	-	SUBH2S	Subhyracodon
53	+	Subhjz	
SU	+	SUMAS	Dicerorhinus (Sumatran rhino)
Tl	-	TELEIS	Teleoce ras
			Teleoceras
			Teleoc ezas
			Teleoceras
			Teleoceras
			Teleoceras
			Rhinoceros (Indian rhino)
			Hyrachyus
¥2	-	HYRA25	Hyrachyus

	A1	A2	AH	BI	CE	01	02	03	FD	KY	IN	AF.	LI	12	ĦE	Pì	54
A1		12.4	14.3	7.9	12.1	13.2	11.7	11.4	14.6	19.4	40.0	10.6	12.0	9.4	14.2	9.5	11.8
A2	12.4		16.6	10.4	13.1	16.1	14.7	14.9	16.2	21.9	37.7	13.6	13.0	11.7	17.3	13.5	13.3
AN	14.3	16.6		14.2	16.9	7.6	6.7	9.6	7.5	9.4	45.2	17.6	9.3	13.4	8.6	10.4	20.2
81	7.9	10.4	14.2		9.0	12.4	11.0	9.4	12.7	19.9	38.9	10.1	9.7	5.8	13.9	9,0	10.1
CE	12.1	13.1	18.9	9.0		18,8	16.5	14.8	17.6	24.7	34.9	16.9	14.5	11.2	19.9	14.7	13.8
01	13.2	16.1	7.6	12.4	18.6		4.3	8.D	5.7	9.3	46.6	15.1	8.8	11.6	4.1	8.4	16.1
02	11.7	14.7	6.7	11.0	16.5	4.3		6.2	6.8	11.0	43.B	14.6	6.7	10.2			17.0
03	11.4	14.9	9.6	9.4	14.8	8.0	6.2		8.3	15.4	41.1	14.8	8.6	8.7	10.0	9.6	16.1
FO	14.6	16.2	7.5	12.7	17.6	5.7	6.8	8.3		10.3	45.8	17.2	8,8	11.9	6.7	9.4	19.0
HY	19.4	21.9	9,4	19,9	24.7	9.3	11.0	15.4	10,3		52.4	21.6	14.6	18.6	8.5	14.4	25,4
I N	40.0	37.7	45.2	38.9	34.9	46.6	43.8	41.1	45,8	52.4	_	42.8	43.1	41.4	49.1	45.2	40.4
٩L	10.6	13.6	17,6	10.1	16.9	15.1	14.6	14.8	17.2	21.6	42.8		14.0	10,7	15.5	11.5	10.0
L1	12.0	13.0	9.3	9.7	14.5	6.8	6.7	8.6	\$,6	14.6	43.1	14.0		8,0	9.4	6.2	14.4
L2	9.4	11.7	13.4	5.8	11.2	11.6	10.2	8,7	11.9	18.6	41.4	10.7	8.0		11.9	7.1	9,4
ME	14.2	17.3	8.6	13.9	19.9	4.1	6.7	10.0	6.7	8.5	49.1	15.5	9.4	11.9		8.0	18.5
P1	9.5	13.5	10,4	9.0	14.7	8.4	7.6	9.6	9.4	14.4	45.2	11.5	6.2	7.1	8.0		12.2
P2	11.8	13.3	20.2	10.1	13.8	18.1	17.0	16.1	19.0	25.4	40.4	10.0	14.4	9.4	18.5	12.2	
51	12.8	16.5	6,4	13.0	18.4	4.3	5.1	9.3	5.7	8.2	47.2	15.8	6.3	11.8	4.2	7.7	18.3
S2	11.6	14.6	5.5	11.2	16.6	4.7	3.6	7.8	6.0	9.7	45.0	14.B	6.6	10.1	5.6	7.0	
\$3	11.0	15.4	7.6	10.3	16.1	5,0	4.6	5.5	6,0	11.6	44.2	14.1	7.7	9.0	6,5	7.6	16.1
SU	12.8	14.3	13.7	11.0	16.5	9.7	10.5	12.5	11.9	15.1	46.3	13.9	12.5	11.4	10.2	19.3	15.8
11	9.9	15.0	14.7	9.3	16.2	10.4	10.4	10,1	12.7	18.1	45.1	9.0	10.6	7.5	12.0	11 7	10.6
12	10,7	16.3	19.4	17.0	16.3	16.8	15.5	14.8	18.4	23.9	42.2	10.0	14.6	11.0	15.7	0.7	0.0
13	9.7	15.8	17,1	10.1	13.7	15.6	15.8	75,3	10.7	26,2	41.6	10,4	16.6	9.6	17.1	13 3	¥,3
14	12.1	16.9	20.3	11.1	12.5	18.2	10,0	10.2	19.0	23.0	42.2	14.2	14.0. 17. E	10.9	10.3	12 7	. 0.7
15	11.8	16.6	20.7	11.2	13.8	10.5	17.0	12.7	19.4	0.0	40.0	11.0	19,0	11.3	10.¥	7.6	17 6
TR	11.4	15.4	6.6	11.7	16.7	4.7	4.1	7.2	3.1	70,2	44.0	12.0	0.0	11.0	17 4	11.0	11.Q
UN	9,6	11.7	19,0	5,6	12.0	17.0	15.4	13.4	15.5	23.8	40.0	0.1	13.4	9.1	0.7	44.9	27.1
11	22.0	24.8	12.0	22.1	27.2	11.4	13.0	17.7	12.0	4.Y	52,8	20.3	10.7	20.5	7.1	10.1	21.1
YZ	10.7	21.6	¥•1	19.0	24.5	8.4	10.7	15.2	¥.¥	4.3	72.0	20.3	13.7	17.7	1.4	16.7	6.0.0

·····

214

_____.

.

-							-						
	S1	S 2	53	SU	T 1	12	13	14	r5	TR	UN	¥9.	¥2
A 1	12.8	11.6	11.0	12.8	9,9	10.7	9.7	12.1	11.6	11.4	9.6	22.0	18.7
42	16.5	14.B	15.4	14.3	15,0	16.3	15.8	16.9	16.6	15.4	11.7	24.8	21.6
AH	6.4	5.5	7.6	13.7	14,7	19.4	17.1	20.3	20,7	6.4	19.0	12.0	9.1
81	13.0	11.2	10.3	11.0	9.3	11.8	10.1	11.1	11.2	11.7	8,6	22.1	19.0
-	18.4	16.6	16.1	16.5	16.2	16.3	13.7	13.2	13,8	16.7	12,0	27.5	24,3
D1	4.3	4.7	5.0	9.7	10.4	16.8	15.6	18.2	18.5	4.7	17.0	11.4	8.4
02	5.1	3.6	4.6	10.5	1P.4	15.5	13.8	16.8	17.0	4.1	15.4	13.6	10.7
03	9.3	7.B	5.5	12.5	10,1	14.8	13.3	16.2	15.7			17.7	
FO	5.7	6.0	6.0	11.9	12.7	18.4	16.5	19.0	19.4				
H¥	8.2	9.7	11.6	15.1	18.1	23.9	27.2	25.0	25.8	10.2	23.8	4.9	
IN	47.Z	45.0	44.2	46.3	45.1	42.2	41.B	42.2	40.8	44.B	40,0	55.8	52.8
JV	15.8	14.8	14.1	13.9	9,0	10.0	10.4	12.2	11.8	15.8	8,1	22.9	
L1	8.3	6.6	7.7	12.5	10,6	14.2	12.2	14.6	14.8	8.0		16.7	13.7
12	11.8	10.1	9.0	11.4	7,5	11.0	9.6	10.9	11.3	11.0	9.1	20.5	17.7
HE	4.2	5.6	6.5	10.2	10.5	17.0	15.7	18.3	18.9	6.4	17.6	9.7	7.2
P1	7.7	7.0	7.6	10.3	7.0	11.7	9.7	12.2	12.7	7.6	11.1	16.1	12.7
P2	18.3	17.0	16.1	15.8	10,4	8.8	9.3	8.7	8.1	17.6	5.6	27.1	23.8
51		3.1	5.3	10.6	11.4	16.7	14.9	17.8	18.4	4.2	17.1	10.6	7.5
52	3.1		4.4	9.9	10,8	15.8	13.9	16.6	17.3		15.7	12.3	
S 3	5.3	4.4		1D .3	9,3	14.6	13.1	16.2		4.0	15,2	13.9	11.3
5U	10.6	9.9	10.3		10,8	15.9	14.7	15.9	17.0	10.5	14.2	16.6	14,0
11	11.4	10-8	9.3	10.8		6.1		10.4	10.2	10.8	10.0	19.3	16.6
12	16.7	15.8	14.6	15.9	8,1		5.2		5.3	15.7		25.5	22.6
T3	14.9	13.9	13.1	14.7	6.4	5.2					7.6	23.7	20.7
14	17.8	16.6	16.2	15.9	10,4	7.4	5.6			17.2		26.4	23.4
15	18.4	17.3	16.2	17.0	10,2	5.3	5.6				7.7	27.4	24.3
TR	4.2	3.6	4.0	10.5	10,8	15.7	14.2	17.2				13.2	10.0
UN	17.1	15.7	15.2	14 .2	10.0	8,2	7.8	8_0	7.7				
۷1	10.6	12.3	13.9	16.6	19.3		- · · ·	26.4			25.8		4.5
۲2	7.5	9.3	11.3	14.0	16,6	22.6	20.7	23.4	24.3	10.0	22.5	4.5	

______ ···__ ·

· · · · · · ·

_ . .

.

. . . .

· · · · · · -

.....

.....

TABLE 10. Generalized distances (\sqrt{D}^2) for mandible canonical means. D^2 matrix is shown in two panels (left and right halves). Subgroup symbols correspond to those in Figure 59 and are listed below.

A1	-	ACERIM	Aceratherium
A 2	-	ACER2M	Aceretherium
BI	-	BICOM	Diceros (black rhino)
CE	-	CERAM	Ceratotherium (white rhino)
D1	-	DICEIM	Diceratherium
D2	+	DICE2M	Diceratherium
F1	-	FORS1M	Forstercoopería
₽2	-	FORS2M	Forstercooperia
Ħ¥	-	HYCOM	Hyracodon
IN	-	INDRM	Indricotherium
JV	-	JAVAM	Rhinoceros (Javan rhino)
Ll	-	APHE1M	Aphelops
L2	÷	APHE2M	Aphelops
L3	-	APHE 3M	Aphelops
L4	÷	APHE4M	Aphelops
M1	-	MENO1M	Menoceras
M2	-	MENO2H	<i>Menoceras</i>
PE	-	PENEIM	Penetrigonias
P1	-	PERAIM	Peraceras
P2	-	PERA2M	Peraceras
\$1	-	SUBH1M	Subhyracodon
S 2	-	SUBH2M	Subhyracodon
\$3	-	Subhjh	Subhyracodon
SU	-	SUMAM	Dicerorhinus (Sumatran rhino)
		tele im	Teleoceras
		tele2m	
			Teleoceras
		tele4m	
T 5	-	TELE5M	Teleoceras
TR	-	TRIGM	Teleoceras
		UNICM	Rhinoceros (Indian rhino)
		HYRA1M	
		HYRA2M	Hyrachyus
		ZAISIM	Zaisanamynodon
Z 2	-	ZAIS2M	Zaisanamynodon

					<u> </u>					<u> </u>								
	A1	A 2	81	CE	D1	D2	F1	F2	HY	11	JV	L1	٢2	13	ι4	#1	M2	PE
н		3.8	5.7	8.5	5.4	11.4	9.5	12.3	16.5	21.2	4,5	3.2	1.8	5.6	9.3	11.1		13.9
12	3.8		7.6	9.9	7.1	10.4	9.6	11.9	15.8	22.2	4.3	4.7	2.8	7.5	11.5	10.2	7.6	13.3
11	5.7	7.6		5.9	9.1	12,9	13.2	15.3	18.9	21.2	5.7	7.0	6.4	7.3	10.2	12.9	8.7	15.4
E	8.5	9.9	5.9		13.D	17.2	17.1	19.4	22.9	18.8	9,9	9.7	8.7	6.9	7.9	17.4	13.2	20,
1	5.4	7.1	9.1	13.0		9.8	6.4	9.4	13.9	24.9	6.4	6.0	5.8	10.1	13.0	9.Z	6.4	-11.
2	11.2	1D.4	12.9	17.2	9,8		7.2	6.9	9.3	30.8	8.9	11.1	10.9	16.9	20.4	1.9	6.3	7.
1	9.5	9.6	13.2	17.1	6.4	7.2		5.8	10.6	28.2	9.2	9.5	9,5	14.6	17.8	6.7	7.9	9.
2	12.3	11.9	15.3	19.4	9.4	6.9	5.8		5,0	32.7	11.P	10.9	11.9	17.5	20.6	6.0	8,4	4.
1	16.5	15.8	18.9	22.9	13.9	9.3	10,6	5.0		37.1	14.7	14.7	15.9	21.6	24.8	8,5	11.5	4.
N	21.2	22.2	21.2	18,8	24.9	30.8	28.2	32.7			23.8	23.5	22.1	14.9	15.8	30,8	27.6	34.
IV.	4.5	4.3	5.7	9.9	6.4	8.9	9,2	11.0		23.8		5.3	4.4	8.9	12.9	8.7	5.7	11.
1	3.2	4.7	7.D	9.7	6.0	11.1	9.5	10.9	14.7		5.3	_	2.9	7.2	10.6	10.6	6.5	12.
2	1.8	2.6	6.4	8.7	5.8	10.9	9.5	11.9	15.9	22.1	4.4	2.9		6,4	9.9	10.7	7.0	13.
3	5.6	7.5	7,3	6.9	19.1	16.9	14.6	17.5	21.6	16.9	8,9	7.2	6.4		4.0	16.5	12.4	19,
4	9.3	11.5	10.2	7.9	13.0	20.4	17.8	20.8	24.8	15.8	12.9	10,6	9,9	4.6	_	20.0	15.5	22.
11	11.1	10.2	12.9	17.4	9.2	1.9	6.7	6.0	8.5	30.8	8.7	10.6	10.7	16.5	20.0		5.6	<u>ó</u> .
12	7.3	7.6	8.7	13,2	6,4	6.3	7.9	6.4	11.5	27.6	5.7	6.5	7.0	12.4	15.5	5.6	_	8.
E	13.9	13.3	15.9	20.0	11.3	7.4	9.4	4.4	4,0	34.8	11.9	12.0	13.2	19-0	22.3	6.7	8.5	
21	3.9	6.3	6,6	10.2	4.9	11.3	9.5	11.2	15.0	23.9	5.8	3.0	4.5	7.8	10.8	10.6	6.2	12.
2	5.0	8.1	6.4	7.1	8.8	16.0	13.6	16.4	20.6	18.5	8.4	6.4	6.4	3.3	6.0	15.7	11.2	17.
1	9.0	8.9	11.7	15,9	6.5	5.9	5.3	4.0	7.9	29.7	7.6	7.7	8.6	14.3	17.6	5.0	5.1	5.
2	9.6	9.5	12.5	15.4	7.5	7.1	6.0	3.6	7.3	30.3	8.5	8.1	9.2	14.6	17.8	6,1	6.2	<u>5</u> .
3	7.3	7.9	10.4	14.6	5.4	7,0	4.5	5.4	9.8	27.6	6.6	6.3	7.3	12.5	15.9	6.2	5.1	7.
50	10.1	11.0	7.7	10.2	11.3	14.1	15.6	16.6	19.4	25.6	8.4	10.7	10.3	12.0	14.4	14.1	10.3	16.1
11	2.5	5.6	5.8	9,1	4.7	11.9	9.3	12.3	16.6	21.7	5.0	4.2	4.0	6.3	9.7	11.5	7.6	13.
2	3.5	6.5	6.1	7.6	7.4	14.3	12.0	15.1	19.3	19.1	7.6	5.3	4.7	3.9	6.6	13.9	9.5	16.
13	3.3	6.6	4.9	7.0	7.0	13.8	12.1	14.7	18.8	20.1	6.5	5.0	4.4	4.5	7.4	13,5	8.9	15.
4	5,9	7.7	6.0	5.8	10.3	16.2	14.8	17.5	21.5	17.7	8.7	7.4	6.3	3.6	6.2	16.0	11.8	16,
15	6.4	9.4	6.6	6.9	9.7	16.9	14.9	17.8	21.9	16.1	9.6	7.9	7.4	4.4	5.1	16.6	11.7	19.
R	7,0	7.5	10.3	14.1	5.1	7.5	5.7	5.9	9.9	27.9	6.5	5.6	6.8	12.2	15.4	6.0	4.8	1.
116	5.2	5.5	5.8	6.4	10.0	14.2	13.9	16.4	20.2	18.8	6.7	6.7	5,2	5.0	8,6	14.1	10.1	17.
11	19.1	18.3	21.0	25,2	16.3	10.3	12.5	7.4	3.4	39.5	16.9	17.5	18.5	24.3	27.7	9.9	13.6	6.
12	15.6	14.8	18.2	22.3	12.7	8,2	8.7	3.6	2.4	35.9	13.9	14.1	15.0	8,05	24.0	7.5	10.9	4.
1	11.1	11.8	14.7	15.2	13.0	18,1	13,9	17.3	21.3	20.3	12,8	12,1	11.6	11.0	12.8	17.6	15.7	20.3
2	12.5	13.4	16.9	17.7	12.4	19.3	14.2	18.9	23.5	19.8	15.2	14.4	13.1	12.7	13.6	18.8	17.1	22.0

-.

_

217

.....

---- ·--

	Pì	PZ	\$1	5 2	\$3	su	T1	1 2	13	14	15	ŤŔ	UN	YI	45	21	Z2
	3.9	5.0	9.0	9.6	7.3	10. I	2.5	3.5	3,3	5.9	6.4	7.0	5.2	19.1	15.6	11.1	12.5
٨Z	6.3	8.1	8.9	9.5	7.9	11.0	5.8	6.5	6.6	7.7	9.4	7.5	5.5	18.3	14.8	11.8	13.4 16.9
B 1	6.6	6.4	11.7	12.5	10.4	7.7	5.8	6.1	4.9	6.0	6.6	10,3	5,6	21.0 25.2	18.2 22.3	14.7 15.2	17.7
CE	10.2	7.1	15.9	16.4	14.6	10.2	9.1	7.6	7.0	5.8	6.9	14.1	6.4 10.0	16.3	12.7	13.0	12.4
D1	4.9	8.8	6-5	7.5	5.4	11.3	4.7	7.4	7.0	\$0.3	9.7 16.9	5.1 7.5	14.2	10.3	8,2	18.1	19.3
02	11.3	16.0	5.9	7.1	7.0	14.1	11.9	14.3	13.8	16.2	14.9	5.7	13.9	12.5	8.7	13.9	14.2
FI	9.5	13.6	5.3	6.0	4.5	15.6	9.3	12.D	12.1	14.8 17.5	17.8	5.9	16.4	7.4	3.6	17.3	18.9
F2	11.2	16.4	4.0	3,8	5.4	16.6	12.3	15.1	14.7 18.8	21.5	21.9	9.9	20.2	3.4	2.4	21.3	23.5
H¥.	15.0	20.6	7.9	7.3	9.8	19.4 25.6	16.6 21.7	19.3 19.1	20.1	\$7.7	18.1	27.9	18.8	39.5	35.9	20.3	19.8
91	23.9	18.5	29.7	30.3	27.6	8.4	5.0	7.4	6.5	8.7	9.6	6.5	6.7	16.9	13.9	12.8	15.2
JV	5.8	8.4	7.6 7.7	8.5 8,1	6.6 6.3	10.7	4.2	5.3	5.0	7.4	7.9	5.6	6.7	17.5	14.1	12.1	14.4
L1 L2	3.0	6.4	B.6	9,2	7.3	10.3	4.0	4.7	4.4	6.3	7.4	6.8	5.2	18.5	15.0	11.6	13.1
13	4,5 7.8	3.3	14.3	14.6	12.5	12.0	6.3	3.9	4.5	3.8	4.4	12.2	5.0	24.3	20.8	11.0	12.7
14	10.8	6.0	17.6	17.8	15.9	14.4	9.7	6.6	7.4	6,2	5,1	15.4	8.6	27.7	24.0	12.8	13.6
M1	10.8	15.7	5.0	6.1	6,2	14.1	11.5	13.9	13.5	16.0	16,6	6,8	14.1	9.9	7.5	17.6	18.8
M2	6.2	11.2	5.1	6.2	5.1	10,3	7.6	9,5	8.9	11.8	11.7	4.8	10.1	13.6	10,9	15.7	17.1
₽E	12.0	17.8	5.4	5.5	7.8	16.0	13.9	16.6	15.9	18.6	19.0	7,4	17.3	6.1	4.4	20.3	22.0
₽Ì		6.2	7,6	8,2	6.4	9.8	3.7	5.2	4.7	7.7	7.4	5.7	7.8	17.6	14.2	13.5	14.2
P2	6.2		13.1	13.5	11.2	10.7	4.6	3.0	3.3	5.0	3,5	10.9	6.T	23.2	19.8	11.4	13.1
s 1	7.6	13.1		2,0	2.8	13.0	8.9	11.7	11.3	14.1	14.4	2.5	13.0	10.3	6.9	15.7	17.2
\$ 2	8.2	13.5	2.0		3.5	14.0	9.6	12.3	\$2,0	\$4.7	15.0	Z.9	13.7	10.1	6.5	15.3	17.4
S3	6.4	11.2	2.8	3.5		13,D	7.1	10.D	9.7	12.6	12.7	2.2	11.7	12.3	8.8	13.6	15.6
SU	9.8	10.7	13.0	14.Đ	13.0		9.5	10,9	9.5	11.8	11.1	12.1	10.1	21.2	19.0 15.6	18.1 11.1	19.7 12.6
11	3.7	4.6	B.9	9.6	7.1	9.5		4.1	3.5	7.0	6.3	7.0 9.7	6.8 5.0	19.1 21.9	13.0	11.4	12.2
72	5.2	3.0	11.7	12,3	10.0	10.9	4.1	• •	2.4	4.3	3.7 3.4	9.3	4.9	21.4	18.0	12.3	13.4
13	4.7	3.3	11.3	12.Đ	9.7	9.5	3.5	2.4 4.3	4.4	4.4	4.5	12.2	4.5	24.0	20.7	13.6	14.6
14	7.7	5.0	14.1	14.7	12.6	11.8 11.1	7.0 6.3	3.7	3.4	4.5		12.4	6.3	24.5	21.1	13.2	13.7
15	7.4	3.5	14.4	15,0 2,9	12.7	12.1	7.0	9.7	9.3	12.2	12.4	12.4	11.3	12.6	9.0	13.8	15.6
J.R.	5.7	10.9	2.5 13.0	13.7	11.7	10.1	6.8	5.0	4.9	4,5	6.3	11.3		22.6	19.5	12.8	14.4
UN	7.8 17.6	6.1 23.2	10.3	10.1	12.3	21.2	19.1	21.9	21.4	24.0	24.5	12.6	22.6		4.3	24.0	26.0
¥1 ¥2	14.2	19.8	6.9	6.5	6.8	19.0	15.6	18.4	18.0	20.7	21.1	9.0	19.5	4.3		20.3	21.9
21	13.5	11.4	15.7	15.3	13.6	18.1	11.1	11.4	12.3	13.6	13.2	13.6	12.8	24.0	20.3		9.2
22	14.7	13.1	17.2	17.4	15.6	19.7	12.6	12.2	13.4	14.6	13.7	15.6	14.4	26.0	21,9	9.2	
64	PMQ , 7		,			14.14	1217									-	

....

TABLE 11. Summary of skull and mandible inter-subgroup generalized distances in genera with more than one subgroup. For genera with more than two subgroups, values in the table represent means. The living genus Rhinoceros (Asian one-horned rhino) is given first, followed by fossil genera listed alphabetically.

ł

GENUS (Subgroups)	SKULL	MANDIBLE
Rhinoceros (UN, JV)	8.1	6.7
Aceratherium (Al-A2)	12.4	3.8
Aphelops (L1-L2), (L1-L4)	8.0	7.0
Diceratherium (D1-D3), (D1-D2)	6.2	9.8
Forstercooperia (F1-F2)		5.8
Hyrachyus (Y1-Y2)	4.5	4.3
Peraceras (P1-P2)	12.2	6.2
Subhyracodon (S1-S3)	4.3	2.8
Teleoceras (T1-T5)	7.1	4.3
Zaisanamynodon (Z1-Z2)		9.2

Ordination - Specimens Plotted By Genus

Figure 56 (skull) and Figure 57 (mandible) show the individual specimens plotted about their respective subgroup means (not shown). However, because the specimens are identified only by genue, direct comparisons may only be made between monotypic genera (whose generic and subgroup means are identical). These plots nicely show the amount of generic differentiation in morphology. Several features are common to the plots of skulls and mandibles. In both plots, Hyrachyus and Indricotherium, which represent the size extremes among the Rhinocerotoidea, are the extreme left and right specimens. Several analyses (not shown) confirmed that the size axis is approximately parallel to CV1. This is more obvious in the mandible plot than in the skull plot where a line through Hyrachyus and Indricotherium would be oblique to CV1. Also shown in both plots is the effect of the CV method on within group correlations. For example, comparison of the CV and PC (Figure B) for the monotypic black rhino dispersions shows how the withingroup variation has been made circular by the CV. The same effect occurs for each of the subgroups, but is only observable here in the monotypic genera. The skull and mandible CV clouds of black rhinos approximate the pooled within-group dispersions used for those respective analyses. The dispersions also approximate the size of the concentration ellipses in Figures 58 and 59 of the following section. Finally, it should be noted again that

FIGURE 56. Canonical variates plot of living and fossil skull specimens. Differences between number of symbols plotted and sample sizes (Table 2 are due to overstrikes. Specimens are identified to genus as indicated below.

Key to symbols (listed alphabetically):

- B Diceros (black rhino) C - Ceratotherium (white rhino) D - Diceratherium P - Forstercooperia H - Hyracodon I - Indricotherium J - Rhinoceros (Javan rhino) L - Aphelops M - Menoceras
- P Peraceras
- Q Aceratherium
- **R Trigonia**s

A - Amynodon

i

ł

ł

- S Subhyracodon
- T Teleoceras
- U Rhinoceros (Indian rhino)
- Y Hyrachyus
- X Dicerorhinus (Sumatran rhino)

CANONICAL VARIATES - INDIVIDUAL SKULL SPECIMENS

FIGURE 57. Canonical variates plot of living and fossil mandible specimens. Differences between number of symbols plotted and sample sizes (Table 3) are due to overstrikes. Specimens are identified to genus as indicated below.

Key to symbols (listed alphabetically):

- B Diceros (black rhino)
- C Ceratotherium (white rhino)
- D Diceratherium
- F Forstercooperia
- **H** Hyracodon

1

į

. . . .

ł

ł

!

- 1 Indricotherium
- J Rhinoceros (Javan rhino)
- **L Aphelops**
- M Menoceras
- N Penetrigonias
- P Peraceras
- **Q** Aceratherium
- R Trigonias
- 5 Subhyracodon
- T Teleoceras
- U Rhinoceros (Indian rhino)
- Y Hyrachyus
- I Dicerorhinus (Sumatran rhino)
- 2 Zaisanamynodon

CANONICAL VARIATES - INDIVIDUAL MANDIBLE SPECIMENS

morphologically similar specimens cluster together in the multivariate CV morphospace. This is clearly observed for the specimens of the black and white rhinoceroses in Figures 56 and 57, and is also true for the subgroup means in the following plots.

Ordination - Subgroup Means With Concentration Ellipses

This section presents the ordination of the subgroups with 90% concentration ellipses (circles) around each group. Statistically, each ellipse theoretically includes 90% of all individuals from its group within its boundary. The ellipses are standardized and uniform in both skull and mandible plots such that the radii are equivalent to 2.15 standard deviations. The apparent size difference of the ellipses between skull and mandible plots is due to the difference in scales. Because the ellipse is based on the pooled within-group dispersion, it represents the best estimate of the variation around a given mean. Some authors (e.g., Neff and Marcus, 1980) argue that groups with smaller sample sizes should have correspondingly larger confidence (or concentration) limits because of greater uncertainty about the position of the mean. However, the philosophy taken here is that the mean of the specimens available (even if a single specimen) represents the best estimate of the true mean, and that therefore the best estimate of group variation over all groups should apply to that mean. Finally, it should be noted that the ellipses are not meant to imply any kind of statistical test for differences between means.

In most cases, it is already known on biological grounds that the groups are different (for example, the Javan and Indian rhinos). The degree of overlap then reflects the degree of morphological similarity between groups known to be different in other ways.

skull (Figure 58) -- The most obvious feature of this plot is the outlying position of Indricotherium (IN in Figure 58) which, both on the first axis (size) and second axis (shape), is many standard deviations away from the closest genus (Ceratotherium). Ceratotherium (CE) is also closest to Indricotherium in the total morphological space (GD \approx 32, Table 9), which suggests that CV1-CV2 is reflecting the multivariate relationships well. In contrast to the outlying position of Indricotherium, another striking feature of this plot is the continuum of morphometric variation formed by the other genera. If Indricotherium represents the end-point of a lineage with a Bimilar kind of continuous morphometric evolution, then there must be many undiscovered fossils which would fall in the morphospace between Indricotherium and the primitive rhinocerotoids. Among the remaining rhinoceroses, the densest cluster of morphometrically similar groups is formed by members of all three families: Amynodon (AM), Forstercooperia (FO), and the early rhinocerotids Subhyracodon (S1-S4), Trigonias (TR), Diceratherium (D1-D3), and Menoceras (ME). All but two of the pairwise generalized distances (Table 9) are smaller than the

FIGURE 58. Canonical variates plot of living and fossil subgroup means for skulls showing 90% concentration ellipses. Subgroups correspond to those in Table 2. Circles are 90% concentration ellipses (radius = 2.15) based on the pooled within-group dispersion for skulls. Shaded circles indicate living groups.

Key to symbols (listed alphabetically):

÷

1

÷

AL - ACERIS	Aceratherium
A2 - ACER2S	Aceratherium
AM - AMYNS	Amynodon
BI - BICOS	Diceros (black rhino)
CE - CERAS	Ceratotherium (white rhino)
D1 - DICE1S	Diceratherium
D2 - DICE2S	Diceratherium
D3 - DICE3S	Diceratherium
FO - FORSS	Forstercooperia
HY - HYCOS	Hyracodon
IN - INDRS	Indricotherium
JV - JAVAS	Rhinoceros (Javan rhino)
L1 - APHE1S	Aphelops
L1 - APHE2S	Aphelops
ME - MENOS	MenoCeras
P1 - PERAIS	Peraceras
P2 - PERA2S	Peraceras
S1 - SUBH1S	Subhyracodon
SZ - SUBH2S	Subhyracodon
S3 - SUBH 3S	Subhyracodon
SU - SUMAS	Dicerorhinus (Sumatran rhino)
T1 - TELEIS	
T2 - TELE 2S	
T3 - TELE3S	—
T4 - TELE4S	Teleoceras
TS - TELE55	Teleoceras
TR - TRIGS	Teleoceras
UN - UNICS	Rhinoceros (Indian rhino)
Y1 - HYRAIS	
Y2 - HYRA25	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - 90% CONCENTRATION ELLIPSES

average intersubgroup GD (Table 11). Among the larger, later rhinos there is more morphological differentiation. Teleoceras (T1-T5) and Rhinoceros(UN-Indian and JV-Javan rhinos) with Peraceras (P2) form a cluster separate from Diceros (BI), Ceratotherium (CE), and Aceratherium (A1-A2). GD's show that A2 is further from CE, and JV is further from T3 than is indicated in the plot. Also, T1 is closer to T2-T5 than is shown. These two clusters seem to form branches which separate out along CV2. Dicerorhinus (SU-Sumatran rhino) appears to be morphometrically primitive and in fact, is closest to S3 based on generalized distance.

Generic distinctions are clearly greater among the later rhinos. For example, among the living forms, the four genera do not overlap but the two species of *Rhinoceros* (UN, JV) do overlap. This morphometric result is consistent with the currently accepted taxonomy for the living analogues. Superficially, it appears that the Sumatran rhino could be ancestral to the other living rhinos. However, when the morphometric affinities with fossils are considered the picture becomes problematic. The Sumatran rhino is phylogenetically younger than *Toleoceras* and *Aceratherium*, and is not believed to be ancestral to them. The consequences of this are, one, that the *Sumatran* rhino is very conservative (static), and two, that the affinities of the other living genera with the fossils represent convergences or parallelisms. Alternatively, if the morphometric affinities represent common phylogenies, then

ł

Diceros, Ceratotherium, and Rhinoceros may have evolved from a group much older than Dicerorhinus.

İ

<u>Mandible</u> (Figure 59) -- The mandible CV plot is similar to the skull plot in that *Indricotherium* (IN) is a size outlier, and most of the remaining living and fossil groups form a continuous cloud of variation. This again suggests that there are missing fossils morphometrically uniting *Indricotherium* (IN) with its ancestors (unless saltatory evolution occurred). Differences with the skull plot include less relative size difference (about 10, rather than 20, standard deviations from its nearest neighbor along the first axis), and less second axis difference from the other genera. These latter two features of the mandible plot suggest that *Indricotherium* (IN) had a relatively small, conservative mandible for its size. Generalized distances (Table 11) agree well with the apparent distances to its nearest neighbors in the plane of CV1-CV2.

Another difference with the skull plot is the addition of the Zaisanamynodon (Z1-Z2) Subgroups as outliers from the main continuum of genera, separated primarily along the second axis. They differ most from Diceros (BI), Dicerorhinus (SU), and Ceratotherium (CE) which are all on the opposite Bide of the continuum. That all of the living groups are on one side is interesting, but Rhinoceros (JV, UN) may also be interpreted as being part of the main group.

FIGURE 59. Canonical variates plot of living and fossil subgroup means for mandibles showing 90% concentration ellipses. Subgroups correspond to those in Table 3. Circles are 90% concentration ellipses (radius = 2.15) based on the pooled within-group dispersion for mandibles. Shaded circles indicate living groups. Key to symbols (listed alphabetically):

Aceratherium
Aceratherium
Diceros (black rhino)
Ceratotherium (white rhino)
Diceratherium
Diceratherium
Forstercooperia
Forstercooperia
Hyracodon
Indricotherium
Rhinoceros (Javan rhino)
Aphelops
Aphelops
Aphelops
Aphelops
Menoceras
Mneoceras
Pen etrigonia s
Peraceras
Peraceras
Subhyracodon
Subhyracodon
Subhyzacodon
Dicerorhinus (Sumatran rhino)
Teleocerás
Teleoceras
Rhinoceros (Indian rhino)
Hyzachyus
Hyrachyus
Zaisanamynodon
Žeisanamynodon

Ι

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - 90% CONCENTRATION ELLIPSES

The morphometric continuity of the majority of groups is striking. There is less differentiation and distinction of the later, larger groups than was evident in the skulls. Diceros (BI) and Ceratotherium (CE) are somewhat distinct but are not associated with Aceratherium (A1-A2). The latter genus is mixed in with other fossils. The Indian rhino mandibles (UN) are associated with Teleocaras (T3,T4), as in the skull analysis, but the Javan rhino (JV) mandible is less so. The Indian and Javan rhinos are separated by as much as are the other genera of living rhinos. Here, it is the Javan rhino which is the most primitive among the living analogues. The Sumatran (SU) rhino is an outlier, in distinct contrast to the case for skulls where it was the most primitive. In general, all of the rhinocerotid groups appear to be more conservative in terms of shape differentiation. Differences in morphometric affinities and differentiation between the skull and mandible CV plots suggest that there has been some evolutionary mosaicism between these two regions of the rhinoceros head.

Taxonomic Patterns - Relationships of Genera

It is of interest to observe whether the morphometric relationships of the subgroup means correspond to the taxonomies based on whole organism biology. Such taxonomies include information about morphological characters (cranial and postcranial, soft and hard tissues), molecular data, behavior and ecology, biogeography, and other relevant features of an organisms' 233 biology. In this section, means are labelled and grouped according to genera. Comparisons are made with respect to relative morphometric span of each genus, and to overlap/non-overlap relationships.

I

<u>Skull</u> (Figure 60) -- Of the eight genera comprised of more than one subgeneric group, four occupy non-overlapping parts of the morphometric space. These are Hyrachyus (Y1-Y2), Accratherium (Al-A2), Aphelops (L1-L2), and Teleoceras (T1-T5). The remaining four genera form two sets of overlapping genera; Subhyracodon (S1-52)-Diceratherium (D1-D2) and Rhimoceros (JV,UN)-Peraceras (P1-P2). All of the polytypic genera except Teleoceras and Peraceras appear to have approximately similar ranges of CV1-CV2 subgroup separation. However, generalized distances (Tables 9 and 11) indicate a more diverse range. If Rhinoceros (JV, UN) is taken as a standard (GD = 8.2), Aceratherium (A1-A2) has a greater intersubgroup distance, while the rest have smaller distances. The A1-A2 distance is in fact similar to the P1-P2 distance and both distances are greater than JV-UN or BI-CE distances. This suggests that Al-A2 and Pl-P2 each represent species level variation at a minimum, but may indicate generic level also. If P1 and P2 are distinct generically, then the overlap of Peraceras and Rhinoceros (JV, UN) is not meaningful. Among the other polytypic genera, the smaller distances suggest that their subgroups represent species level or lesser amounts of variation. Within Teleoceras (T1-T5),

FIGURE 60. Canonical variates plot of living and fossil subgroup means for skulls with subgroups shown by genus. Means are labeled by genus. Shaded areas include all subgroups of the same genus.

Key to symbols (listed alphabetically):

i

1

İ

A1 - ACERIS	Aceratherium
A2 - ACER2S	Aceratherium
AM - AMYNS	Amynodon
BI - BICOS	Diceros (black rhino)
CE - CERAS	Ceratotherium (white rhino)
D1 - DICE15	Diceratherium
D2 ~ DICE2S	Diceratherium
D3 - DICE3S	Diceratherium
FO - FORSS	Forsterccoperia
HY - HYCOS	Hyracodon
IN - INDRS	Indricotherium
JV - JAVAS	Rhinoceros (Javan rhino)
L1 - APHE1S	Aphelops
L1 - APHE2S	Aphelops
ME - MENOS	Menoceras
P1 - PERAIS	Peraceras
P2 — PERA2S	Peraceras
\$1 - SUBH1S	Subhyracodon
SZ - SUBH2S	Subhyracodon
S 3 – SVBH3S	
SU - SUMAS	Dicerorhinus (Sumatran rhino)
T1 - TELEIS	
T2 - TELE 2S	
T3 - TELE35	Teleoceras
T4 - TELE4 S	Teleoceras
T5 - TELE5S	Teleoceras
TR ~ TRIGS	Teleoceras
UN - UNICS	
¥1 - HYRAIS	Hyrachyus
¥2 - HYRA2S	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - BY GENUS

subgroups (including T1) are separated by distances which are on average slightly less than that between JV and UN. Overall, most the fossil genera appear to be morphometrically coherent when compared against living analogue differences and, in general, the morphometric relationships are fairly consistent with generic level taxonomies.

Mandible (Figure 61) -- Eleven of the sixteen genera are represented by means for more than one subgroup. Of these genera, three are morphometrically distinct: Byrachyus (Y1-Y2), Forstercooperia (F1-F2), and Zaisanamynodon (Z1-Z2), among which Hyrachyus is overlapped by the monotypic genus Hyracodon (EY). The remaining polytypic genera are arranged in two clusters of overlapping genera. One cluster consists of the smaller forms Subhyracodon (S1-S3), Menoceras (M1-M2), Diceratherium (D1-D4). The other cluster consists of the larger forms Aceratherium (Al-A2), Teleoceras (T1-T5), Aphelops (L1-L3), Peraceras (P1-P3), and Rhinoceros (JV, UN). Within these two groups there is significant overlap of the genera. As with the skulls, intersubgroup morphometric distances are more accurately reflected by the generalized distances (Tables 10 and 11). Analysis of the generalized distances shows that Aphelops (L1-L4), Hyrachyus (Y1-Y2), and Zaisanamynodon (Z1-Z2) have average intersubgroup distances greater than that between the Indian (UN) and Javan (JV) rhinos (GD = 6.7). This suggests species level or greater variation. In fact, the distance between UN and JV is greater

FIGURE 51. Canonical variates plot of living and fossil subgroup means for mandible data with subgroups shown by genus. Means are labeled by genus. Shaded areas include all subgroups of the same genus.

Key to symbols (listed alphabetically):

A1	-	ACER1M	Aceratherium
A2	-	ACER2M	Aceratherium
8 I	-	BICOM	Diceros (black rhino)
			Ceratotherium (white rhino)
D1	-	DICE1M	Dicezatherium
DZ	-	DICE2M	Diceratherium
F1	-	FORS1M	Forstercoopería
F2	-	FORS2M	Forstercooperia
ĦY	-	HYCOM	Hyracodon
IN	-	INDRM	Indricotherium
JV	-	MAVAL	Rhinoceros (Javan rhino)
L1	~	APHE 1M	Aphelops
L2	-	APHE2M	Aphelops
ъ3	-	арнеэм	Aphelops
L4	-	арне4м	Aphelops
H1	-	MENO1M	Menoceras
		MENO2M	Nenocezas
PE	-	PENELM	Penetrigonias
P1	-	PERA1M	Peraceras
P2	-	PERAZM	Peraceras
			Subhyracodon
			Subhyracodon
\$3		Subh3m	
su	-	SUMAM	Dicerorhinus (Sumatran rhino)
Tl	٠	teleim	Teleoceras
			Teleoceras
		tele3m	
		tele4m	
		TELESM	
		TRIGM	
		UNICM	
		HYRA1M	
		HYRA2M	
		ZAISIM	Zaisanamynodon
82	-	ZAIS2M	Zaisanamynodon

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - BY GENUS

than that between the black (BI) and white (CE) rhinos. That mandibles within *Rhinoceros* are more different than mandibles between *Diceros* and *Ceratotherium* further suggests some degree of mosaicism in rhinoceros skull evolution. Overall, there is less correspondence between morphometric uniqueness and generic level taxonomy for mandibles than for skulls.

Taxonomic Patterns - Family and Subfamily Relationships

In addition to the generic and subgeneric levels, it is also of interest to compare morphometric patterns at higher levels of the taxonomic hierarchy. In this section, the genera are identified by family and sometimes by subfamily. Although more subfamilies have been defined in the taxonomic literature, only those two subfamilies which include the higher rhinocerotids are investigated here. The three rhinocerotoid families vary in the number and diversity of skulls available for use in this study. It has already been stated that there is a large gap in fossil representation of relatively complete hyracodontid skulls and mandibles (between Forstercooperia [FO] and Indricotherium [IN]). Amynodontidae are also poorly represented (here only Amynodon [AM] for the skulls and Zaisanamynodon [Z1-Z2] for the mandibles). Accordingly, the following discussions are primarily concerned with the Rhinocerotidae and its two subfamilies, Aceratheriinae and Rhinocerotinae.

Skull (Figure 62) -- Little can be said about the morphometric relationships of the non-rhinocerotid families because of the small number of taxa represented. Hyrachyus is distinct as a genus and probably also as an ancestral family. It is not known what kind of morphometric diversity is represented by the Amynodon skull, but the amynodontid mandibles (see below) suggest that this family is distinct. The amynodontid skull has affinities with both primitive rhinocerotids and hyracodontids. The Hyracodontidae is undoubtedly distinct at the family level given the position of Indricotherium. The shading which united Forstercooperia (FO) and Indricotherium does not necessarily represent the part of the morphometric space that would be occupied by the "missing" hyracodontids. The diversity of genera included within Rhinocerotidae forms two distinct morphometric groups. A basal group unites Menoceras (ME), Subhyracodon (51-54), Diceratherium (D1-D3), and Trigonias (TR). Subfamilies have been proposed for these genera (see Prothero et al., 1986), but there is not enough morphometric diversity to analyze them at the higher level. A more advanced group consists of the remaining rhinocerotid genera, classified in two subfamilies, Rhinocerotinae and Aceratheriinae. Morphometrically, the subfamilies are completely overlapping. Thus, at the subfamily level, there are no morphological differences detected by the measurements used. Both subfamilies

FIGURE 62. Canonical variates plot of living and fossil subgroup means for skull data with subgroups shown by family and subfamily. Means are grouped by family and subfamily classifications after Prothero et al. (1986).

Key to symbols (listed alphabetically):

A1	-	ACER1S	Aceratherium
λ2	-	ACER2S	Aceratherium
AH	*	AMYNS	Amynodon
BI	_	BICOS	Diceros (black rhino)
CE	-	CERAS	Ceratotherium (white rhino)
Dİ	-	DICEIS	Diceratherium
D2	•	DICE2S	Diceratherium
D3	-	DICE3S	Diceratherium
70	-	FORSS	Forsterccoperia
ĦΥ	-	HYCOS	Hyracodon
IN	-	INDRS	Indricotherium
JV	-	JAVAS	Rhinoceros (Javan rhino)
Ll	*	APHE1S	Aphelops
L1	-	APHE25	Aphelops
Ж	-	MENOS	Menoceras
P1	~	PERAIS	Peraceras
ΡŻ	-	PERA2S	Peraceras
S1	-	SUBHIS	Subhyracodon
\$2	-	Subh2s	Subhyracodon
\$3	-	Subh32	Subhyracodon
		SUMAS	Dicerorhinus (Sumatran chino)
T1	-	TELEIS	Teleoceras
т2	-	TELE2S	Teleoceras
T3	-	TELE3S	Telecceras
T4	-	TELE4S	Teleoceras
T5	-	TELE5S	Telecceras
		TRIGS	
UN	-	UNICS	Rhinoceros (Indian rhino)
¥l	-	HYRA1S	Hyrachyus
¥2	-	HYRA25	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - FAMILY & SUBFAMILY GROUPS

appear to confound the groupings suggested by morphology. For example, P2 is morphologically similar to T4, but they are in different subfamilies. Likewise, A2 and CE are similar but in different subfamilies.

Mandible (Figure 63) -- Small sample sizes (few genera) for Amynodontidae and Hyracodontidae limit the interpretations that can be made at the family level. The outlying position of Zaisanamynodon (21-22) suggests that this family is morphometrically unique. The intermediate position of Hyracodontidae between Amynodontidae and Rhinocerotidae may or may not be indicative of the morphometric relations of this family. The Rhinocerotidae is morphometrically distinct from Hyrachyus (Y1-Y2), Amynodontidae, and Hyracodontidae. As with the skulls, there appears to be two chinocerotid groupings; a basal group and a more advanced group. The basal group does not present any morphometric subgroupings which correspond to proposed subfamilies (see Prothero et al., 1986). The advanced genera are classified into two subfamilies, Aceratheriinae and Rhinocerotinae. Like the skulls, these overlap significantly but in a different way. Diceros (BI), Ceratotherium (CE), and Dicerorhinus (SU) mandibles are morphometrically distinct from other Rhinocerotinae. Conversely, the morphological affinites of Teleoceras (T1-T5) and Rhinoceros (JV, UN) with Aceratheriinae do not corrrespond to the subfamilial taxonomy. Reasons for this non-correspondence were suggested in the discussion of the skulls.

ł

FIGURE 63. Canonical variates plot of living and fossil subgroup means for mandible data with subgroups shown by family and subfamily. Means are grouped by family and subfamily classifications after Prothero et al. (1986).

Key to symbols (listed alphabetically):

÷

A1 - ACERIM	
A2 - ACER2M	
BI - BICOM	• •
CE - CERAM	• •
DI - DICEIM	Diceratherium
D2 - DICE2M	Diceratherium
FI - FORSIM	Forstercooperia
F2 - FORS2M	Forstercooperia
ну - нусом	Hyracodon
IN - INDRM	<i>Indricotherium</i>
JV - JAVAM	Rhinoceros (Javan rhino)
L1 - APHE1M	Aphelops
L2 - APHE2M	Aphelops
L3 — Арнезм	Aphelops
l4 - Aphe4m	Aphelops
MI - MENOIM	Nenoceras
M2 - MENO2M	Henoceras
PE - PENEIM	Pen etrigonías
PI - PERAIM	Peraceras
P2 – PERA2M	-
si - Subhim	Subhyracodon
82 ~ SUBH2M	Subhyracodon
53 - SUBH3M	Subhyracodon
su – Sumam	Dicerorhinus (Sumatran rhino)
TI - TELEIM	Teleoceras
T2 - TELE2M	Teleoceras
T3 - TELE3M	Teleoceras
T4 - TELE4M	Teleoceras
TS - TELE5M	Teleoceras
	Teleoceras
UN - UNICH	Rhinoceros (Indían rhino)
Y1 - HYRAIM	Hyrachyus
Y2 - HYRA2M	Hyrachyus
21 - ZAISIM	Zaisanamynodon
82 - 2AIS2M	Zaisanamynodon

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - FAMILY & SUBFAMILY GROUPS

Taxonomic Patterns - Phylogenetic Character States

L

The relationships between rhinoceros morphometry and classification were discussed in the previous two sections. Because classifications are usually based on a variety of characters, or character states, it is appropriate to investigate the relationships between the morphometric results and specific characters used in classification. The characters chosen for this analysis were selected from those used by Prothero et al. (1986) to formulate their phylogenetic hypotheses for the Rhinocerotoidea. Specifically, only those characters believed to directly or indirectly affect skull and/or mandible morphology were used. Currently, such taxonomic characters are most often presented in explicitly phylogenetic contexts under the umbrella of "cladistic analysis." Here, the question is being asked: are there any correlations between multivariate morphological affinities and qualitative morphological characters used in classification? Although some of the characters used are specific to the skull or mandible, the same set of characters was used for both skull and mandible. This was done for two reasons: (1) differences in the skull and mandible plots can be compared more directly, and (2) characters in one region having effects on the other region might be detected. That is, to some extent, the skull and mandible must coevolve (for example, matching of upper and lower teeth for efficient occlusion and mastication). In the following discussions

of skull and mandible CV results, a list of eleven numbered characters is given for each plot. The characters were extracted from Table 1 of Prothero et al. (1986, page 349) and the numbers in that table correspond with those in the plots here. The numbers in the table likewise correspond to the numbered nodes in Figure 4 of Prothero et al. (1986). Not all of these characters define nodes by themselves; many are from lists including a variety of characters definining a particular node. The characters are dicussed in numerical sequence.

<u>Skull</u> (Figure 64) -- Reduction of the preorbital skull (NODE 4) is a derived feature of Amynodon (AM) (and Zaisanamynodon). Unfortunately, most of the original measurements in this region were not retained due to the prevalence of missing or broken premaxillae and nasal bones. Only AEP2 and OCP2 (see Figure 4) might directly detect such a change if the tooth row is correspondingly shortened or moved posteriorly. Because Amynodon (AM) is morphometrically similar to Forstercooperia (FO) and Diceratherium (D1-D3), which do not have reduced preorbital regions, it may be concluded that the reduction in Amynodon did not significantly affect other parts of the skull. Increased relative length of the check tooth row (NODE 13) characterizes hyracodontids and rhinocerotids. This character is general and does not appear to contribute to any morphometric separation of these two families.

FIGURE 64. Canonical variates plot of living and foesil subgroup means for skull data with subgroups shown by phylogenetic character states. Means are grouped by selected character states used for the phylogenetic hypotheses used in Prothero et al. (1986).

Key to symbols (listed alphabetically):

	• • • •
	Aceratherium
A2 - ACER2S	
am – Amyns	Amynodon
BI - BICOS	Diceros (black rhino)
CE - CERAS	Ceratotherium (white rhino)
D1 - DICE15	Diceratherium
D2 - DICE2S	Diceratherium
DJ - DICE3S	Diceratherium
FO - FORSS	Forstercooperia
HY - HYCOS	Hyzacodon
IN - INDRS	Indricotherium
JV - JAVAS	RhinoCeros (Javan rhino)
L1 - APHE1S	Aphelops
L1 - APHE2S	Aphelops
ME - MENOS	Menoceras
P1 - PERAIS	Peraceras
P2 - PERA25	Peraceras
SI - SUBHIS	Subh yracodon
s? - SUBH2S	Subhyracodon
53 - SUBH3S	Subhyracodon
su – Sumas	Dicerorhinus (Sumatran rhino)
TI - TELEIS	Teleoceras
T2 - TELE2S	Teleoceras
T3 - TELE 3S	Telegceras
T4 - TELE4S	Teleoc eras
TS - TELESS	Teleoceras
TR - TRIGS	Teleoceras
UN - UNICS	Rhinoceros (Indian rhino)
¥1 - HYRAIS	Hyrachyus
Y2 - HYRA2S	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - CHARACTER STATES

from the others. Increased relative hypsodonty (tooth height) is another general character (NODES 19, 23, and 28). It probably has more overall affect on the mandible (ramus height for example) than on the skull, but may affect face height since both maxillary and mandibular teeth must increase in height (equally or proportionally). There is no obvious morphometric correlation with this character, at least partly due to its non-exclusive use as a takonomic character. Increased hypsodonty alone is not likely to account for the shape differences separating Indricotherium (IN) from the other rhinoceroses along the second CV axis. A broad mandibular ramus (NODE 28) distinguishes the rhinocerotids in this analysis from several genera not represented in the present morphometric study. It is therefore difficult to assess its contribution to the uniqueness of the skull morphology of the rhinocerotids used here. Two derived characters of Trigonias (TR), cited as distinguishing it from later rhinocerotids, are an extended occiput and an anterodorsally inflected basicranium (NODE 30). These characters would be expected to influence morphometry of the skull, especially measurements to the occiput. However, the Trigonias (TR) skulls are morphometrically very similar to the Subhyracodon (S1-S4) and Diceratherium (D1-D3) and thus do not reflect the changes morphometrically (given the measurements used). Roughly, as a group, the higher rhinocerotids (Aceratheriinae and Rhinocerotinae) are characterized by larger size (NODE 35).

1

However, significant size variation within this "group" reduces the importance which can be attached to this character in defining the group morphometrically. Flattening of the dorsal skull profile, (NODE 38) characteristic of Aphelops (L1-L2), Peraceras (P1-P2), and Aceratherium (A1-A2), is not associated with any morphometric uniqueness of these genera as a group. The Teleoceras (T1-T5) subgeneric groups are morphometrically unique from the remaining rhinocerotids. The taxonomic skull character associated with the genus is brachycephaly (NODE 42). Because Teleoceras skulls are among the largest of the rhinocerotids, the brachycephaly is only relative. This shape difference is reflected in the separation of Teleoceras (T1-T5) from other genera along the second axis. The last two characters (NODES 45 and 50) are polarized opposites of a character with a threshold value. If this character influences overall skull morphology, then it should be reflected morphometrically by two separate groups, as is the case. When Dicerorhinus (SU) and Rhinoceros (JV,UN) are united (NODE 45), they are distinct (non-overlapping) with the Diceros (BI)-Ceratotherium (CE) pair (NODE 50).

<u>Mandible</u> (Figure 65) -- The same characters are discussed in this section as were discussed for the skulls above. NODE 4 (reduced preorbital skull) and NODE 13 (lengthened tooth row) are associated with the separation of *Zaisanamynodon* (Z1-Z2) from the other genera. Secondary effects of preorbital changes in *Zaisanamynodon* on the tooth row may contribute to the morphometric 252 FIGURE 65. Canonical variates plot of living and fossil subgroup means for mandible data with subgroups shown by phylogenetic character states. Means are grouped by selected character states used for the phylogenetic hypotheses in Prothero et al., 1986.

Key to symbols (listed alphabetically):

A1 - ACERIM	Aceratherium
AZ - ACER2M	Aceratherium
BI - BICOM	Diceros (black rhino)
	Ceratotherium (white rhino)
	Diceratherium
D2 - DICE2M	Diceratherium
F1 - FORSIM	Forstercooperia
F2 - FOR52M	Forstercooperia
ВУ - НУСОМ	Hyracodon
IN - INDRM	Indricotherium
JV - JAVAM	Rhinoceros (Javan rhino)
L1 - APHEIM	
L2 - APHE2M	
<u>13 — Aphe</u> 3m	Aphelops
14 - APHE4M	Aphelops
M1 - MENOIM	Nenoceras
M2 - MENO2M	Nenoceras
PE - PENEIM	Penetrigonias
Pl — PERAlm	Peraceras
P2 – PERA2M	
	Subhyracodon
	Subhyracodon
	Subhyracodon
SU - SUMAM	Dicerorhinus (Sumatran rhino)
T1 - TELEIM	Teleoceras
T2 - TELE2M	
T3 - TELE3M	
T4 - TELE4M	
T5 - TELESM	
TR - TRIGM	
	Rhinoceros (Indian rhino)
Y1 - HYRAIM	
Y2 - HYRAZM	
	Zaisanamynodon
32 - ZAIS2M	<i>Zaisanamynodon</i>

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - CHARACTER STATES

difference between the two groups. As with the skulls, increased hypsodonty (NODES 19, 23, 28) is not correlated with any clear morphometric groups associated with the node individually. Taken altogether, the genera characterized by hypsodonty nearly correspond to the group defined by NODE 13 which is distinct from Zaisanamynodon (Z1-Z2). Likewise, a broad mandibular ramus (NODE 28) among the rhinocerotids may contribute to their difference from Zaisanamynodon. To the extent that the rhinocerotids are different from hyracodontide (see discussion for Figure 63), NODE 28 may contribute. The extended occiput and inflected basicranium do not morphometrically distinguish Trigonias (TR) from the basal rhinocerotids. The use of size increase as a taxonomic character (NODE 35) is probably weak and arbitrary given the size ranges within the two "size" groups formed and the continuous nature of the character. Unlike the skull plot, flattened dorsal skull profile (NODE 38) and brachycephaly (NODE 42) are associated with groups which completely overlap. Additionally, the groups defined by NODES 45 and 50 are not as clearly separate as in the skull plot. These last two facts provide further evidence that rhinoceros mandibles are more evolutionarily conservative (or at least, have been less affected by changes in other parts of the skull).

Functional Patterns - Norn Arrangement

Among the most obvious external features of the living rhinoceroses are the median sagittal horns located on the dorsal aspect of the skull. Although the horns are features of the head, they are not osteological features of the bony skull (in contrast to titanothere horns or bovid horn cores, for example). Rather, they are unique epidermal specializations that are fairly loosely attached to the underlying periosteum. Bony features related to horn presence vary from surface rugosity to elevated, rounded horn bosses. The horns therefore, probably have little direct influence on skull morphology, particularly from a mechanical veiw point. A priori, correlation between horn morphology and non-boss skull morphology could be attributed to developmental interactions and/or to shared phylogeny. Because of these potential relationships, it is of interest to compare horn morphologies (i.e., number and arrangement) with the morphometric patterns. In Figures 66 and 67, the living and fossil genera are grouped according to three types of recognized horn arrangement: paired nasal horns (side-by-side on the nasal bones); single nasal horns (single boss on the nasal bones in the median plane); and tandem horns (boss or rugosities in the median plane, anteriorly on the nasals and posteriorly on the frontals).

<u>Skull</u> (Figure 66) -- Diceratherium (D1-D3) and Menoceras (ME) have similar horn arrangements characterized by paired masal

FIGURE 66. Canonical variates plot of living and fossil subgroup means for skull data with subgroups shown by horn arrangement. Means are grouped by qualitative arrangement of horns.

Key to symbols (listed alphabetically):

1

A1	-	ACER15	Aceratherium
۸2	-	ACER2S	Aceratherium
AN	-	AMYNS	Amynodon
BI	-	BICOS	Diceros (black rhino)
CE	-	CERAS	Ceratotherium (white rhino)
D1	-	DICE1S	Diceratherium
D2		DICE25	Diceratherium
D3	-	DICE3S	Diceratherium
FO	-	FORSS	Forstercooperia
HX	-	RYCOS	Hyracodon
IN	-	INDRS	Indricotherium
JV	-	JAVAS	Rhinoceros (Javan rhino)
L1	-	APHELS	Aphelops .
L1	-	APHE2S	Aphelops .
MUS		MENOS	Henoceras
P1	-	PERA1S	Peraceras
P2	-	PERA2S	Peraceras
S1	-	SUBHIS	Subhyracodon
\$2	-	SUBH2S	
S 3	-	SUBH3S	
SU	+	SUMAS	Dicerorhinus (Sumatran rhino)
T1	-	TELE1S	Teleoceras
T2	-	TELE2S	Teleoceras
T3	-	TELE3S	Teleoceras
T4	-	TELE4S	Teleocstas
T 5	-	TELE5S	Teleoceras
			Telecceras
		UNICS	•
¥1	-	HYRA1S	
¥2	-	HYRA2S	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - HORN TYPES

bosses. Although the bosses are different in detail and represent different lineages, here, the terminal side-by-side arrangement is the uniting factor. Morphometrically, these genera form a unique group. However, the presumably hornless Subhyracodon (S1-S4) and Trigonias (TR) are associated with them in a morphometric group of more primitive rhinoceroses. Thus, Diceratherium and Menoceras are probably similar more by virtue of primitiveness, less by virtue of common ancestry. Additionally, it may also be concluded that acquisition of paired horns did not significantly affect them morphometrically, relative to the other primitive rhinoceroses. Another morphometrically unique group united by horn arrangement comprises Teleoceras (T1-T5), Peraceras (P1-P2), and Rhinoceros (JV,UN). This grouping is significant because these three genera are not united by any of the taxonomic analyses above. The classification of Peraceras in a different subfamily (Accratheriinae) implies a distant relationship with Teleoceras and Rhinoceros (Rhinocerotinae). If Peraceras (P1-P2) really represents a different lineage, then its morphometric affinity with some of the rhinocerotines may be explained by parallelism or convergence. However, for this to be true, it would have to be postulated that horn arrangement is constraining or "driving" skull morphology. The latter argument is weak (as discussed above) because of the epidermal nature of the horns. Alternatively, the morphometric result may indicate that these genera are more closely related than previously believed. Similarly, although in the same

ł

i

subfamily, *Dicerorhinus* (SU), *Diceros* (BI), and *Ceratotherium* (CE) are not united at lower taxonomic levels. *Dicerorhinus* (SU) and *Rhinoceros* (JV,UN) have been united at the subtribe level (Prothero et al., 1986, Table 4, NODE 44; this paper, Figure 64, NODE 45). The non-overlapping morphometric unity of tandem-horned rhinoceroses supports the view of a closer relationship than previously hypothesized.

<u>Mandible</u> (Figure 67) -- The morphometric distinctness of horn arrangement groups observed in the skulls is more evident with the mandibles. This is good evidence for the reality of these groups because in the previous analyses, mandibles have been less uniquely differentiated (more uniform) in morphology than the skulls. Further, if mechanical/developmental arguments were plausible, the mandible would be less directly affected by horn arrangement than the skull. Here also, *Dicerorhinus* (SU) has a clear affinity with *Diceros* (BI) and *Cerarotherium* (CE). Hence, morphometry of the mandible seems to have detected unique groups, correlated with horn arrangement, and most likely indicating common ancestries for those arrangements.

Functional Patterns - Rerbivory Type

In the vertebrate fossil record, distinguishing herbivores from carnivores is trivial. Within herbivores, distinguishing dietary habits is more difficult. Primarily, herbivores are polarized around two types: grazing (on grasses) and browsing

FIGURE 67. Canonical variates plot of living and fossil subgroup means for mandible data with subgroups shown by horn arrangement. Means are grouped by qualitative arrangement of horns.

Key to symbols (listed alphabetically):

-			Aceratherium
A 2	-		Aceratherium
BI			Diceros (black rhino)
			Ceratotherium (white rhino)
			Dicerathsrium
D2	-	DICE2M	Diceratherium
F1	-	FORSIM	Forstercooperia
F2	-	FORS2M	Forstercooperia
НY	-	HYCOM	Hyzacodon
IN	-	INDRM	Indricotherium
JV	-	JAVAM	Rhinoceros (Javan rhino)
L1	-	APHE1M	Aphelops
L2	-	APHE2M	Aphelops
			Aphelops
L4	-	APHE4M	Aphelops
H1	-	MENOIM	Nenoceras
			Nenoceras
			Penetrigonias
		•	Peraceras
			Peraceras
			Subhyracodon
		SUBH2M	
		Subh3m	
		SUMAM	· · · · · · · · · · · ·
			Teleoceras
			Teleoceras
тЗ	-	TELE3M	Teleoceras
_			Teleoceras
			Teleoceras
			Teleoceras
UN	-	UNICM	Rhinoceros (Indian rhino)
¥1	-	HYRA1M	Ryrachyus
¥2	-	HYRA2M	Hyrachyus
31	-	ZAIS1M	Zaisanamynodon
\$ 2	-	ZAIS2M	Zaisanamynodon

(on herbs, shrubs, and trees). Typically, the browser-grazer spectrum has been correlated to one character, relative cheektooth height (low, or brachydont, for browsers; high, or hypsodont, for grazers). Other features primarily or secondarily related to diet include position of the occiput (related to head carriage) and position of the anterior dentition (related to procuring vegetation). Evolutionary changes of diet may therefore result in changes of mandible and skull morphology. Hence, it is of interest to investigate morphometric results in relation to hypothesized diet (herbivory type).

In Figures 68 and 69, genera or groups of genera are identified where possible by herbivory type. Classification is derived from previous authors' interpretations of diet based on both direct and indirect evidence. If these determinations are accurate and diet systematically influences morphology, then herbivory types should be detectable morphometrically. Primitively, there is little doubt that *Hyrachyus* (Y1-Y2) was a browser and that subsequent "grazing morphologies", therefore, evolved from the browsing condition. Here it is possible to hypothesize that dietary changes were related to the morphological changes. Conversely, morphological changes between a primitive browser and an advanced browser cannot directly be attributed to diet (at least at the resolution of this study).

<u>Skull</u> (Figure 68) -- Hyrachyus (Y1-Y2) and Hyracodon (HY) are not obviously different despite increased hypsodonty and a

FIGURE 68. Canonical variates plot of living and fossil subgroup means for skull data with subgroups shown by herbivory type. Means are grouped by hypothesized type of herbivory.

Key to symbols (listed alphabetically):

A1	-	ACER1S	Aceratherium
A2	-	ACER2S	Aceratherium
АИ	_	AMYNS	Amynodon
BI	-	BICOS	Diceros (black rhino)
CZ	-	CERAS	Ceratotherium (white rhino)
D1	-	DICE15	Diceratherium
D2	-	DICE25	Diceratherium
D3	-	DICE3S	Diceratherium
FO	-	FORSS	Forstercooperia
HY	-	HYCOS	Hyracodon
IN	-	INDRS	Indricotherium
JV	÷	JAVAS	Rhinoceros (Javan rhino)
L1	-	APHEIS	Aphelops
L1	-	APHE2S	Aphelops
нe	-	MENOS	Henoceras
P1	-	PERA1S	Peraceras
P2	-	PERA2S	Peraceras
81	-	SUBH15	Subhyracodon
S 2	-	Subh2s	Subhyrecodon
S 3	-	Subh3s	Subhyracodon
SV	+	SUMAS	Dicerorhinus (Sumatran rhino)
Tl	-	TELE 1S	Teleoceras
		TELE2S	
тЭ	-	TELE3S	Teleoceras
T4	-	TELE4S	Teleoceras
T 5	•	TELE5S	Teleoceras
TR	-	TRIGS	Teleoceras
UN	-	UNICS	Rhinoceros (Indian rhino)
¥1	-	HYRA1S	<i>Hyrachyus</i>
¥2	-	HYRA2S	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - HERBIVORY TYPES

presumed grazing habit in the latter (supported indirectly by postcranial adaptations for cursoriality associated with more open habitats). Similarly, Forstercooperia (FO) and Subhyracodon (S1-S4) have contrasting diets but are not different morphometrically. This result is conceptually like that for horn arrangement (Figure 66) where primitive groups were also not differentiated. In combination, these results imply that early evolution of teeth (or horns) did not significantly influence other aspects of morphology. The Hyracodontidae is somewhat problematic here for several reasons. If it is true that forstercooperia (FO) is both a grazer and ancestral to Indricotherium (IN), then Indricotherium secondarily evolved the browsing condition. Further, Indricotherium (IN) provides an example of why dietary classifications based on tooth height are not absolute, and often speculative: it belongs to a lineage at least partly defined by increased hypsodonty (NODE 19, Figure 64). Of the remaining genera, Teleoceras (T1-T5), Ceratotherium (CE), and the Indian rhino (UN) are classed as grazers. Teleoceras and the Indian rhino are a distinct group well-separated from Ceratotherium (CE). This difference indicates that diet alone is not "driving" the morphometric results. Indeed, Ceratotherium is more closely related to the browsers Diceros (BI) and Aceratherium (Al-A2). The remaining browsers (later, larger rhinos) together are nearly nonoverlapping with the grazers, but two of the browsers, the Javan rhino (JV) and PERA2S (P2), are morphometrically associated with

the upper grazer group. The dietary differences between the Javan and Indian rhinos apparently have no effects on their skull morphology as measured here. In summary, dietary groupings for skulls are not unique. Rather, browsers and grazers are confounded in the morphometric space within groups united by other important factors.

Mandible (Figure 69) -- Mandible results for Hyrachyus (Y1-Y2) and Hyracodon (HY) are similar to those for the skulls, with the two groups being essentially the same morphometrically. Increased tooth height in Hyracodon does not seem to have affected the mandible morphology quantified in this study. A different result from the skull is obtained for the Subhyracodon (S1-S3) -Forstercooperia (FO) contrast. For mandibles, the two genera are somewhat separated along the second axis. Within the context of this section, this can be hypothesized as due to the differences in diet. The remaining genera are less separated than the skulls, with major overlap of two of the groups. Close inspection of the plot reveals the same confounding arrangement as seen in the skull plot. That is, both grazers and browsers are separated along the second axis with representatives of each dietary type associated together. This result for mandibles shows that distary type has not been important in determining the morphometric relationships of living and fossil rhinoceroses.

FIGURE 69. Canonical variates plot of living and foesil subgroup means for mandible data with subgroups shown by herbivory type. Means are grouped by hypothesized type of herbivory.

Key to symbols (listed alphabetically):

AI - ACERIM	
A2 - ACER2M	
BI - BICOM	Diceros (black rhino)
CE - CERAM	Ceratotherium (white rhino)
D1 - DICE1M	Dicsratherium
D2 + DICE2M	Diceratherium
F1 - FORS1M	Forstercooperia
F2 - FORS2M	Forstercooperia
HY - HYCOM	Hyracodon
IN - INDRM	Indricotherium
JV - JAVAM	Rhinoceros (Javan rhino)
L1 - APHE1M	Aphelops
L2 - APHE2M	Aphelops
L3 — Арнезм	Aphelops
L4 - APHE4M	Aphelops
M1 - MENOIM	Nenoceras
N2 - MENO2M	Menocezas
PE - PENElM	Penetrigonias
P1 - PERAIM	Peraceras
P2 - PERA2M	Peraceras
S1 - SUBH1M	Subhyracodon
S2 - SUBH2H	Subhyracodon
S3 - SUBH3M	Subhyracodon
SU - SUMAM	Dicerorhinus (Sumatran rhino)
T1 - TELEIM	Teleocsras
T2 - TELE2M	Teleoceras
T3 - TELE3M	Teleoceras
t4 — Tele4m	Tsleoceras
TS - TELESM	Teleoceras
TR - TRIGM	Teleoceras
UN - UNICH	Rhinoceros (Indian rhino)
Y1 - HYRA1M	Hyrachyus
¥2 - HYRA2M	Hyrachyus
21 - 2 AIS1M	2aisanamynodon
32 - 2AIS2M	Zaisanamynodon

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - HERBIVORY TYPES

Temporal Patterns - Intergeneric Phylogenies

The last two sections of this chapter discuss the skull and mandible morphometric patterns in a temporal-phylogenetic context. This provides an overall impression and comparison of morphological evolution between and within genera. Straight arrows are used to indicate a resultant morphological vector from earlier to later groups in the CV morphospace. Where a genus has multiple subgroups, the arrowheads end at a point approximating the average of those groups (for example, halfway between two subgroups). The arrows are not meant to imply that the actual evolutionary trajectory was necessarily linear. Arrow length has no necessary meaning in terms of length of time or rate of change (CV 1 is a size, not necessarily a time, axis). Length of the arrows does indicate relative amounts of size and shape change. In this section, the vectors correspond to phylogenetic arrows shown in Figure 3. In effect, Figure 3 is mapped, where possible, onto the canonical variate plane represented by CV1-CV2. Arrows from Trigonias (TR) to Subhyracodon (S1-S4) and from Subhyracodon to Diceratherium (D1-D3) are not shown because of the close morphometric affinity of those genera. Also, arrows to the living genera are not included because their phylogeny is poorly known.

<u>Skull</u> (Figure 70) -- This plot is a basic synthesis of morphology, phylogeny, and time at the generic level. The general impression observed is that rhinoceroses diverge in both size and

FIGURE 70. Canonical variates plot of living and fossil subgroup means for skull data with showing intergeneric phylogenies. Hypothesized phylogenetic trends among genera are indicated by arrows.

Key to symbols (listed alphabetically):

i

÷

A1 - ACERIS	Aceratherium
A2 - ACER2S	Aceratherium
AM - AMYNS	Amynodon
BI - BICOS	Diceros (black rhino)
CE - CERAS	Coratotherium (white rhino)
D1 - DICEIS	Diceratherium
D2 - DICE2S	Diceratherium
D3 - DICE3S	Diceratherium
FO - FORSS	Forstercooperia
HY - HYCOS	Hyracodon
IN - INDRS	Indricotherium
JV - JAVAS	Rhinocaros (Javan rhino)
L1 - APHEIS	Aphelops
L1 - APHE2S	Aphelops
ME - MENOS	Menoceras
P1 - PERAIS	Peraceras
P2 - PERA2S	Peraceras
SI - SUBHIS	Subhyracodon
S2 – SUBH2S	Subhyracodon
S3 - SUBH3S	Subhyracodon
SU - SUMAS	Dicerorhinus (Sumatran rhino)
T1 - TELE1S	Teleoceras
T2 - TELE25	Teleoceras
T3 - TELE3S	Teleoceras
T4 - TELE4S	Teleoceras
TS - TELESS	Teleoceras
TR - TRIGS	Teleoceras
UN - UNICS	<i>Rhinoceros</i> (Indian rhino)
Y1 - HYRAIS	Hyrachyus
YZ - HYRA2S	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - INTERGENERIC PHYLOGENIES

shape with time and that shape diverges with increasing size. It also shows (especially by comparison with the intrageneric analysis below) that most of rhinocerotoid trends in size and shape evolution occur at the generic level. The trends toward size increase from ancestral to descendant genera illustrate well Cope's rule of evolutionary size increase which is observed in the fossil record for many groups.

<u>Mandible</u> (Figure 71) -- Inspection of the time-phylogeny vectors for mandibles shows lesser degrees of divergence than skulls. Size increase is clearly the dominant change between ancestral and descendant genera. This result supports earlier conclusions about the conservativeness of rhinocerotoid mandible evolution.

ł

Temporal Patterns ~ Intrageneric Time Vectors

Many of the subgeneric groups determined in Chapter 3 were based in part on temporal-stratigraphic data (NALMA's). It is thus possible to track those subgroups through time in the canonical variates space. In this section, pairs of subgroups within genera are connected by arrows indicating direction from the earlier to the later subgroup. As in the intergeneric analysis, the arrows do not indicate duration or rate, and CVI is not a time axis. Many of the arrows probably reflect some degree of phylogeny. Only those subgroups for which time vectors could be determined are shown.

FIGURE 71. Canonical variates plot of living and fossil subgroup means for mandible data showing intergeneric phylogenies. Hypothesized phylogenetic trends among genera are indicated by arrows.

Key to symbols (listed alphabetically):

Į

I

A1	-	ACERIM	Aceratherium
λ2	-	ACER2M	Aceratherium
BI	-	BICOM	Diceros (black rhino)
CE	-	CERAM	Ceratotherium (white rhino)
D1	-	DICEIM	Diceratherium
D2	-	DICE2M	Diceratherium
F1	-	FORSIM	Forstercooperia
F2	-	FORS2M	Forstercooper <u>i</u> a
ĦY	-	HYCOM	Hyracodon
IN	-	INDRM	Indricotherium
		JAVAM	
			Aphelops
L2	-	APHE2M	Aphelops
1.3	-	APHE 3M	Aphelops
L4	-	APHE4M	Aphelops
Ml	-	MENO1M	Menoceras
₩2	-	MENO2H	Menoceras
PE	-	PENEIM	Penetrigonias
61	-	PERAIM	Peraceias
₽2	-	PERA2M	Peracefas
		SUBH1M	
		SUBH2M	
83	-	Subham	Subhyracodon
		SUMAM	Dicerorhinus (Sumatran rhino)
			Teleoceras
			Teleoceras
			Teleocer#S
			Teleoceras
		TELESM	
		TRIGM	
		UNICM	Rhinoceros (Indian rhino)
		HYRAIM	
		HYRA2M	
		ZAIS1M	
22	-	ZAIS2M	Zaisanamynodon

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - INTERGENERIC PHYLOGENIES

The purpose of observing the time vectors is to compare the overall generic and subgeneric patterns of morphological change, and to detect any generalizations or trends they may reveal about rhinocerotoid evolution.

Skull (Figure 72) -- The important features in this plot are the directions and lengths of the time vectors where direction indicates the relative amounts of size versus shape change, and length indicates amount of change between two subgroups. Of the ten vectors shown, six indicate size increases. Included in these are all of the longer vectors of which one (Y1-Y2) shows a size increase without much associated shape change. Among the shorter vectors, two indicate size decreases (T4-T5, S1-S2) and two appear to indicate mostly shape change (T2-T3, D2-D3). At face value, these patterns show that changes in both size and shape have been predominant while changes mostly in size or mostly in shape have been less common at the subgeneric (species?) level. At least three of the types of evolutionary change occur within the most diverse genus Teleoceras (T1-T5). These changes correspond to the changes discussed in the PCA for Teleoceras (Figure 47). The diversity of vectors in this plot distinctly contrasts with the pattern in the intergeneric plot. Within rhino genera, evolution appears to be less directed morphologically.

<u>Mandible</u> (Figure 73) -- The characterizations of Figure 72 for skulls also apply to Figure 73. The diversity of vectors is a mixture of size increases, size decreases, and shape

FIGURE 72. Canonical variates plot of living and fossil subgroup means for skull data showing only those subgroups defined wholly or partly by time. Arrows indicate direction of time (earlier to later) and connect age-adjacent (time-sequential) subgroups within each genus.

Key to symbols (listed alphabetically):

Al - ACERIS Aceratherium A2 - ACERIS Aceratherium D2 - DICE2S Diceratherium D3 - DICE3S Diceratherium L1 - APHEIS Aphelops L1 - APHE2S Aphelops S1 - SUBH1S Subhyracodon S2 - SUBH2S Subhyracodon S3 - SUBH3S Subhyracodon T1 - TELE1S Teleoceras T2 - TELE2S Teleoceras T3 - TELE3S Teleoceras T4 - TELE4S Teleoceras T5 - TELE5S Teleoceras Y1 - HYRAIS Hyrachyus Y2 - HYRA2S Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - INTERSUBGROUP TIME VECTORS

FIGURE 73. Canonical variates plot of living and fossil subgroup means for mandible data. Only intrageneric subgroups defined wholly or partly by time are shown. Arrows indicate direction of time (earlier to later) and connect age-adjacent (time-sequential) subgroups within each genus.

Key to symbols (listed alphabetically):

A1 - ACERIM Aceratherium
A2 - ACER2M Aceratherium
L1 - APHEIM Aphelops
L2 - APHEZM Aphelops
L3 - APHE3M Aphelops
L4 - APHE4M Aphelops
L4 - APHE4M Aphelops
M1 - MENOIM Menoceras
N2 - MENO2M Menoceras
S1 - SUBH1M Subhyracodon
S2 - SUBH2M Subhyracodon
S3 - SUBH3M Subhyracodon
SU - SUMAM Dicerorhinus (Sumatran rhino)
T1 - TELE1M Teleoceras
T2 - TELE2M Teleoceras
T3 - TELE3M Teleoceras
T5 - TELE5M Teleoceras
T5 - TELE5M Teleoceras
Y1 - HYRA1M Myrachyus
Y2 - HYRA2M Hyrachyus

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - INTERSUBGROUP TIME VECTORS

changes but there are no clear trends. Teleoceras (T1-T5) exhibits several types of change. Overall, the mandible vectors have smaller angles with respect to CV1 than in Figure 72. This indicates less shape change which is consistent with earlier conclusions about the conservativeness of rhinocertoid mandibles. Comparison of the time vector results with the intergeneric vectors suggest that general morphological trends in the Rhinocerotoidea occur at the generic level, while at the subgeneric and specific level, evolutionary changes are more varied. Much of these evolutionary changes at lower levels may be considered noise relative to higher level trends.

CHAPTER 5.

DISCUSSION

This discussion is an overview of issues related to materials, methods, results, and interpretations, including assumptions, problems, and caveats. Much of the detailed discussion of the principal component and canonical variate results was given in Chapters 2 and 3, respectively. Discussed topics related to sampling and data included specimen distortion and the limitation of the measurement subset. The role and usefulness of the living analogues is briefly discussed in terms of implications for future studies of fossils. A brief section on the nature of morphological evolution in rhinoceroses is followed by a discussion of particular aspects of skull shape change. The latter is illustrated by the results of a landmark morphometric method applied to the Rhinocerotidae. Lastly, some general systematic implications are discussed.

Methodologically, this study affirms the power of multivariate methods for discriminating among morphologies correlated with significant biological and nonbiological variables. The fidelity of the principal components method in discriminating similar specimens of like geologic age, sex, or geography from disimilar ones is a satisfying result given several anticipated, but unrealized, problems. One problem is that of (plastic) deformation of fossil specimens during the time they are embedded 282 in sedimentary rock. Differential movements of the rock may alter (distort) the morphology of specimens in both regular and random ways. Morphological variation is, thus, also affected. It is probably axiomatic that every fossil specimen is distorted to some degree. However, only a single instance was recognized where an outlying specimen appeared to be so because of distortion (see Trigonias, Chapter 3). In general, the effects of distortion were insufficient to obscure real morphological relationships. This lack of any significant effect of distortion across many taxa from many ages, and many sedimentary conditions is an important result. It shows that rhino skulls that have survived the geological cycle have retained most of their biologically determined morphology.

A second important result deriving from the PC fidelity relates to the suite of measurements upon which the morphological discriminations were based. The majority of the original measurements were excluded from analysis because of the number of missing values. For example, since premaxillae and the anterior dentition were often absent, measurements related to those areas were excluded by necessity from further consideration. The remaining measurements are therefore a non-random selection representing those parts of the skull or mandible which most often survive the rigors of fossilization. It was a concern that this subset of measurements might not contain enough morphological information to provide meaningful results. The PC analyses show that the "surviving" measurements do characterize much of the

biologically relevant morphology. Differences between the skull and mandible results, however, might be partially attributable to differences in the degree to which the respective sets of measurements adequately characterize the morphology. The minimal effect of these potential problems shows that the "signal-to-noise ratio" in fossil rhino skulls is relatively high.

This study benefited greatly from the availability of living rhino taxa to serve as true biological analogues, providing an important link between biology and paleontology. The amount and kind of variation in the monotypic genera (black and white rhinos) turned out to be fairly representative of recognizable monotypic groups or presumed populational samples among the fossils. Thus, the analogues played more of a corroborative role since there were no cases were fossils were arbitrarily made to "fit" them. Ironically, the demonstration of similarity of analogue and fossil variation suggests that studies of variation in similar fossil groups without analogues (for example, titanotheres) may be reasonable with as few as one good geographically and temporally circumscribed quarry sample to serve as a standard of variation. Of course, when living analogues are available, they should be used.

The dissection of variation within the rhinoceros genera, the nature of the pooled within-group dispersion, and the variational overlap within and among genera show that evolutionary change in rhinoceros skull form is more or less continuous. That is, the 284 "average" morphology (from species to species, or genus to genus) shifts across a continuum of morphospace and is characterized by variational overlap among temporally adjacent, phylogenetically related groups. It is significant that this pattern emerges when what is considered a relatively good fossil record is observed. Although, there is much current interest in the presence or absence (appearance or disappearance) of qualitative taxonomic characters in regards to deciphering phylogenies, the morphological "base" to which characters are added or subtracted appears to evolve conservatively in rhinocerotoids. The complimentarity of overall morphology to character studies provides a richer, more complete picture of skull evolution. It may also provide insight into the relationships of development and evolution. There does not appear to have been any major reorganizations of skull morphology as might be expected if early changes in development were the causation of morphological differences. Rather, the kinds and amounts of overall morphological change among rhino species and genera appear to be consistent with those expected from natural selection acting on populations of individuals who vary in their terminal developmental morphologies. Although Indricotherium might be an exception, achieving large size and shape differences relatively quickly, it is more likely that the gap between Indricotherium and its ancestors represents unfound (or unfossilized) morphologies whose variational patterns would be continuous across the morphometric gap. Even if Indricotherium was the product of some

285

÷

saltatory type process, it is the exception rather than the rule among rhinocerotoids.

Investigation of more specific aspects of morphological change in rhino skulls was beyond the scope of this study. There are difficulties associated with identifying these from multivariate results, and some details were certainly lost in the unused measurements. One limitation is the number and distribution of measurements across the morphology; generally smaller, more local measurements are more difficult to obtain. Another limitation results from correlations and redundancies of information in multiple measurements making interpretation of PC loadings difficult.

Because of the difficulty in interpreting morphology from multivariate results, there has been much interest in the use of landmark methods for the characterization of shape changes. Although the number and distribution of landmarks result in similar limitations for characterizing details of morphological change, the graphical nature of the methods makes them potentially easier to interpret. Currently, such methods are more developed for twodimensional rather than three-dimensional problems. Together, measurement and landmark methods provide a complimentary and more complete view of morphology. A preliminary study of evolutionary shape change in rhinoceros skulls was undertaken using the method of Thin Plate Splings (TPS). This is a recent computer implementation of Thompsonian transformation grids based on

landmarks (Bookstein, 1991). TPS was applied to the shape transformation from Subhyracodon to Rhinoceros (Indian rhino), as seen in lateral view. This problem was originally studied by Colbert (1935) who prepared the deformation grids manually (Bales, 1992). The results of TPS analysis (Figure 74) illustrate some specific changes in this particular phylogenetic path (within Rhinocerotidae). These changes include shortening of the distance between the orbit and nasal incision, elevation and rounding of the nasal region, conversion of the dorsal skull profile from relatively flat to concave (saddle-shaped), forward rotation of the occiput and expansion of the occipital region. Little deformation in the region of the mandibular body supports the notion stated earlier that the mandible is more evolutionarily conservative. The concave dorsal profile appears to be the result two separate effects: the elevation of nasals and the forward rotation of the occiput. The former is probably related to the presence of horns. Functionally, the occipital change may have two effects. The forward position of the occiput relative to the occipital condyles may allow a greater range of head extension. More significantly, occiput position effects the direction of pull of the temporalis muscle, a major muscle of mastication which lies in the temporal fossa. In Subhyracodon, many temporalis fibers would have a strong posterior component (retraction) to their pull. In Rhinoceros, much of the temporal fossa lies above the coronoid process

FIGURE 74. Thin-plate spline (TPS) analysis of shape transformation from Subhyracodon to Rhinoceros (Indian rhino). (a) Untransformed Subhyracodon with landmarks and reference grid. (b) Transformed grid showing the deformation required to map Subhyracodon landmarks on to a homologous set of landmarks on Rhinoceros (not shown; outline represents deformed Subhyracodon).

.

a.

resulting in a primarily vertical pull (elevation). Thus, one of the major changes in skull shape in the Rhinocerotidae may have been related to aspects of mastication, bite force, and diet.

Because only a subsample of the known rhinocerotoid genera was analyzed, the question arises about how idiosyncratic the results of this study might be. There remains the possibility that some of the unanalyzed fossil genera and lineages might have unique aspects to their biological variation and evolution. This is probably more true at the family level because the two main outliers (*Zaisanamynodon* and *Indricotherium*) are each members of different families and are outlying from Rhinocerotidae. It is clear that one commonality among families is the evolution of larger sizes. This phenomenon, generalized among all animals as Cope's Rule, is exemplified by the Rhinocerotoidea.

Taxonomic revision was not a goal of this study. Indeed, some stability and accuracy of classification was desired a priori. However, because many specimens are unallocated, especially at the species level, and because multivariate data has not played a significant role in current taxonomies, the morphometric results may be helpful in clarifying, supporting, or questioning the taxonomic affinities of specimens to each other and to existing taxa. For example, in subgeneric groups where unidentified specimens were grouped with specimens given species names, the provisional assumption is that they are the same species, in the absence of contrary information. In terms of sorting out potential

systematic relationships, the most interesting results are the morphometric affinities of the living rhinos with the fossils. The close similarity of morphology of *Rhinoceros* or *Dicerorhinus* to extinct forms may help to clarify the phylogenies of extant rhinos. The affinities also confirm the notion that these living rhinos are indeed "living fossils".

The many fossils which record the long history of the Rhinocerotoidea, provide a rare observation into the nature of morphological evolution in a well-defined mammalian clade. This natural sampling of the evolutionary process in rhinoceroses should continue to be a rich source for analyses of morphological, systematic, and evolutionary problems. Here, several specific quantitative methods were used to characterize the nature of variation in the skull and mandible using a limited sample of taxa and measurements. The application of many methods, both old and new, to cranial and postcranial elements, should continue to improve our understanding of rhinoceros evolution.

REFERÊNCES

- Albrecht G. H.: The craniofacial morphology of the Sulawesi macaques. Multivariate approaches to biological problems. Contributions to Primatology 13:1-151 (1978).
- Albrecht, G.H.: Kultivariate analysis and the study of form, with special reference to canonical variate analysis. American Zoologist 20:679-693 (1980).
- Albrecht, G.H.: Assessing the affinities of fossils using canonical variates and generalized distances. Human Evolution 5:5-11 (1992).
- Albrecht, G.H., and Miller, J.M.A.: Geographic variation in primates. A review with implications for interpreting fossils. IN: Kimbel, W.H. and Martin, L.B. editors, SPECIES, SPECIES CONCEPTS, AND PRIMATE EVOLUTION, pp. 123-161 (Plenum Press, New York 1993).
- Anderson, T.W.: MULTIVARIATE STATISTICAL ANALYSIS (John Wiley and Sons, New York 1958).
- Ashton, E.H., Healy, M.J.R., Oxnard, C.E., and Spence, T.F.: The combination of locomotor features of the primate shoulder girdle by canonical analysis. Journal of Zoology 147:406-429 (1965).
- Atchley, W.R., and Bryant, E.H.: MULTIVARIATE STATISTICAL METHODS: AMONG-CROUPS COVARIATION. BENCHMARK PAPERS IN SYSTEMATIC AND EVOLUTIONARY BIOLOGY VOL.2. (Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania 1975).
- Bales, G.S.: Thin-plate epline analysis of shape differences between a primitive and modern rhinoceros. The Paleontological Society Special Publication No.6, Fifth North American Paleontological Convention, Abstracts and Program (1992).
- Bartlett, M.S.: Multivariate statistics. IN: Waterman T.H. and Morowitz, H.J. editors, THEORETICAL AND MATHEMATICAL BIOLOGY, pp. 201-224 (Blaisdell Press, New York 1965).
- Bilsborough, A.: Multivariate analysis and cranial diversity in plio-pleistocene hominids. IN: van Vark, G.N. and Howells, W.W. editors, MULTIVARIATE STATISTICAL METHODS IN PHYSICAL ANTHROPOLOGY, pp. 351-375 (D. Reidel, Dordrecht, Netherlands 1984).

- Blackith, R.E.: Morphometrics. IN: Waterman, T.H. and Morowitz, H.J. editors, THEORETICAL AND MATHEMATICAL BIOLOGY, 225-249 (Blaisdell Press, New York 1965).
- Blondel, J., Vuilleumier, F., Marcus, L.F., and Terouanne, E.: Is there ecomorphological convergence among Mediterranean bird communities of Chile, California, and France. In: Hecht, M.K., Wallace, B., and Prance, G.T. editors, EVOLUTIONARY BIOLOGY VOL. 18, pp.141-213 (Plenum Press, New York, 1984).
- Bookstein, F.L., Chernoff, B., Elder, R.L., Humphries, J.M., Jr., Smith, G.R., and Strauss, R.E.: MORPHOMETRICS IN EVOLUTIONARY BIOLOGY. THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA SPECIAL PUBLICATION 15 (1985).
- Bookstein, F.L.: MORPHOMETRIC TOOLS FOR LANDMARK DATA. GEOMETRY AND BIOLOGY. (Cambridge University Press, New York 1991).
- Bryant, E.H., and Atchley, W.R.: MULTIVARIATE STATISTICAL METHODS. WITHIN-GROUPS COVARIATION. BENCHMARK PAPERS IN SYSTEMATIC AND EVOLUTIONARY BIOLOGY VOL.1. (Dowden, Hutchinson, and Ross, Stroudeburg, Pennsylvania 1975).
- Campbell, N.A., and Atchley, W.R.: The geometry of canonical variate analysis. Systematic Zoology 30:268-280 (1981).
- Chapman, R.E., Galton, P.N., Sepkoski, J.J., Jr., and Wall, W.P.: A morphometric study of the cranium of the pachycephalosaurid dinosaur Stegosaurus. Journal of Paleontology 55:608-618 (1981).
- Clark, J.: The stratigraphy and paleontology of the Chadron Formation in the Big Badlands of South Dakota. Annals of the Carnegie Museum 25:261-351 (1937).
- Colbert, E.H.: Siwalik mammals in the American Museum of Natural History. Transactions of the American Philosophical Society Ser. 2 26:1-401 (1935).
- Cooley, W.W., and Lohnes, P.R.: MULTIVARIATE DATA ANALYSIS. (John Wiley and Sons, New York 1971).
- Cooper, C.F.: Paraceratherium bugtiense, a new genum of Rhinocerotidae from the Bugti Hills of Baluchlstan. Annals of the Magazine of Natural History Ser.8 8:711-717 (1911).

1

Cooper, C.F.: Baluchitherium osborni (? syn. Indricotherium turgaicum, Borrissyak). Philosophical Transactions of the Royal Society London B. 212:35-66 (1923).

- Cooper, C.F.: On the skull and dentition of *Paraceratherium* bugtiense: a genue of aberrant rhinoceroses from the Lower Miocene deposits of Dera Bugti. Philosophical Transactions of the Royal Society London B 212:369-394 (1924).
- Cooper, C.F.: The Extinct rhinoceroses of Baluchistan. Philosophical Transactions of the Royal Society London B 223:569-620 (1934).
- Davis, J.C.: STATISTICS AND DATA ANALYSIS IN GEOLOGY. (John Wiley and Sons, New York 1973).
- Flury, B., and Riedwyl, H.: MULTIVARIATE STATISTICS. (Chapman and Hall, London 1988).
- Foote, M.: Analysis of morphological data. IN: Gilinsky, N.L. and Signor, P.W. editors, ANALYTICAL PALEOBIOLOGY. SHORT COURSES IN PALEONTOLOGY NO. 4. pp. 59-86 (The Paleontological Society 1991).
- Freeman, P.W., and Lemen, C.A.: Morphometrics of the family Emballonuridae. Bulletin of the American Museum of Natural History 206:54-61 (1991).
- Gazin, C.L.: Mammalian faunal zones of the Bridger Middle Eocene. Smithsonian Contributions to Paleobiology No. 26 (1976).
- Goddard, J.: Age criteria and vital statistics of a black rhinoceros population. East African Wildlife Journal 8:105-123 (1970).
- Gower, J.C., and Ross, G.J.S.: Kinimum spanning trees and and single linkage cluster analysis. Applied Statistics 18:54-64 (1969).
- Granger, W., and Gregory, W.K.: A revised restoration of the skeleton of Baluchitherium, gigantic fossil rhinoceros of central Asia. American Museum Novitates 787:1-3 (1935)
- Granger, W., and Gregory, W.K.: Further notes on the gigantic extinct rhinoceros, *Baluchitherium*, from the Oligocene of Mongolia. Bulletin of the American Museum of Natural History 72:1-Bl (1936).

Green, P.E.: MATHEMATICAL TOOLS FOR APPLIED MULTIVARIATE ANALYSIS. (Academic Press, New York 1976).

- Green, P.E.: ANALYSING MULTIVARIATE DATA. (Dryden Press, Hinsdale, Illinois 1978).
- Groves, C.F.: Geographic variation in the Black Rhinoceros Diceros bicornis (L., 1758). Zeitschrift fur Saugetierkunde 32:267-276 (1967).
- Groves, C.P.: Ceratotherium simum. Mammalian Species No.8 pp. 1-6 (American Society of Mammalogists 1972).
- Groves, C.P.: Taxonomic notes on the White Rhinoceros Ceratotherium simum (Burchell, 1871). Sonderdruck aus Saugetierkundliche Mittleilungen 23:200-212 (1975).
- Groves, C.P.: Phylogeny of the living species of Rhinoceros. Zeitschrift fur Zoologische und Evolutionsforschung 21:293-313 (1983).
- Groves, C.P., and Chakraborty, S.: The Calcutta collection of Asian rhinoceros. Records of the Zoological Survey, India 80:251-263 (1983).
- Groves, C.P., and Guerin, C.: Le Rhinocaros sondaicus annamiticis (Mammalia, Periasodactyla) D'Indochine: distinction taxonomique et anatomique; relations phylétiques. Geobios 13:199-208 (1980).
- Groves, C.P., and Kurt, K.: Dicerorhinus sumatrensis. Mammalian Species No.21 pp. 1-6 (American Society of Mammalogists 1972).

Hanson, C.B.: Telataceras radinskyi, a new primitive rhinocerotid from the Late Eccene Clarno Formation, Oregon. IN: Prothero, D.R., and Schoch, R.M. editors, THE EVOLUTION OF PERISSODACTYLS. Oxford Monographs On Geology and Geophysics No. 15 pp. 379-398 (Oxford University Press, New York, 1989).

Harris, R.J.: MULTIVARIATE STATISTICS. (Academic Press, New York 1975).

Harrison, J.A., and Manning, E.M.: Extreme carpal variability in Teleoceras (Rhinocerotidae, Mammalia). Journal of Vertebrate Paleontology 3:58-64 (1983).

Hooijer, D.A.: Phylogeny of the rhinocerotids of Africa. Annals of the South African Museum 71:167-168 (1976).

Hooijer, D.A.: Rhinocerotidae. In: Maglio, V.J., and Cooke, H.B.S. editors. EVOLUTION OF APRICAN MAMMALS, pp. 371+378 (Harvard University Press, Boston 1978).

Jarman, P.: Mating sytem and sexual dimorphism in large, terrestrial, mammalian herbivores. Biological Reviews 58:485-520 (1983).

- Johnson, R.A., and Wichern, D.W.: APPLIED MULTIVARIATE STATISTICAL ANALYSIS. (Prentice Hall, Engelwood Cliffs, New Jersey 1982).
- Jolicoeur, P.: The degree of robustness in Martes americana. Growth 27:1-27 (1963).
- Jolicoeur, P, and Mosimann, J.E.: Size and shape variation in the painted turtle. A principal components analysis. Growth 24:339-354 (1963).
- Kingdon, J.: EAST AFRICAN MAMMALS. AN ATLAS OF EVOLUTION IN AFRICA. VOLUME III PART B. (LARGE MAMMALS). (University of Chicago Press, Chicago 1979).
- Kurten, B.: Sexual dimorphism in fossil mammals. In: Westermann, G.E.G. editor. SEXUAL DIMORPHISM IN FOSSIL METAZOA AND TAXONOMIC IMPLICATIONS. International Union of Geological Sciences Series A, No. 1, pp. 226-233 (Stuttgart, Germany 969).
- Laurie, W.A., Lang, E.M., and Groves, C.P.: Rhinoceros unicornis. Mammalian Species No. 211 pp.307-341 (American Society of Mammalogista 1982).
- Lucas, S.G., Schoch, R.M., and Manning, E.: The systematics of Forstercooperia, a Middle to Late Eccene hyracodontid (Perissodactyla: Rhinocerotoidea) from Asia and Western North America. Journal of Paleontology 55:826-841 (1981).
- Lucas, S.G., and Sobus, J.C.: The systematics of the indricotheres (MaxMmalia, Perissodactyla). In: Prothero, D.R., and Schoch, R.M. editors, THE EVOLUTION OF PERISSODACTYLS. Oxford Honographs On Geology and Geophysics No. 15 pp. 358-378 (Oxford University Press, New York 1989).

- Marcus, L.F.: Traditional morphometrics. In: PROCEEDINGS OF THE HICHIGAN MORPHOMETRICS WORKSHOP. Special Publication Number 2, pp. 77-122 (University of Michigan Museum of Zoology, Ann Arbor, Michigan 1990).
- Marcus, L.F., Bello, E., Valdecases, A.: CONTRIBUTIONS TO MORPHOMETRICS. (Museo Nacional de Ciencias Naturales, Madrid, Spain 1993).
- Matthew, W.D.: Third contribution to the Snake Creek Fauna. Bulletin of the American Museum of Natural History 50:150-153 (1924).
- Matthew, W.D.: Critical observations on the phylogeny of rhinoceroses. University of California Publications in Geological Sciences 20:1-9 (1931).
- Matthew, W.D.: A review of the rhinoceroses with a description of Aphelops material from the Pliocene of Texas. University of California Publications in Geological Sciences 20:411-480 (1932).
- McKenna, M.C.: Was Europe connected directly to North America prior to the Middle Bocene? IN: Dobzhansky, T., Hecht, M.K., and Steere, W.C. editors, EVOLUTIONARY BIOLOGY VOL. 6 pp. 179-188 (Appleton-Century-Crofts, New York 1972).
- Mckenna, M.C.: Fossil mammals and Early Eocene north Atlantic land continuity. Annals of the Missouri Botanical Gardens 62:335-353 (1975).
- McNaughton, S.J.: Grassland-herbivore dynamics. In: Sinclair, A.R.E. and Norton-Griffiths, M. editors. SERENGETI. DYNAMICS OF AN ECOSYSTEM, pp. (University of Chicago Press, Chicago 1979).
- Meester, J., and Setzer, H.W.: THE MAMMALS OF AFRICA. AN IDENTIFICATION MANUAL. (Smithsonian Institution Press, Washington, D.C. 1971).
- Morrison, P.F.: MULTIVARIATE STATISTICAL METHODS. (McGraw-Hill, New York 1967).
- Neff, N.A., and Marcus, L.F.: A SURVEY OF MULTIVARIATE METHODS FOR SYSTEMATICS. (Privately published, Naw York 1980).

Nowak, R.M., and Paradiso, J.L.: WALKER'S MAMMALS OF THE WORLD 4TH ED. VOL.2. (Johns Hopkins University Press, Baltimore 1983).

Osborn, K.F.: The extinct rhinoceroses. Memoirs of the American Museum of Natural History 1:75-164 (1898).

Osborn, H.F.: New Miocene rhinoceroses with revision of known species. Bullstin of the American Museum of Natural History 20:307-326 (1904).

- Osborn, H.F.: The extinct glant rhinoceros Saluchitherium of western and central Asia. Natural History 23:209-228 (1923).
- Obborn, H.F.: Cadurcotherium ardynense, Oligocene, Mongolia. American Museum Novitates 147:1-4 (1924).
- Oxnard, C.E.: The functional morphology of the primate shoulder as revealed by comparative anatomical, osteometric, and discriminant function techniques. American Journal of Physical Anthropology 26:219-240 (1967).
- Oxnard, C.E. Mathematics, shape, and function: a study in primate anatomy. American Scientist 57:75-95 (1969).
- Peterson, O.A.: The American diceratheres. Memoirs of the Carnegie Museum 7:399-477 (1920).
- Pimentel, R.A.: MORPHOMETRICS. THE MULTIVARIATE ANALYSIS OF BIOLOGICAL DATA. (Kendall/Hunt, Dubuque, Iowa 1979).
- Prothero, D.R.: The rise and fall of the American rhino. Natural History 8:26-33 (1987).
- Prothero, D.R.: Rhinocerotidae. In: K.M. Scott, L. Jacobs, and C. Janis, eds., EVOLUTION OF THE TERTIARY MAMMALS OF NORTH AMERICA. (Cambridge University Press, New York in press a).
- Prothero, D.R.: Hyracodontidae. In: K.M. Scott, L. Jacobs, and C. Janis, eds. EVOLUTION OF THE TERTIARY MAMMALS OF NORTH AMERICA. (Cambridge University Press, New York in press b).
- Prothero, D.R., Guerin, C., and Manning, E.: The history of the Rhinocerotoidea. IN: Prothero, D.R., and Schoch, R.M. editors, THE EVOLUTION OF THE PERISSODACTYLS. Oxford Monographs on Geology and Geophysics No. 15. (Oxford University Press, New York 1989).

- Prothero, D.R., Manning, E., and Hanson, C.B.: The phylogeny of the Rhinocerotoidea (Mammalia, Perissodactyl). Zoological Journal of the Linnean Society 87:341~366 (1986).
- Prothero, D.R., and Manning, E.: Miocene rhinoceroses from the Texas Gulf Coastal Plain. Journal of Paleontology 61:388-423 (1987).

Prothero, D.R., and Sereno, P.C.: Allometry and paleoecology of Medial Miocene rhinoceroses from the Texas gulf coastal plain. Paleobiology 8:16-30 (1982).

Radinsky, L.B.: The families of the Rhinocerotoidea (Mammalia, Perissodacty1a). Journal of Mammalogy 47:631-639 (1966).

Radinsky, L.H.: A review of the rhinocerotoid family Hyracodontidae (Perissodactyla). Bulletin of the American Museum of Natural History 136:2-45 (1967a).

Radinsky, L.B.: Hyrachyus, Chasmotherium, and the early evolution of helaletid tapiroids. American Museum Novitates 2313:1-23 (1967b).

Ralls, K.: Mammals in which females are larger than males. Quarterly Review of Biology 51:245-276 (1976).

ł

í

Reeve, E.C.R.: A statistical analysis of taxonomic differences within the genus Tamandua Gray (Xenarthra). Proceedings of the Royal Society London A. 111:279-302 (1941).

Reyment, R.A., Blackith, R.E., and Campbell, N.A.: MULTIVARIATE MORPHOMETRICS. (Academic Press, New York 1984).

Reyment, R.A.: MULTIDIMENSIONAL PALAEOBIOLOGY. (Pergamon Press, Oxford, England 1991).

Rohlf, F.J.: Morphometrics. Annual Review of Ecology and Systematics 21:299~316 (1990).

Rohlf, F.J., and Bookstein, F.L. editors: PROCEEDINGS OF THE MICHIGAN MORPHOMETRICS WORKSHOP. Special Publication Number 2. (University of Michigan Museum of Zoology, Ann Arbor 1990).

Rohlf, F.J., and Marcus, L.F.: A revolution in morphometrics. Trends in Ecology and Evolution 8:129-132 (1993).

Russell, L.S.: Tertiary mammals of Saskatchewan Part VI: The Oligocene rhinoceroses. Royal Ontario Museum Publications in Life Sciences 133:1-58 (1982).

- Schnell, G.D.: A phenetic study of the suborder Lari (Aves). I. Methods and results of principal components analyses. Systematic Zoology 19:35-57 (1970).
- Simpson, G.G.: Evolution, interchange, and resemblance of the North American and Eurasian Cenozoic mammalian faunas. Evolution 1:218-220 (1947).
- Sinclair, W.J.: Hyracodons from the Big Badlands of South Dakota. Proceedings of the American Philosophical Society 61:65-79 (1922).
- Sneath, P.H.A., and Sokal, R.R.: NUMERICAL TAXONOMY. THE PRINCIPLES AND PRACTICE OF NUMERICAL TAXONOMY. (W.H. Freeman, San Francisco 1973).
- Tanner, L.G.: A new rhinoceros from the Nebraska Miocene. Bulletin of the University of Nebraska State Museum 8:395-412 (1969).
- Tattersall, I., Delson, E., and van Couvering, J. editors: ENCYCLOPEDIA OF HUMAN EVOLUTION AND PREHISTORY. (Garland Publishing, New York 1988).
- Timm, N.H.: MULTIVARIATE ANALYSIS. (Brooks/Cole Publishing, Monterey, California 1975).
- Troxell, E.L.: A study of Diceratherium and the diceratheres. American Journal of Science 202:197-209 (1921).
- Voorhies, M.R., and Thomasson, J.R.: Fossil grass anthoecia within Miocene rhinoceros skeletons: diet in an extinct species. Science 206:331-333 (1979).
- Wall, W.P.: Cranial evidence for a proboscis in Cadurcodon and a review of snout structure in the family Amynodontidae (Perissodactyla, Rhinocerotoidea). Journal of Paleontology 54:968-977 (1980).
- Wall, W.P.: The genus Amynodon and its relationship to other members of the Amynodontidae (Perissodactyla, Rhinocerotoidea). Journal of Paleontology 56:434-443 (1982).
- Wall, W.P.: The phylogenetic history and adaptive radiation of the Amynodontidae (Perissodactyla, RhinOcerotoidea). IN: Prothero, D.R., and Schoch, R.M. editors, THE EVOLUTION OF PERISSODACTYLS. Oxford Monographs on Geology and Geophysics No. 15. pp. 341-354 (Oxford University Press, New York 1989).

Wayne, R.K.: Limb morphology of domestic and wild canids: the influence of development on morphologic change. Journal of Morphology 187:301-319 (1986).

- Weishampe1, D.S., and Chapman, R.E.: Morphometric study of Plateosaurus from Trossingen (Baden-Wurtemberg, Federal Republic of Germany) IN: Carpenter, X., and Currie, P.J. editors, DINOSAUR SYSTEMATICS. APPROACHES AND PERSPECTIVES. pp. 43-52. (Cambridge University Press, New York 1981).
- West, R.M.: Eocene (Wasatchian through Duchesnean) biochronology of North America. IN: Woodburne, M.O. editor, CENO2OIC MAMMALS OF NORTH AMERICA. GEOCHRONOLOGY AND BIOSTRATIGRAPHY, pp. 77-117 (University of California Press, Berkeley 1987).
- Whitten, A.J., Damanik, S.J., Anwar, J., and Hisyam, N.: THE ECOLOGY OF SUMATRA. (Gadjah Mada University Press, Yogyakarta, Indonesia 1987).
- Winame, M.C.: A quantitative study of North American fossil species of the genus Equus. IN: Prothero, D.R., and Schoch, R.M editors, THE EVOLUTION OF PERISSODACTVLS. Oxford Monographs on Geology and Geophysics No. 15 pp. 262-297. (Oxford University Press, New York, 1989).
- Wood, H.E., II,: *Hyracodon petersoni*, a new Cursorial rhinoceros from the Lower Oligocene. Annals of the Carnegie Museum of Natural History 61:315-319 (1926).
- Wood, H.E., II,: American Oligocene rhinoceroses a postscript. Journal of Mammalogy 10:63-75 (1929).
- Wood, H.E., II,: Lower Oligocene rhinoceroses of the genus Trigonias. Journal of Mammalogy 12:414-428 (1931).
- Wood, H.E., II,: Revision of the Hyrachyidae. Bulletin of the American Museum of Natural History 67:182-295 (1934).
- Wood, H.E., II,: Trends in rhinoceros evolution. Transactions of the New York Academy of Sciences Ser. II. 3:83-96 (1941).
- Woodburne, M.O. editor : CENOZOIC MAMMALS OF NORTH AMERICA. GEOCHRONOLOGY AND SIOSTRATIGRAPHY. (University of California Press, Berkeley, California 1987).

Wortman, J. L.: Studies of Eccene mammalia in the Marsh collection, Peabody Museum. Pt.1: Carnivora. American Journal of Science 4th ser. 11:333-348 (19D1).

Yatkola, D., and Tanner, L.G.: Brachypotherium from the Tertiary of North America. Occasional Papers 77:1-11 (University of Kansas Museum of Natural History, Lawrence 1979).

Zukowsky, Von Ludwig: Die systematik der Gattung Diceros Gray, 1821. Der Zoologische Garten (N.F.) 30:1-179 (1964).

APPENDIX 1.

SPECIMEN IDENTIFICATION

Specimens used in this study are listed by number in ascending order with skulls listed first. Codes represent the first four letters of the subgroup codes listed in Tables 2 and 3. Identical specimen numbers in both skull and mandible lists indicate a matched skull-mandible pair.

MUSEUM ABBREVIATIONS

÷

İ

:

i

1

1

ł

AMNH - American Museum of Natural History DNNH - Denver Museum of Natural History FAM - Fricke Collection of the American Museum of Natural History FMNH - Field Museum of Natural History KUVP - University of Kansas Museum of Natural History MCZ - Museum of Comparative Zoology, Harvard University USNM - National Museum of Natural History

SKULL SPECIMENS

Code	Spec.#	Huseum #	Genus Spec.	# Auseum #
HYRA	4	AMACH 11651	SUB# 35	ANNH 38995
HYRA	5	AMNH 13756	SUSH 38	ANNIN 50-211-3667
HYRA	6	ANNH 12364	suna 46	AMN# 54763
HYRA	10	ANNH 12371	UNIC 48	AMNH 54454
NYRA	12	AMMH 107978	UNIC 53	AHNH 54455
JAVA	17	AMMH 43	UNIC 55	AMNN 35759
JAVA	18	ANNH 146718	CERA 59	AMNN 51856
SI,MA	21	AMNK 81892	SUBN 63	AMMH 1144
CERA	22	AMMH 51854	SUBH 64	AMNH 12295
TRIG	23	ANNH 12389	CERA 99	AMDNH [cabinet 940]
SUBH	27	AMMH 522	CERA 101	ANNH 51860
SUBH	28	ANNH 529	CERA 102	AMNH 51861
SUBH	29	AMNH 1489	CERA 103	AMMN \$1859
SURM	31	ANNH 1131	CERA 104	ANNH 51857
SU® H	32	FAM 112162	ANYN 111	AMN# 13189

Genus	Spec. #	Museum V
NYCO	116	FAN 112168
HYCO	117	AMNH 12296
HYCD	150	AMNH 38996
QACE	124	AMMH 1000
FORS	127	AMNH 26037
FORS	130	AMNH Z1608
CERA	141	ANNH 51858
CERA	142	ANNH 51855
NENC	143	FAM 112228
BICO	147	AMNH 90055
0018 018	149 150	AMMH 118602
8100	151	AMNH 85175 AMNH 85181
81CD	152	ANNH 85176
8100	155	AMNH 27755
BICO	157	ARNH 54311
MENO	158	ANNH 112255
9100	161	ANNY 27758
8100	166	AMNH 85174
8100	167	AMNH 85179
8100	168	AMNH 85178
8100	169	ANNN 85180
8120	170	AMNH 85181
NENO	171	AMNH 14236
NEND	172	FAM 112244
01 CO	174	ANNH 85182
81.00	176	ANNH 90204
81CO	177	ANNH 54383
6100	178	AMAH 34739
81CO	181	AMNH 34742
NENO	186	FAN 112245
MENO	187	FAM 112250
KENO	158	FAM 112254
MENC	195	AMNH Ishelf 3.133)
MENO	196	AMNH Ishelf 3,133)
MENO	197	ANNH 27866
NENO	198	ANNH [shelf 3.131]
MENO	200	AMNH 86220
MENO	201	AMMH 14213
BICE	203	FAM 112194
3010	204	FAN 112187
APHE	205	AMNH 95544
SLIBH SLIBH	229 229	AMMH 1124 Ammh 541
5U8N	231	AMAR 341 AMAH 1137
SUBN	233	ANNH 1121
		ngerni itti i

Genus	Spec. #	Museum #
SU(8 M	236	AMNH 11865
3D1CE	239	ANNH 7324
DICE	240	FAN 112176
GACE	245	ANNH 26215
TELE	255	AMRH 115297
INDR	258	AMNH 18650
DICE	266	AMNN 82591
91CE	267	ANNH Lusk 119-707
APHE	268	FAN 114313
APKE	269	AMNH Ains. 108
APHE	270	FAN 114314
APHE	271	AMNH 104624
APHE	272	AMNH 114315
PERA	276	AMH 108338
SUBH	278	ANN:H 1122
TELE	281	FAN 114588
TELE	284	FAM 114590
TELE	2 87	FAN 114547
TELE	291	FAN 114577
6100	295	MCZ 27135
CERA	298	MCZ 24917
JAVA	299	MCZ 27324
UNIC	303	MC2 26269
0118	305	NCZ 15695
TELE	511	FAN 114526
TELE	315	FAM 114526
TELE	313	FAN 114523
TELE	314	FAM 104209
TELE	315	FAN 114540
TELE	316	FAM 114538
TELE	317	FAN 42979
TELE	318	FAM 42978
PERA	324	FAN 109360
PERA	326	FAM 114409
PERA	327	AMNH 8380
PERA	329	FAN 114396
APNE	330	FAN 114317
APHE	334	FAN 114321
APHE	335	FAM 114327
TELE	341	FAM 114474
TELE	342	FAM 114416
TELE	344	FAM 144422
UNIC	348	USNM 54587
JAVA	351	USNN 156507
CERA	360	USNN 199709
CERA	366	USNM 164592

- - -

Genus	Spec. #	
CERA	367	USNM 164593
CERA	368	USNM 164594
CERA	369	USNN 164595
CERA	370	USNN 164596
CERA	371	USIN 164597
CERA	372	USNM 164598
BICO	379	USNM 161924
BICO	382	USNN 162931
BICO	384	USIN 162933
8100	386	USINK 162935
8100	367	USNN 162937
BICO	388	USNM 162936
BICO	389	USIM 162939
BICO	390	USIN: 162938
8100	393	USNM 162943
8100	394	USHM 162942
8 ICO	395	USHN 162945
81CO	396	USIM 162944
BICO	397	USNM 162946
BICO	398	USNM 162948
B1C0	402	USNK 182018
0218	404	USNA 182029
8100	405	USNN 182046
BICO	407	USNH 182194
BICO	408	USNN 199068
BICO	409	USNN 182195
8100	410	USNN 199067
BICD	411	USMM 199069
BICO	412	USHM 199070
BICO	414	USNN 199522
8100	418	USNM 560004
TRIG	422	USNM 15666
TELE	424	KUVP (mounted)
CINIC	426	FMNH 25707
UNIC	427	FMNH 25708
UNIC	430	FRNK 57822
CERA	431	FMMR 29174
8100	436	FMAH 34278
BICO	437	FNNH 85429
8100	441	FINNE 127849
MENO	452	FRAM P15150
KENO	453	FMAN 012850
MENO	454	FMNH UC1355
MENO	456	FRINH UC1352
MENO	457	FRNH P15146
DICE	458	FMWH 912018

Genus	Spec. #	Museum #
•••••		
HYCD	460	FMNH P12011
AMYN	461	FMNK P12184
TRIG	462	DNNK 1746
TRIG	463	DHMN 1850
TRÍG	468	DANKH 1029
TRIG	469	DNNH 421
TRIG	470	DMMH 1056
TRIG	471	DMMH 860 g
TRIG	472	DHMH 420 M
TRIG	475	DMNK 1053
TRIG	476	DMMH 414
TR I G	490	DINKH 866
TRIG	492	DMNH 878 G
TELE	496	DMNN 309
TELE	497	DANNA 715

MANDIBLE SPECIMENS

Genus Spec. # Mus. # Genus Spec. # Nuseum # ---------HYRA ANNH 11651 4 910 HYRA 6 AMHH 12364 810 HYRA 8 ANNH 12355 HE PENE 15 ANNA 1110 810 JAVA 17 AMMH 43 81(JAVA AMNH 146718 18 BIC SUMA 21 ANNH 81892 910 CERA 22 AMNH 51854 810 SUBM 26 AMNH 529 810 SUGH 29 AMNH 1469 ME) SUBH 32 FAR 112162 810 SUSH 33 FAR LUSK 0-117-2113 810 35 SUBH AME8 38995 810 SUBM 38 AMNH SD-211-3667 8(0 SUBH 40 ANNH SD-18-444 BIC SLIGH 43 ANNH 1134 MEN SUBH 44 AMH 1128 MEN SUMA 46 AMNH 54763 MEN UNIC 48 AMNH 54454 MEN UNIC 53 AMNH 54455 KE UNIC 55 ANNH 35759 MEN CERA 59 AMN# 51856 AC SUBH 65 AMNH 454-22186 APP CERA 99 AMNH [cabinet 940] API CERA 101 AMNH S1860 AP CERA 102 ANNH 51861 APP CERA 103 ANNR 51859 ACE CERA 104 ANNH S1857 APH ZAIS 107 ANNH 26102 AP AMNH 99381 ZAIS 114 APH NYCO 117 AMMH 12296 APH HYCO 120 AMNH 38996 1EL ACER 126 ANNH 1000 1EL FORS 126 AMMH 20286 TEL FORS 128 AMNH 26660 TEL FORS 129 ANRH 26666 TEL MENO FAR 116063 132 TĘĽ CERA 141 AMINH 51858 TEL CERA 142 ANNH 51855 ŤEL, 81C0 167 ANNH 90055 TEL 6100 149 ANNN 118602 TEL 8100 150 ANNH 85175 SUB 81CO 151 AMNH 85181 SUE

		HUJCUH V
œ	155	ANNH 27755
CO	157	AMMH 54311
NO	159	ANNN 112255
co	161	AMNH 27758
co	166	AMMH 85174
00	167	AMM 85179
00	168	AMNH 85178
CO	169	APRIN 85180
co	170	AMNH 85181
NO	172	FAN 112244
co	174	AMNN 85182
co	176	ANNH 90204
cū	177	AMMH 54383
co	178	AMNH 34739
CO 🛛	181	AMNH 34762
NO	186	FAN 112245
ND	189	ANNH Agate E
ND	190	AMNH Agate L
ND	191	AMNH Agate M
NO:	192	AMNH Agate AA
ND	194	AMNH 56218
ER	206	AMN8 26218
HE	207	FAM 114647
HE	208	AMNH 114650
HE	209	FAM 114651
ĸЕ	211	FAM 114672
ER	212	AMNH 98036
NE	213	FAM 114760
KE	214	FAN 114826
ME	215	FAM 114840
HE	216	AMNH FLA186-2725
LE	217	FAM 115266
LE	218	FAM 115267
ĻE	219	FAM 115275
LE	221A	FAM 115618
LE	221B	APHNK 13874
LE	223	FAN 115782
LE	224	FAN 115951
ĻĒ	225	FAM 115958
ĻE	226	FAM 115880
LE	227	FAM 115967
8.14	231	AMHH 1137
BH	232	AMNH 543

Genus	Spec. #	Museu		Genus	Spec. #	Museum #
SUBH	234	ANNH	•	AP HE	339	FAN 114357
DICE	241		(box 117 - #710)	PERA	34D	FAM 114407
ACER	245		26215	TELE	346	FAN 114436
TÊLE	249		18924	TELE	347	FAN 114437
TELE	250		21496	UNIC	348	USNM 545847
TELE	253		115026	UNIC	349	US## 545848
TELE	254		115079	CERA	360	USM 199709
TELE	255		115297	CERA	366	USIM 164592
INCR	258		18650[see footnote]	CERA	367	USNM 164593
TELE	259		115370	CERA	368	USNM 164594
TELE	260		115371	CERA	369	USNM 164595
TELE	261		10878	CERA	370	USNN 164596
TELE	262		11509	CERA	371	USNN 164597
TELE	263		115582	BICD	379	USNM 161924
TELE	264		115252	8100	382	USNN 162931
APHE	273	-	Ains.74-2	8100	384	USNM 162933
APHE	274		104623	8100	366	USMR 162935
APHE	275		FLA 166-2565	BICO	387	USHM 162937
PERA	276		108338	6100	388	USHM 162936
SUBN	279		1109	6100	389	USNM 162939
HYCO	290		14433	8100	390	USMM 162938
TELE	281	FAN	114588	8100	392	USNM 162941
TELE	282		114585	8100	393	USNM 162943
TELE	283		114597	8(CD	394	USNM 162942
TELE	286		2623	8100	396	USNM 162944
TELE	290	AMNH		8100	397	USHN 162766
TELE	292		114570	8100	398	USMM 162948
8100	294		41993	B1CO	402	USNN 182018
81C0	295		27135	0110	405	USMM 182046
ÇE RA	29 7		34850	8100	407	USMM 182194
CERA	298	-	24917	8100	408	USNM 199068
AVA	299	RCZ	27324	8100	410	USNN 199067
UNIC	303	NC2	26269	6100	411	USN# 199069
8100	305	NÇ2	15695	81CO	412	USNM 199070
TËLE	312	FAN	114526	B100	414	USNM 199522
TELE	313	FAN	114523	8100	418	USMM 540004
TËLE	314	FAM	104209	TREG	421	USNM 4815
PERA	319	FAH	114310	TRIG	423	USNN 5667
APHE	322	EAM	114358	TELE	424	KUVP (mounted)
HYRA	323	FAM	12664	SUBH	425	KUVP 2787
PERA	324	FAM	109360	UNIC	426	FMNH 25707
PERA	325	FAM	114412	DINU	427	FMAN 25708
APHE	330	EAN	114317	UNIC	429	FMN8 57639
APHE	331	FAN	114319	CERA	431	FMNH 29176
APHE	333	FAH	114322	81.00	436	FMNH 34278

Genus	Spec. #	Nuseum #
RICO	441	FMNH 127849
8100	443	FMAH 127851
DICE	451	FNNH UC385
MEND	454	FMNR UC1355
MEND	457	FMNH P15146
SUBH	458	FIOR P12018
NYCO	460	FNNN 912011
TRIG	470	DMNH 1510
TRIG	474	OMMH F-126
TRIG	477	DMNK 2712
TRIG	479	OMNK 2670
TRIG	480	DMNH 412
TRIG	481	DMNH 2695
TRIG	483	DMMH 891
TRIG	484	OMMH 2674
TRIG	485	DRNH 1037
TRIG	486	DMNH 2724
TRIG	491	DHNH 1029
PERA	494	57 HKKD

Note: AMNH 18650 is a cast.

APPENDIX 2.

DATA SHEET

Data form used for each specimen (shown reduced in size). Measurements were taken from top-to-bottom, left-to-right. Ancillary data included genus/species/subspecies designations (G(S\S), collection information (COLL.), museum identification (MUS.), field notes (FIELD), male/female (M\F), and localitystratigraphy (LOCAL). Teeth present and first molar wear stage were also recorded (p^1 = first deciduous premolar; P = first permanent premolar).

1915: US:		XOLL: FIELD:	GEDATE: MILF
DCAL:			
	224 22 M M M M		
woa. ¦ ¦ ∂ p ' β	[*] ค [*] ค'ค [*] ค*	العرامي العرامي	
CRANIUM			MANDIBLE
OXTP		BIPG	CNIP2
CXPz	CXLE	CNPG	CPP2
0CP2		02043	
CXOR	BICN	OKAE	CNM3
BICIA		AEP2	CPM3
812Y		ASOR	- CPRH
2424	MOXE	AFAE	- RAMO
POR6	FOMH	MGAE	- RAMH
TFOS	FOMW	MOPL	- ANGD
TFLN	ÊNDO I	PLP2	- ANGW .
ZYHT		PLOR	- CPCP
ZMIN		MOKGT	- MCNA
FHM1		MXMO	- MNGT
TFHT		UM1L	
UFHT_		UM1W	
UFHT]		TERB	
ORTP		M3M3	
ORNA I		M1M1	
BANAS L		P2P2	BIM1
ĐINA .		PGLH	BIP2
OFINIX		TERH	P2TP
PZMOX		PALO	
INFH		PILE	BOME
INEW			BDHT
			8088
			SYMR.
			SYMW

1

1

APPENDIX 3.

MEASUREMENT DEFINITIONS

APPARATUS

Roman numerals indicate instrument (caliper) type or measurement aid (plexiglas); lowercase letters refer to caliper subparts or to different aids. The numerals and letters are referred to in the descriptions of measurements.

I. Fowler 12" Digital Caliper.(Swise). This allows outside measurements only using longer squared-tip jaws (I.a) or shorter pointed-tip jaws (I.b). The metric range is 0 - 369 mm, accurate to 0.01 mm.

II. Fowler (Sylvac) Ultracal II 6" Digital Caliper. (Swiss). Includes longer, pointed jaws for outside measurement (II.a), shorter, pointed jaws for inside diameters (II.b), and a depth gauge (II.c). The metric range is 0 - 153 mm, accurate to 0.01 mm.

III. GPM Anthropometer. (Swims). A specialized caliper designed for taking human momatic measurements. Jaws are long (22cm) and the tip-to-tip measurement range is D = 210 cm, accurate to 0.5 mm.

IV. Helios 12" Dial Caliper.(West German). Similar to I, but nondigital. Includes depth gage (IV.a) with maximim depth of 33 cm, accurate to 0.05 mm.

V. Plexiglas Plates. Rectangles, 10" by 1", 2", or 3" (V.a). Oddcut, 21" X 3" with 2" X 8" corner removed (V.b). 12" by 4" rectangle with ruler attached to surface (V.c). Plate thickness is 6 mm (nearest mm).

LANDMARK DEFINITIONS

Uppercase letters identify specific landmarks and are referred to in the description of measurements.

A. Most posterior point in the median plane along the nuchal margin

Given the diversity and irregularity of the occipital region, some judgement is required to locate this point. When there is a distinct nuchal ridge, it is simply followed to the median plane, and if the ridge is thick, the superior margin is used. Where the ridge is less distinct, it must be decided where the dorsal surface of the skull "ends" and the occipital surface "begins". Because the ridge may turn inferiorly as it approaches the midline, this landmark does not necessarily correspond to the most superior point of the occiput, nor to the most posterior point of the occiput, depending on the inclination of the occipital "plane" and the presence of tuberous and rugose areas.

Measurements to this point: OXTP, OXP2, OXPO, OXTO, OXLE, OXAE, OXOR, OXM3

B. Posterior margin on the basiocciput

Between the occipital condyles inferiorly, the basiocciput presents a rounded posterior margin which is somewhat external and inferior to the true foramen magnum aperture. The most posterior point of the margin in the median plane is marked while observing the skull posteriorly at the level of the occipital condyles.

Measurements to this point: OXTO, MGPL

C. Most lateral point on the articular eminence

The articular surface is usually smoother than surrounding bone and may have a different hue. These two factors help in following the margin to its most lateral extent. This point does not necessarily correspond to the most lateral point of bone in the region, or of the zygomatic arch.

Measurements to this point: OXAE, AEAE, AEP2, AEOR

D. Most anterior point on the margin of the orbit

This point is difficult to determine for several reasons: the orbital margin is not well-defined, being rather rounded and smoothly continuous with adjacent bone, and the lacrimal process and foraminae may appear to occupy the position. In such cases, the point is considered as just infsrior to the lacrimal process.

Measurements to this point: OXOR, AEOR, BIOR, ORP2, ORNA, ORTP, ORMX

E. Nost anterolateral point on the alveolar margin of the second upper premolar

The anterior and lateral margins of the alveolus are continuous at the anterolateral "corner". The center of this curved part is determined by eye.

Measurements to this point: OXP2, OCP2, AEP2, P2MX

F. Most posterior point on the palate in the median plane

This is straightforward when the suture between the palatine bones is tight or fused. If there is a cleft between the two bones, the point must be imagined as lying on the plane tangent to the posteromost medial points of both sides.

Measurements to this point: MGPL, PALL,

G. Host lateral point on the mandibular condylar articular surface

As with the articular eminence, texture and hue usually distinguish it from the surrounding bons. It is usually at or just medial to the most lateral point of bone.

Measurements to this point: CNCN, MCNL, CNP2, CNM3

E. Anterior margin of the mandibular ramus in the occlusal plane of the tooth row

This point is constructed by placing the broad part of V.c on the mandibular teeth such that the narrower section passes along the lateral surface of the mandibular ramus and the indented edge abuts the anterior margin of the ramus. The inferior surface of the plastic is used to mark the point.

Measurements to this point: RAMD

÷

ļ

i

ļ

ļ

i

i.

í

I. (Note: "I" is omitted as a landmark identifier to avoid confusion with the Roman numeral I above, indicating an instrument type).

J. Posterior margin of the mandibular ramus in the plane of the tooth row

Position V.c as for \mathbf{E} . With the projecting flange against the ramus, mark the posterior margin of the ramus in the plane of the inferior surface of the flange.

Measurements to this point: RAMD

K. Most posterolateral point on the grinding surface of the lower third molar $% \mathcal{L}_{\mathrm{rel}} = \mathcal{L}_{\mathrm{rel}} = \mathcal{L}_{\mathrm{rel}} = \mathcal{L}_{\mathrm{rel}}$

When the posterior loph is worn, its most posterior point is easily identified. In the unworn tooth, the grinding surface is considered to be the ridge of the loph.

Measurements to this point: OXM3

L. Most superior point on the coronoid process

From the side, mark the top of the arc of the superior surface of the coronoid process. If the coronoid process is flattened superiorly, the point is considered to lie midway along the superiormost extent.

Measurements to this point: CPCP, CPP2 , CPM3 , CPRH

N. Anterior limit of the temporal line

The temporal line may be distinguished as a ridge or line separating the relatively smooth bone of the temporal fossa from the rougher bone of the dorsal skull surface. Anteriorly, the line ends above and behind the orbit. Posteriorly, the line turns laterally and may grade into the rugosity of the nuchal ridge. Some judgement is therefore required to determine the exact points. Measure using I.b. In *Diceros bicornis*, the temporal line intersects a second ridge coursing anterosuperiorly from the optic and mandibular foraminae. The intersection is the marked point in this case.

Measurements to this point: TFLN

N. Posterior limit of the temporal fossa

As the temporal line courses posteriorly (see N), it eventually arches laterally along the occipital margin. Judging the most posterior point of this arch requires care, and it may be more lateral or more medial depending on the species.

Measurements to this point: TFLN

0. Intersection of the alveolar margin with the plane passing through the anterior margin of the orbit and perpendicular to the tooth row

Use V.a to approximate the plane and its orientation.

Measurements to this point: TFHT, LFHT

P. Most anterior point on the maxillary bones

Where functional incisors are absent, this point is on a projection of bone. Care must be taken to assess any breakage. In species with incisors, the point is located sagittally between first incisors.

Measurements to this point: P2MX, ORMX

Q. Nost posterior point on the alveolar margin of the third upper molar

Measurements to this point: OXM3, M3M3, MXGT, MXMO

R. Nost posterior point on the occlusal surface of the most posterior molar

Measurements to this point: CNM3, CPM3, BIM3, MNGT, MNMO

S. Nost anterior extent of the attachment of the masseter to the zygomatic arch

The inferior margin of the zygomatic arch is marked by ridges and/or rugosities. The point is marked where these appear to end at or near the maxillary root of the arch.

Measurements to this point: ZYLN

i

T. Point on the inferior margin of the mandible in the plane passing through the mandibular notch and perpendicular to the plane of the tooth row

Measurements to this point: RAMH

MEASUREMENT DESCRIPTIONS

The following descriptions are grouped by skull and mandible. Within each group, measurements are listed alphabetically.

Skull

ASAE - Biarticular eminence breadth. Distance between the most lateral points of the articular eminences (C to C).

AEOR - Articular eminence to orbit. C to D using I.

ASP2 - Articular eminence to second upper premolar Most lateral point of the TMJ articular surface to most posterior margin of P2.

BICN - Bicondylar breadth. Horizontal distance between the most lateral points on the occipital condyles using I.a.

BIOR - Biorbital breadth. D to D using III. The orientation of the caliper 10 not important as long as the tips are in the sagittal planes through the points. If lacrimal processes prevent placement of the tips directly on the points, position the tips by eye so that a line along the caliper jaw projects through the point.

BIFG - Bipostglenoid breadth. Inside distance between the postglenoid processes measured at their bases.

BIZY - Outer bizygomatic breadth. Distance between the most lateral points of the xygomatic arches. Place jaw of III vertically against the arch and close against the corresponding point on the opposite side.

BNAS - Binasal breadth. Nasal breadth measured at an estimated point 50% of the distance between the most posterior point of the nasal incision and the midline in the plane of the nasal tips.

CMLN - Occipital condyle length. Place I.a against the most medial margin of the condyle and close down against the most lateral margin of the condyle. This measurement should be approximately parallel to the long axis of the condyle.

CNPG - Condyle to postglenoid process. Distance between the occipital condyles and the postglenoid processes. Place III against the posterior surfaces of the occipital condyles and close down against the processes anteriorly.

ENDO - Endocranial length. Endocranial length measured from the superior margin of the foramen magnum (as defined for FOMH) in the median plane to either side of the cribriform plate using IV.a.

SINA - External nasal aperture breadth. Outside diameter of the anterior nasal aperture measured at its most lateral points when viewed anteriorly. Pace I.a against the lateral side of the nasal wall and close the opposite jaw against the analogous point on the opposite side of the skull.

FBM1 - Face height including upper first molar. Distance from the lateral occlusal margin of te first upper molar to the dorsal midline of the cranium in a plane passing through **D**.

FONE - Foramen magnum height. Foramen magnum height from the superior to inferior margine using II.b. Place a jaw against the table of bone forming the floor of the foramen and spread the other jaw to the superior margin. The superior margin often includes irregular bony outgrowths or a vertical slit in the midline. In either case, the "upper margin" is obtained by estimating a smoothly extrapolated curvature based on the remaining margin of the foramen. Smaller specimens may require the use of II.b. FONN - Foramen magnum width. Distance between the most lateral margins of the foramen magnum. Use the jawa of III (either end) as inside calipers. True distance is the reading plus 20.0 mm to correct for the width of the caliper jaws (as in ZYZY). Smaller specimens may require the use of II.b.

INFE ~ Infraorbital foramen height. Vertical height of the infraorbital foramen. Using I.a. make a judgement as to the boundary of the foramen and measure in the most convenient orientation of the Caliper.

INFW - Infraorbital foramen width. Horizontal width of the infraorbital foramen. Measured as for INFH but in the horizontal plane.

LFET - Lower face height. D to O using I.b. **LOIB** - Lower occipital breadth. Breadth of the occiput in the horizontal plane passing through the superior margin of the occipital condyles.

HGAE - Foramen magnum to articular eminence. Posterior margin of the basiccciput to the lateral articular eminence.

HGPL - Foramen magnum to palate. Distance from **B** to the posterior margin of the hard palate in the median plane. Place a jaw of I.a at B and the other jaw tip at the posterior median point of the palate.

NOIB - Middle occipital breadth. Distance between lateral occipital margins at a level between LOXB and WOXB and measured in two ways depending on the nature of the occipital region: (a) where the occipit is concave, the minimum distance is measured, (b) where it is straight or convex, the distance is measured in an estimated plane SO% of the distance between A and LOXB.

NXGT - Maxillary grinding tooth row length. Distance from the most anterior point of P2 to the most posterior point of M3 along the grinding surface.

MXNO - Maxillary molar tooth row length. Distance from the most anterior point of M1 to the most posterior point of M3 along the grinding surface.

NIM1 - Breadth across upper first molars. Distance across across the first upper molars measured between the buccal crown surfaces at their most lateral points inferior to the alveolar margin. Place tip or edge of I.a against one tooth and close against opposite tooth such that comparable parts of the jaws are in contact with the tooth. If the testh are loose, they must be stabilised (with the free hand) in the position which is judged most natural.

N3N3 - Breadth across upper third molars. Outside diameter across the third upper molars measured at the distal root. Place I.a with tip in the plane of the alveolar margin and side vertical against most lateral surface of tooth. With calipers horizontal, close jaw against opposite tooth. If the teeth are loose, they must be stabilised (with the free hand) in the position which seems most natural.

OCP2 - Occipital condyle to second upper premolar. Occipital condyle to D. Hold jaw of III against the posterior surface of the occipital condyle. Spread second jaw point to D of same side.

ORNY - Orbit to maxillary tip. D to the midline in the plane of the most anterior projection of the maxillary/premaxillary bones.

ORNA - Orbit to nessel incision. Most posterior point on the margin of nessel incision to D. Place jaw of I.a against the margin of the incision and the other jaw tip at the indicated point.

ORTP - Orbit to masal tips. D to the midline in the vertical plane of the masal tips using V.a.

OIAS - Occiput to articular eminence. A to C using I.a.

OILE - Occipital length. Distance from A to B using I.b.

OIN3 - Occiput to third upper molar. A to Q using I.b.

OIOR - Occiput to anterior orbital margin A to D using III.

OIP2 - Occiput to second upper premolar. A to D. From the side of the skull, place the tips of III at the indicated points. In cases where both points cannot be seen at the same time, it must be decided which point is most easily held in place while out of view.

OITO - Total occipital height. Total vertical length of the occipital region measured from the external surface of the inferior margin of the foramen magnum to A.

OITP - Occiput to nasal tips. Plane of the most anterior points of the nasal bones to **A**. Place V.b across nasal tips to define plane. Place a jaw of III. against the plate in the midline and close opposite jaw point to **A**. This method does not account for distances between the nasal tips or presence or absence of bone in the midline posterior to the tips.

PALD - Palate depth. Depth of the palate measured across the first molar. Place V.a across the first molars. Measure anteriorly from the plate to the midline of the palate with II.c.

PGLE - Postglenoid process height. Place V.a (1") horizontally across the tip of the postglenoid process. Use II.c to measure vertically from the plate to the bone at the base of the process. Correct for thickness of the plastic.

PLOR - Palate to orbit. Posterior margin of the palate in the median plane (F) to the most anterior point on the margin of the orbit (D).

PLP2 - Palate to second upper premolar. Posterior margin of the palate in the median plane to the anterolateral margin of the alveolus of the second upper premolar.

PORB - Postorbital constriction width. Distance across the narrowest constriction of the cranium posterior to the orbits and medial to the zygomatic archs. Judging from directly above, place one jaw of III vertically against one side at the narrowest point and close opposite jaw against corresponding surface on the opposite side.

PILE - First upper premolar length. Length of the upper first premolar measured with I.b. from the anterior to posterior margins along the midtoothrow axis.

P2NX - Second upper premolar to maxillary tip. Anterolateral margin of the second upper premolar to the midline in the plane passing through the tips of the (pre)maxillary bones.

P2P2 - Breadth across second upper premolars. Outside diameter across the second upper premolars measured beween the most lateral partat the distal root. Place I.a with tip in the plane of the alveolar margin and side vertical against most lateral surface of tooth. With Calipers horizontal, close jaw against opposite tooth. If the teeth are loose, they must be stabilised (with the free hand) in the position which seems most natural.

TERB ~ Biterygoid process breadth. Breadth of the pterygoid processes measured between their most lateral points. Place a jaw of I.a against the most lateral point of one process and close down the other jaw on the corresponding opposite point.

TERE ~ Pterygoid process height. Vertical height of the pterygoid processes. Place V.a (1°) across the inferior limits of the pterygoid processes and balance perpendicular to the processes. At the posterior edge of the plate in the midline, use II.c to measure the distance to the bone.

TFET - Total face height. Distance from 0 to the midline dorsally in the plane passing through the anterior margin of the orbit and perpendicular to the tooth row.

TFLN - Temporal fossa length. N to N using I.a or III.

TFOS - Temporal fossa opening. Distance across the temporal fossa, approximately anteroposteriorly, where the fossa opens inferiorly. Place the jaws of III through the fossa and spread to the widest points, making sure that comparable parts of the jaws are touching bone.

UFAT - Opper face height. Distance from D to the dorsal median surface in the plane passing through D and O.

UNIL - Maxillary first molar length. Length of the first upper molar measured across the greatest extent of the buccal surface.

UNIW - Maxillary first molar breadth. Width of the first upper molar measured between roots as close as possible to both alveolar margins.

UOXB - Upper occipital breadth. Breadth of the occiput superiorly either: (a) where the nuchal ridge ends and the margin turns anteriorly or inferiorly, or (b) where the margin has a maximum distingished from the minimum in MOXB

SYHT - Zygomatic height. Measure vertically in the plane passing through **AB** and approximately parallel to the external surface of the arch.

ZYIN - Zygomatic process length. Masseter attachment along the length of the zygomatic arch measured from C to S.

272Y - Inner bizygomatic breadth. Distance between the medial sides of the zygomatic arches in the coronal plane that passes through the most lateral points on the medial sides of the arches. Using III as an inside caliper, place one jaw against the internal surface of the zygomatic arch where the internal surface is farthest from the sagittal plane. The true distance equals the reading plus 20.0 mm to correct for the width of the jaws.

Mandible

ANOD - Mandibular angle depth. Distance across the lateral surface of the mandibular angle measured from E to a point approximately 50% of the distance along the arc between J and T.

ANGW - Mandibular angle width. Mediolateral width of the mandibular ramus measured at a point 50% of the distance along the arc between J and T. With I.a, grip the mandible at and gently rock until minimum distance is attained.

BDN1 - Mandibular body plus first molar height. Distance from the lateral upper edge of the first molar crown to the inferior margin of the body in the plane between the roots of H1 and perpendicular to the tooth row (as for BDHT).

BDET - Mandibular body height. Vertical depth of the mandibular body measured from the margin of the alveolus between the roots of MI perpendicular to the tooth row and body along the external surface. Place VI against mandible inferior to the first molar. Place I.a tip at alveolar margin and close opposite jaw against plastic.

BDBR - Nandibular body breadth. Mediolateral width of the mandibular body in the plane through the roots of Ml. Place I.a vertically against the body then close down jaw against opposite surface.

BIN3 - Breadth across third lower molars. R to R using II.

BIN1 - Breadth across first lower molars. Distance across the first lower molars measured between the buccal crown surfaces at their most lateral points above the alveolar margins.

BIP2 - Breadth across second lower premolar. Distance across both tooth rows at the level of the second lower premolar mesaured from D to D using I.a.

CNP2 - Condyle to second lower premolar. Most lateral point of the occipital condyle to the most anterior point of P2 at the grinding surface.

CPCP - Bicoronoid process breadth. Distance between the the most Superior points of the coronoid processes (L to L) using I.b.

CPP2 - Coronoid process to second lower premolar. Superiormost point of the coronoid process to the most anterior point of the second lower premolar at the grinding surface.

CNCN - Nandibular bicondyle breadth. Distance between the most lateral points of the articular surfaces of the mandibular condyles (G to G). Position opposite jaw points of I.a at the marked points indicated.

CNM3 - Condyle to third lower molar. G to K using I.b.

CPN3 - Coronoid process to third lower molar. Most Superior point on the coronoid process (L) to the most posterior point of M3 (K) at the grinding surface. If the top of the coronoid process appears flattened then take the midpoint.

CPRH - Coronoid process height. From a tangent plane passing through the inferiormost part of the mandibular notch and parallel to the tooth row to L. Place a jaw of I.a adjacent to the lateral side of the ramus in the appropriate plane of the notch, then close down the opposite jaw to the top of the process. This measurement is usually slightly off vertical.

LEP1 - First lower premolar length. Length of the first lower premolar measured at the grinding surface along the axis of the tooth row using I.b.

MCNL - Mandibular condyle length. Length of the mandibular condylar articular surface measured from the most medial point to G. The discussion of G above also applies to the most medial point.

MNGT - Mandibular grinding tooth row length. Distance from the most anterior point of P2 at the grinding surface to the most posterior point of M3 along the grinding surface perpendicular to the tooth row.

NONO - Mandibular molar tooth row length. Distance from the most anterior point of M1 to the most posterior point of M3 along the grinding surface perpendicular to the tooth row.

LMIL - Lower first molar length. Length of the first lower molar at the grinding surface. Place the tip of II.b across the most anterior point of the tooth surface with the jaw perpendicular to the tooth row. Close down the opposite jaw to the tooth or an analogous plane.

LMIN - Lower first molar width. Mediolateral width of MI perpendicular to the tooth row measured across the middle of the distal root. Place the tip of I.a at the alveolar margin midway between the posterior margin and the tooth constriction. With the first jaw vertical, close the second jaw against the lateral surface of the tooth.

P2TP - Second lower premolar to nasal tip. Distance from the anterior margin of the occlusal surface of the second lower premolar to the anterior limit of the mandibular symphysis in the midsaggital plane. Use I.a.

RAMD - Mandibular ramus depth. Distance from G to T using I.a.

RANE - Mandibular ramus height. Distance from the inferiormost point of the mandibular notch to the inferior margin of the mandible, perpendicular to the plane of the tooth row.

SYNL - Mandibular symphysis length. Greatest length of the mandibular symphysis in the median plane. Place tip I.a against the most anterior limit then close opposite jaw against posterior limit such that corresponding parts of the caliper jaws are touching bone. May measured from above or below.

SYMW - Mandibular symphysis depth. Maximum thickness of the mandibular symphysis in the median plane measured from the posterior aspect. From below and between the bodies, place I.a against internal (superior) surface of symphysis and close opposite jaw against external (inferior surface) surface. Some rugosity of the lower surface may be included but any distinct ridge or other boney exensions not directly contributing to the connection of the mandibular bodies should be excluded.

APPENDIX 4.

.

..

RAW DATA

Raw data for specimens used in analyses. Skulls (N=184) are listed first, followed by mandibles (N=187). Genera and specimens are listed in the same order as in Tables 2 (skull) and 3 (mandible). Skull data is presented in two parts: AEAE \rightarrow MXGT and MXMO - 2YLN. Estimated measurements are indicated by brackets (]. All measurements are in millimeters.

SKULL (AEAE - MXGT)

. . .

10		GENUS	SUBGEN	AEAE	AEOR	AEP2	0JCN	BIZY	LFNT	LOXB	MINI	M3N3	MGAE	MXGT
CERA	22	CERA	CERAS	332	250	455	151	332	125	226	211	138	229	280
CERA	59	CERA	CERAS	331	235	449	151	334	123	239	218	134	229	279
CERA	99	CERA	CERAS	361	234	453	152	363	139	216	210	146	257	279
CERA 1	(D)	CERA	CERAS	344	247	451	154	357	130	267	224	144	239	287
CERA	102	CERA	CERAS	309	211	431	136	317	125	228	201	136	215	260
CERA 1	03	CERA	CERAS	337	251	454	145	360	126	242	210	134	236	263
CERA 1	104	CERA	CERAS	340	242	448	150	358	151	241	201	132	244	263
CERA 1	161	CERA	CERAS	349	242	451	147	342	132	245	220	144	234	265
CERA	42	CERA	CERAS	342	244	450	154	345	163	257	205	124	240	275
CERA 2	298	CERA	CERAS	330	258	451	154	334	146	255	207	135	233	251

.....

	GENUS	SUBGEN	AËAE	AEOR	AEP2	0 I CN	8:2Y	LFHT	LOXB	MIMI	M3M3	MGAE	MXG1
CERA 360	CERA	CERAS	326	242	439	152	325	130	238	203	130	221	269
CERA 366	CERA	CERAS	318	250	457	139	316	13B	239	214	134	226	256
CERA 367	CERA	CERAS	323	245	445	142	322	129	258	203	140	236	262
CERA 368	CERA	CERAS	33B	Z62	455	142	338	139	Z46	205	136	226	270
ERA 369	CERA	CERAS	320	241	435	136	318	128	242	197	129	221	262
CERA 37D	CERA	CERAS	343	265	453	147	341	125	259	219	139	241	275
ERA 371	CERA	CERAS	335	239	433	134	335	126	235	214	130	Z28	- 257
ERA 372	CERA	CERAS	372	264	444	143	375	145	255	201	145	255	251
ERA 431	CERA	CERAS	336	255	443	145	340	136	248	207	140	242	272
iuma 21	SUNA	SUMAS	284	185	304	97	310	96	198	178	111	169	167
ima 46	SUMA	SUMAS	142	166	300	123	300	86	194	171	115	171	204
0100 147	8100	81005	B 5	222	384	138	340	100	227	206	138	228	255
100 149	8100	BICOS	316	244	377	135	332	91	229	193	122	209	249
ICO 150	8100	BICOS	310	223	374	128	326	97	225	192	121	197	231
ICO 151	BICO	BICOS	317	232	374	149	322	91	255	196	119	210	272
ICO 152	6100	BICOS	328	238	382	132	336	60	238	196	133	216	249
1CO 155	0010	elcos	289	212	356	131	310	73	215	186	115	182	245
ICO 157	8100	BICOS	347	246	408	152	35 B	95	Z49	199	126	221	251
100 161	8100	8 (COS	331	230	380	125	340	92	232	203	121	222	246
100 166	BICO	BICOS	313	237	386	132	324	95	243	192	135	202	236
100 167	BICO	81002	327	233	362	126	338	95	242	202	123	215	265
100 168	8100	81005	325	245	399	137	345	97	237	166	135	223	243
100 169	8100	81C0\$	311	232	368	133	328	184	215	179	129	195	241
100 170	8100	BICOS	314	223	376	134	334	89	236	200	129	217	250
100 174	8100	BICOS	330	233	379	137	343	100	252	208	132	208	259
100 176	01CD	BICOS	317	248	375	126	327	97	237	203	117	205	259

					•••				-				
8(C0 177	81CO	BICOS	321	245	382	128	332	89	237	203	125	215	263
B(CO 178	BICO	BICOS	310	215	357	111	323	92	212	178	125	201	234
BICO 161	6100	81005	318	226	363	124	330	67	233	187	124	208	239
BICO 295	8100	BICOS	305	216	353	123	312	77	217	184	116	195	238
01CO 305	0119	BICOS	338	241	387	125	348	83	231	198	127	213	263
8100 379	BICO	BICOS	310	226	354	128	323	80	224	197	120	213	241
BICO 382	6100	ALCOS	320	247	382	130	346	99	245	210	132	212	244
BICO 384	BICO	81005	324	231	389	141	346	96	239	211	138	217	260
8100 386	BICO	81005	314	242	369	151	340	89	238	197	135	209	235
8100 387	8100	BLCOS	313	252	383	138	329	94	264	203	121	212	273
BICO 368	BICO	BICOS	332	224	384	149	342	100	242	191	137	214	239
BICO 389	BICO	BICOS	297	237	398	132	317	104	228	192	144	211	246
8100 390	81CD	BICOS	318	219	3B3	131	334	96	241	197	123	220	253
BICO 393	6100	81C05	341	249	391	152	356	100	254	200	133	223	250
8100 394	6100	81 COS	324	235	383	133	337	87	251	209	121	214	259
8100 395	0218	BICOS	318	231	363	139	339	102	233	214	128	213	263
BICO 396	81 CO	81005	324	237	40\$	144	357	90	240	208	123	216	270
8100 397	8100	8(COS	317	239	387	142	334	90	229	210	118	212	272
8100 398	8100	BICOS	310	223	362	133	325	78	220	193	114	209	258
8100 402	BICO	BICDS	316	229	356	132	331	90	220	195	135	206	Z4 I
8100 404	6100	BICOS	324	244	377	133	331	85	222	199	130	215	252
8100 405	6100	81005	299	243	370	138	313	91	222	200	111	199	258
8100 407	B1C0	BICOS	308	210	330	124	325	98	215	183	120	202	222
B1CO 408	81C0	BICOS	317	227	177	131	327	87	530	194	116	205	245
BICO 409	8100	BLCOS	306	218	360	135	317	86	217	179	113	205	236
8100 410	BLCO	BICOS	312	224	356	134	321	85	221	195	120	197	256
8100 411	B ICO	81 C05	299	217	351	134	310	90	218	177	137	198	226
8100 412	8100	BICOS	308	217	361	139	324	78	213	192	132	202	241

ID GENUS SUBGEN AEAE AEOR AEP2 BICN BIZY LEHT LOXB MINI MINI MAR MKGT

.

---- ---

328

__

· · ----

10 	GENUS	SUBGEN	AEAE	AEOR	AEPZ	BICN	B12Y	LFHT	L0X8	#1H1	N3M3	MGAE	MXGT
BICO 414	BICO	B CO5	316	237	376	131	321	96	221	184	124	209	237
BICO 418	BICO	81COS	313	237	370	128	345	85	232	193	126	205	242
BICO 436	8100	81005	298	225	359	129	305	67	226	162	114	196	239
B1CO 437	BICO	81COS	315	226	366	128	331	87	229	199	120	207	259
B1CO 441	8100	81005	317	234	372	126	341	91	234	197	121	206	247
UNIC 48	LINJA	UN[Cs	342	265	380	136	356	98	273	215	142	217	260
UNIC 53	ALINU	UNICS	328	239	365	141	347	109	270	204	127	226	257
UNIC 55	ALNU	UN1C5	347	247	380	135	372	91	286	222	146	221	262
JNIC 303	UNJA	UNICS	370	251	376	147	377	117	287	220	115	240	264
JNIC 348	ALIN	UNICS	365	268	409	137	372	126	296	224	146	231	255
INIC 426	UNJA	UNICS	343	256	379	138	359	102	286	215	152	216	234
JNIC 427	UNJA	UNICS	351	267	381	138	360	110	272	227	143	217	253
JNIC 430	UNJA	UNICS	352	249	386	142	370	114	227	224	127	228	261
IAVA 17	ALHU	JAVAS	332	236	327	136	344	69	298	193	112	204	23 (
JAVA 18	UN JA	JAVAS	319	234	317	125	331	77	265	190	110	168	221
JAVA 299	UNJA	JAVAS	332	242	319	151	346	65	276	197	110	215	223
iava 351	ALINU	JAVAS	328	248	323	143	338	61	282	[191]	114	206	220
CER 245	ACER	ACER1S	290	232	352	116	293	73	226	(186)	102	210	239
CER 124	ACER	ACERZS	365	196	342	130	357	121	258	206	129	268	245
MYN 111	ANYN	AMTHS	194	123	226	85	130	48	102	123	96	148	154
MYN 461	ANTH	AMYNS	195	130	221	84	205	53	100	107	82	138	140

					_									
APHE 2	205	APHE	APHE1S	262	169	286	96	236	86	140	119	91	165	19
APHE 2	268	APHE	APHE2S	315	194	345	135	325	85	235	180	128	196	22
VPHE 2	269	APHE	APHE2S	292	210	3SD	123	295	95	216	179	1 13	176	27.
VPHE 2	270	APHE	APHE2S	294	209	356	126	299	80	505	180	124	185	22
VPHE 2	271	APHE	APHE2S	327	217	365	137	336	76	227	184	147	196	24
VPHE 2	272	APHE	APHE2S	310	194	337	122	306	71	208	164	107	171	21
APHE 3	530	APHE	APHE2S	325	216	377	134	327	107	241	172	124	192	21
PHE 3	34	APHE	APHE2S	297	213	379	127	300	92	212	186	115	180	24
PHE 3	35	APHE	APHE2S	263	188	330	124	265	75	194	166	115	183	24
ICE 2	39	DICE	DICETS	213	162	243	80	236	45	122	142	87	154	16
ICE 2	203	DI CE	DICE1S	194	167	241	84	1226)	42	122	128	83	132	16
ICE 2	04	DICE	DICETS	207	168	259	93	229	55	127	141	74	138	19
ICE 2	66	DICE	DICE2S	214	181	268	95	226	65	125	130	67	154	18
ICE 2	40	DICE	DICE3S	243	208	317	118	247	54	149	130	89	174	21
166 2	67	01CE	01CE3s	271	195	320	112	265	61	158	159	117	164	20
ORS 1	27	FORS	FORSS	230	160	275	84	249	47	133	138	102	156	16
ORS 1	30	FORS	FORSS	236	135	255	76	(236)	65	104	127	81	132	15
YRA	4	HYRA	HYRAIS	111	68	139	48	122	31	67	78	59	75	8
YRA	5	HYRA	HYRAIS	73	76	123	38	66	27	55	54	35	46	7
TRA	10	NYRA	HYRA2s	126	103	168	51	133	35	71	98	62	90	104
YRA	6	HYRA	NYRA25	162	112	184	58	179	32	90	110	76	106	11
YRA	12	HYRA	HYRA25	112	116	167	46	82	39	67	75	49	74	9

ID GENUS SUBGEN AFAF AFON AFP2 BICN BIZY LFHY LOXB MIMI M3M3 MGAF MKGT

and a second second second second second second second second second second second second second second second

-- --

330

······

10		GENUS	SUBGEN	AEAE	AECR	AEP2	BICH	B12¥	LFHT	LOXB	M1M1	N 3H3	NGAE	MKG
нус	116	HYCO	HYCOS	130	95	151	52	135	33	82	82	55	101	104
HVC	> 117	NYCO	HYCOS	107	88	151	49	128	38	66	90	42	83	101
HYC	120	HYCO	NYCOS	108	9 8	160	46	115	45	- 71	86	52	93	- 11
HYC	46 0	HYCO	HYCOS	115	68	141	46	125	38	71	89	51	68	10
IND	258	INDR	INDRS	570	374	632_	309	588	_ 145	358	279	214	498	376
MEN) 171	MENO	NENO\$	208	164	257	79	240	44	143	130	69	129	17
MEN) 195	MEND	MENDS	171	147	226	71	175	41	109	111	58	116	159
MEN	196	NENC	NENOS	156	139	221	70	161	42	113	117	59	104	15
MEN	197	NENO	MENDS	181	135	226	75	185	42	131	111	69	115	- 14
MEN	o 198	MENO	MENDS	165	129	214	71	206	50	131	110	60	121	15
MEN	200	MEND	MENOS	160	129	212	65	162	47	103	104	61	113	15
NEN	201	MEND	MENOS	178	147	236	74	182	55	116	102	61	114	16
MEN	453	MEND	MENOS	177	129	254	78	213	51	126	129	87	128	16
MEH	454	MENO	MENOS	201	142	236	84	238	46	135	122	77	119	15
MEN	3 456	MEND	MENOS	180	144	232	73	184	43	116	123	79	123	15
MEN	3 457	MENO	MENOS	192	133	241	81	198	41	[127]	128	81	120	15
MEN	652	MEND	MENOS	18D	135	217	74	189	(39)	113	121	62	111	16
MEN	0 143	MEND	MENOS	188	145	231	78	231	47	129	117	74	121	15
HEN) 158	MENO	HENDS	198	152	243	60	200	56	129	128	70	119	16
MEN) 172	MENO	MENOS	168	153	236	65	170	49	109	105	50	113	16
NEH	186	MEND	MENOS	191	146	23D	76	203	48	122	102	66	134	16
MEN	187	MENO	MENOS	198	160	251	64	227	49	130	118	72	124	17
MEN	188 c	MEND	MEHOS	(181)	157	236	70	194	51	114	106	52	117	16

10		GENUS	SUBGEN	AERE	AEOR	AEP2	BICN	BIZY	LFHT	0K0J	M1H1	M3M3	MGAE	MXGT
PERA	324	PERA	PERAIS	226	178	12891	85	237	63	142	(1481	94	140	182
PERA		PERA	PERA 15	280	186	305	90	253	79	176	156	96	165	208
PERA	326	PERA	PERA2S	345	210	352	140	359	65	239	209	152	225	263
PERA	327	PERA	PERA28	405	258	399	151	429	96	268	260	153	234	272
PERA		PERA	PERA2S	387	250	417	162	412	91	279	236	140	236	287
SUBH	26	SUBH	SUBH 18	191	152	242	72	196	50	1 15	[117]	(75)	130	163
SUBH	29	SLIBH	SUBH 15	170	145	238	72	176	57	101	105	75	126	146
SUBH	31	SUBH	SUBH 15	196	160	242	77	219	56	125	129	81	135	178
SVAH	27	SUBH	SUBH15	188	136	217	73	197	39	116	112	76	137	143
SLIBH	32	SUBH	SUBH 15	189	152	254	76	200	70	112	131	89	137	170
SVOH	38	SUBH	SUBH2S	195	146	247	80	200	64	116	116	85	[140]	163
SUBN	64	SUBH	SUBH 2S	221	154	252	94	235	5	141	130	93	164	169
SUDH	35	SUBH	SUBH2 S	206	158	257	95	220	69	130	146	92	130	176
SUBH	63	SUBH	SUBH25	190	162	264	86	197	56	122	106	61	140	166
SUBN	228	SUBN	SU/8H3s	239	189	271	105	280	37	161	140	102	166	177
SUBH	229	SUBH	SUBH3S	235	176	295	96	264	56	152	124	83	14 1	162
SUBN	231	SUBH	SUBH38	232	173	271	110	269	55	145	151	107	160	192
SUGN	233	SUBH	SUBH3S	225	167	265	96	263	44	147	140	102	133	156
HOUZ	236	SUBH	SUBH3S	246	165	261	99	257	60	155	144	107	156	180
SUBH	278	SUBH	SUBH 35	227	175	270	102	237	52	139	146	95	154	165
SUGN	458	SUBN	SUG#35	244	170	278	95	260	[62]	143	131	99	162	192

_____

.....

10	GENUS	SUBGEN	AEAE	AEOR	AEP2	BICN	BIZY	LFNT	LDXB	HINI	M3M3	MGAE	MXGT
TELE 341	TELE	IELEIS	281	232	328	124	320	70	196	181	102	163	225
TELE 342	TELE	TELE 1S	268	221	325	99	306	59	211	178	(98)	161	230
TELE 317	TELE	TELE2S	333	Z41	351	132	360	93	231	165	123	207	245
TELE 318	TELE	TELE2S	318	276	365	108	355	78	227	166	107	192	254
TELE 344	TELE	1ELE2S	347	259	374	134	386	94	289	161	118	207	237
TELE 255	TELE	TELE2S	308	263	372	127	319	68	237	163	115	160	250
TELE 311	TELE	TELE3S	296	Z4B	361	111	305	111	206	173	122	192	233
TELE 312	TELE	TELE 3 S	318	251	(369)	123	331	99	216	163	127	190	200
TELE 313	TELE	TELE3S	307	230	355	124	310	96	216	94	(112)	196	160
TELE 314	TELE	TELE3S	312	244	351	131	323	60	237	173	101	187	227
1ELE 315	TELE	TELE 3S	300	268	394	130	323	87	228	194	130	170	253
TELE 316	TELE	TELE3S	273	251	376	113	265	101	198	149	91	161	231
TELE 281	TELE	TELE4S	294	268	397	132	305	126	224	170	84	168	258
TELE 496	TELE	TELE4S	319	256	412	161	340	106	236	213	125	190	270
TELE 497	TELE	TELE4S	332	270	420	128	352	113	234	209	128	190	256
TELE 284	TELE	TELE5S	335	294	428	142	374	115	[257]	195	128	205	260
TELE 287	TELE	TELE5S	343	265	416	136	347	90	227	198	117	196	[267]
TELE 291	TELE	TELESS	370	281	420	145	372	105	283	205	133	224	280
TELE 424	TELE	TELE5S	298	246	356	113	314	93	(221)	192	[119]	175	269

10	GENUS	SUBGEN	AEAE	AEOR	AEPZ	BICN	BIZY	L₽HT	LOX8	H1H1	M3M3	MGAE	MXGT
TRIG 462	TRIG	TRIGS	210	164	254	87	227	54	128	132	86	148	187
TR16 422	TRIG	TREGS	208	162	265	78	228	53	121	149	62	168	194
IREG 463	TRIG	TREGS	172	140	232	72	172	64	147	105	74	130	159
TR:0 468	TRIG	TRIOS	212	135	230	89	234	66	136	131	84	158	170
TRIG 469	TRIG	TRIGS	206	175	256	- 77	217	66	111	126	96	150	184
TRIG 470	TRIG	TRIGS	209	170	261	74	219	65	121	131	73	154	176
TRIG 471	TRIG	TRIGS	201	173	261	73	208	69	105	124	80	137	170
TRIG 472	IREG	TRIĜS	193	175	290	66	205	67	82	118	72	131	177
TRIG 476	TRIG	TRIGS	226	156	262	87	249	41	124	152	93	149	168
IRIG 475	TRIG	TR165	231	170	260	56	246	42	\$20	145	84	160	156
TRIG 492	TRIG	TRIGS	221	162	273	(84)	244	51	129	150	106	148	187
TRIQ 490	TRIG	TRIES	230	167	262	6 5	260	60	116	141	95	157	168
IRIG 23	TRIG	TREES	244	183	281	68	292	59	128	146	108	159	174

- · · · · · · -

SKULL (MXMO - 2YLN

10	GENUS	SUBGEN	мхно	OCP2	OXAE	OXOR	PORB	TFLN	ZYHT	ZYLI
CERA 22	CERA	CERAS	167	628	315	480	109	357	66	280
CERA 59	CERA	CERAS	161	626	330	486	105	343	69	270
CENA 99	CERA	CERAS	172	643	335	492	108	370	69	276
CERA 101	CERA	CERAS	161	632	335	492	112	360	77	27
CERA 102	CERA	CERAS	158	590	301	435	110	315	71	244
CERA 103	CERA	CERAS	162	628	310	470	112	336	73	295
CERA 104	CERA	CERAS	166	643	343	504	110	363	78	26
CERA 141	CERA	CERAS	151	606	343	514	114	363	78	28)
CERA 142	CERA	CERAS	180	646	354	520	119	372	62	28
CERA 298	CERA	CERAS	151	638	336	498	116	370	77	30
CERA 360	CERA	CERAS	169	603	303	445	103	329	76	25
CERA 366	CE RA	CERAS	157	627	317	479	112	355	58	27
CERA 367	CERA	CERAS	142	634	329	503	115	369	68	29
CERA 368	CERA	CERAS	149	624	310	472	112	347	65	27
CERA 369	CERA	CERAS	147	599	299	439	109	349	65	23
CERA 370	CERA	CERAS	155	644	325	468	121	376	76	29
CERA 371	CERA	CERAS	151	610	321	473	112	359	ъ	26
CERA 372	CERA	CERAS	158	636	356	516	1 19	372	79	29
CERA 431	CERA	CERAS	163	632	321	464	112	348	69	25
suna 21	SUMA	SUMA	119	400	222	313	115	211	44	17
suma 46	SUMA	SUMA	120	414	212	289	116	189	43	16

·····

335

81CO 147	8100	61095	155	550	295	411	122	295	53	220
8100 149	8100	BIC95	146	526	264	395	117	282	48	227
BICS 150	8100	BICOS	145	509	267	384	119	280	51	210
BICO 151	8100	61005	162	514	274	387	11B	290	52	211
61CO 152	8100	BICOS	151	529	274	403	118	280	42	215
8100 155	8100	BICOS	143	490	256	347	103	240	48	204
81C0 157	8100	B1C95	148	\$55	301	435	124	306	57	226
BICO 161	8100	81095	151	536	299	339	140	289	60	218
alco 166	0110	B1C95	144	528	270	417	122	280	49	225
8100 167	8100	61095	160	520	279	397	122	272	54	242
BICO 168	8100	61095	145	547	299	429	131	312	55	222
8100 169	8100	BICOS	147	493	265	391	116	295	49	215
8100 170	8100	81095	149	522	279	406	120	275	53	212
BICO 174	8169	B1C95	152	521	279	396	134	273	49	218
8100 176	8100	61CDS	154	510	272	395	131	286	50	201
BICO 177	B]C9	BICOS	157	528	284	426	122	290	46	231
81Co 178	8100	BICOS	135	488	259	364	116	272	47	198
81CO 181	8100	B1CO5	142	508	275	383	108	269	48	236
91co 295	8108	BICOS	161	482	250	345	110	244	52	207
B1CO 305	8100	BICOS	154	514	279	410	125	296	50	240
8100 379	8108	BICOS	148	505	255	367	110	277	51	225
8100 382	BICO	81005	103	532	268	409	127	309	51	234
81CO 384	81 CO	BICOS	156	542	286	412	128	299	49	227
01Co 386	8100	B1COS	141	520	276	615	116	323	45	235
81CO 387	8100	BIC9S	146	530	279	414	120	298	47	226
8108 388	BICO	81COS	141	535	286	403	119	277	57	278
BICO 389	BICO	BICOS	149	552	261	395	116	293	46	228
BIC8 390	8100	BICOS	156	542	276	393	112	295	54	262

GENUS SUBGEN MKMO OCP2 OKAE OKOR PORB TELN ZYHT ZYLN

-- --

· · ··· —--

· •••••

336

······

10

....

dt	GENUS	SUBGEN	нкно	OCP2	BXAE	OXOR	PORB	TFLN	ŻYHT.	2710
8100 393	BICO	81COS	150	545	298	445	123	311	57	239
8100 394	0318	BICOS	153	525	275	414	119	270	48	263
8100 395	8100	BICOS	165	537	270	447	118	278	48	224
8108 396	61 CO	BICOS	162	560	285	420	125	298	45	225
81CB 397	BICO	BICOS	153	540	282	39B	118	291	51	238
01C8 398	B1CO	81005	154	516	273	338	111	291	42	239
BICO 402	8100	81005	141	501	265	379	115	281	52	211
BICB 404	BICB	91C0S	144	532	268	387	124	270	50	227
BICB 405	BICB	91C8s	152	511	269	403	115	297	45	219
81CO 407	61CO	B1C85	136	474	249	355	110	250	45	192
BICO 408	81 C O	BICBS	145	516	271	373	116	269	53	222
BICO 409	BICO	BICOS	146	490	249	369	115	263	50	205
BICO 418	B1C0	BICOS	148	458	255	35B	103	273	53	203
8100 411	61C0	61005	136	493	250	365	111	245	45	244
BICO 412	81cB	BICOS	149	505	270	376	123	261	49	221
81CO 414	8100	81005	145	525	275	399	114	277	54	207
BICO 418	81C8	81005	148	510	270	390	111	272	49	211
B1C0 436	81¢0	BICOS	144	495	257	367	107	265	46	201
BI CO 437	81C8	91005	151	513	275	396	125	276	45	215
B1CO 441	81CQ	01COS	14B	513	266	40B	117	290	46	200
UNIC 48	ALIN	UNICS	145	512	263	361	111	268	73	232
UNIC 53	UNJA	LINICS	145	50B	259	356	100	253	70	225
UNIC 55	ALRU	UNICS	147	517	271	35B	110	251	88	226
UNIC 303	UNJA	UNICS	150	519	284	365	116	250	60	236
UNIC 348	UNJA	UNICS	155	556	281	391	120	284	77	257
UNIC 426	UNJA	UNICS	145	51B	256	367	112	289	72	237
UNIC 427	ALIN	UNICS	155	517	269	378	126	292	72	242

10		GENVS	SUBGEN	MXN0	OCP2	DXAE	CXOR	PORB	TFLN	ZYHT	ZYLN
UNIC	430	UNJA	UNICS	147	535	262	358	108	277	67	240
AVA	17	UNJA	SAVAL	126	456	233	314	121	236	52	193
AVAL	18	UNJA	JAVAS	130	432	229	299	110	205	56	162
AVA	299	ALINU	JAVAS	131	463	252	319	118	218	54	204
AVAL	351	ALNU	JAVAS	129	461	229	334	114	234	54	207
ICER	245	ACER	ACER1S	145	484	270	394	91	267	67	219
ICER	124	ACER	ACER2S	144	517	294	377	138	277	63	192
ANYN	111	ANYN	ANYHS	112	323	170	281	61	201	34	120
ANYN	461	ANYN	ANYHS	95	328	160	268	63	20 8	35	121
L PHE	205	АРИЕ	APHE15	115	399	192	291	72	230	52	179
APHE	268	APHE	APHEZS	134	455	250	382	106	263	69	213
APHE	269	APHE	APHE2S	132	469	241	359	110	234	76	215
APHE	270	APHE	APHE29	135	460	230	341	113	239	71	216
NPHE	271	APHE	APHE2S	145	470	235	366	112	259	71	219
APHE	272	APHE	APHE2S	126	4 3 B	260	374	187	593	56	204
LPHE	330	APHE	APHE25	125	493	263	383	121	256	67	229
IPKE	334	APHE	APHEZS	144	508	241	361	102	251	67	216
aphe	335	APHE	APHE25	141	445	229	296	96	216	68	184
)1CE	239	01CE	BICEIS	9 9	350	178	294	81	215	36	164
DICE	203	BICE	DICETS	1B2	336	164	251	93	161	37	148
301CE	204	DICE	DICETS	117	358	155	260	91	20D	43	147
DICE	266	01CE	DICE2S	187	379	184	297	84	232	49	159

ID		GENUS	SUBGEN	мкно	OCP2	OXAE	OXOR	PORB	TFLN	ZYHT	ZYLN
0100	240	DICE	DICE35	140	451	229	337	101	260	65	186
DICE	267	OICE	DICE35	129	429	223	373	113	273	51	177
FORS	127	FORS	FORSS	104	368	175	294	116	220	36	149
FORS	138	FORS	FORSS	105	366	187	285	61	217	(39)	142
HTCO	116	HYCO	HYCOS	59	236	140	205	57	156	29	93
HYCD	117	HYED	HYCOS	63	219	116	166	42	146	34	66
NYCO	120	HYCO	HYCOS	62	240	125	205	40	152	33	94
NYCO	46 0	HYCO	H YCOS	58	215	110	179	44	145	32	86
HYRA	4	HYRA	HYRAIS	52	190	100	168	48	120	22	91
HYRA	5	HYRÅ	HYRAIS	44	167	71	131	37	92	(21)	73
HYRA	10	HYRA	HYRA2S	68	232	105	176	49	132	25	108
HYRA	6	NYRA	HYRA2S	73	261	134	205	61	163	25	100
HYRA	12	HYRA	NYRAZS	58	216	86	163	43	140	28	105
INDR	258	INDR	INDRS	232	1025	525	802	194	66Z	101	371
MENO	171	MEHO	MENOS	10 6	338	149	231	79	175	45	149
MENO	195	MENO	MENDS	90	311	142	219	51	161	- 44	149
NENO	196	MENO	MENOS	97	306	136	226	65	168	40	139
NEND	197	MENO	MENOS	88	279	136	221	68	160	40	137
MENO	198	MENO	ME NOS	97	303	153	197	62	160	51	135
NENO	200	MENO	NENOS	91	294	125	212	69	145	39	129
MENO	201	MENÓ	MENOS	103	312	116	233	83	146	52	143
MENO	453	MENO	MENOS	97	327	137	230	60	168	54	131
	454	MENO	NENOS	98	313	161	240	62	172	46	132

.....

....

.....

339

MEND 456	MENO	MENOS	95	319	136	219		160	37	
MENO 457		MENIOS	96	315	145	219	82	159	42	141
MENO 143		MENOS	92	312	152	225	90	151	42	127
MENO 158		MENOS	97	323	164	234	80	160	52	126
MEND 172		MENOS	93	320	(137)	237	63	162	44	141
MENC 166		MENOS	96	329	146	236	71	144	61	138
MENO 187	,	MENOS	101	324	157	214	79	160	55	150
MEND 188		NENOS	99	324	164	234	68	167	53	138
MENO 452		MENOS	103	295	131	169	76	148	42	132
PERA 324	PERA	PERA15	107	355	175	255	70	192	51	168
PERA 276	PERA	PERAIS	132	415	202	280	82	229	61	165
PERA 320	PERA	PERA25	155	495	250	320	102	216	78	214
PERA 327	PERA	PERA2S	177	531	294	352	125	245	62	250
PERA 329	PERA	PERA2S	164	552	261	361	124	248	76	254
SUOH 28	SUB(†	SUBH1S	101	341	160	265	55	201	42	128
SUBH 24	SUBH	SUBH1S	88	336	146	256	56	177	43	139
sueн 31	SUBH	SUB# 1S	103	350	153	258	77	174	46	134
SUBH 27	SUBN	SUBH 1 S	87	314	151	247	77	172	40	142
SUBH 32	subh	SUBN 15	100	357	174	277	65	166	48	135
SUBH 38	SUBH	SUBM25	95	340	176	280	72	192	44	129
SUBH 64	SUBH	SUBH2S	101	369	184	290	68	215	41	149
SVBH 35	SUBH	SUB#25	114	354	177	285	72	209	44	136
SUBH 63	SUBH	SUBH2S	110	366	175	287	63	205	53	148
SUBH 228	I SUBH	SUBH3S	105	395	281	326	101	227	44	153

ID GENUS SUBGEN HIXMO OCP2 OXAE ONOR PORB TFEN 2YNT 2YLN

10	GENUS	SUBGE#	MXMO	OCP2	OXAE	OXOR	PORB	TFLN	2YHT	2YLN
sueh 2	29 SUBH	SUBH3s	116	387	216	336	77	245	61	184
SUBH 2	it suak	SUBH3S	119	410	208	322	86	226	47	168
SUBH 2	sugn	SUBHIS	109	344	20B	311	68	206	53	158
SUBH 2	56 SUBH	SUBH3S	118	383	222	348	79	250	59	179
SUBH 2	78 SU84	SUBH3s	114	381	185	317	80	229	44	162
SU8H 4	58 SUBH	SUBH3S	115	395	188	294	66	210	48	165
TELE 3	1 TELE	TELE 1S	138	42B	210	306	116	Z13	76	204
TELE 3	2 TELE	TELE1S	146	408	205	304	93	217	59	166
TELE 3	17 TELE	TELE2S	161	459	228	325	89	236	79	178
TELE 3	18 TELE	TELE2S	170	471	219	342	84	259	79	205
TELE 34	G TELE	TELE 2S	152	490	247	358	101	247	96	220
TELE 2	55 TELE	TELE25	162	505	214	350	89	241	86	229
TELE 3	11 TELE	TELE3S	147	499	252	344	92	222	76	205
TELE 3	2 TELE	TELE3S	148	{4 87]	238	360	86	228	80	219
TELE 3	I TELE	TELE3S	(131)	480	227	337	79	236	79	200
TELE 3	IA JELE	TELEIS	149	483	243	355	87	266	83	206
IELE 3	IS TELE	TELE]S	168	493	215	330	89	246	71	229
TELE 3	IÓ TELE	TELE35	153	471	209	313	59	254	87	203
TELE 20	31 TELE	TELE45	161	519	239	345	69	243	83	Z35
TELE 4	76 TELE	TELE4S	177	519	228	362	65	242	74	221
TELE 44	77 1ELE	TELE4S	169	540	241	367	97	256	80	239
IS 313T	54 TELE	TELE s s	173	558	242	368	102	266	87	268
TELE 2	37 TELE	TELE5S	179	[546]	242	371	85	267	92	252
TELE 2	71 TELE	TELESS	185	562	260	382	106	282	79	254
TELE 4	24 1ELE	TELE5S	184	491	207	331	72	273	73	211

10	GENUS	SUBGEN	NKHO	DCP2	OXAE	OXOR	PORB	TFLN	SAHL	2YLN
									·	
TRIG 422	TRIG	TRIGS	125	370	181	298	73	232	56	159
TRIG 462	TRIG	TRIGS	119	371	280	317	69	267	50	140
TRIG 463	TRIG	TRIGS	99	346	160	254	56	195	33	127
TR1G 468	TR 1G	TAIGS	114	331	192	262	67	204	65	125
TRIG 469	TRIG	TRIGS	116	413	190	320	77	242	61	169
TR1G 470	TRIG	TRIGS	t 18	386	192	383	65	221	62	156
trig 471	TRIG	TRIGS	118	364	180	305	67	245	65	159
TRIG 472	TRIG	TRIGS	113	330	190	324	64	267	52	164
TRIG 476	TRIG	TRIGS	112	359	175	295	75	211	36	144
TRIG 475	TRIG	TRIGS	121	367	177	295	72	220	37	165
TRIG 492	TRIG	TRIGS	122	376	183	311	81	242	44	143
TRIG 490	TR 1G	TR1GS	109	363	253	307	19	226	47	155
TRIG 23	TR1G	TRIGS	109	368	183	386	93	236	64	163

.__..

.....

-----

· _··· ··· · ··· ··· _·· _·· ··· · · ··· ·

342

_--- -

HA	ND	1	B	t.i	2

the second second second second second second second second second second second second second second second se

Đ	GE¥US	SUBGEN	ANGD	ANGW	608R	BONT	80M1	CN#3	LM1E	LM1W	NNHO	RAND	RAMH
ZERA 22	CERA	CERAM	152	54	59	116	149	250	43	30	150	158	224
ERA 59	CERA	CEAAN	147	53	59	121	148	243	47	35	153	159	223
ERA 99	CERA	CERAN	153	64	70	117	152	264	39	30	151	171	251
ERA 1D1	CERA	CERAM	164	61	64	122	157	281	46	30	148	173	225
ERA 102	CERA	CERAM	141	59	58	109	133	262	29	33	124	164	268
ERA 103	CERA	CERAM	163	52	65	121	157	266	43	29	144	174	240
ERA 104	CERA	CERAN	152	62	68	132	161	256	51	33	139	166	232
ERA 141	CERA	CERAM	165	51	60	1 19	152	264	46	28	141	169	215
ERA 142	CERA	CERAN	166	60	63	117	154	260	32	33	147	166	211
ERA 297	CERA	CERAN	177	55	60	127	149	298	31	28	135	177	248
ERA 298	CERA	CERAN	168	62	61	120	156	272	35	34	138	178	234
ERA 360	CERA	CERAM	146	55	59	112	144	251	37	29	147	157	218
ERA 366	CERA	CERAM	160	48	62	1 10	138	265	32	36	160	175	231
ERA 367	CERA	CERAN	162	55	62	112	146	273	44	28	146	182	239
ERA 368	CERA	CERAN	175	42	58	1 12	141	254	49	28	152	187	222
ERA 369	CERA	CERAM	154	48	55	114	142	249	43	27	138	170	212
ERA 370	CERA	CERAM	164	50	65	119	149	271	47	27	144	184	234
ERA 371	CERA	CERAN	169	54	57	117	146	273	39	30	140	185	230
ERA 431	CERA	CERAM	173	49	61	121	150	258	49	27	152	168	249

......

10	GENUS	SVBGEN	ANGD	ANGW	808A	BOHT	80M1	CNM3	UN10	EM1W	MNNO	RAND	HMAR
5LMA 21	SUMA	SUNAN	113	38	34	63	83	189	40	22	166	166	152
suma 46	SUMA	SUMAN	112	37	36	61	134	165	36	21	120	117	166
BICO 147	8100	BICON	123	48	52	89	124	185	52	32	155	124	178
81CO 149	8100	arcon	140	49	52	87	124	194	50	30	152	142	181
BICO 150	B1C0	81 CON	127	43	48	89	116	217	41	26	133	135	177
81CO 151	0118	81004	145	49	51	88	123	207	46	29	143	155	168
BICO 155	8100	B1CON	111	47	44	79	109	174	48	30	146	116	160
BICO 157	8100	BICON	140	47	51	85	120	227	48	28	141	155	202
161 0016	B1CO	BICOM	137	54	59	101	132	204	46	27	147	140	182
SICO 166	B1C0	BICOM	130	45	51	83	110	219	41	29	131	143	176
SICO 167	BICO	BICON	132	48	54	89	116	196	48	31	155	140	180
BICO 166	BICO	BICOM	135	50	54	98	121	225	41	30	135	143	191
BJCO 169	BICO	BICOM	130	47	50	84	112	203	43	30	133	127	166
BICO 170	BICO	BICOM	118	47	47	84	119	205	44	56	136	133	162
BICO 174	8100	8 I COM	130	51	52	88	123	195	49	29	148	136	166
BICO 176	6100	BICOM	135	51	57	69	126	197	46	30	151	139	197
BICO 177	6100	BICON	125	48	53	86	121	201	49	29	154	132	163
BICO 178	81C 0	B1 COM	114	34	57	73	96	197	42	29	135	123	160
BICO 181	B1C0	81COM	126	47	49	ס	198	197	45	27	145	134	177
8100 294	BICO	BICOM	123	48	48	76	110	167	43	21	148	125	180
BICO 295	0018	M031B	115	48	51	79	109	187	43	29	137	115	181
81Co 105	8100	BJCOM	135	54	53	85	123	209	50	30	151	132	160
8100 379	B1CO	81CON	140	50	53	17	111	182	4 B	29	150	147	155
585 0318	BICO	BICON	140	48	55	92	126	214	47	27	147	148	194

10	GENUS	SUBGEN	ANGD	ANGW	606A	BDHT	88#1	СНИЗ	LM1L	1819	NNMO	RAND	9.AMH
8100 384	8100	BICON	133	50	56	67	11 9	213	45	28	144	140	189
8ICO 386	BICO	M0318	124	50	50	61	108	209	42	29	133	139	189
BICO 387	6100	BICOM	139	41	56	96	123	201	43	28	141	130	164
BICO 368	8100	81C0M	129	55	49	101	123	233	40	27	133	140	189
BICO 389	81 CD	BICOM	141	40	46	93	119	218	43	27	142	150	181
BICO 390	61CO		141	45	53	67	124	220	49	30	147	145	201
8100 392	8100	BICON	133	41	56	85	113	198	48	28	148	135	168
8100 393	8100	BICON	149	49	53	92	122	224	44	31	143	156	186
6100 394	8100	BICON	134	41	58	100	132	207	48	27	146	137	180
8100 396	8100	BICOM	133	48	54	62	109	178	52	26	154	133	179
8100 397		BICON	142	33	50	64	122	192	49	25	149	147	192
6100 398	8100		131	44	48	64	118	168	47	27	149	137	182
8100 402	BICO		122	45	50	81	105	194	44	28	141	130	172
BICO 405	8100		125	40	57	97	130	193	47	28	151	128	167
B1CD 407		61000	106	43	4B	58	106	204	41	26	133	121	163
B1C0 408	BICO		124	39	49	74	106	199	46	28	147	130	163
BIC0 410	BICD		128	35	51	85	114	192	45	27	140	126	181
8ICO 411		BICOM	121	36	46	61	98	199	39	22	128	127	177
BICO 412	6100		131	42	54	65	113	210	43	27	140	140	195
8100 414	6100		129	50	50	90	115	206	40	27	131	134	163
BICO 418	BICO	81004	127	43	52	83	114	207	46	29	138	124	191
8100 436	8100	BICON	120	41	48	84	118	181	47	28	144	130	171
8100 437	BICD	81COM	128	52	57	89	125	189	47	26	150	130	169
8100 441	8100	BICON	139	48	57	93	122	204	44	27	138	148	177
BICO 443		81CON	140	45	57	68	116	227	43	30	138	150	179

	GEI	IUS	SUBGEN	ANGD	ANGW	806 R	BDH7	BC N 1	CNM3	LNIL	LM1W	ennico	RAND	RAMH
UNIC 4	48 UI	ALI	UNICH	157	39	51	63	112	228	42	26	143	156	238
UNIC S	53 UI	IJA	UNICH	140	47	49	89	120	212	41	31	141	154	213
UNIC 5	55 UI	AL4	UNICH	150	47	54	63	716	233	43	29	147	151	251
UNIC 30	03 UI	AL)	UNICH	160	45	55	92	125	234	48	27	155	163	250
UNIC 34	48 UI	ALI	UNICH	165	47	55	95	113	263	42	31	145	173	249
UNIC 34	19 U	ALI	UNICH	159	45	51	99	116	256	37	27	136	170	247
UM1C 42	16 UI	JA	UN 2 CM	145	49	53	93	116	254	37	31	133	155	239
UNIC 42	27 U)	AL I	UNICH	142	52	50	53	105	247	41	30	140	153	223
JNIC 42	29 UI	JA	UN3CH	161	46	56	102	118	243	43	31	135	167	247
JAVA 1	17 Ui	AL	MAVAN	129	37	41	74	101	186	40	23	124	133	179
JAVA 1	18 UN	JA	JAVAM	143	36	42	66	96	175	39	22	129	144	181
JAVA 29	19 UN	JA	JAVAN	141	39	42	68	95	165	41	24	128	144	186
CER 20	16 AC	EA	ACER 1M	150	28	47	87	112	198	42	26	135	131	212
CER 24	5 AC	EA	ACER IN	151	32	42	85	107	265	61	27	134	152	197
ICER 12	14 A.C	ER	ACER2M	156	36	44	76	109	201	43	29	125	150	221
CEA 21	2 40	ER	ACER2M	152	37	41	67	196	218	34	24	112	152	220
PHE 20	19 AP	ΉE	APHE 1M	137	27	51	69	111	194	36	26	123	137	205
PHE 21	1 AP	ΉE	APHE 1M	138	23	49	79	97	209	34	24	115	140	192
PHE 20	17 AP	HE	APHE 1M	133	21	(45)	66	87	179	37	25	124	135	195
PHE 20	IA AP	ΉE	APHE 1M	141	20	38	91	109	193	36	28	121	133	202
PHE 21	3 AP	HĒ	APHE2M	150	26	45	78	107	186	44	25	135	140	200
PHE 27		HE	APHE 2N	150	35	42	91	112	199	37	26	121	142	204
PHE 27	4 AP	HE	APHE2N	151	30	57	91	106	205	41	30	130	152	220
PHE 33	Ο AP	HE	APHE2M	[156]	34	45	105	121	234	38	24	121	150	229
PHE 33	1 AP	NE	APHE2M	153	32	41	97	117	210	41	28	125	135	210

_

346

10		GENUS	SUBGEN	ANGO	ANGW	BDGR	BDHT	60M1	CNM2	LM1L	LN1W	MNNO	RAND	RAMH
A₽HE	333	APHE	APHE2H	143	32	39	82	108	213	32	19	126	152	227
APHE	214	APHE	APHE 3 M	150	28	55	56	111	224	46	32	146	154	224
APHE	215	APHE	APHE 3M	163	36	58	105	128	225	49	36	158	169	228
APHE	216	APHE	арнези	175	29	55	86	121	233	54	31	162	178	235
APHE	275	APHE	APHE3M	201	32	57	116	153	252	54	31	163	181	278
APHE	322	APHE	APHEGH	162	34	61	121	151	229	56	(38)	180	175	272
APHE	338	APHE	APHE4M	190	32	60	136	169	253	58	39	181	155	264
APHE	339	APHE	APHE4M	158	28	65	115	149	270	51	36	162	191	280
APHE	494	APRE	APHE4M	168	29	58	120	151	224	49	33	172	160	238
DICE	241	DICE	DICE1M	134	14	29	73	94	152	43	23	136	112	171
DICE	451	OICE	DICE5M	104	40	25	57	71	144	23	18	65	88	138
FDRS	126	FORS	FORSIN	141	18	25	66	78	145	32	22	106	101	153
FORS	128	FORS	FOR S2N	127	11	23	56	66	130	24	17	84	102	137
FOR S	129	FORS	FOR 52M	97	7	26	50	62	97	27	15	80	78	124
HYRA	4	HYRA	HYRA1M	80	11	17	35	45	69	15	9	48	63	82
HYRA	323	HYRA	HYRA1M	63	7	15	28	34	62	14	10	44	52	73
HYRA	6	HYRA	HYRA2M	103	9	20	49	60	97	21	14	66	69	118
HYRA	9	HYRA	HYRAZM	92	(8)	18	44	52	79	19	15	61	66	101
HYCD	117	HYCD	HYCON	90	6	23	42	54	71	18	12	59	76	107
HACO	120	HYCO	HYCON	89	7	23	41	53	87	19	13	60	74	121
HYCO	280	HYCD	HYCOH	85	6	20	42	49	52	17	12	60	77	98
HYCD	460	HYCO	NYCOM	81	6	22	40	51	74	18	12	57	68	100
NOR	258	1 NDR	INORM	255	67	79	129	166	353	75	53	223	226	330

. . .

....

- ---- -----

347

ID		GENUS	SUBGEN	ANGD	ANGW	BDBR	BONT	8041	CNM3	LMAL	LHTH	HNMO	RAMD	RAM
4ENA 1	189	MENB	MENOIM	95	36	26	53	67	111	30	19	98	78	137
IEND 1	190	MEHO	MENO1M	92	30	25	51	69	110	26	18	86	78	129
4END 1	191	NEND	ME NO 1M	108	39	25	55	68	129	25	17	90	85	141
feno 1	192	MENB	MENOTM	96	27	22	52	63	176	25	19	90	79	13
IENO 1	194	MEND	MENO1H	96	29	26	51	64	120	25	18	90	92	133
IEND 4	454	MENO	MENO1M	113	43	29	51	65	(147)	24	19	89	77	144
IENO 4	57	MENO	MENO1M	103	42	24	56	70	[141]	27	18	90	75	134
ÆND 1	158	MENQ	HEND1H	108	34	28	59	78	129	29	20	92	89	138
IENO 1	72	HEND	MEND1N	100	24	27	48	74	116	31	20	100	100	147
IENO 1	86	MENQ	MENOIN	99	46	31	57	72	134	24	21	91	96	14
IEND 1	32	MEND	NENO2M	100	31	35	64	85	141	31	22	114	92	15
ENE	15	PENE	PENEIM	81	10	22	47	57	105	20	13	70	82	11
ERA 2	76	PERA	PERAIM	133	19	43	79	101	180	41	29	136	135	18
ERA 3	40	PERA	PERAIN	121	22	40	67	97	152	42	27	135	111	16
ERA 3	24	PERA	PERAIM	113	13	38	82	94	173	35	26	116	117	16
ERA 3	119	PERA	PERAZN	155	25	52	90	115	219	43	31	148	147	21
ERA 3	25	PERA	PERAZN	152	26	(53)	B7	† 19	216	50	33	167	163	20
UBH	35	SUBH	SUBN1M	103	19	28	52	68	117	38	22	110	101	13
UBH	43	SUBH	SUBN1M	126	19	30	55	75	135	34	18	105	111	14
UBH -	44	SUBH	SUBHIM	126	21	33	73	64	150	27	25	97	102	15
UBH (28	SUBH	SUBHIM	102	15	27	52	70	120	28	18	97	68	12
UBN C	29	SUBH	SUBH1M	103	13	28	57	70	141	25	18	85	102	(3)
VAH 🔅	38	SUBH	SUBH1M	198	15	27	55	65	138	27	19	89	107	12
UBH -	40	SUBH	SUBHIM	121	14	22	73	86	127	30	20	104	112	15
UBH (65	SUBH	SUBH 1M	104	14	27	58	72	125	28	19	69	98	133

····-

ID	GENUS	SUBGEN	ANGD	ANGW	BOBR	BOHT	60M1	CNM3	LH1L	LNIN	MMMO	RAND	RANH
Weli 32	SUBH	suðh2m	120	13	30	63	75	128	27	21	96	115	146
WOH 33	SUBH	SUB H2N	116	15	31	60	76	120	28	20	95	105	141
SUBH 231	SUGH	SUBN3M	133	18	35	60	79	[140]	33	21	112	108	14B
WBH 232	SUBH	SUBH3M	117	17	36	56	71	146	37	24	113	94	148
SUBH 234	SUDH	SUBH3M	129	24	(38)	77	90	148	27	22	98	125	154
WEH 279	SUBH	SUBN3N	129	13	37	57	74	137	32	21	108	112	149
SUBH 458	SUBH	SUBN 3 M	122	25	36	64	82	155	35	25	112	95	148
SUBN 425	SUBH	SUBH3N	121	12	26	61	(75)	139	32	21	104	108	146
ELE 249	TELE	TELE 1H	144	22	45	77	108	175	48	30	157	123	189
ELE 250	TELE	TELE IN	154	21	42	72	102	184	44	30	140	148	183
ELE 253	TELE	TELEIM	149	28	39	68	106	207	37	20	131	142	183
ELE 346	TELE	TELE2M	152	30	49	66	114	201	46	36	150	146	218
IELE 347	TELE	TELE2N	149	26	49	83	109	185	48	34	159	132	183
ELE 259	TELE	TELE2N	141	31	53	103	121	215	41	29	153	124	227
ELE 260	TELE	TELE2N	144	30	49	96	117	214	50	31	160	128	Z28
ELE 254	TELE	TELE2N	167	(32)	46	101	121	221	38	32	143	172	222
IELE 255	TELE	TELE2N	154	33	45	94	114	229	41	31	138	153	236
ELE 217	TELE	TELE3M	152	20	44	90	124	186	48	29	155	†31	202
IELE 218	TELE	TELE3N	164	23	47	102	125	217	44	27	144	148	240
ELE 219	TELE	TELE 3 M	136	33	46	118	136	218	46	23	155	144	210
IELE 221A	TELE	tele3n	127	29	48	84	112	196	48	27	154	128	200
ELE 2219	TELE	TELE3M	138	15	44	69	100	101	49	25	155	115	175
ELE 262	TELE	TELE3H	133	24	48	76	112	191	45	27	157	142	186
IELE 263	TELE	TEL E3H	139	(30)	47	83	101	216	41	33	143	140	201
IELE 264	TELE	TELE3H	135	43	49	67	113	168	44	31	156	135	208
IELE 312	TELE	TELESH	162	37	50	106	125	221	42	27	142	153	235
ELE 313	TELE	TELE 3N	148	24	48	95	119	201	45	29	144	134	205

10	GENU\$	SUBGEN	ANGD	ANGW	BOBR	BOHT	BOM1	CNM3	LM1L	LH1W	MHHC	RAMO	RAMH
TELE 314	TELE	TELESM	1 5D	39	54	81	102	226	47	29	145	162	203
TELE 261	TELE	TELE3H	152	34	55	109	123	247	40	24	(160)	147	232
TELE 226	16LE	TELEAN	150	33	51	90	105	246	43	28	142	165	213
TELE 281	TELE	TELE4M	158	35	45	112	132	239	47	32	159	160	249
TELE 282	TELE	TELE4M	141	52	60	113	135	241	52	32	126	141	212
TELE 283	TELE	TELE4H	167	39	70	120	133	250	54	35	173	178	255
TELE 286	TELE	TELE5M	138	24	50	98	121	202	45	33	160	129	216
TELE 424	TELÉ	TELESH	154	27	45	98	[124]	191	49	31	170	123	207
TELE 223	ŤELE	TELESN	167	46	60	112	138	264	46	32	163	[162]	230
TELE 224	TELE	TELESM	141	22	48	102	136	214	59	30	181	131	221
TELE 225	TELE	TELESM	161	27	48	98	131	215	53	32	178	144	228
TELE 227	TELE	TELESM	146	34	57	93	122	213	46	31	162	146	230
TELE 290	TELE	TELESM	138	26	55	109	123	(227)	49	30	163	136	225
TELE 292	1EL E	TELE5N	152	34	65	99	136	210	56	30	171	152	228
TRIG 421	TAIG	TRIGM	126	12	32	65	80	156	33	23	115	[120]	168
TRIG 491	TRIG	TRICH	125	15	31	67	81	148	27	22	102	126	154
IRIG 423	TRIG	TRICH	134	18	34	62	76	132	32	22	110	120	147
TRIG 470	TRIG	TRIGM	128	15	31	65	81	167	31	22	106	129	162
TRIG 474	TRIG	TRIGH	115	17	31	66	79	145	28	20	98	112	156
TRIG 477	TRIG	TRIGN	129	17	32	70	65	159	28	20	99	122	154
TRIG 479	TAIG	TREGM	117	20	40	71	65	138	32	22	111	106	170
TRIG 460	TAIG	TRIGM	120	18	32	66	83	137	30	23	112	116	152
TR)G 481	TRIC	TREGN	123	18	30	69	83	152	33	20	111	114	168
TR16 483	TRIG	TRIGH	110	11	37	63	73	158	30	24	109	106	146
TR16 484	TRIĞ	TRIGM	126	13	35	75	89	119	31	21	111	118	155
TR)g 485	TRIG	TRIGN	123	11	32	60	74	136	31	21	113	117	146
TR16 486	TRIG	TRICM	122	19	29	64	80	164	28	20	106	107	159

......

ID	GENUS	SUBGEN	ANGD	ANGN	BDØR	80HT	BOM1	CNM3	LMIL	LM1W	MNMO	RAMO	RAMH
		<u> </u>	·				· · · · · · ·		. <u>.</u>				
ZAIS 107	ZAIS	ZAIS1M	232	26	57	87	120	200	46	31	166	196	257
ZAIS 114	ZATS	2A1 \$2H	225	16	33	98	119	202	52	32	182	170	271

APPENDIX 5.

UNIVARIATE STATISTICS

Summary univariate statistics for skull and mandible subgeneric groups respectively. Within each section, living groups are followed by fossil groups. Subgroups are listed by code in the same order as in Table 2 (skull) and Table 3 (mandible).

SKULL

ł

i.

CERAS 19 AEAE 19 309 372 335.6 14.60 4.4 AEOR 19 211 265 246.1 12.56 5.1 AEP2 19 431 460 447.7 8.33 1.8 BICN 19 134 154 146.0 6.53 4.4 BIZY 19 317 375 339.2 16.82 4.9 LFHT 19 123 163 134.2 10.71 7.9 LOXB 19 216 267 244.0 12.75 5.2 NIM1 19 197 224 208.9 7.56 3.6 H3M3 19 124 146 136.3 5.99 4.3 MGAE 19 251 287 234.3 10.96 4.6 NXHO 19 142 180 158.9 9.43 5.9 OCP2 19 590 646 625.7 16.50 <th>Subgroup</th> <th>N</th> <th>Variable</th> <th>N</th> <th>Min</th> <th>Max</th> <th>Mean</th> <th>5.0.</th> <th>c.v.</th>	Subgroup	N	Variable	N	Min	Max	Mean	5.0.	c.v.
AEOR 19 211 265 246.1 12.56 5.1 AEP2 19 631 460 447.7 8.33 1.8 BICN 19 134 154 146.0 6.53 4.4 BIZY 19 317 375 339.2 16.82 4.9 LFHT 19 123 163 134.2 10.71 7.9 LOXB 19 216 267 244.0 12.75 5.2 NIM1 19 197 224 208.9 7.56 3.6 M3M3 19 124 146 136.3 5.99 4.3 MGAE 19 215 257 234.3 10.96 4.6 MXGT 19 251 287 267.1 10.24 3.8 MXMO 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2									
AEP2 19 631 460 447.7 8.33 1.8 BICN 19 134 154 146.0 6.53 6.4 BIZY 19 317 375 339.2 16.82 4.9 LFHT 19 123 163 134.2 10.71 7.9 LOXB 19 216 267 244.0 12.75 5.2 NIM1 19 197 224 208.9 7.56 3.6 MSM3 19 124 146 136.3 5.99 4.3 NGAE 19 215 257 234.3 10.96 4.6 MXGT 19 251 287 267.1 10.24 3.8 MXM0 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1	CERAS	19	AEAE	19	309	372	335.6	14.80	4.4
BICN 19 134 154 146.0 6.53 4.4 BIZY 19 317 375 339.2 16.82 4.9 LFHT 19 123 163 134.2 10.71 7.9 LOXB 19 216 267 244.0 12.75 5.2 N1M1 19 197 224 208.9 7.56 3.6 M3M3 19 124 146 136.3 5.99 4.3 MGAE 19 215 257 234.3 10.96 4.6 MXGT 19 251 287 267.1 10.24 3.8 MXM0 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0			AEOR	19	211	265	246.1	12.56	5.1
BIZY 19 317 375 339.2 16.82 4.9 LFHT 19 123 163 134.2 10.71 7.9 LOXB 19 216 267 244.0 12.75 5.2 N1M1 19 197 224 208.9 7.56 3.6 M3M3 19 124 146 136.3 5.99 4.3 MGAE 19 215 257 234.3 10.96 4.6 MXGT 19 251 287 267.1 10.24 3.8 MXM0 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5			AEP2	19	431	460	447_7	8.33	۲.8
LFHT 19 123 163 134.2 10.71 7.9 LOXB 19 216 267 244.0 12.75 5.2 N1M1 19 197 224 208.9 7.56 3.6 N3M3 19 124 146 136.3 5.99 4.3 NGAE 19 215 257 234.3 10.96 4.6 NXGT 19 251 287 267.1 10.24 3.8 NXM0 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTHT 19 58 79 71.1 6.10 8.5 <td></td> <td></td> <td>BICN</td> <td>19</td> <td>134</td> <td>154</td> <td>145.0</td> <td>6.53</td> <td>4.4</td>			BICN	19	134	154	145.0	6.53	4.4
LOXB 19 216 267 244.0 12.75 5.2 N1M1 19 197 224 208.9 7.56 3.6 N3M3 19 124 146 136.3 5.99 4.3 NGAE 19 215 257 234.3 10.96 4.6 NXGT 19 251 287 267.1 10.24 3.8 NXM0 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTHT 19 58 79 71.1 6.10 8.5			81ZY	19	317	375	339.2	16.82	4.9
N1M1 19 197 224 208.9 7.56 3.6 N3M3 19 124 146 136.3 5.99 4.3 NGAE 19 215 257 234.3 10.96 4.6 NXGT 19 251 287 267.1 10.24 3.8 NXMO 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTNT 19 58 79 71.1 6.10 8.5			LFHT	19	123	163	134.2	t0.71	7.9
N3M3 19 124 146 136.3 5.99 4.3 NGAE 19 215 257 234.3 10.96 4.6 NXGT 19 251 287 267.1 10.24 3.8 NXM0 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTNT 19 58 79 71.1 6.10 8.5			LOXB	19	216	267	244.0	12.75	5.2
NGAE 19 215 257 234.3 10.96 4.6 NXGT 19 251 287 267.1 10.24 3.8 NXMO 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.3 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTNT 19 58 79 71.1 6.10 8.5			NTM1	19	197	224	208.9	7.56	3.6
NXGT 19 251 287 267.1 10.24 3.8 NXMO 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.3 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTNT 19 58 79 71.1 6.10 8.5			N3M3	19	124	146	136.3	5.99	4.3
HXH0 19 142 180 158.9 9.43 5.9 DCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTNT 19 58 79 71.1 6.10 8.5			NGAE	19	215	257	234.3	t0 .96	4.6
OCP2 19 590 646 625.7 16.50 2.6 DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTHT 19 58 79 71.1 6.10 8.5			NXG7	19	251	287	267.1	10,24	3.8
DXAE 19 299 356 325.5 17.05 5.2 DXOR 19 435 520 482.6 24.87 5.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTHT 19 58 79 71.1 6.10 8.5			MXMO	19	142	160	158.9	9.43	5.9
DXOR 19 435 520 482.6 24.87 S.1 POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTHT 19 58 79 71.1 6.10 8.5			0CP2	19	590	646	625.7	16.50	2.6
POR8 19 103 121 112.1 4.59 4.0 TFLN 19 315 376 355.4 16.26 4.5 ZTHT 19 58 79 71.1 6.10 8.5			DXAE	19	299	356	325.5	17.05	5.2
TFLN 19 315 376 355.4 16.26 4.5 2THT 19 58 79 71.1 6.10 8.5			OXOR	19	435	250	482.6	24_87	S_1
ZTHT 19 58 79 71.1 6.10 8.5			PORS	19	103	121	112.1	4.59	4.0
			TFLN	19	315	376	355.4	16.26	4.5
ZYLN 19 237 301 276.2 18.34 6.6			ZTHT	19	58	79	71.1	6.10	8.5
			ZYLN	19	237	301	276.2	18.34	6.6

Subgroup	N	Variable	N	Hin 	Max	Mean	\$.O.	c.v.
	_							
SUMAS	2	AEAE						
		AEDR	2			185.5		0.3
		AEPZ	2	-	-	-		0.9
		9 I CN	2	-				16.7
		BIZA		300	-	305.0		2.3
		LFNT		86		91.0		
		LOXE	Z					1.4
		N1M1	2	171				2.8
		M3M3	2			113.0		2.5
		MGAE	2			170.0	1.41	0.8
		MXGT	2	187	-			6.1
		NXNO		119		119.5		0.5
		OCPZ	2	400		407.0		2.4
		OXAE	2	212	222	217.0	7.07	3.2
		DXDR	2	289	313	301.0	16.97	5.6
		PORIS	2	t 15	116	115.5	0.70	0.5
		TFLN	2	189	211	200.0	15.55	7.7
		2441	2	43	44	43.5	0.70	1.6
		ZYLN	2	169	179	174.0	7.07	4.0
BICOS	48	AEAE	48			316.9		3.6
		AEDR	48	210	252	231.7	10.80	4.6
		AEP2	48	330	405	374_5	15.13	4.0
		BICN	48	111	152	133.5	8.23	6.1
		BIZY	48	305	358	331.5	12.41	3.7
		LFHT	48	73	104	90.9	7.33	8.0
		LOXB	48	210	264	231.7	12.61	5.4
		NINT	48		214			4.7
		M3H3	48	111	144	125.3	7.88	6.2
		NGAE	48	182	228			4.2
		*DCGT	48	222	273	249.0	12.24	4.9
		MXNO	48	103	165			6.3
		OCPZ	48	474			20.59	
		OKAE	48			272.4		4.8
		OXDR	48					6.5
		PORE	-	103				6.3
							17.66	
		ZYHT	48			49.7		-
		ZYLN	48					7.3

Subgroup	K	yarieble		Min		Hean	S.D.	c.v.
		- 5 - 5	_				-	
UNICS	8		В		-			
		AEOR	8		268	255 .2		4.1
		AEPZ	B	365	409	382.0	12.46	3.2
		BICN	6	135	147	139.2	3.91	2.8
		BIZY	6	347			10.19	2.7
		LFNT	8	91		108.3	11,14	10.2
		LOXB	B	227	296	274.6	21.27	7.7
		M1H1	8	204	227	218.8	7.37	3.3
		MSMS	6		152	137.2	12.71	9.2
		NGAE MXG1	8		240	224.5	8.40	3.7
		NOCHO	8		264	255.7	9.52	3.7
		OCP2	8	145	155		4.27	2.8
			8		556	522.7	15.54	2.9
		DXAE DXOR	B	256	284	268.1	10.14	3.7
			8	356	391	366.7	12.06	3.2
		PORB	8	100	126		7.88	6.9
		TFLR	8		-	270.5	17.49	6.4
		ZYHT	8		68		6.64	8.8
		ZYŁN	a	225	257	236.8	10.17	4.2
JAVAS	4	AEAE	4	319	332	327.7	6.13	1,8
		AEOR	4	Z34	Z48	240.0	6.32	Z.6
		AEP2	4	317	327	321.5	4.43	1.3
		BICN	4	125	151	138.7	11.02	7.9
		BIZY	4	331	346	339.7	6.75	1.9
		LF#7	4	61	77	68.0	6.83	10,0
		(OXB	4	278	298	285.7	8.65	3.0
		M1M1	- 4	190	197	192.7	3.09	1.6
		изиз	4	110	114	111.5	1.91	1.7
		NGAE	4	168	215	203.2	11.23	5.5
		MKGT	4	220	231	223,7	4.99	2.2
		NXHO	4	126	131	129.0	2.16	1.6
		5930	- 4	432	463	453.0	14.30	3.1
		DKAE	4	229	252	235.7	10.99	4.6
		OXOR	4	299	334	316.5	14.43	4.5
		PORB	4	110	121	115,7	4.78	4.1
		TFLN	4	205	236	223.2	14, 59	6.5
		ZYHT	4	52	56	54 ,0	1.63	3.0
		ZYLN	4	182	207	196.5	11.38	5.7

Subgroup	N 	Variable					s.D.	
AFFRIS	,	AEAE	1	200	100	0.000		
	,					232.0		
		AEP2				352.0		
		SICH	1	114				
		812Y	1	293		293.0		
		LENT	ł		73	73.0		
		LOXE	1	226	226	226.0		
		H1H1	1	186	186	186.0		
		H\$H3	1	102	102	102.0		
		MGAÈ	1	210	210	210.0		
		MIGT	1	239	239	239.0		
		MORINO	1	145	145	145.0		
		OCPZ	1	484	484	484.0		
		OXAE	1	270	270	270.0		
		OXOR	1	394	394	394.0		
		PORB	1	91	91	91.0		
		TELN	1	267	267	267.0		
		ZYHT	1	ά7	67	67.0		
		ZYLN	1	219	219	219.0		
			_			-		
ACER 25	Т		۱			365.0		
						196.0		
			1			342.0		
		BICN	1	130				
		8127	1			357.0		
		LENT LOX8	1	208	-	121.0		
		N 1W1	1			258.0 206.0		
		N3N3	1			129.0		
		NGAÈ	1		268			
		MXGT	1	245				
			1			144.0		
		OCP2	1			517.0		
		OXAE	1		294			
		DXOR	1		377			
		PORS	1			138.0		
		TFLN	i			277.0		
		ZYHT	1	63	63	63.0		

.

Subgroup	N	Variable					S.D.	
	•	AEAE		•07		101 5	0. 10	
	5					126.5		0.3 3.9
		AEP2	ź			224.5		2.2
		BICH	2	54				0.6
		BIZY	2	130	205	167.5	53.03	31.6
		LFHT	z		53			
		LOXB	ž			101.0		1.4
		MINI	z	107	123	115.0	11.31	9.8
		M3M3	2			89.0		
		MGAE	2					4.9
		MXGT	2	140	154	147.0		6.7
		NDCHC)	2				12.02	
		OCP2	2			325.5	3.53	1.0
		OXAE	Z	160	170	165.0	7.07	4.2
		OKOR	5	268	281	274.5	9.19	3.3
		PORB	2	61	63	62.0	1.41	2.2
		TFLN	S			204.5	4.96	2.4
		ZYNT	2	34	35	34.5	0.70	2.0
		ZYLN	2	120	121	120.5	0.70	0.5
APHEIS	1	AEAE	1	262	262	262.0		
		AEOR	1					
		AEP2	1	286	286	286.0		
		BICK	1	96	96	96.0		
		Ø1 2Y	1	236	236	236.0		
		LFHT	1					
		L 0)08	1	140	140	140.0		
		MTR1	1		119	119.0		
		N383	1	-	91	91.0		
		NGAE	1	165	165	165.0		
		MKGT	1	192				
		MXMO	1					
		OCP2				399.0		
		DXAE	1		192			
		DXOR	1		291	-		
		PORB		72	_			
		TFLN				230.0		
		ZYNT	1		52			
		ZYLN	1	179	179	179.0		

Subgroup	H	Varieble	N	Min	Max	Mean	S.D.	C.V.
104575	я	AEAE	A	787	397	305 7	16.23	
A: HEEG	-				217		11.34	
			8		379		17.66	5.0
		8100	8		137		5.92	4.6
		812Y	ŝ	288		. –	17.46	5.6
		LFHT		71	107		12.15	14.2
		LOXB					16.30	7.5
		M1N7			186		7.54	4.2
		K3K3	8	107			12.18	9.9
		NGAE			196		8-98	4.8
		MXGT		Z17			18.38	7.7
		NIXINO	9		145		7.62	5.6
		OCP2	8	438			22.01	4.6
		OXAE	8	229	263	243.6	12.93	5.3
		OXOR	8	296	383	357.7	28.44	7.9
		PORS	8		121		6.02	7.4
		TFLN	8	218	263	247.8	16.12	6.5
		ZYNT	8	56	76	68.1	5.71	8.3
		ZYLN	8	164			13.24	6.2
DICETS	3	AEAE		194		204.6	9.71	4.7
		AEOR	3	162	168	165.6	3.21	1.9
		AEPZ	3		259			3.9
		91CN	3	60	93	85.6 230.3	6.65	7.7
		812Y	3	226	236	230.3	5.13	2.2
		LFHT	3		55		6.80	14.3
					127		2.68	2.3
		MINI	3	128	142		7.81	5.7
		M3M3	3	74			6.65	8.1
					154	141.3	11.37	0.8
		MXGT		166	195		15.94	9.0
		10010	3	99	117		9.64	9.0
		OCP2	3	336	358	348.0	11.13	3-1
		OXAE			178		11.59	6.9
				251	294	268.3	22.67	
		PORS	3	81	93	88.3 198.6	6.42	7.2
		TFLN						8.5
						38.6	3.78	9.7
		ZYLN	3	147	164	153.0	9.53	6.2

......

ţ

1

į

Subgroup	N	variable	N	Min	Max	Меап	S.O.	C.V.
BICEZS	1	-				244.8		
		AEOR		170				
		AEP2		278				
		BICN	1	95	95			
		912Y	1					
		LFNT	1					
		róx8	1		143			
		M1M1	1	131		131.0		
		ENEM	1	99		99.0		
		MGAE		162	-	-		
		MXGT	1	192	192	192.0		
		MONG	1	115	115	115.0		
		OCP2	1	395	395	395.0		
		OXAE	1	188	188	188.0		
		oxor.	1	294	294	294.0		
		PORS	1	86	86	86.0		
		TFLN	1	210	210	0.015		
		ZYNT	1	48	48	48.0		
		ZYLN	1	165	165	165.0		
DICE35	Ż		z			257,0	19,79	7.7
		AEOR	2	195	208	201.5	9.19	4.5
		AEP2	S	317	320	318.5	2.12	0.6
		BICN	5	. –	118	1 15 .0	4.24	3.6
		8]Z¥	z	247	285	266.0	26.87	10.1
		LFHT	5	54	61	57.5	4.94	8.6
		LOXB	Z	149	158	153.5	6.36	4-1
		нтит	z	130	159	144.5	20.50	14.1
		M3M3	Z	69	117	103.0	19.79	19.2
		HGAE	5	164	174	169.0	7.07	4.1
		MXGT	2	204	217	210-2	9.19	4.3
		MXNO	2	129	140	134.5	7.77	5.7
		OCP2	2	429	451	440.0	15.55	3.5
		DNAE	2	223	229	226.0	4.24	1.8
		OKOR	S	337	373	355.0	25,45	7.1
		PORB	2	101	113	107,0	8.48	7.9
		TFLN	2	260	273	266.5	9.19	3.4
		ZYHT	2	51	65	-		

Subgroup	N	Variable		Nin		Mean	S.D.	C.V.
FORSS	2	AEAE	2				4.24	1.6
		AEDR	2	135	160	147.5		11.9
		AEPZ	2	255	275	265,8	14.14	5.3
		BICH	2	76	64	80,8	5.65	7.0
		BCZY	z		249	242.5	9.19	3.7
		LFHT	z	47	65	56.8	12.72	22.7
		LOXB	Z	104	133		20.50	17.3
		MTM1	2	127	138	132.5	7. n	5.8
		NGN3	2	81	102	91.5	14.84	16.Z
		KGAE	2	132	156	144.0	16.97	11.7
		NXGT	2	157	165	161.0	5.65	3.5
		NORMO	2	104	105	104.5	0.70	D.6
		OCP2	2	366	388	377.0	15.55	4.1
		OKAE	2	175	187	161.0	6.48	4.6
		OXOR	2	285	294	289.5	6-36	2.1
		PORE	2	61	116	68.5	36.89	43.9
		TFLN	2	217	220	218.5	Z.12	0.9
		ZYHT	2	36	39	37.5	Z.12	5.6
		ZYLN	2	142	149	145.5	4.94	3.4
HYRA1S	S	AEAE	2				26.87	29.2
		AEOR	2	76	88	82.0	6-48	18.3
		AEPZ	2	123	139	131.0	11.31	8.6
		BICN	2	38	48	43.0	7.87	16.4
		BIZY	2	86	122	104.0	25.45	24.4
		LFHT	2	Z7	31	29.0	2.82	9.7
		1.6X8	2	55	67	61.0	8.45	13.9
		N1N1	s	54	78	66.8	16 .9 7	25.7
		N3H3	z	35	59	47.8	16.97	36.1
		MGAE	2	46	75	60,5	20.50	33.8
		MXGT	2	72	83	77.5	7.77	10.0
		MXMO	2	44	52	48.0	5.65	11.7
		OCP2	z	167	190	178.5	16.26	9.1
		OXAE	Z	71	10 6	85.5	20.50	23.9
		OXOR	2	131	168	149.5	26.16	17.5
		PORB	2	37	48	42.5	7.77	18.3
		TFLN	2	92	120	106.0	19.79	18.6
		ZYHT	2		Z2		0.79	3.2
		ZYLN	2	73	91	8Z.8	12.72	15.5

i

i

ţ

1

Subgroup	N	Variable	N	Min	Мак	Mean	\$.D,	¢.v
			_					
HYRAZS	3		3	. –	162			-
		AEOR	3				6.65	6.0
		AEP2	3	167	184	173.0	9.53	5.5
		AICN Alter	3		58		6.02	11.6
		BIZY	3		179			36.9
		LFHT	3	32	39	35.3	3.51	9.9
		LOXB	3	67	-	76.0	12.28	16,1
		M1M1	3		110	94.3	17.78	18.8
		M3M3	3	49	76	62.3	13.50	21.6
		NGAE	3	74	106	90.0	16.00	17.7
		IDIGT	3		116		12.05	11.5
		HDCHO	3				7.63	11.5
		OCP2	3		26 t	236.3	22.61	9.6
		OXAE	3	86	134	108.3	24-17	22.3
		OXOR		-	Z05	188.0	15.13	8.0
		PORB	3	43	61	51.0	9.16	17.9
		TFUN	3			145.0	16.09	11.0
		ZYNT	3	25	28		1.73	6.6
		ZYLH	3	100	108	104.3	4.04	3.6
NYCOS	- 4		4	107	130	115.0	10. 6 1	9.2
		AEOR	4	88	98	92.2	5.05	5.4
		AEP2	4	141	160	150.7	7.76	5.1
		BICN	4		52	48.7	2.50	5.1
		BIZY	4	115	135	125.7	8.30	6.6
		LFHT	- 4	33	45	38,5	4.93	12.8
		LOXB	- 4	66	82	72.5	6.75	9.3
		M1M1	4	82	90	86.7	3.59	4.1
		M3H3	4	42	55	50.0	5.59	11.1
		MGAE	4	53	101	91.2	7.67	8.4
		IXGT	- 4	101	113	106.7	5.31	4.9
		10010	4	58	63		2.38	3.9
		OCP2	4	215	240	227.5	12.34	5.4
		ÛXAE	4	110	140	122.7	13.04	10.6
		CXOR	4	179	205	193.7	13.30	6.8
		PORB	4	40	57		7.67	16.7
		TFLN	4	145	156	149.7	5.ta	3.4
		SAHL	4	29	34	32.0	2.16	6.7
		ZYLW				NO B	4.34	4.8

.

ł

Subgroup	N	Variable	N.	Min	Kax	Mean	\$.D.	C.V.
tunne	•	4545			ct			
TUDKS	1	AEAE AEOR						
		AEPZ				374.0 632.0		
		BICN	1					
		BIZY		568				
		LFHT				145.0		
		LOXB	i		358			
		MINI	1					
		103103	-		-	214.0		
		MGAE		-	-	498.0		
		MXGT	i					
		MXMC	1	- · -				
		OCPZ	1			1025.0		
		OXAE		525				
		OXOR	1					
		PORS	1	194	194	194.0		
		TFLN				662.0		
		ZYNT	1			101_0		
		ZYLN	1			371.0		
MENOS	18	AEAE	18	156	268		14.10	7.7
		AEOR	18	129	164		10.78	7.5
		AEP2	18	212	257	233.0	13.17	5.6
		BECN	18	65				7.7
		BEZY	18	161	240	197.7		12.4
		LFHT		39				10.4
		LOXO	18	103	143	122.1	11.00	9.0
		HIRT	18				9.73	8.4
		M3M3	18			68.1	11.35	16.6
			18			118.8	7.10	5.9
		IXGT	18					4.4
		HDCHC	18			• =	4.76	4.9
		OCP2	18				14.34	4.5
		OXAE	18			143.8		9.2
		OXOR	18		_			6.1
		PORE	18				7.93	10.5
							9.21	5.7
		2YHT					6.72	
		ZYLN	- 18	126	150	137.6	7.33	5.3

-

Subgroup	•	Variable	N	Nin	Max	Mean	s.o.	c.v.
PERA1S	2	AEAE					38.18	15.0
		AEDR		17 B			5.65	3.1
				289			11.31	3.8
		BIÇN	2	85	90	87.5	3.53	4-0
		812¥				245.0	11.31	4.6
		LFNT		63			15.31	
		LOXS	Z			159.0		
		ICEN1	2	148			5.65	3.7
		M3H3	2	94		96.0		2.9
		MGAE	2	140			17.67	
		NXGT	2	182			18.38	9.4
		10010		107			17,67	
		OCP2	2		415		42.42	11.0
		OXAE	z	. –	-		19.09	10.1
		OXOR	2		280		17.67	6.6
		PORB		70			6.48	11.1
		TFLN					26.16	
		ZYHT	2	51	61	56.0	7.07	12.6
		ZYLN	2	168	185	176.5	12.02	6.8
PERAZS	7	AEAE	-	345	(A E	379.0	74 -	• •
TCRACA	3							
		AEOR					25.71	
		AEP2					33,56	8.6
		BICN	3	140 359			11.00	7.2
		8124					36.51	9.1
		LFHT	3					6.0
		LOX8	3		279		20.66	7.8
		M1H1	3		260		25.51	10.8
		M3M3		140			7.23	4.8
		NGAE	3	225			6.65	
		HXGT	3	263	287		12.12	4.4
		NXNÖ		155		165.3	-	6.6
		OCP2	-	495				5.4
		OXAE	3		294		22.89	
		OXOR	3		361		21.54	6.2
		PORB		102				11.1
		TFLN		S16			17.67	7.4
		ZYHT	3			78.6	3.05	3.8
		ZYLN	3	214	254	239.3	22.03	9.2

Subgroup	N 	Varisble	N	Min	Max	Mean	\$.Q.	c.v
SUBH15	ç	AEAE	ç	170	106	184 9	0 9 0	
	-	AEOR		136			7.00 7.00	6.0
		AEP2	5		256		14.07	5.8
		BICN	5	72	77	74.0	2.34	3.1
		812Y	5	176	219		15.27	7.7
		LFHT	5	39	70		11.28	ZO.7
		LOXB	5	101	125	113.8	6.64	7.5
		и ти т	5	105	131	118.8	11.09	9.3
		M3M3	5	75			6.01	7.5
		RGAE	5	126	137	133.0	4.84	3.6
		MIGT	5	143	178	160.0	15,14	9,4
•		MXXMO	5	67	103	95.8	7.66	7.9
		OCP2	5	314	357	339.6	16.44	4.8
		OXAE	5	146	174	156.8	10.84	6.9
		OXOR	5		277		11.19	4.2
		PORB	5			66.0	to.77	
		TFLN	5	166	201	178.0	13.47	7.5
		ZYNT	5				3.19	7.2
		ZYLN	5	128	142	135.6	5.31	3.9
SUBH2S	*	AEAE	4			203.5		6.8
		AEOR		146			6.83	4.4
		AEP2				255.0	7.25	Z.8
		BICN BIZY	4		95	88.75 213.0	7.0	7.9
		LFUT	4		235 75			8.3
		LOXE	2				8.04 10.8	8.4
		N1H1	4				17.38	13.5
		N3N3	4			82.75		-
		NGAE	4	-	164	145.5		8.5
		MXGT	4			173.5	9.88	
		NOCINO	2			105.0	8.60	
		OCP2	4					
		OXAE	ž	- · -		178.0	4.08	
		CXOR	4				4.20	1.6
		PORB	4		72		4.20	6.2
		TFLN	-			205.2	9.7	4.7
		ZYHT	4				5.19	
				129				

Subgroup	N	Variable	ĸ	Min	Max	ffean	S.D.	C.V.
_								
subh3s	7	AEAE						
		AEDR				173.5		4.5
		AEP2	7					3.6
		BICN	7	95			5.56	5.5
		BIZY					13.10	5.0
		LENT	7		62			17.0
		LOXB	7		161	-	7.58	S.0
		M 1447	7	124		139.4	9.19	6.5
		M3M3				99.2		6.4
		MGAE	7	133	166	153_1	11.92	7.7
		MXGT	7	156				6.8
		4DGHG	7					4.4
		OCP2	7			385.0	20.53	5.3
		OXAE	7		222	202.8	13.64	6.7
		UXOR	7					5.4
		PORS				85.2		9.4
		TFLN	7	206	250	227.5	16.25	7.1
		2¥HŤ	7			50.8		13.6
		ZYLN	7	153	164	167.0	11,10	6.6
TELEIS	S	AEAE	2	281	288	284.5	4.94	
		AEOR	2	221	232	226,5	7.77	3.4
		AEP2	2	325	328	326.5	2.12	0.6
		BICN	2	99	724	111.5	17.67	15.8
		BLZY	2	306	320	313.0	9,89	3.1
		LFHT	2	-		64 .5		12.0
		LOXE	Z	198	211	204.5	9,19	4.4
		RTMT	Z			179.5	2. 1Z	1.1
		N3N3	2	98	102	100.0	2.82	2.8
		NGAE	2	161	163	162.0	1.41	0.8
		MXGT	2	225	230	227.5	3.53	1.5
		HIGHC.	2	138	146	142.0	5,65	3.9
		OCP2	2	408	428	418.0	34, 14	3.3
		ÛXAE	2	205	210	207.5	3.53	1.7
		OXOR	2	304			1,41	0.4
		PORB	Z	93	116	104.5	16.26	15.5
		TFLN	2	213		215.0		1.3
		ZYHT	2	59				
		ZYLN	2	186		195.0	12.72	6.5

Subgroup		l Variable	N	Min	Max	Hean	S.D.	C.V.
TELE25	4						17,09	
		AEOR		Z41				
		AEPZ	4	351	374			2.8
		BICN	4	108		125.2	11.87	9.4
		BIZY	4		386		27.58	7.7
		LFRT		68		-	12.52	15.0
		LOXB	4		289		28.95	11.7
		MIMI	4	163	186		10.71	5.9
		M3M3		107			6.70	5.7
		NGAE		180			13.07	6.6
		MXGT	4	237	254	246.5	7.32	2.9
		MINO		152		161_2	7.36	4.5
		OCP2	4	459	SO 5	481.2	20.33	4.2
		OXAE	4	214	247	227.0	14.53	6.4
		DKOR	- 4	325	358	343.7	14.10	4.1
		PORS	4	84	101	90.7	7.22	7.9
		TFLN	4	236	259	245.7	9.91	4.0
		2441	4	79	96	85.0	B.04	9.4
		ZYLN	4	178	2 29	208.0	22.31	10.7
TELE3S	ć	AEAE	6	273	318	301.0	15.84	5.2
		AEOR	6	230	268	248.6	12.29	4.9
		AEP2	6	351	394	367.6	15.79	4.2
		BICN	6	t11	131	122.0	8.39	6.8
		81ZY	6	Z6 5	331		23.78	7.6
		LENT	6	80	111	96.0	10,95	11.4
		LOXB	6	198	237	216.8	14,17	6.5
		MTM1	6	94	194	161-0	36.03	22.3
		MSMS	6	91	130	113.8	15.43	13.5
		MGAE	6	161	196	182.6	13.90	7.6
		HDIGT	6	160	253	217.3	32.81	15.1
		HXIMO	6	131	168	149.3	11.87	7.9
		OCP2	6	471	499	485.5	9.87	2.0
		OXAE	6	209	252	230.6		
		OXOR	6	313	360	341.1	16.58	4.8
		PDRB	6	59	92	82.0	12,06	14.7
		TFLN	6	222	266	242.0	16.54	6.8
		ZYNT				79.6		
		ZYLN	6		_	210.3	11.23	5.3

Subgroup	N	Variable				Rean	\$.D.	c.v.
161 64 Q	7	AEAE	,	30/	779	1.6 0		
162643	•			256				
		AEPZ					11.67	
		BICN	3	128			-	_
		BIZY	3	305				-
		LENT				115.6		
		LOXE	3					
		MIMI	3	170				_
		13113	3			112.3		
		NGAE	3				12.70	
		NXGT	3	256			7.57	
		HXHC	3	161	177	169.0		4.7
		0CPZ					12,12	
		OXAE	3			236.0		
		SXOR	3	345	38Z	364,6	18.61	5.1
		PORB	3	69	97	83.6	14.04	16.7
		TFLN	3	24Z	256	247.0	7.81	3.1
		ZYHT	3				4,58	5.8
		ZYLN	3	221	239	231.6	9,45	4.0
TELESS	4						29,71	
		AEOR				271.5		
		AEPZ					33.04	
		BICN	4	113		134.0	14.49	
		812Y		314				
		LFHT	4			100.7		
		LOXB	4					
		8 1 M 1 M 3 M 3	4	192 117	205	197.5	5.56	
		MGAE	4	175		124.2		
		NXG7	4	260			20.34	
		NOMO	-	173		269.0	8.28 5.5	
		OCP2	4	491				
		OKAE	4	207	260	237.7	32.87 22.18	
		OXOR	4	24r 331			25.65	
		PORB	-	72		91.2		
		TFLN				272.5		
		ZYNT	4	73		82.7	8.42	
			4			246.2		
			-	C (1)	<00	<90.6	24.55	9.9

ł

÷

i

i

1

Subgroup	N	Variable	N	Nin	Мах	Nean	s.0.	C.V.
TRIGS	13	AEAE	12	172	244	212.5	18.55	8.7
		AEOR	12	135	183	164.0	13.70	8.3
		AEP2	12	230	290	262.8	17.87	6.8
		BICN	12	66	89	80.4	7.50	9.3
		BIZY	12	179	29 2	231.3	28.22	12.1
		LFNT	12	41	69	58.2	9.37	16.0
		LOX8	12	82	147	120.7	15.78	13.0
		H1H1	12	105	152	134.8	14.34	10.6
		K3N3	12	72	105	87.1	11.78	13.5
		MGAE	12	130	168	149.9	11,44	7.6
		MXGT	12	159	194	177.0	10.23	5.7
		MOHO .	12	99	125	115.5	6,84	5.9
		OCP2	12	331	413	367.0	21.77	5.9
		OXAE	12	160	253	188.9	21.66	11.4
		OXOR	12	254	324	299.8	20.63	6.8
		POR8	12	56	93	73.0	10,53	14.4
		TFLN	12	195	267	229.8	19.72	8.5
		ZYNT	12	33	65	50.1	11.14	22,2
		2YLN	12	125	169	151.4	14.39	9.5

MANDIBLE

Subgroup	¥	Variable	N	Nin	Мак	Mean	\$.D.	C.V.
CERAM	19	ANGD	19	141	177	160.5	10. 18	6.3
		ANGU	19	42	64	54.4	5.81	10.6
		BOBR	19	55	70	61.3	3.78	6.1
		8D#1	19	133	161	148.6	7.05	4.7
		BONT	19	109	132	117.7	5.77	4.9
		CNNS	19	243	298	265.3	12.93	4,8
		LMIL	19	29	51	41.1	6.81	16.5
		LNTH	19	Z7	36	30.2	2.66	9.4
		MNHC	19	124	153	143.7	7.09	4.9
		RAMD	19	157	188	173.8	10.01	5.7
		RAKH	19	208	251	228.7	12.96	5.6
SUMAN	z	ANGD	2	117	113	112.5	G 70	0.6
	-	ANGU	z	37	38			1.8
		BDGR	ž	34	36	35.0	1.41	4.0
	BDM1	z	83	134		36.06	33.2	
	BONT	z		63	62.0	1.41	2.2	
		CNR3	2			177_0	-	-
		LMIL	ž	36	40	38.0	Z.82	7.4
		LNTM	2	21		21.5	0.70	3.2
		MNING	2	120	-		32.52	22.7
		RAND	2	117			34.64	24.4
		RAMH				159.0	9.89	6.2
ICON	47	ANGO	47	106	149	130.2	9.17	7.0
		ANGY	47	33	55	45.5	5.23	11.5
		BDGR	67	44	59	52.0		6.8
		BDM 1	47	96		116.8		6.9
		BOXT		73				7_8
		CNH3	47	167	233			7.2
		LMIL	47	39	52	45.3	3.24	7.1
		LHIW	47	21	32	28.0	Z.06	7.3
		KINNO	47	128			7.28	5.0
		RAND				135.9		7.3
					120	122.7	7.10	· · · · ·

UNEL COM						Mean	*****	
	~	4-155						
	¥	ANGO					9_07	
		ANGV	9	39			3.50	7.5
		BDBR	9	49	56		2.50	4.7
			9	108		-	4,91	4.2
		BOHT	9		102		7,08	7.7
		CNNS			263		15.97	6.6
			9		48			7.9
		CM19	9	26		29-2	2.04	7.0
		MAINO	9		155		6.83	4.8
		RAMD	9		173		8.06	5.0
		RAMH	9	213	251	239.6	13.33	5.5
JAVAN	3	ANGD	3	129	143	137.6	7.57	5.5
		ANGW	3	36	39		1.52	4.0
		BOBR	3	41			0.57	1.3
		8081	3	95	101		3.21	3.3
		BOHT	3	56	74		4.16	6.0
		CNM3	3			182.0		3.3
		EMIL	3		41			2.5
		LM19	3	Z2	24			4.3
		MNHO	3	124	-		2.64	2.0
		RAND	3				6.35	4.5
		RAMH				182.0	3.60	1,9
ACER 1M	2	ANGO	2	150	151	150.5	0.70	0.4
	_	ANGW	z					9.4
		6.DER	z	42			3,53	7.9
		BON1	z		112		3.53	3.2
		BONT	z				1.41	1.6
		CNM3	_				5.65	
		EMIL	z		42		0,70	
		LNIW		27				
		MNHO	z				0.70	0.5
		RAMO	z					10.4
		RAMH	ź				10.60	5.1

Subgraup	N	Variable	N	Min	Max	Mean	S.D.	C.V.
ACER2M	2					154.0		
		ANGU	2	36	37		0.70	1.9
		•	2		44		2.12	4.9
				106				1.9
		BOHT			57		6-36	
		CNR3		201				5.7
		LNTL	2		43	38.5	6,36	16.5
		LHTV	Z				3.53	13.3
		MNNO		112			9,19	7.7
		RAMD		150		151.0	1.41	0.9
		RAMH	Z	220	221	220.5	0,70	0.3
APHE 1M	4	ANGD	4	133	141	137.2	3.30	2.4
		ANGH	4	20	27			13.6
		60BR	4	38		45.7		12.5
		BOM1	4		111			
		BOHT	4		91		11.44	
		CNM3	4	179	209		12.25	6.3
		LMIL	4	34	37		1.25	3.5
		LNIN	4		28	25.7	1.70	6.6
		PHONO	4	115	126			3.3
		RAND		133			2.98	
		RANN		192			6.02	
APHE2M	~	ANGD		163	156	150.5	4.32	2.8
		ANGU	6		35		-	10.1
		BCBR	6		51			9.6
		BOHI	-	107	121		5.70	5.0
		BOHT	6	78	105	90.6		10.8
		CNM3	6	186	234			7.6
		LMIL	6	32	234 44	38.8	4,16	10.7
			-		44 30			14.9
		MNMO		121				
		RAND					5.42 7.16	4.2 4.9

Subgroup		Variable						
APHE3M		ANGO	4				21.71	
	•	ANGU	-				3.59	11.5
		BDER		55				2.6
		BDM1			_		17.91	
		BOHT	4					15.1
		CNH3	2	774	252	233.5	12.97	5.5
		LMIL	4			50.7		
		LNIW	4		38			
		MNING	4				7.80	4.9
		RAND	4		181	170.5		7.1
		RAM		224				
				-	-			
NPHE4M	4	ANGO	4	168	190	182.0	9.93	5.4
		ANGH	4	28	34	30.7	2.75	8.9
		8069	4	58	65			4.8
		96M1	4	149	169	155.0	9.38	6.0
		BOHT	4				10.01	8,1
		CNM3	4	224	270	244.0	21.46	8.7
		LM1L	4	49	56	53.5	4.20	7.8
		LHIN	4	33	39	36.5	2.64	7.2
		MNMO	4			173.7	8.80	5,0
		RAND	4	160	191	173.0	13.49	7.7
		RAMH	4	238	28D	263.5	18.ZI	6.9
DICEIM	t	ANGD	1	134	134	134.0		
		ANGU	1	14	14	14.0		
		BDBR	1	29	29	29.0		
		BDM1	1	94	94	%.0		
		BONT	1		73	73.0		
		CNM3	1	152	15z	152.0		
		LM1L	1	43	43	43.0		
		LMIN	_1	23	23	23.0		
		MNMQ	1		136			
		RAND	1	112	112	112-0		
		RAMIS	1	171	171	171.0		

		Variable	N	Min	Max	Mean	S.D.	C.V.
********				•••••				
DICE2M	1	ANGD	1	104	104	104.D		
		ANGU	1	40	40			
		BOBR	1	25	25	25.0		
		BOHT	1	71	71	71.0		
		BORT	1	57	57	57 .D		
		CNN3	1		744	144.0		
		LIMIL	1	23	23	23.0		
		LMTW	1	18	18	18.0		
		MNMO	1	85	85	85.0		
		RAND	1	88	68	68,0		
		RAMH	1	138	138	138.0		
FORS 1M	1	ANGO	t	141	141	141.0		
		ANGU	1	18	18			
		SOER	1	-	25			
		BOM 1	1		78	78.0		
		SCHT	1	66	66	66.0		
		CNM3	1	145	145	145.0		
		LHIL	1	32	32	32.0		
		LMIN	1	22	22	22.0		
		ANMO	1			106.0		
		RAMD			101			
		RAMH	1	153	153			
FORS2M	2	ANGO	z	97	127	112.0	21.21	18.9
		ANGU	z		11			
		808R	z	23	26	24.5	2.12	8.6
		BOMT	2	62	66	64.0		4.4
		BOHT	2	50	56	53.0	4.24	8.0
		CNM3	2	97	130		23.33	20.5
		LMIL	2	24	27	25.5	2.12	8,3
		LN1W	2	15		16.0		8.8
		MNMO	2	80	84			3.4
		RAND		78			16.97	
		RAMH		124			9.19	

ţ

i

Subgroup	* 	Variable	M 	Min	Max	Mean	S.O.	C.V.
WYRA 1M		ANGO	-	6	•••			
N 1 N N N N N N N N N N N N N N N N N N	2	ANGW	2 2	ი.) 7	80 11		12.02	
		RDBR	2	15		9.0	2.82	31.4
		60#1	2		17	16.0	1.41	8.8
			_	34	45	39.5	7.77	19.6
		BOKT	Z	85	35	31.5	4.94	15.7
		CNM3	2	62	67	65.5		7.5
			2	14	15	14,5		
			Z	9	10	9,5	0.70	7.4
		MANC	S	44	48	46.0	2.82	6.1
		RAND	2	52		57.5	7.77	
		RAMH	Z	73	82	77.5	6.36	8.2
NYRA2M	2	ANGD	z	92	103	97.5	<i>τ.π</i>	7.9
		ANGV	Z	8	9	8.5	0.70	8.3
		BD8₹	z	18	20	19.0	1.41	7.4
		BDM1	Z	52	60	56.0	5.65	10.1
		BONT	2	44	49	46.5	3.53	7.6
		CNM3	2	79	97	88.0	12.72	14.4
		LMTL	2	19	21	20.0	1.41	7.0
		LMIN	z	14	15	14.5	0.70	4.8
		MNHO	2	61	66	63.5	3,53	5.5
		RAMD	2	66	89	77.5	16.26	9 .05
		RANH	Z	101	118	109.5	12.02	10.9
NYCON	4	ANGD	4	81	90	66. 2	4.11	4.7
		ANGW	4	ő	7	6.2	0.50	6.0
		BOBR	4	20	23	22.0	1.41	6.4
		BOMT	4	49	54	51.7	2.21	4.2
		BORT	4	40	42	41.2	0.95	
		and	4	71	87	76.5	7.32	
		LMTL	4	17	19	18.0	0.81	4.5
		EN THE	4	12	13	12.2	0.50	4.0
		NINO	4	57	60	59.0	1.41	2.3
		RAMD	4	68	78	74.2	4.50	6.0
		RAMH			121			

		Variable	•••••	Min	Мах	Mean 	S.D.	C.V.
INDRM	1					255.0		
		ANGU	1			67.0 79.0		
		608R				166.0		
		BDW 1						
		BDNT				129.0		
		CANS		353				
		LNIL	1		75	75.0		
		LNTP	1			53.0		
		HNHO		223				
		RAND				2 26 .0		
		RANN	1	330	330	330 .0		
HEND1H	10	ANGD	10	92	113	101.1	6.72	6.6
		ANGH	10	24	46	35_0	7.43	
		ADBR	10	22	31	26.3		
		BDM1					4.69	
		BDHT					3.36	
		CN#CS					12.73	
		LIMIL	10	24		26.6		9.5
		t M1M	10	57				
		KNHO	10		100			4.6
		RAND					8.87	
							6.12	
ME NO2X	1	ANGO	,	100	100	190.0		
	-	ANGN		31				
		80BR				35.0		
		BDM 1				85.0		
		60MT						
						64.0 141.0		
		CHM3	1			141.0		
					22			
			1					
		MNNO				114.0		
		RAMD				92.0		
		RAMH	1	158	158	158.0		

Subgroup	N	Variable	N	Min	Мал	Mean	\$.D.	C.V.
PENE 1H	1	ANGD	1	61	81	81		
		ANGM	1	10	10	10		
		608R	۲	22	22	22		
		BDK1		57		57		
		BONT	1	47	47	47		
		CNH3	3	105	105	105		
		LMIL	3	20	20	26		
		OUTE	1	13	33	13		
		HNHO	ĩ		70	70		
		RAND		82				
		RANK	۲	115	115	115		
	_			_				
PERATH	3	ANGD					10,06	
		ANGY	3	13		-	4.58	25.4
		609R	3	38	43	40.3	2.51	6.2
		BDH1	3	94	101	97.3	3.51	3.6
		BONT			82	76.0	7.93	10.4
		CNM3		162			9.07	
		LNTL	3	35	42	39.3	3.78	9.6
		LMIW	3	-		27.3	1.52	5.5
		NNRO			136	129.0	11.26	8.7
		RAHD	3			121.0	12.48	10.3
		rann	3	164	189	173.6	13,42	7.7
PERAZM	,	ANGO	,	155	167	16.8 6	4.94	
	-	ANGL	2			25.5		
		BOER	2		20 53	52.5	0.70	1.3
		BOMT	2	115	119	117.0	2.82	2.4
		BONT	2		90	88.5	2.12	2.4
		CNM3				217.5	2.12	0.9
		LMIL					4.94	
		LNIV	2			40.J 32.G	1.41	
		NINO	2			157.5	13.43	8.5
			2					
		RAND		147	141	155.0	11.31	7.2

Subgroup	*	Variable					S.D.	
	_							
SUBNTM	8	ANGO						
							2.96	
							3.10	
							7.53	
							8,66	
							11.28	
		1411	8			28.6		
		LNIW	8	18				
		MANO	8		110			9.1
		RAHD	8		112		7.70	7,5
		RANH	₿	127	159	140.3	12.60	8.97
SUBN2M	2	ANGD	z	114		117.0	4.24	3.6
		ANGV	2	13		14.0	1.41	10.1
		808R	2	30	31	30.5	0.70	2.3
		BDW1		75		75.5	0.70	0.9
		8DHT	2	60	63	61.5	2.12	3.4
		CNR3	2	120	128	124.0	5.65	4.5
		LM1L	2	27	28	27.5	0,70	2.5
		ENTER	2	20	21	20.5	0.70	3.4
		HNINO	2	95	96	95,5	0.70	0.7
		RAND	2	105	115	110.0	7.07	6.4
		RAMH	2	141	146	143.5	3.53	2.4
SUBH3M	6	ANGD	6	117	133	125.1	6,08	4.5
		ANGU	6	12	25	18.1	5.41	29.8
		808R	6	26	38	34.6	4.36	12.5
		BDH1	é	71	90	78.5	6.83	8.7
		80HT	6	56	77		7,66	12.2
		CNH3	6	137			6.79	4.7
		LMTL	6		37		3.20	-
		L#1¥	6			22.3	1.75	7.8
		NNHO				107.8		
		RAND					11.52	
		RANH	6	146	154	148.8	2,71	1 8

Subgroup	N	Variable					5.0.	
TELE1N	3	ANGD	3	144	154	149-0	5.00	
							3.78	
		BOSR					3.00	
		BDN 1				105.3		
		SONT	3	72			8.18	
		CNMS	3	175	207		16.50	8.7
		LMIL	3	37	48	43.0	5.56	12.9
		LHIW	3	20	30	26.6	5.77	21.6
		MNHO		131			13.20	9.Z
		RAND	3	123	148			
		RAMH	3	183	189		3.46	1.8
TELEZH	6	ANGD	6	141	167	151.1	9_15	6.0
		ANGY	6		33			7.9
		BDBR	6		53		2.81	5.7
		SOM 1		109			4.64	4.0
		BONT	6	83	103		7.98	8.5
		CNM3	6				15.65	7.4
		LMIL					4.69	
		1414					2.48	
		MNMO					8.73	
		RAND					18.19	
		RAMH					16.69	-
TELESM	12	ANGD	12	127	164	144.6	11.73	8.1
		ANGY		15	41	29.0	8.05	Z7.6
		BOBR					3.39	7.0
		8041	12	100		116.0		9.7
		BOHT	-		118			
		CNM3		181	247		19.88	
		LMIL	12	40	-			6.8
		LMTW	12	23			2.84	
		MNMC	12	142			6.75	4.4
		RAND	12	115	-		12.42	6.8
		RAMi	12	175	240	208.0	19.28	9,2

ubgroup	N	Variable	N	₩în 	Nex		5.0.	
LE4M	4	ANGD	4	143	167	154.0	11.10	7.2
		ANGM	4	33	52	39.7	8.53	21.4
				45				
							14.22	
							12.99	
		CHAR		239			4.96	
		LNIL	4		54	49.0	4.96	
		LN 1V	4		35		2.87	9.0
		MMMO				150.0	ZQ.41	13.6
		RAND	4	141	176	161.0	15.34	9.5
		RANH	4	212	255	232,2	22.94	9.8
ESM	8	ANGD	8	138	167	149.6	10.78	7.2
		ANGN	8				7.76	
				45	65	53.5		
						128.8	7.14	
							6.33	
				191			Z1.67	
		LMIL	8	45			5.12	
		UH1V	8					
		NING	8	160	181	168.5	7.63	6.6
		RAND	8	123	162	140.3	13.01	9.Z
		RANIF	8	207	230	223.1	8.11	3.6
м	13	ANGO	13	110	134	122.9	6.34	5.1
		ANGU	13	11	20	15.6		
				29		32.7		
							4.53	
							4.05	
			13		167		14.07	
		LNIL	13				2.01	
		LHIV	13	-	24			
		NNNO	13		-			
			13	_		107.9 116.3		
		RANH						6.2
		- -	1.3	:40	170	130.6	9.31	5.5

Subgroup	ж 	Variable	N	Nin	Maz	Hean	S.D.	C.V.
ZAISTM	1	ANGD	T	232	232	232.0		
	•	ANGW	ĩ			26.0		
		BOOR	1			57.0		
		8DM1	1	120				
		SONT	1			57.0		
		CNM3	1	200	200	200.0		
		LMIL	1	46	46	46.0		
		UNIN	t			31.0		
		MIND	1	166	166	166.0		
		RAND	1	196	196	196.0		
		RANH	1	257	257	257.0		
ZALS2M	1	ANGD	1	225	225	225,0		
		ANGW	1	16	16	16.0		
		BÜBR	1	33	33	33.0		
		60#1	1	119	119	119.0		
		BONT	1	98	98	98.0		
		CNN3	1	202	202	202.0		
		LMTL	1	52	52	52.0		
		LM14	1	32	32	32.0		
		MNMC	٦	182	182	182.0		
		RAND	٦	170	170	170.0		
		RANH	1	271	271	271.0		

ł

. .

APPENDIX 6.

SAS-IML PROGRAMS

Statistical programs written in SAS Interactive Matrix Language (SAS Institute, 1988). Program comments are bracketed by slashes and stars {/*comment*/}.

PRINCIPAL COMPONENTS ANALYSIS, GENERALIZED DISTANCES, Q-Q PLOTS, NORMALITY TESTING, AND ANGULAR DIFFERENCES ROUTINES.

```
/* ME/LTIVAR.IML VER. 5-23-93 */
/* MULTIVARIATE ANALYSIS PROGRAM IN SAS INL */
/*----- SET WORKING ENVIRONMENT ------*/
   OPTIONS NOSOURCE; /*EXCLUDE PROGRAM LINES FROM OUTPUT*/
    LIBNAME SASDAT "C:\ZBALES\INPUT\SAS";
    LIBNAME FLOPDAT "B:\";
    PROC PRINTTO LOG = "PRN";
                                /* SET OUTPUT DESTINATION */
    PROC INL WORKSIZE = 210; /* SET SPACE FOR MATRIX OPERATIONS */
    RESET LINESTZE = 175 PAGESTZE = 35;
    TWELVE = {12};
    NEWPAGE = BYTECTWELVE); /* PAGE BREAK CONTROL CODE */
/*SET*/ TRUNCLEV = 96;
/*--SET--*/ AXISPERC = (5); /* PERCENTAGE CUTOFF FOR PC AXES */
/***SET--*/ PLOTTYPE = "GRPSYNB"; /* "SEX" "GRPNAKE" "GRPSYNB" "LOC" *IND" */
/*--SET--*/ ANALYSE = "AS"; /* (AG) ALL GENERA [AS] ALL SUBGROUPS */
                        /* (SG) SOME GENERA (ISS) SOME SUBGROUPS */
    IF ANALYSE = "AG" THEN DO:
      PRINT HATTANA ANALYSIS OF ALL GENERA
       END:
    IF ANALYSE = "AS" THEN DO;
       PRINT "----- ANALYSIS OF ALL SUBGROUPS ----------
       PRINT "------
    END;
    IF ANALYSE = "SG" | ANALYSE = "SS" THEN DO;
       DOGRPS = (MENQ):
    /* DOGRPS = (UNICH JAVAN); */
     /* DOGRPS = (TELE); */
     /* DOGRPS = (UNICH JAVAN); */
      /* DOGRPS = CAMYN DICE FORS HYCO LOPS MENO PERA GACE REGG TELE
                                                WSUB YRAH); */
      /* BOGRPS = CACER DICE FORS HYCO LOPS MEND PERA RIGO SUBH TELE */
    /* DOGRPS = (TELE1S TELE2S TELE3S TELE4S TELE5S TELE6S); */
```

```
/* DOGRPS = (TELETH TELE2H TELE3H TELE4H
                TELESH TELEGH TELETH TELEBH TELESH); */
   /* DOGRPS = (BICOS TELE15 TELE25 TELE35 TELE45 TELE55 TELE65); */
   /*
     DOGRPS = (BICON TELEIN TELEZH TELEZH TELEAN
                TELESH TELEGH TELEFN TELEBH TELEPH); */
        BOGRPS = (BICON CERAN UNICH JAVAN SUMM); */
   /*
         DOGRPS = (BICOS CERAS UNICS JAVAS SURAS); */
   /*
   /*
       DOGRPS = CACERIN ACER2M APHEIM APKE2M APHEIM APKE4M
                APRESM DICE1N DICE2N DICE3N DICE4N DICESN
                FORS18 FORS2N BYCCH HYRA1M KYRA2K MENDIN
                KENOZM PERA1N PERA2N PERA3N SUBHIN SUBHZM
                SUGHISH SUGHAM TELEIM TELEZM TELEAM TELEAM
                TELESK TELEON TELEON TELEON TELEON TRIGH
                ZAISIN ZAISZN); */
   /* DOGRPS = (ACER'S ACER'S ANYNS APHE'S APHE'S DICE'S
                  DICE25 DICE35 DICE45 DICE55 DICE65 FORS5
                  HYCOS HYRAIS HYRAZS KYRAJS MENOS PERAIS
                  PERAZS SUBHIS SUBH2S SUBH3S SUBH45 SUBH5S
                  TELETS TELEZS TELESS TELESS TELESS
                  TRIGTS TRIGES XANYS); */
    PRINT DOGRPS;
    END;
/*SET*/
          REPEAT = "Y"; /* BYPASS "CREATE" STATMENTS [Y] es [N] o */
/*SET*/
          RUN = "M"; /* [S]kuil [M]andible */
          LF RUN = "S" THEN DO;
            POLIMITS = (280 125, -280 -125);
            BLANKS = {" "," "};
            END;
          LF RUN = "M" THEN DO;
            PCLIMITS = (100 40, -100 -40);
             BLANKS = (" "," ");
            END;
/*SET*/
        TFORM = ("N"); NO = ("N"); YES = ("Y"); /* TRANSFORMATION */
/*SET*/
        PLEV = "NED"; /* PRINT LEVEL (NIN) inum (NED) ium (NAX) inum */
/*SET*/ USE SASDAT.MANDSUBS; /* DATA SET FOR AMALTSIS*/
    READ ALL INTO TEMPDATA (ROWNAME= 10 COLNAME=VARNAME);
    IF TFORM = YES THEN DATA = LOG(TEMPDATA)#0.43429448;
    IF TFORM = NO THEN DATA = TEMPDATA;
FREE TEMPDATA;
    CASES = NROW(DATA); /* KUMBER OF CASES */
    NVAR = NEDL(DATA); /* NUMBER OF VARIABLES */
    ROWVAR = VARNAME'; /* Column of variable names */
```

```
/*----* SET GROUPINGS AND LABELS -----*/
    READ ALL VARCLOCAL ) INTO LOCSEX;
    SEXCOL = SUBSTR(LOCSEX,2,1);
    LOCALCOL = SUBSTR(LOCSEX, 1, 1);
FREE LOCSEX;
    IF AMALYSE = "AG" | AMALYSE = "SG" THEN DO;
       READ ALL VARCGENUS) INTO GRPLABLS;
    EKD:
     IF ANALYSE = "AS" | ANALYSE = "SS" THEN DO;
       IF RUN = "N" THEN DO;
          READ ALL VAR(SUBS) INTO GRPLABLS;
       END;
        IF RUN = "$" THEN DO;
          READ ALL VAR(SUBG) INTO GRPLABLS;
       END:
     END:
     IF AWALYSE = "AG" | AWALYSE = "AS" THEN DD;
       GRPSROW = UNIQUE(GRPLABLS); /* ROW VECTOR *//* Row of unique group names */
       GRPSCOL = GRPSROW; /* COLUMN VECTOR */ /* unique group names */
     END;
     IF ANALYSE = "SG" | ANALYSE = "SS" THEN DO;
        GRPSROW = DOGRPS; /* ROW VECTOR */
        GRPSCOL = GRPSRON"; /* COLUMN VECTOR */
     END:
     NGRPINIT = NROW(GRPSCOL);
        VARCOL = VARNAME';
                                      /* COLUMN OF VARIABLE WAMES */
        PRINT "NUMBER OF VARIABLES " NVAR;
        PRINT "VARIABLE NAMES ", VARCOL;
        IF ANALYSE = "AG" | ANALYSE = "SG" THEN DO;
           PRINT "NUMBER OF STARTING GENERA " NGRPINIT;
           PRINT "GENERA NAMES ", GRPSCOL;
        END;
         IF ANALYSE = "AS" | ANALYSE = "SS" THEN DO;
          PRINT "NUMBER OF STARTING SUBGROUPS " NGRPINIT:
           PRINT "SUBGROUP NAMES ", GRPSCOL;
        END;
     NEGOTS = NVAR; /* NUMBER OF PRINCIPAL COMPONENT ROOTS */
     PCLABD = (PC); /* PC AXIS LABELS ROUTINES */
     PCLAB1 = REPEAT(PCLABD, 1, NROOTS);
     PCLAB2 = DO(1, NROOTS, 1);
     PCLAB2A = CHAR(PCLAB2,2);
        CALL CHANGE(PCLA82A," 1","1");
        CALL CHANGE(PCLABZA," 2","2");
        CALL CHANGE(PCLABZA, " 3", "3");
        CALL CHANGE(PCLASZA," 4","4");
        CALL CHANGE(PCLA82A," 5","5");
```

```
CALL CHANGE(PCLAB2A," 6","6");
       CALL CHANGE(PCLAB2A," 7","7");
       CALL CHANGE(PCLA82A," 8","8");
       CALL CHANGE(PCLAB2A, " 9", "9");
    PCLABL = CONCAT(PCLAB1, PCLAB2A);
/*----- SUB-GENERIC GROUP ROUTINES ----- */
/*----*/
    CNTSKIP = (0);
    CHTGRPS = (0);
    GRPNUM = (0);
DO ITERA = 1 TO NGRPINET BY 1; /* CYCLE THROUGH GROUPS */
  CNTCASES = (0);
  GRPNUM = GRPNUM+(1);
  GRPNAME = GRPSCOL (GRPNUM) ;
      DO ITERE = 1 TO CASES;
                                /* COLLECT GROUP INFO */
         IF GRPLABLS [ITERB] = GRPNAME THEN DO; /* FIND DATA FOR GROUP */
            CNTCASES = CNTCASES + (1);
            RONDAT = DATACITERB,1; /* SPECIMEN DATA */
            IF RUN = "5" THEN DO;
               SIZEDAT1 = DATACITER8,131;
            END;
            IF RUN = "W" THEN DO;
               SIZEDAT1 = DATACITER8,61;
            END:
            ROWID = ID [ITER8]; /* SPECIMEN IB */
            SEKCHAR = SEKCOLITIERUI; /* SPECIMEN SEX */
            LOCALCHAR = LOCALCOLLITERB1; /* SPECIMEN LOCALITY */
            IF CHICASES = 1 THEN DO; /* SETUP MATS FOR THES GROUP */
               SUBDAT = ROMDAT;
               SIZEDATZ = SIZEDAT1;
               SUBGRPIO = GRPNAME;
               SUBINDIO = ROVID;
               SUBSEXS = SEXCHAR;
               SUBLOCS = LOCALCHAR;
            END;
            IF CHTCASES > 1 THEN DD; /* ACCUM FOR THIS GRP */
               SUBDAT = SUBDAT//ROMOAT;
               SIZEDAT2 = SIZEDAT2//SIZEDAT1;
               SUBGRPID = SUBGRPID//GRPNAME;
               SUBINDID = SUBINDID//ROWID;
               SUBSEXS = SUBSEXS//SEXCHAR;
               SUBLOCS = SUBLOCS//LOCALCHAR;
            END;
          END: /* GRPLABLE = GRPNAME LOOP */
       END; /* END ITERB */
      SUBSIZE = HROW(SUBOAT);
      PRINT " SIZE OF GROUP" ITERA SUBSIZE;
```

ļ

;

-

```
IF SUBSIZE > I THEN DO; /* ACCUM ACROSS GRPS FOR PODLED */
        CHTGRPS = CHTGRPS+(1);
        IF ITERA = 1 THEN DO;
           GRPSKEPT = GRPNAME;
           GSTZECOL = SUBSTZE;
           ACCGRP10 = SUBGRP10;
           ACCINDID = SUBLNOID;
           SEXIDS = SUBSEXS;
           LOCALIDS = SUBLOCS;
           SIZEDAT3 = SIZEDAT2;
        END;
        IF ITERA > 1 THEN DO;
           GRPSKEPT = GRPSKEPT//GRPHANE;
           GSIZECOL = GSIZECOL//SUBSIZE;
           ACCORPID = ACCORPID//SUBGRPID;
           ACCINDID = ACCINDID//SUBINDID;
           SEXIDS = SEXIDS//SUBSEXS;
           LOCALIDS = LOCALIDS//SUGLOCS;
           SIZEDAT3 = SIZEDAT3//SIZEDAT2;
        END;
    END; /* SUBSIZE > 1 LOOP */
FREE RONDAT;
         IF SUBSIZE = 1 THEN DO;
                                     /* KEEP TRACK OF SKIPPED GROUPS */
           NAMESKIP = GRPNAME ROWID;
      CNTSKIP = CNTSKIP + (1);
             IF CATSKIP = 1 THEN DO;
                 SKIPMAT = NAMESKIP;
              END;
              IF CNISKIP > 1 THEN DO; /* HORE THAN DHE SKIPPED GROUP */
                SKIPMAT = SKIPMAT//NAMESKIP;
             END;
         END;
         IF ITERA = NGRPINIT THEN BO;
            IF CNTSKIP > D THEN DO;
               PRINT "SUMMARY OF SKIPPED 1-SPECIMEN GROUPS ";
               PRINT SKIPMAT;
           END;
         ENO ;
    IF SUBSIZE = 1 THEN GOTO LEAPFROG; /* NO ANALYSIS FOR ONE SPECIMEN */
        IF PLEV = "MAX" THEN DD;
          PRINT NEWPAGE;
          PRINT, GRENAME;
          PRINT, SUBSIZE (FORMAT=2.0];
         PRINT, SUBDAT (FORMAT=3.0 ROWNAME = SUBINDIDS COLNAME = VARNAME];
       END;
    SUBMEANS = SUBDATE:,);
                                         /* ROW DF VARIABLE MEANS */
```

÷

İ

i

ł

I

```
NEARMAT = REPEAT(SUBMEANS, SUBSIZE, 1); /* MEAN MATRIX */
                                          /* DEVIATIONS FROM MEAN */
    SUBDEVS = SUBDAT - MEANMAT;
    SUBSSCP = SUBDEVS' * SUBDEVS;
                                           /* SUNS-OF-SQUARES AND CROSS-PRODUCTS */
    SUBCOV = SUBSSCP * ((SUBSIZE-(1))**-1.0); /* GROUP COVARIANCE MATRIX */
      IF PLEY = "MAX" THEN DO;
      PRINT NEWPAGE;
       PRINT "COVARIANCE WATRIX FOR " GRPNAME;
       PRINT SUBCOV (FORMAT=5.2 ROWNAME = ROWVAR COLNAME = VARNAME);
      END;
        IF PLEV = "WAX" THEN DO;
          VARIANCE = VECDIAG(SUBCOV); /* COLUMN VECTOR OF VARIANCES */
          STODEV = SORT(VAR(ANCE);
          STOINVRS = STODEV##-1.0;
          STOMAT = DIAG(STO(NVRS);
          CORREL = STOMAT * SUBCOV * STOMAT; /* CORRELATION MATRIX FROM COVARIANCE MATRIX */
          PRINT NEWPAGE;
          PRINT CORREL[FORMAT=3.1 ROMNAME = ROMVAR COLNAME = VARNAME];
        END;
FREE REARMAT SUBMEANS SUBSSCP CORREL;
    IF ITERA = 1 THEN DO;
                             /* SAVE MEAN-CORRECTED DATA FOR POOLED-WITHIN PCA */
       POOLDAT = SUBDEVS;
    END:
    IF ITERA '= 1 THEN DO;
        POOLDAT = POOLDAT//SUBDEVS;
    END;
FREE POLABO POLABI POLAB2 POLABZA;
     CALL EIGEN(SUBEIGVAL, SUBEIGVEC, SUBCOV);
                                        /* COLUMN OF EIGERVALUES */
    SUBVALS=SUBEIGVAL[1:NROOTS,];
                                         /* COLUMN OF EIGENVECTORS */
    SUBEIGS=SUBEIGVECI, t:NROOTS];
FREE SUBEIGVAL SUBEIGVES:
     IF ITERA = 1 THEN DO;
       PCS = SUBEIGS(,1);
                               /* ACCUMULATE PC 1'S FOR ANGLE CALCS */
        VALSUMM = SUBVALS; /* ACCLINULATE EIGENVALUES FOR SUMMARY */
     END;
     IF ITERA "= 1 THEN DO;
        PCS = PCS[[SUBEIGS[,1];
        VALSUMM = VALSUMM | SUBVALS;
     END:
     ADDVALS = SUBVALS[+,]; /* SUMMATE EIGENVALUES */
     PERCENT * (SUBVALS * ADDVALS**-1.0) * 100; /* EIGENVALUE PERCENT OF TOTAL */
      CNTSUB = (0);
        ITVAL = NROW(SUBVALS);
        DO ITERO = 1 TO ITVAL:
           PERCVAL = SUBVALS [[TVAL];
              IF PERCVAL > 1 THEN DO;
                 CHTSUB = CHTSUB + 1;
              END;
        END;
```

ļ

!

```
IF ITERA = 1 THEN DO;
        PERCS = PERCENT;
                           /* ACCUMULATE PERCENTAGES FOR SUMMARY */
        ADDSUMM = ADDVALS;
    END;
    IF ITERA "=1 THEN OD;
       PERCS = PERCS[]PERCENT;
       ADOSUMM = ADDSUMM | ADOVALS;
    END;
    VALMAT = SUBVALS | PERCENT;
    NAMECOL = (EIGENVALUE PERCENT);
FREE PERCENT:
        IF PLEV = "NED" THEN DO;
          PRINT "GROUP SIZE " SUBSIZE;
          PRINT "GROUP IS " GRPWAME;
          PRINT "GROUP ELGENVALUES" , VALNAT (FORMAT=7.3 ROMNAME=PCLASE COLNAMS=NAMECOL);;
          PRINT "SUM OF THE EIGENVALUES " ADDVALS(FORMAT=7.3);
          PRINT NEWPAGE;
          PRINT "GROUP EIGENVECTORS FOR " GRPWAME;
          PRINT SUBEIGSEFORMAT=6.3 ROMMAKE = ROMVAR COLMAME = PCLABLE;
         END;
         VLABS1 = ROMVAR;
                             /* SORTING ROUTINES */
         EIGS1 = SUBEIGS(,1);
         ABEIGS = ABS(EIGS1);
         R1 = RANK(ABEIGS);
         SORTPC1 = E1GS1;
                   DO ITERS = 1 TO NVAR BY 1;
                      RJ1 = R1[[TERO];
                      SORTPOT(RJ1,] = EIGS1(ITERQ,];
                      VLABS1(RJ1,] = ROWAR[[TERO,];
                   END;
          PRINT NEWPAGE;
          PRINT "SORTED EIGENVECTORS FOR FIRST PRINCIPAL AXIS";
          PRINT VLABS1 SORTPC1EFORNAT=4.21;
FREE ADDVALS PERCENT VALMAY HAMECOL;
     IF SUBSIZE > 2 THEN DO; /* CORRELATIONS OF VARIABLES WITH PCS */
    DO FIRSTIT = 1 TO NVAR BY 1;
        DO SECONDIT = 1 TO NROOTS BY 1;
                  EIG = $U9ELGS(FIRSTIT, SECONDIT);
                  VAL = SUBVALSISECONDIT, ];
                  VAR = SUBCOVIFIRSTIT, FIRSTIT);
                  IF VAL > 1 THEN
                  CORREC = EIG * SORT(VAL)/SORT(VAR);
                  ELSE CORRPC = D;
               IF SECONDIT = 1 THEN DO; /* CONSTRUCT ROW MATRIX */
                  ROWCORR = CORRPC;
```

```
END:
               IF SECONDIT "=1 THEN DO;
                ROWCORR = ROWCORR CORPC;
               EKD ;
          END; /* SECONDIT */
                IF FIRSTLT = 1 THEN DD; /* APPEND ROWS TO MATRIX */
                 CORRMAT = RONCORR;
               END:
               IF FIRSTIT "=1 THEN DO;
                 CORRMAT = CORRMAT //ROWCORR;
               END;
         END; /* FIRSTIT */
FREE SUBVALS SUBCOV CORRPC ROWCORR;
           IF PLEN = "MAX" THEN DO;
               PRINT NEWPAGE;
               PRINT "CORRELATIONS OF VARIABLES WITH PRINCIPAL COMPONENTS ";
               PRINT CORRMATIFORMAT = 4.3 ROWNARE = VARNAME COLNAME = PCLABLI;
            END;
         END: /* END VARIABLE-CORRELATION ROUTINES */
FREE CORRMAT;
     SUBSCOR = SUBDEVS * SUBEIGS; /* INDIVIDUAL SCORES */
FREE SUBDAT SUBEIGS;
FREE SUBDAT SUBEIGS SCORNEAN SCORNDES;
  IF SUBSIZE = 2 THEN DO;
      MPLOTS = 1;
  END :
   IF SUBSIZE > 2 THEN DO;
      IF CHITSUB < 3 THEN DO;
         NPLOTS = 1;
      END :
      IF CNTSUB > 2 THEN DO;
         HPLOT1 = CHTSUB/2 + 3/4;
         NPLOTS = INT(NPLOT1);
         IF RUN = "NM THEN IF NPLOTS = 6 THEN NPLOTS = 5;
         IF RUN = "S" THEN IF NPLOTS = 10 THEN HPLOTS = 9;
      END;
  END; /* SUBSIZE > 2 LOOP */
      XAX = (1);
      YAH = (2);
 IF PLEV = "MED" THEN DO;
          DO ITERC = 1 TO MPLOTS BY 1; /* SORT SCORES FOR EACH PLOT */
                XYMAT = SUBSCOR(, XAX: YAX);
                 PEX = SUBSCOR[,XAX]; /* SORT ON X-AXIS PES */
                 RS = RANK(PCX);
                 SORTIOS = SUBINGID;
                 SORTVALS = XYNAT;
                    DD ITERS * 1 TO SUBSTZE BY 1;
```

```
RJ = RSEITERO];
                    SORTIDS IR.J. = SUBINDID (ITER9, );
                    SORTVALS [R], ] = XYMATILITERE, ];
                 END;
               PRINT NEWPAGE;
               PRINT "SORTED SCORES FOR PC = YAK(FORMAT=2.0] "VS" XAX(FORMAT=2.0);
               PRINT SUBINDID XYNAT(FORMAT=4.1] SORTIDS SORTVALS[FORMAT = 4.1];
               PRINT NEWPAGE;
          IF PLOTTYPE = "SEX" THEN PLOTLABL = SEXIDS;
          IF PLOTTYPE = "LOC" THEN PLOTLABL = LOCALIDS;
          IF PLOTTYPE = "GRPNAME" THEN PLOTLABL = SUBGRPID;
          IF PLOTTYPE = "IND" THEN PLOTLABL = SUBINDID;
          IF PLOTTYPE = "GRPSYNB" THEN DO:
            PLOYLABL = SUBSTR(SUBGRPIDS,1,1);
          END;
                PLOTLABL = PLOTLABL//BLANKS;
                XYMAT = XYMAT//PCLINITS;
                CALL PGRAF(XYMAT, PLOTLABL, PCLABL(XAX), PCLABL(YAX));
           GLDXAX = XAX:
           OLDYAX = YAX;
           XAX = OLDYAX+(1);
           YAK = DLDXAX+(3);
        END;
  END; /* PLEV LOOP */
LEAPFROG: ;
END; /* END ITERA */
         NGRPKEPT = CNTGRPS;
         WIDS = WROWCACCINDID;;
         PRINT "GROUPS SKIPPED IN ANALYSIS " SKIPMAT;
         PRINT "NUMBER OF GROUPS REMAINING", NGRPXEPT;
         PRINT "REMAINING GROUPS & SIZES", GRPSKEPT GSIZECOL;
/* ----- TOTAL VARIANCE VS SAMPLE SIZE -----*/
LF NGRPKEPT > 1 THEN DO;
      XYNAT1 = GSIZECOL [ADDSUNK';
     IF PLEV # "MED" THEN DO;
       PRINT NEWPAGE;
       CALL PGRAF(XYNATT, GRPSKEPT, 'SAMPLE SIZE', 'TOTAL VARIANCE');
     END:
  END;
FREE XYMAT1;
/* -----*/ PC1 EIGENVALUE VS SAMPLE SIZE -----*/
IF PLEV = "MED" THEN DO;
     IF NGRPKEPT > 1 THEN DO;
        PRINT NEWPAGE;
        POIVALR = VALSUMM(1,1;
        PCIVALC = PCIVALR';
```

```
XYMAT2 = GSIZECOL | PCTVALC;
        CALL PGRAF(XYMAT2, GRPSKEPT, 'SAMPLE SIZE', 'PC1 VARIANCE');
    END;
   END;
FREE XYMATZ PCIVALR PCIVALC;
/*----- POOLED-WITHIN GROUP ROUTINES -----------------------//
POOLNLAL = NROW (POOLDAT);
    PRINT "NUMBER OF POOLED DATA CASES " POOLNUM;
    POOLSSEP = POOLDAT' * POOLDAT;
    POOLCOV = POOLSSEP * ((POOLNUM-REGRIGEPT)**-1.0); /* POOLED COVARIANCE NATRIX*/
   /* NROOTS = HIN(NVAR, POOLHUN-(1)); */
       NROOTS = NVAR
     PRINT " NUMBER OF ROOTS FOR POOLED ANALYSIS " NROOTS;
    PCLABO = (PC); /* PC AXIS LABEL ROUTINES */
    PCLAB1 = REPEAT(PCLAB0,1,NROOTS);
    PCLA92 = DO(1, NR0015, 1);
    PCLAS2A = CHAR(PCLAS2,2);
       CALL CHANGE (PCLA82A, " 1", "1");
       CALL CHANGE(PCLAB2A," 2","2");
       CALL CHANGE(PCLABZA, " 3", "3");
       CALL CHANGE(PCLABZA," 4","4");
       CALL CHANGE(PCLAB2A, " 5", "5");
       CALL CHANGE(PCLA82A," 6","6");
       CALL CHANGE(PCLA82A," 7","7");
       CALL CHANGE(PCLA82A," 8","8");
       CALL CHANGE(PCLA82A," 9","9");
     PELABL - CONCAT(PELAB1, PELABZA);
FREE WSSCP;
    CALL EIGEN(PCEIGVAL, PCEIGVEC, POOLCOV);
    POOLEVAL = PCEIGVAL[1:NROOTS,);
     ADPOOVAL = PODLEVAL (+, ); /* SURMATE EIGENVALUES */
    POOLPERC = (POOLEVAL * ADPOOVAL**-1.0) * 100; /* EIGENVALUE PERCENT OF TOTAL */
    CURRIPERC = CUSUN(POOLPERC);
     NPS = NROW(CUMUPERC);
           DO LTER = 1 TO NPS;
             IF CUMUPERCIITER, I < TRUNCLEV THEN DO; /* SET TRUNCATION LEVEL*/
/*SET*/
                TRUNCROM = ITER;
              END;
           END;
         /* DO ITER = 1 TO MPS WHILE(POOLEVAL(ITER,) > 0.00001);
                TRUNCLEV = ITER;
           END:
           IF TRUNCLEY < NVAR THEN DO:
              PRINT " ZERD EIGENVALUE TRUNCATION LEVEL " TRUNCLEY;
           END; */
      COUNTVAL = (0);
        OO ITER = 1 TO WROOTS BY 1;
```

```
IF POOLPERCEITER] > AXISPERC THEN DO:
            COUNTVAL = COUNTVAL + (1);
          END;
       END;
    FIRSTCOL = PCEIGVEC1, 11; /* SAVE FIRST PC */
    POOLSCOR = POOLDAT * PCEIGVEC;
    FREE PCEIGVEC;
        HUXISCOR = HAX(POOLSCOR(,11); /* SETUP FOR FIXING AXES */
        MINISCOR = MINCPOOLSCOR (, 13);
        HAX2SCOR = MAX(POOLSCOR(,2));
        MIN2SEOR = MIN(POOLSCOR(,2));
        MAXVALS = MAX1SCOR | | MAX2SCOR;
        MINVALS = MIN1SCOR [ MIN2SCOR;
        BLANKS = (" ", " ");
FREE MAXISCOR MINISCOR MAX2SCOR MIN2SCOR;
    VALMAT = POOLEVAL | | POOLPERC | | CUMUPERC;
    COLNAM = (EIGENVALUE POFTOTAL CUMULATIVE);
    PRINT NEWPAGE;
    PRINT, "SUMMARY OF EIGENVALUES FOR POOLED-WITHIN PCA ";
    PRINT VALMAT (FORMAT = 9.6 ROWNAME = PCLABL COLNAME = COLNAM];
IF REPEAT = "N" THEN DO; /" SAVE POOLED SCORES IF RUN IS NOT REPEAT */
  IF RUN = "M" THEN DO;
     CREATE SASDAT. POOLSCOR VAR ( PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 );
  END;
   IF RUN = "S" THEN DO:
     CREATE SASDAT. POOLSCOR VAR ( PC1 PC2 PC3 PC4 PC5 PC6 PC7 PCB PC9
                                   PC10 PC11 PC12 PC13 PC14 PC15 PC16
                                   PC17 PC18 PC19 );
   END;
   RPPEND FROM POOLSCOR;
  CLOSE SASDAT .POOLSCOR;
END; /* END REPEAT IF */
FREE POLABLE POLABLE POLABLE POLABLE
     KEEPEIG PCEIGNAT PCEIGVAL PCEIGVEC;
     NPLOTS1 = COUNTVAL/2 + 3/4;
     NPLOTS = INT(NPLOTST);
     PRINT "NUMBER OF PLOTS FOR POOLED-WITHIN PCA " NPLOTS;
      XAX = (1);
      TAX = (2);
  DO LTERZ = 1 TO NPLOTS BY 1;
        XYMAT = POOLSCOR(, XAX: YAX);
                 PCX = PODLSCORE, XAX]; /* SORT ON X-AXIS PCS */
                 RS = RANK(PCK);
                 SORTIDS = ACCINDID;
                 SORTVALS = XYNAT;
```

ł

```
SORTSIZE = SIZEDAT3;
                   DO LITERO = 1 TO POOLNUM BY 1;
                      RJ = RS [ITERO];
                      SORTIDS (RJ,) = ACCINDID (ITERG,);
                      SORTVALS[RJ,] = KYMAT(ITERG,);
                      SORTSIZE(RJ,] = SIZEDAT3(ITER9,];
                   END;
              PRINT NEWPAGE;
              PRINT "POOLED SCORES FOR PC " YAX (FORMAT=2.01 "VS" XAX (FORMAT=2.0);
              PRINT ACCINDID XYMAT (FORMAT = 4.1) SORTIDS SORTVALS (FORMAT = 4.1)
SORTSIZE (FORMAT=3.0);
              FRINT NEWPAGE;
 FREE SORTSIZE:
            IF PLOTTYPE = "SEX" THEN PLOTLABL = SEXIDS;
            IF PLOTTTPE = "LOC" THEN PLOTLABL = LOCALIDS:
            IF PLOTTYPE = "GRPMANE" THEN PLOTLABL = ACCORPID;
            IF PLOTTYPE = "GRPSYNO" THEN DO;
              PLOTLABL = SUBSTR(ACCGRP10,1,1);
            END;
            IF PLOTTYPE = "IND" THEN PLOTLABL = ACCINDID;
            IF ITERZ = 1 THEN DO;
             CALL PGRAF(KYMAT, PLOTLABL, PCLABL(XAX), PCLABL(YAX3); /*PC SCATTER*/
            END;
           IF ITERZ > 1 THEN DD;
             XTFIXEDA = XYMAT//MAXVALS;
             XYFIXED = XYFIKEDA//WINVALS:
             PLOTLABL = PLOTLABL//BLANKS;
             CALL PERAF(XTFIXED, PLOTLABL, PCLABL(XAX), PCLABL(YAX));
           END;
 FREE PCX PCXY RS SORTIDS SORTVALS XYMAY XYFIXEDA XYFIXED;
        OLDXAX = XAX;
        OLDYAX = YAX;
        XAX = OLOYAX+(1);
        TAX = OLDXAX+(3);
 END; /* PLOT LOOP */
 FREE PLOTLAGE XYFIXEDA XYFIXED;
/*----- SUMMARY OF GROUP AND POOLED EIGENVALUES .....*/
IF NGRPKEPT > 1 THEN DO; /* SPLIT LARGE TABLE INTO TWO*/
     LEFYNUM = NGRPKEPT/2;
     RITEMUM = LEFTNUM + (1);
     LEFTLABL = GRPSKEPT' (, 1:LEFTNUM);
     LPOOLAG = " POOL";
     LABLLEFT = LEFTLABL [[LPOOLAB;
     RITELABL = GRPSKEPT' (, RITENUM:NGRPKEPT);
     PRINT NEWPAGE;
```

PRINT "SUMMARY OF SUBGROUP ELGENVALUES ";

```
391
```

```
/* LEFT HALVES OF EIGENVALUE & SUM-OF-EIGENVALUES NATRICES */
    LEFTEVAL = VALSUMM(, I:LEFTNUM);
    LFTPOOL = LEFTEVAL [ POOLEVAL; /* POOLED APPENDED TO LEFT HALF */
       PRINT, LETPOOL (FORMAT=6.4 ROWNAME = PCLABL COUNAME = LABLLEFT);
    LEFTADD = ADDSUMM(1,1:LEFTMUM);
     ADDPOOL = LEFTADD [ ADPODVAL; /* POOLED APPENDED TO LEFT HALF */
       PRINT "SUM OF THE EIGENVALUES";
       PRINT, ADDPOOL(FORMAT = 6.4 COLMAME = LABLLEFT);
FREE LEFTEVAL LEFTADD ADPOOVAL;
/* RIGHT NALVES OF EIGENVALUE & SUN-OF-EIGENVALUES MATRICES */
    RITEEVAL = WALSUNM(,RITENUM:NGRPKEPT);
       PRINT, RITEEVAL (FORMATEG. & ROAMAME = PCLABL COLMAME = RITELABLI;
    RITEADO = ADD SUMM [,RITENUM:NGRPKEPT];
       PRINT, RITEADD(FORMAT=6.4 COLNAME = RITELABL);
FREE RITEEVAL ADDSUNN RITEADD;
       PRINT NEWPAGE;
       PRINT "SUMMARY OF PERCENTAGE CONTRIBUTIONS OF EIGENVALUES FOR SKUL VARIABLES";
    LEFTPERC = PERCS(,1:LEFTNUM); /* LEFT HALF OF PERCENTAGES MATRIX */
    LPERPOD = LEFTPERC [ POOLPERC; /* POOLED APPENDED TO LEFT WALF */
       PRINT, LPERPOO(FORMAT=6.4 ROWMANE = PCLABL COLMANE = LABLLEFT);
FREE LEFTHUM LEFTPERC LEFTLADL;
     /* RIGHT HALF OF PERCENTAGE MATRIX */
    RITEPERC = PERCS(,RITENUM:KGRPKEPT);
       PRINT, RITEPERCIFORMATE 6.4 ROWMANE = PCLASE COLMANE = RITELABL);
END:
FREE PERCS LEFTNUM RITENUM LEFTPERC RITEPERC LEFTLADL RITELASL LABLLEFT;
/*-----*/
     PRINT " DEGREES OF FREEDOM ADJUSTNENT ";
      OFT = POOLNUM - (1);
      DEW = POOLNUM - NGRPKEPT;
      FACTOR = DFT/DFW;
      PRINT "TOTAL DE ", DET;
      PRINT "POOLED W/I DF ", DFW;
      PRINT "-----DEGREES OF FREEDOM TRANSFORMATION FACTOR-----";
      PRINT FACTOR;
 FREE DET DEW;
/* ----- MAHALANOBIS DISTANCES ----- */
     PRINT " USED TRUNCATED PC SCORES & LAMBDAS FOR DSA CALCULATION";
     PRINT "NUMBER OF LANSDAS RETAINED " TRUNCROW;
     LAMEDIAG = DIAG(POOLEVAL);
     LAMBDAS # LAMBD TAG [1: TRUNCROW, 1: TRUNCROW];
     INVPCOV = INV(LAMBDAS);
     DOAT = POOLSCORE, 1:TRUNCROWI;
 FREE LAMEDIAG LANSOAS POOLSCOR;
  DEESD = J(PODLNUM, 1); /* BEGIN G-G PLOT ROUTINE */
```

```
DO ITERD = 1 TO POOLNUM BY 1;
      DEESQ(ITERD,] = DDAT(ITERD,)*INVPCOV*DDAT(ITERD,]';/* D-SQUAREDS*/
   END :
  ROOTDSO = SURT(DEESO); /* COLUMN OF SQUARE ROOTS */
  ADJROOTS = ROOTDSQ*FACTOR;
  RANKS = RANK(ADJROOTS);
   LONGDEES = CHAR(ADJROOTS);
     DIDS = ACCINDID:
     LABLDEES = DIDS ||LONGDEES;
 FREE LONGDEES;
      SORTED = LABLDEES;
     DO ITER = 1 TO POOLNUM BY 1;
         R = RANKS[ITER,];
         SORTED (R, ] = LABLDEES [ITER, ];
      END;
   SORTDIOS = SORTED [, 1);
   SORTDSQ = NUM(SORTED(,2));
       CHISQ = CINV(DOC.5, POOLNUN-.5, 1)/POOLNUM, TRUNCRON, 0);
     ROOT CH1 = SORT (CHISO);
FREE CHISQ;
     CHICOL = ROOTCHI';
     DELTAS = SORTOSO-CHICOL;
     PRINT DIDS ROOTOSQ (FORMAT=4.2) SORTOIDS SORTOSQ (FORMAT=4.2)
               CHICOL (FORMAT=4.2) DELTAS (FORMAT=4.2);
FREE DIDS DELTAS;
     XYOG = SORTDSO || CHICOL;
FREE SORTDSA CHICOL;
            ROOTROWS = NROW(XYQQ); /* SETUP FOR OR PLOT */
            ADD ROWS = RODTROWS/2;
            MAXD = MAX(XY99);
            HCHO = MIN(XYQQ);
            INCREM = (MAXD-MIND)/ADDROWS;
            ROWSEQ = ODCMIND, MAXE, INCREM);
            COLSEQ * ROWSEQ";
            DOUBCOL = REPEAT(COLSEG, 1, 2);
     FULLXY99 = XY99//DOUBCOL;
FREE XYQQ DDUBCOL;
            SYN01 = "##;
            SYMB2 = REPEAT(SYMB1, ADDROWS ,1);
FREE SYMB1;
            SORTOLAB = SORTED[,1];
            SPECI = SUBSTR(SORTDLAB, 1, 1);
            PLOTSYMB = SPECI//SYMB2;
FREE SORTDLAB SPECT;
PRINT NEWPAGE;
      CALL PGRAF(FULLXYOD, PLOTSYNB, "SORTDSQ", "SORTCHI-SQ", "Q-Q PLOT");
 FREE FULLXYON;
         ND = NROW(ROOTDSO);
         DLAB = 1;
```

```
DCOL = REPEAT(DLA8, ND);
        DO = DCOL | ROOTOSO;
        NC = NRON(RODICHI');
        CLAS = 2;
        CCOL = REPEAT(CLAB, NC);
        CC = CCCL | ROOTCHL';
        BAR99 = 08//CC;
FREE 60 CC COPLOT CHISO;
    IF REPEAT = "N" THEN DO;
       CREATE SASUAT.BARGO VAR ( LABS VALS );
       APPEND FROM BAROO;
       CLOSE SASDAT.BARQO;
    END:
FREE BARGO PLOTMAT1 POOLSSCP INVPCOV GOPLOT:
/*----- MULTIVARIATE KURTOSIS AFTER MARDIA IN MARCUS ------*/
  AVEDSQSQ = SUN(BEESQRDZ)/POOLNUM;
  Z = (AVEDSQSQ + NVAR*(NVAR+2))/SQRT(8*NVAR*(NVAR+2)/PODLNUN);
   PROB = 1 - PROBNORM(Z);
     PRINT "MULTIVARIATE POOLED-WITHIN KURTOSIS =" AVEOSOSO;
     PRINT "Z = " Z "WITH PROBABILITY = " PROB;
FREE DEESO AVEBSQSQ;
/*----- SUBGROUP VS POOLED-WITHIN PCT ANGULAR DIFFERENCES -----*/
/*------*-
IF NGRPKEPT > 1 THEW DO;
    PCHAT = FIRSTCOL | PCS;
FREE FIRSTCOL PCS;
    RPLUSONE = NGRPKEPT+(1);
    DO ITERONE = 1 TO NPLUSONE BY 1;
        BO LITERING = 1 TO NPLUSONE BY 1;
           IF ITERONE = ITERTWO THEN DO; /* ANGLE WITH SELF */
              ANGLE = (0);
           END:
           IF ITERONE "= LTERTING THEN DO;
                                             /* ANGLES BETWEEN GROUPS */
              CROSSPS = PCMAT[, ITERONE] #PCMAT[, ITERTWO];
              KOSYNE = SUN(CROSSPS);
              RADS = ARCOS(KOSYNE);
              ANGLE = RADS#57.296;
              IF ANGLE > 90 THEN DO;
                 ANGLE = (180) · ANGLE;
              END:
           END;
            IF ITERONE = ITERTING THEN DD;
              ANGROW = ANGLE;
                                          /* ACCURULATE ANGLES */
            END;
            IF ITERONE "= ITERTWO THEN 68;
              ANGROW = ANGROW | ANGLE;
           END;
         END; /* END ITERTHO */
FREE ANGLE CROSSPS KOSYNE RADS;
```

```
IF ITERONE = 1 THEN DD;
            ANGHAT = ANGROW;
         EHD;
         IF ITERONE "= $ THEN DO;
           SPACER = (0);
            REPSPACE = REPEAT(SPACER, 1, [TERONE-(1));
            ROWNAT = REPSPACE ANGRON;
            ANGMAT = ANGMAT//ROWMAT; /* UPPER TRIANGULAR */
         END:
FREE ANGROW ROMMAT REPSPACE;
     END; /* END ITERONE */
     DO ITERATE = 1 TO NPLUSONE BY 1;
                                       /* CONVERT TO SYMMETRIC */
        RONTOCOL = ANGMAT (ITERATE, );
        SUBSYN = ROWTOCOL + ANGMAT [, ITERATE];
        IF ITERATE = 1 THEN DO;
           SYMMAT = SUBSYM;
        END;
        IF ITERATE THE 1 THER DO;
           SYNKAT = SYNKAT[[SUBSYN;
        EHD;
     END;
     POOL = ("AAAA");
     COLLAR = UNION(POOL, GRPSKEPT);
     CALL CHANGE (COLLAR, "AAAA", "POOL");
     ROWLAB = COLLAB';
        PRINT NEWPAGE;
        PRINT / "ANGULAR BIFFERENCES BETWEEN SUBGROUP PC1 & POOLEB PC1";
     FIRSTNUM = NPLUSONE/2;
     SECONUMB = FIRSTNUM +(1);
     LEFTSYNN = SYNNAT(, 1:FIRSTAUN);
     RITESYMM = SYMMATE, SECONUMBINPLUSONE);
        LCOULAB = COULAB[,1:FIRSTNUM];
        RCOLLAS = COLLASE, SECONUMB:NPLUSONEJ;
        PRINT LEFTSYNN (FORMAT=3.0 ROLMANE = ROWLAB COLMANE = LCOLLAB);
        PRINT NEWPAGE;
        PRINT RITESTMN [FORMAT=3.0 ROWNAME = ROWLAB COLNAME = RCOLLAB];
        XYMAT = GSTZECOL ||SYMMAT(2:NPLUSONE, 1);
        SAMPSIZE = ("SAMPLE SIZE");
        ANGLEDIF = ("ANGULAR BIFFERENCE WITH TOTAL");
           PRINT NEWPAGE;
           CALL PGRAFEXYMAT, ROMLAB(2:NPLUSORE,), "SAMPLE SIZE", "ANGULAR DIFFERENCE");
```

CANONICAL VARIATES, LINEAR REGRESSION, VECTOR PROJECTION, AND SIZE REMOVAL ROUTINES

```
/*----* SET WORKING ENVIRONMENT -----*/
    OPTIONS NOSOURCE; /* NO PROGRAM LINES IN OUTPUT*/
    PROC PRINTTO LOG = 'FRN'; /*OUTPUT DESTINATION*/
    PROC INL WORKSIZE = 220; /*SPACE AVAILABLE FOR MATRIX OPERATIONS*/
RESET LINESIZE = 165 PAGESIZE = 35;
TWELVE = (12);
NEWPAGE = BYTE(TWELVE); /*PAGE BREAK CONTROL CODE*/
/*SET*/ USE SASDAT.MANDSUBS; /* DATA SOURCE*/
/*SET*/ RUN = "MARD"; /* ---> $KULL MAND-IBLE */
/*SET*/ NEWPOOL = "YES"; /* CALCULATE NEW POOLED W/IN GROUP COV */
/*SET*/ INDRICO = "YES"; /* INCLUDE-EXCLUDE INDRICOTHERIUM */
/*SET*/ BROPTAX = "NO"; /* USE SUBSET FOR TARGET VECTOR ? */
    IF DROPTAX = "YES" THEN DO.
       IF RUN = "MANO" THEN ELIMTAX = ("INORM"); /* INDRICOTHERIUM DROPPED FROM ANALYSIS"/
       IF RUN = "SKULL" THEN ELIMIAN = ("INDRS");
    END;
/*SET*/ BIVARIAT = "HO"; /* INCLUDE BIVARIATE MEAN VAR-SIZE PLOTS */
/*SET*/ FINDVECT = "YES";/* FIND TARGERT VECTOR OF INTEREST*/
/*SET*/ VECTTARG = "SHAPE"; /* SIZE SHAPE *//*TARGET VECTOR TYPE*/
/*SET*/ REMOVECT = "ND"; /* NO ISO BURN */ /*REMOVE VECTOR*/
/*SET*/ ISOSZVAR = "SIZE}"; /* SCALE GATA ISOMETRICALLY TO UNICH VARIABLE ? */
/*SET*/ CORRSIZE = "WO"; /* FIND CORRELATIONS AMONG SIZE VARIABLES */
/*SET*/ CANSTO3D = "HO"; /* SAVE DATA TO FILE FOR 3D */
/*SET*/
         PLOTTYPE = "GRPSYNB"; /* ---> GRPNAME GRPSYNB IND */
/*SET*/
         PLOTSET = "ARB"; /* ---> ARB-ITRARY FIND ALL *//* # OF PLOTS*/
/*SET*/
         PLOTNUM = "2"; /* ---> (#) */
/"SET"/ WEIGHT = "NO"; /" ---> YES NO "/ /" WEIGHTED CANAONICAL VARIATES"/
/*SET*/ TFORM = "NO"; /# ---> YES NO */
/*SET*/
         PLEY = "WIN"; /* PRINT LEVEL RIN MED MAX *//*AMOUNT OF OUTPUT*/
/*SET*/ POOL = "ALL"; /* ---> SOME ALL *//* POOL HOW MANY GROUPS*/
/*SET*/ DISCRIM = "ALL"; /* ---> SOME ALL *//*HOW MARY CANONICAL GROUPS*/
/*SET*/ AXES = "MAX"; /* ---> MAX ARB */ /*AXIS RANGES*/
/*SET*/ AWALYSIS = "SUB"; /* ---> GEN-ERA SUB-GROUPS */
/*SET*/ IF POOL = "SOME" THEN DO; /* DEFINE SUBSET FOR POOLONG*/
          POOLGRPS = (8100);
          POOLCOL = POOLGRPS';
          NGPOOLED = MRON(POOLGCOL);
    END:
/*SET*/ IF DISCRIM = "SOME" THEN DO; /* DEFINE GROUPS FOR CANONICAL ANALYSIS*/
        /* BISCERPS = (BICON CERAN JAVAN UNICH XUNAM); */
        /* DISCORPS = (BICOS CERAS JAVAS UNICS XUMAS); */
           DISCORPS = (YRAHIN YRANZK FORSIN FORSZM INDRM HYCOM);
        /* DISCERFS = (FORSS INDRS HYCOS); */
        /* DISCORPS = (DICE15 DICE25 DICE35 FORSE LOPSIS
                      LOPSES MENOS PERATS PERAES GACETS
                      QACE2S RIGOTS RIGOZS SUBHIS SUBH2S
                      SUBH3S SUBH4S TELEIS TELEZS TELE3S
```

```
TELEAS TELESS YRANIS YRANZS); */
           DISCORPS = (ACERIM ACERIM DICEIM DICEIM DICEIM DICEIM LOPSIM LOPSIM LOPSIM
       1*
LOPS4N
                     MENOIN RENOZH PERAIN PERAZN PERAZN
                      RIGON SUBHIM SUBH2N SUBH3N TELEIN
                      TELE2N TELE3N TELEGN YRAHIN YRAH2N); */
   DISCOL = DISCORPS';
           NGD(SC = NROW(DISCCOL);
    END:
    IF AKES = "ARO" THEN DO; /* SET AX15 RANGES*/
           IF RUN = "MAND" THEN DO;
/*$ET*/
          IF DISCRIM = "ALL" THEN RANGESKY = (40 15, -40 -15);
          IF DISCRIM # "SOME" THEN RANGESXY = (16 6, -16 -6);
       END;
/*$ET*/
           IF RUN = "SKULL" THEN OO;
          IF DISCRIM = "ALL" THEN RANGESKY = (4D 20, -40 -20);
          IF DISCRIM = "SOME" THEN RANGESKY = (28 15, -28 -15);
       END;
    END; /* ·--> AXES = ARB */
PRINT "";
PRINT RUN "" ANALYSIS "" POOL "" DISCRIM "" WEIGHT "" INDRICO;
PRENT "";
PRINT TFORM "" PLOTNUR "" PLOTSET "" AXES "" PLOTTYPE "" PLEY;
PRINT OU;
PRINT NEWPOOL "" RANGESKY "" FINDVECT "" REMOVECT "" ISOSZVAR;
PRINT VECTTARG "";
PRINT O-----
/* -----*/
/* GET DATA - INCLUDE-EXCLUDE INDRICOTHERIUM - TRANSFORM DATA OPTION*/
 IF INDRICO = "YES" THEN DO;
    READ ALL INTO TEMPDATA (ROWNAHE=1D COLWAME=VARNAME);
   LF TFORM = "YES" THEN DATA = LOG(TEMPOATA)#0.43429448;
   IF TFORM = "NO" THEN DATA = TEMPDATA;
   PRINT "--- DATA READ ----";
 EHD; /* INDRICO = YES LOOP */
 IF INDRICO = "NO" THEN DO;
    IF RUN = "SKULL" THEN DO;
   READ ALL WHERE (SUBG"="INDRS") INTO TEMPDATA (ROMNAME=10 COLNAME=VARNAME];
   IF TFORM = "YES" THEN DATA = LOG(TEMPDATA)#0.43429448;
   IF TFORM = "NO" THEN DATA = TEMPDATA;
   PRINT "--- DATA & SUBG READ, INDRICO EXCLUDED ---*;
    EHD;
    LF RUN = "MAND" THEN DO:
   READ ALL WHERE(SUBS'="INDRM") INTO TEMPDATA (ROWWANE=ID COLMANE = VARNAME);
   IF TFORM = "YES" THEN DATA = LOG(TEMPDATA)#0.43429448;
   IF TFORM = "NO" THEN DATA = TEMPDATA;
```

I

1

```
PRINT "--- DATA & SUBS READ, INDRICO EXCLUDED ---";
   ENB;
END; /* ---> INDRICO = NO LOOP */
FREE TEMPOATA;
                         /* NUMBER OF CASES */
CASES = NRON(DATA);
                         /* Column of variable names */
VARCOL = VARNAME';
NVAR = NROW(VARCOL);
/*----* READ AND/OR SETUP LABELLING MATRICES -----*/
  IF POOL = "ALL" | DISCRIM = "ALL" THEN DO;
LE ANALYSIS = "GEN" THEN DO;
  READ ALL VAR(GERUS) INTO GRPLABLS;
END ;
IF ANALYSIS = "SUB" THEN DD;
     IF RUN = "MAND" THEN DO;
 LF INDRICO = "HO" THEN DO;
           READ ALL VAR(SUBS) WHERE(SUBS ="INDRM") INTO GRPLABLS;
        END;
        IF (WORICO = "YES" THEN DO;
           READ ALL VAR(SUBS) INTO GRPLABLS;
        EKB;
    END; /* ---> RUN = M LOOP */
     IF RUN = "SKULL" THEN DO;
        IF INBRICO = "NO" THEN DD;
           READ ALL VAR(SUBG) WHERE(SUBG"="INDRS") INTO GRPLABLS;
        END;
        IF INDRICO = "YES" THEN DO;
          READ ALL VAR(SUBG) INTO GRPLABLS;
        END;
     END; /* ---> RUN = $ LOOP */
  END; /* ---> ANALYSIS = SUB */
  END; /* ---> POOL OR DISCRIM = ALL */
   IF DISCRIM = "ALL" THEN DO;
 DISCORPS = UNIQUE(GRPLABLS);
 OISCCOL = DISCORPS';
 NGDISC = KRON(BISCCOL);
   END; /* ---> ALL-ALL LOOP */
   IF POOL = "ALL" THEN DO;
 POOLGRPS = UNIQUE(GRPLABLS);
 POOLCOL = POOLGRPS';
 NGPOOLED = NROW(POOLCOL);
  ENO;
/*----*/
 PRINT " TOTAL CASES READ " CASES;
 PRINT " NUMBER OF VARIABLES " NVAR;
 PRINT " LIST OF VARIABLES ", VARCOL;
 IF POOL "= "ALL" | DISCRIM "= "ALL" THEN DO;
    PRINT " NUMBER OF GROUPS DISCRIMINATED " NGDISC;
```

```
PRINT " LIST OF GROUPS SPECIFIED FOR DISCRIMINATION ", DISCOL;
   PRINT PH:
   PRINT " NUMBER OF GROUPS POOLED " NGPOOLED;
   PRENT " LIST OF GROUPS SPECIFIED FOR POOLED ", POOLCOL;
END;
 IF POOL = "ALL" & DISCRIN = "ALL" THEN DO;
   PRINT "NUMBER OF POOLED AND DISCRIMINATED GROUPS " NGDISC;
   PRINT " LIST OF ALL GROUPS FOR BOTH POOLED AND BETWEEN", DISCOL;
 END;
/* -----*/
NROOTS = NVAR; /* SET NUMBER OF ROOTS FOR CANONICAL VARIATES*/
LVLABD = (CV); /* SETUP CANONICAL AXIS LABELLING */
CVLAB1 * REPEAT(CVLABO, 1, NROOTS);
CVLAB2 = OD(1,NROOTS,1);
CVLAB2A = CHAR(CVLA92,2);
   GALL CHANGE(CVLAB2A, " 1", "1");
  CALL CHANGE(CVLAB2A," 2","2");
   CALL CHANGE(CVLAB2A," 3","3");
   CALL CHANGE(CVLAB2A, * 4*, **4*);
   CALL CHANGE(CVLA82A, " 5", "5");
   CALL CHANGE(CVLA82A, " 6", "6");
   CALL CHANGE(CVLAB2A," 7","7");
   CALL CHANGE(CVLAB2A," 8","8");
   CALL CHANGE(CVLAB2A," 9","9");
CVLABROW = CONCAT(CVLAB1, CVLAB2A);
CVLABCDL = CVLABROW';
CNTSK(P = (0);
CNTGRPS = (0);
GRPNUM = (0);
 /*----- SIZE VARIABLE ROUTINES ------
  TESTDAT = DATA(1:2,]; /* TEST DATA FOR CHSCKING ROUTINES */
  PRINT " FIRST TWO DATA ROWS FOR TESTING CALCULATIONS";
  SPECWARS = GRPLASLS(1:2,);
  PRENT TESTOAT (FORMAT=4.0 ROWNAME = SPECHANS COLNAME = VARNAME);
 /* SIZE1 = GREATEST LENGTH */
PRINT "SIZE1 = GREATEST LENGTH ":
IF RUN = "MAND" THEN OD;
  RAND = DATAL, 10 1;
  HWIND = DATA (, 9);
  SIZE1 = RAMD + MNMO;
 END;
   IF RUN = "SKULL" THEN DD;
  SIZE1 = DATAI, 131; /* 0092 */
    END;
 /* SIZE2 = SQUARE ROOT OF SUMS OF SQUARES */
    PRINT "SIZE2 = SQUARE ROOT OF SUM OF SQUARES";
    SIZEZA = DATAL ##1;
```

SIZE2 = SQRT(SIZE2A);

ł

i

÷

İ

÷

J

```
399
```

```
FREE SIZEZA PRINTESTZ;
/* SIZE3 = GEOMETRIC MEAN (NTH ROOT OF PRODUCT) */
PRINT "SIZES = GEOMETRIC MEAN";
SIZE3A = DATAI,#];
ROOT = 1/NVAR;
SIZE3 = SIZE3A ## ROOT;
FREE SIZE3A:
/* SIZE4 = CUBE ROOT OF VOLUME */
  PRINT "SIZE4 = CUBE ROOT OF VOLUNE";
  LF RUN = "MAND" THEN DO;
RAMN = DATAI, 11 );
BOBR = DATAI, 31; BOHT = DATAI, 41;
RAMD = DATAE, 10 1;
SIZE4A = RANH # BOBR # SIZE1;
SIZE4 = SIZE4A##0.3333333;
  END; /* MAND LOOP */
FREE RAMH SDAR RAND MANG SONT ;
  IF RUN = "SKULL" THEN OD;
 BIZY = DATAE, 5 3; LEHT = DATAE, 6 1;
SIZEAR = SIZE1 # BLZY # LFNT;
SIZE4 = SIZE4A##0.3333333;
   END; /* SKULL LOOP */
FREE BIZY LENT PRNTEST4;
/* SIZES = AVERAGE VARIABLE SIZE */
  SIZES = DATA(,:1;
PRINT "SIZES = AVERAGE VARIABLE SIZE";
IF CORRSIZE = "YES" THEN DO;
 /* ACCUNULATE SIZE COLUMNS INTO MATRIX */
  SIZEMAY = SIZE1 [|SIZE2||SIZE3||SIZE4||SIZE5;
 /* CORRELATIONS BETWEEN SIZE VARIABLES */
   /* ACRDSS ALL SPECIMENS */
 SIZEMEAN = SIZEMATE:,1;
 MEANMAT = REPEAT(SIZEMEAN, CASES, 1);
 MEANDEVS = SIZEMAT - MEANMAT;
FREE SIZEWEAN MEANMAT SIZEMAT;
 SIZESSCP = MEANDEVS' + HEANDEVS;
 SIZECOV = SIZESSOP * ((CASES + (1))** -1.0);
FREE MEANDEVS SIZESSCP2
 SZVARIANC = VECDIAG(SIZECOV);
  SZSTDEV = SORT(SZVAR(ANC);
 STOEVINV = SZSTDEV ## -1.0;
 SZSTORAT = DIAG(STDEVINV);
FREE SZSTDEV STDEVINV SZVARIANC;
 SZCORREL = SZSTDMAT * SIZECOV * SZSTDMAT;
FREE SZSTONAT SIZECOV;
SZEDLNAM = ($1 52 53 54 55 );
SZROWNAM = {$1,$2,53,54,55 ];
PRINT NEWPAGE:
PRINT "SIZE VARIABLES CORRELATION MATRIX";
```

I

```
PRINT SZCORREL (FORMAT = 5.2 ROMNAME = SZROWNAM COLMANE = SZCOLMAN);
FREE SZCOLNAM SZROMNAM SZCORREL;
END; /* SIZE VARIABLE CORRELATIONS LOOP */
IF REMOVECT = "ISO" THEN DO;
/* ..... REMOVE ISONETRIC SIZE FROM DATA ..... */
  IF ISOSZYAR = "SIZE1" THEN OD;
TARGETSZ = MIN(SIZE1);
                        /* ARBETRARY */
TARGCOL = REPEAT(TARGETSZ, CASES, 1);
RATIOS = SIZE1##-1.0#TARGCOL;
TARGMAT = REPEAT(RATIOS, 1, NVAR);
SCALEDAT = DATAFTARGMAT;
  END; /* SIZE1 REMOVAL */
FREE TARGHAT DATA TARGINY TARGETSZ TARGEDLRATIOS ISOSZVAR;
   IF RUN = "MAND" THEN DD;
  TEMP1 = SCALEDAT[,1:8];
  TEMP2 = SCALEDAT [, 11];
  SCALEDAT = TEMP1[[TEMP2;
  NVAR = NCDL(SCALEDAT);
  LABTEMP1 = VARNAME [, 1:81; LABTEMP2 = VARNAME [, 111;
  VARNAME = LABTEMP1||LABTEMP2; VARCOL = VARNAME*;
   END;
 IF RUN = "SKULL" THEN DQ;
    TEMP1 = SCALEDAT (, 1:12);
    TEMP2 = SCALEDAT(, 14:19);
    SCALEDAT = TENP1 ] TEMP2;
    NVAR = NCOL(SCALEDAT);
    LASTEMP1 = VARNAME [, 1:12];
    LABTEMPZ = VARNAME [, 14:19];
    VARNAME = LABTEMP1 | LABTEMP2;
    VARCOL = VARNAME';
 END:
 FREE TEMP1 TEMP2 LABTEMP1 LABTEMP2;
PRINT " SPECIMENS HAVE BEEN SCALED ISOMETRICALLY TO AN ARBITRARY";
PRINT " VALUE OF THE SIZE VARIABLE (SIZE! ONLY)";
END; /* REMOVE ISOMETRIC SIZE LOOP */
/* SET SIZE VARIABLE FOR FURTHER COMPUTATIONS */
   SIZEVAR = SIZE4;
 FREE SIZE1 SIZE2 SIZE3 SIZE4;
FREE SIZES SIZE92;
PRINT "SIZE VARIABLE USED FOR SIZE ROUTINES";
SIZETEST = SIZEVAR[1:10,1;
 NAMSTEST = GRPLABLSI7:10,1;
 PRINT NAMSTEST SIZETEST;
 FREE SIZETEST:
 /*----- SHAPE AND OTHER DERIVED VARIABLES -----*/
  PRINT "SHAPE1 * ORIG. VARIABLES DIVIDED BY SIZE";
  IF RUN = "MAND" THEN DO;
     PRINT "SHAPEZM = REL. NT. OF MANDIB. CONDILE ABOVE YOUTH ROW";
    SHAPE2N = DATA (, 4)#DATA (, 11)##-1.0;
```

```
PRINT "SHAPESH # RELATIVE ANGLE EXPANSION";
  SHAPE3H = DATA[,1]#DATA[,10]##-1.0;
  PRINT "SHAPE4M . WORN N1 CROWN NEIGHT";
  SHAPE4M = DATA [ ,5] #DATA [ ,3] ##-1.0;
  PRINT "SHAPESH = POS, CONDYLE REL. TO H3";
  DEMONSH = DATA(, 11] -DATA(,43);
  SHAPESH = DATA [, 6] #DENDHSH##-1.0;
END;
IF RUN = "SKULL" THEN DO;
   PRINT "SHAPE2S = RELATIVE DIVERGENCE OF TOOTH ROW";
     SHAPE2S = DATA(,8)#DATA(,9)##-1.0;
   PRINT "SHAPE3S = OBLIQUENESS OF EXTERNAL MASSETER FIBERS";
     SHAPE3S = DATA(,5)#DATA(,9)##-1.0;
   PRINT "SHAPE45 = RELATIVE DEPTH OF TEMPORAL FOSSA";
     SHAPE45 = DATA(,5)#DATA(,16)##-1.0;
   PRINT "SHAPE55 = RELATIVE DOLICHOCEPHALT";
     SHAPE55 = DATA(,5)#DATA(,13)##-1.0;
END;
/*----*/
  IF VECTTARG = "SIZE" THEN DD;
 TARGVAR = SIZEVAR;
FREE STZEVAR;
  ENO;
  IF VECTTARG = "SHAPE" THEN DO;
TARGVAR = SHAPESM;
  END:
SORTTARG = TARGVAR; /* SORT TARGET VECTOR ROUTINES */
SORTLASS = GRPLASLS;
RANKTARG = RANK(TARGVAR);
 DO ITERB = 1 TO CASES BY 1;
    RT = RANKTARG[ITERB];
    SORTTARGIRT,] = TARGVAR[[TER8,];
    SORTLABSTRT, 1 = GRPLABLS(ITERB,);
 END; /* ---> [TER8 LOOP */
 PRINT "TARGET VECTOR OF INTEREST" SORTLABS SORTTARG;
 FREE SORTTARG SORTLABS RANKTARG;
/*----POOLED WITHIN-GROUP COVARIANCE ROUTINE ---------*/
IF NEWPOOL = "YES" THEN DD; /* FIND HEN WITNIN-GROUP COVARIANCE */
  OO ITERA = 1 TO NGPODLED BY 1; /* CYCLE THROUGH GROUPS */
 CHICASES + (0);
 GRPNLAK = GRPNUM+(1);
 GRPNAME = POOLCOL (GRPNUN);
 DO ITERE = 1 TO CASES; /* CTCLE THROUGH CASES */
    IF GRPLABLECITERBI = GRPNAME THEN DO; /* SELECT CASES */
       CNTCASES = CNTCASES+(1);
       IF REMOVECT = "NO" | REMOVECT = "BURN" THEN OD;
```

```
ROWDAT = DATA(ITER8,1;
       END;
       IF REMOVECT = "ISO" THEN DO;
          ROMDAT = SCALEDAT [[TER8,];
       END;
         ROWID = ID(ITER8);
         IF CNTCASES = 1 THEN DO;
                SUBDAT = ROMDAT;
          END:
          IF CHICASES > 1 THEN DO;
                SUBDAT = SUBDAT//ROMDAT;
          END;
      END; /* ---> GRPWAME = GRPLABLS LOOP */
   END; /* ---> ITER8 LOOP */
SUBSIZE = NROW(SUBDAT); /* SIZE OF EXTRACTED GROUP */
SUBMEANS = SUBDAT(:,];/* VARIABLE MEANS OF GROUP */
MEANMAT = REPEAT(SUBMEANS, SUBSIZE, 1);
SUBDEVS = SUBDAT-MEANWAT; /* DEVIATIONS FROM GROUP MEAN*/
          IF ITERA = 1 THEN DD; /* SETUP POOLED DATA SET */
             POOLDAT = SUBDEVS;
             POOLGNS = SUBSIZE;
          ENDT
          IF ITERA "= 1 THEN DO;
             POOLDAT = POOLDAT//SUBDEVS;
             PODLENS = POOLENS//SUBSIZE;
          EHD;
  END; /* ---> ITERA LOOP */
POOLNUM = NROW(POOLDAT);
PRINT "NUMBER OF POOLED DATA CASES " POOLNUM;
POOLSSEP = POOLDAT" * POOLDAT; /* POOLED SUMS OF SQUARES AND CROSS PRODUCTS*/
POOLCOV = POOLSSCP * ((POOLNUN-NGPOOLED)**-1.0); /*NEW POOLED COVARIANCE*/
IF RUN = "MAND" THEN DO; /* SAVE PODLED COVARIANCE*/
  CREATE SASDAT.MPOOLCOV FROM POOLCOV:
   APPEND FROM POOLCOV
  CREATE SASDAT. HPOCLENS FROM POOLENS;
  APPEND FROM POOLENS;
  CREATE SASDAT .. NPOOLCOL FROM POOLCOL;
   APPEND FROM POOLCOL:
   PRINT " NEW POOLED COVARIANCE MATRIX CALCULATED FOR MANDIBLE";
 END; /*---> RUN = MAND */
 IF RUH = "SKULL" THEN DO;
   CREATE SASDAT.SPOOLCOV FROM POOLCOV;
   APPEND FROM POOLCOV;
   CREATE SASDAT. SPOOLGNS FROM POOLGNS;
   APPEND FROM POOLGNS;
   CREATE SASDAT.SPOOLCOL FROM POOLCOL;
   APPEND FROM POOLCOL;
   PRINT "NEW POOLED COVARIANCE MATRIX CALCULATED FOR SKULL";
```

```
END; /*---> RUN = MAND */
```

ł

```
END; /* ---> NEWPOOL = "YES" */
  IF NEWPOOL = "NO" THEN DO; /* USE OLD POOLED COVARIANCE */
 IF RUN = "MAND" THEN DO;
   USE SASDAT .NPOOLCOV;
    READ ALL INTO POOLCOV;
    PRINT "POOLED COVARIANCE MATRIX READ FROM MPOOLCOV";
    USE SASDAT . MPOCLEMS;
    READ ALL INTO POOLENS;
    USE SASDAT . MPOCLCOL;
    READ ALL VAR(COL1) INTO POOLCOL;
 END;
   IF RUN = "SKULL" THEN DO;
      USE SASDAT . SPOCLCOV;
                               READ ALL INTO POOLCOV;
      PRINT "POOLED COVARIANCE MATRIX READ FROM SPOOLCOV";
      USE SASDAT. SPOOLGHS;
       READ ALL INTO POOLGNS;
      USE SASDAT.SPOOLCOL;
       READ ALL VAR(COL1) INTO POOLCOL;
 END:
  END; /* ---> NEWPOOL = "NO" */
POOLROWS = NROW(POOLCOV);
POOLCOLS = NCOL(POOLCOV);
 FREE POOLSSCP;
 IF PLEY = "MAX" THEN DO;
PRINT NEWPAGE;
   PRINT "POOLED-WITHIN GROUPS COVARIANCE MATRIX", POOLCOV (FORMAT=6.1 ROWNAME = VARCOL
COLNAME = VARNAME];
 PRINT "PODLCOV MAIRIX 15 * PODLROWS "8Y " PODLCOLS;
END:
FREE POOLROWS POOLCOLS;
CNTSK(P = {0};
CNTGRPS = (0):
GRPNUN = (0);
/*---- GROUP NEANS -----*/
/*-----*/
DD ITERA = 1 TO NGDISC BY 1; /* CYCLE THROUGH GROUPS */
  CNTCASES = (0);
  GRPNUM = GRPNUM+(1);
  GRENAME = DISCOL(GRENUM);
 DD ITERB = ? TO CASES; /* CYCLE THROUGH CASES*/
     IF GRPLABLS[ITERB] = GRPNAME THEN OD;
       CHICASES = CHICASES+(1);
       IF FINDVECT = "NO" THEN DO; /* SETUP REQUIRED DATA SETS AND LABELS*/
         RONDAT = DATA(ITER8,);
       END:
       IF REMOVECT = "ISO" THEN DD;
          RONDAT = SCALEDAT (ITERB, );
       END;
```

```
IF FINDVECT = "YES" & REMOVECT '= "ISO" THEN DO;
         RONDAT = DATA[ITERS,];
         TARGDAT = TARGVAR [ITERB,];
      ENO;
        ROWID = 10(ITERB);
         IF CNTCASES = 1 THEN DO;
               SUBDAT = RONDAT;
               SUBGRPID = GRPHAME;
               SUBINDID = ROWID;
           IF FINDVECT = "YES" & REMOVECT '= "ISO" THEN DD;
              SUBTARDY = TARCOAT;
              END;
         END;
          IF CHICASES > 1 THEN DO:
                SUBDAT = SUBDAT//RONDAT;
                SUBGRPIO = SUBGRPID//GRPNAME;
                SUBINDID = SUBINDID//ROWID;
                IF FINDVECT = "YES" & REMOVECT "= "ISO" THEN DO;
                SUBTARDT = SUBTARDT//TARGDAT;
                END;
          END;
      END; /* GRPNAME = GRPLABLS LOOP */
  END; /* ITERB LOOP */
SUBSIZE = NROW(SUBDAT);
SUBMEANS = SUBDAT (:, ); /* GROUP MEANS*/
IF FINDVECT = "YES" & REMOVECT "= "ISO" THEN DO;
GPTARMEA = SUBTARDT(:,);
END;
         IF ITERA = 1 THEN DD;
            DISCOAT = SUBDAT;
            BETGNS = SUBSIZE;
            ACCORPID = SUBGRPID;
            ACCINDID = SUBINDID;
            GRPHEANS = SUBMEANS;
            GSIZERON = SUBSIZE;
            IF FINDVECT = "YES" & REMOVECT T= "ISO" THEN DD;
            TARMEANS = GPTARMEA;
            END;
         END:
         IF ITERA "= 1 THEN DO;
            DISCOAT = DISCOAT//SUBDAT;
            ACCGRPID = ACCGRPID//SUBGRPID;
            ACCINDID = ACCINDID//SUBINDID;
            BETGHS = BETGNS//SUBSIZE;
            GRPHEANS = GRPHEANS//SUBMEANS;
            IF FINDVECT = "YES" & RENOVECT '= "ISO" THEN DO;
            TARMEANS = TARMEANS//GPTARMEA;
            END;
    END:
```

```
END; /* ITERA LOOP */
    PRINT NEWPAGE;
    PRINT "GROUPS AND SIZES USED IN ANALYSIS";
    PRINT POOLCOL POOLGNS " DISCOUL BETGNS;
    PRINT "GROUP MEANS OF ORIGINAL VARIABLES";
    PRINT GRPMEANS[FORMAT=4,1 ROMMAME = DISCOOL COLMANE = VARNAME];
/*----- BIVARIATE ROUTINES -----*/
 IF BIVARIAT = "YES" THEN DO; /" LINEAR REGRESSION VARIABLES AGAINST SIZE"/
    DO ITERO = 1 TO NVAR;
  MEASCOL = GRPHEANS [, ITERQ);
  NHEANS = NROW(HEASCOL);
  LOGMEAS = LOG(MEASCOL)#0.43429448; /* BASE TEN LOGS*/
  LOGTARMS = LOG(TARMEARS)#0.43429448;
  NMEANS = NROW(NEASCOL);
  RANKLOGS = LOGTARMS;
  RANKHANS = DISCCOL;
  RANKNEAS = LOGMEAS;
  RANKLS = RANK(LOGTARNS); /* SORT DATA */
     DO ITERB = 1 TO NMEANS BY 1;
        RJ1 = RANKLSEITERB);
        RANKLOGS (RJ1, ] = LOGTARMS [17ER8, ];
        RANKNAMS(RJ1,] = DISCCOL([TERB,];
        RANKNEAS(RJ1,] = LOGMEAS(ITERB,];
     ENO; /* ---> ITER9 LOOP */
   DUNNYA = (1); /* SETUP DUNNY VARIABLE */
   DUNNY = REPEAT(DUNNYA, NNEANS, 1);
   DUMIX - DUMINY | |RANKLOGS;
  LXXPROD = OLMXX**DURXX:
   LXYPROD = DUNCK ** RANKHEAS;
   LXXPRDIN = INV(LXXPROD);
   PARAMETR = LXXPROIN*LXYPROD;
   PREDYS = DUNKX*PARAMETR; /* PREDICTED Y'S*/
   RESIDS = RANKMEAS - PREDYS; /* RESIDUALS*/
   PRINT NEWPAGE:
   PRINT RANKNAMS RANKLOGS RANKMEAS PREDYS RESIDS;
       DO ITERM = 1 TO KINEANS BY 1; /* FIND RESIDUAL SIGNS */
          IF RESIDS[ITERW] < 0.0 THEN SIGN = "-";
          IF RESIDS[[TERN] = 0.0 THEN SIGN = "O";
          IF RESIDS(ITERH) > 0.0 THEN SIGN = "+";
          IF ITERW = 1 THEN DO;
            SIGNROW = SIGN;
          END:
          IF ITERW > 1 THEN GO;
            SIGNROW # SIGNROW SIGN;
          END;
       END; /* ITERW LOOP */
```

```
IF ITERQ = 1 THEN DO; /* ACCUMULATE RESIDUAL SIGNS */
```

```
SIGNMAT = SIGNROW;
END:
IF ITERS "=1 THEN DO;
  SIGNMAT = SIGNMAT//SIGNROW;
END;
ABSCISSA = RANKLOGS//RANKLOGS;
ORDINATE = RANKMEAS//PREBYS;
BIVARMAT = ABSCISSA | ORDINATE;
           (F RUN = "MAND" THEN DO;
  s#
        XMAXYMAX = (2.4 2.65);
                                        XNINYMIN = (1.65 0.75);
                                                                        SETSCALE =
XMAXYMAX//XMINYHIN;
      END:
      IF RUN = "SKULL" THEN DD;
                                        XMENYMEN = (1.85 1.15);
        XMAXYMAX = (2.75 3.5);
                                                                        SETSCALE =
XHAXYHAX//XMENYHEN;
      END:
      BIVARMAT = BIVARMAT//SETSCALE;
 */
PREDSYNG = "##!";
SYMBPRED = REPEAT(PREDSYMB, NMEANS, 1);
SYMBCOL = SUBSTR(RANKNAMS, 1, 1);
PLOTMARK = SYM8COL//SYM8PRED;
      NOPOINT # # #;
      PLOTMARK = PLOTMARK//NOPDINT;
YLAB = VARCOL [ITERO];
  SYMBROW = SYMBCOL";
 PRINT NEWPAGE:
    CALL PERAF(BIVARNAT, PLOTMARK, "CUBE ROOT OF VOLUME", YLAB);
    PRINT "SUBGROUPS" SYMBRON(FORMAT=3.0];
    PRINT "RESIDUALS" SIGNROW[FORMAT=3.0) ;
   ENB; /* 1TER9 LOOP */
 PRINT NEWPAGE;
 PRINT SYNBROW (FORMAT= 3.0);
 PRINT SIGNMATEFORMAT = 3.0];
 END; /* BIVARIATE BLOCK */
 FREE SIGNMAT;
 FREE MEASCOL RMEANS PARAMETR PREDYS;
 FREE ABSCISSA ORDINATE BIVARNAT PREDSTNB SYNBPRED PLOTNARK;
  FREE YEAR SYNDCOL LXXPROD LXXPROD LXXPROD LXXPROD LXXPROD LXXPROD LXXPROD X PARAMETR STOREW RESIDS;
 FREE LOGTARHS LOGKEAS RANKLOGS RANKHEAS RANKHAMS;
 /*----*/ BETWEEN GROUPS COVARIANCES -----*/
    DISCASES = NRON(DISCOAT);
     GRNDNEAN = GRPNEANS[:,]; /* GRANDMEANS */
     GRNDNAT1 = REPEAT(GRNBMEAN, BISCASES, 1);
     GRNDMAT2 = REPEAT(GRNDMEAN, GRPNUM, 1);
    GRNODEVS = DISCOAT-GRNDNAT1; /* DEVIATIONS OF SPECS FROM GRAND MEANS */
 FREE GRINDWATT:
     BETDEVS = GRPMEANS-GRNDNATZ; /* BEVIATIONS OF GROUP MEANS FROM GRNAD REANS*/
```

```
FREE GRINDMAT2;
IF WEIGHT = "NO" THEN DO; /* UNWEIGHTED ANALTSIS */
   BSSCP = BETDEVS'*BETDEVS; /* BETWEEN GROUPS SUMS OF SQUARES AND CROSS PRODUCTS*/
   BETCOV = BSSCP*((MGDISC-I)**-1.0); /* BETWEEN GROUPS COVARIANCES */
   PRINT NEWPAGE;
   PRINT "BETWEEN GROUPS COVARIANCE BASED ON BESCP (UNWEIGHTED)";
END;
 IF WEIGHT = "YES" THEN DO; /* WEIGHTED ANALYSIS */
      GSIZEMAT = REPEAT(BETGNS, 1, NVAR);
      WHETDEVS = BETDEVSUGSIZENAT;
      WBSSCP = WBETDEVS' "WBETDEVS;
      BETCOV = WBSSCP*((NGDISC-1)**+1.0);
      PRINT NEWPAGE;
      PRINT "BETWEEN-GROUPS COVARIANCE BASED ON MESSOP (WEIGHTED)";
 END:
FREE GSIZEMAT GRNDMATZ GRNDMAT1 BETDEVS;
FREE MOETDEVS MOSSCP BESCP BETDEVS ;
IF PLEV = "MAX" THEN DD:
PRINT BETCOVEFORMAT=4.11;
END;
/*-----*/
/*----- CANONICAL VARIATES ANALYSIS -----*/
/*------
XAX = (1);
YAX = (2);
CALL GENEIG(CVEIGVAL, EVEIGVEC, BETCOV, POOLCOV); /* CALCULATE EIGENVECTORS, VALUES*/
FREE POOLCOV BETCOV;
ADDVALS = CVEIGVAL(+,);
VALPERCS = (CVEIGVAL*ADDVALS**-1.0)*100;
CUMUPERC = CUSUM(VALPERCS);
VALSUM = CVETGVAL || VALPERCS | { CUNUPERC;
VALSEAB = (EIGENVALUE POFTDTAL CURRATIVE);
PRINT NEWPAGE
PRINT "EIGENVALUES";
PRINT VALSUM[FORMAT=5.3 ROWNAME = CVLABCOL COLMANE = VALSLAB];
PRINT "SUM OF THE EIGENVALUES";
PRINT ADOVALS[FORMAT = 5.2];
PRINT NEWPAGE;
PRINT "EIGENVECTORS";
PRINT CVEIGVEC (FORMA7=7.4 ROWNAME = VARNAME COLWAME = CVLABROW);
CANSCORS = GRNDDEVS*CVEIGVEC; /* SPECIMENS SCORES */
CANHEANS = (GRPMEANS-J(NGDISC,1)*GRNDMEAN)*CVEIGVEC; /* CANONICAL MEANS */
FREE CVEIGVEC GRNDDEVS GRNDNEAN;
PRINT NEWPAGE:
PRINT CANNEANS (FORMAT = 4.2 ROWMANE = DISCOOL COLMANE = CVLABCOL);
 /*----* SAVE CANON]CAL MEANS FOR GRAPHICS -----*/
 IF CANSTOSD = "YES" THEN DO:
IF RUN = "MAND" THEN DO;
   CREATE SASDAT.HANDCV3D FROM CANMEANS; /* FRO PROC G3D */
```

```
APPEND FROM CANNEANS;
END;
IF NUN = "SKULL" THEN DO:
  CREATE SASDAT.SKULLCV30 FROM CANMEANS;
  APPEND FROM CANNEANS;
END;
 END; /* SAVE TO 30 LOOP */
 /* CORREL, DF GANONICAL MEANS TO OTHER MEANS (ORIG., SHAPE, ETC) */
 /*------
/* CORRELATIONS TO ORIGINAL VARIABLES */
GLUEMEAN = GRPHEANS | CANNEANS; /* APPEND TWO SETSA OF MEANS */
ENNS = NROW(GLUEMEAN);
MEANNEAN = GLUEMEAN [:.]:
 MEANMAT = REPEAT(MEANMEAN, ENNS, 1);
 MEANDEVS = GLUENEAN - MEANMAT;
FREE GLUEHEAN MEANNEAN MEANMAT;
 MEANSSCP = HEANDEVS' * MEANDEVS;
 MEANCOV = MEANSSCP * ((ENNS - (1))** -1.0);
FREE MEANDEVS MEANSSCP;
 HEANVART = VECDIAG(HEANCOV);
  MEANSD = SQRT(MEANVARI);
  SDINV = MEANSD ## -1.0;
 MEANSDS = DIAG(SDINV);
  MEANCORR = MEANSOS * MEANCOV * MEANSOS; /* CORRELATIONS OF GROUP TO CANONICAL MEANS*/
  IF RUN = "MAND" THEN OD;
    LUBLOCK = HEANCORR [NVAR+(1):NVAR*2, 1:NVAR};
  END;
  [F RUN = "SKULL" THEN DO:
    LLBLOCK = #EANCORR [NVAR+(1):NVAR*2,1:NVAR];
 END:
 IF PLEY = "WED" | PLEY = "NAX" THEN DO;
 PRINT NEWPAGE;
 PRINT "CORRELATIONS BETWEEN ORIGINAL VARIABLES AND CANONICAL NEARS";
 PRINT LUBLOCK [FORMAT=4.2 ROMMAKE = CVLABCOL COLNAME = VARNAME];
 END;
 FREE MEANCOV NEARVART NEARSD NEARSDS SDINV LUBLOCK:
 IF VECTTARG = "SIZE" & REMOVECT '= "ISO" THEN DO;
 /* CORRELATIONS TO SHAPE1 (ORIG. \ 512E) */
   PRINT NEWPAGE;
   PRINT "SHAPE1 = ORIGINAL VARIABLE MEANS DIVIDED BY SIZE4 MEANS";
    IF RUN = "MAND" THEN DO;
  SHAPEBAR = REPEAT(TARMEANS, 1, NVAR);
   END:
   IF RUN = "SKULL" THEN DO;
  SHAPEBAR = REPEAT(TARMEANS, 1, HVAR);
   END:
    SHAPEVAR = GRPMEANS#SHAPEBAR##-1.0;
   STICHEAN = SHAPEVAR | CANMEANS; /* APPEND SHAPE VARIABLE REARS TO CANONICAL REARS */
```

```
BARBAR = STIKMEAN(:,);
   BARMAT = REPEAT(BARBAR, ENNS, 1);
   STIKDEVS = STIKMEAN - BARMAT;
FREE SHAPEBAR STIKMEAN BARBAR BANMAT;
 STIKSSOP = STINDEVS' * STINDEVS;
 STIKCOV = STIKSSCP * ((ENNS - (1))** -1.0);
FREE STIKDEVS STIKSSCP;
 STIKVARI = VECDIAG(STIKCOV);
 STIKSD = SQRT(ST(KVART);
 STIKINV = STIKSD ## -1.0;
 SDSTIK = DIAG(STIKINV);
 FREE STIKVARI STIKSD;
 STIKCORR = SDSTIK * STIKCOV * SDSTIK; /* CORRELATIONS OF SHAPE TO CANONICAL MEANS */
FREE SDSTIK STIKCOV:
  IF RUR = "MAND" THEN DO;
    LLBLOCK = STIKCORR[12:22,1:NVAR];
 EMD:
  IF RUN = "SKULL" THEN CO;
    LLBLOCK = STIKCORR [20:38, 1:NVAR];
 END7
 FREE STIKCORR;
 PRINT "CORRELATIONS BETWEEN SHAPET MEANS AND CANONICAL MEANS";
 PRINT LLBLOCK[FORMAT=4.2 ROLWAME = CVLABCOL COLMANE = VARMAME];
 FREE MEANCOV NEARVARI MEANSO SDINV LLBLOCK;
END; /* VECTTARG - REMOVECT LOOP */
 IF FINDVECT = "TES" & VECTTARG "= "SIZE" THEN DD;
 /* ---- FIND DIRECTION COSINES OF VECTOR OF INTEREST --- */
 /*
     I.E., FIND MAXIMAL ASSOCIATION BETWEEN CRITERION VARIABLE AND */
 /*
     MULTIPLE UNCORRELELATED PREDICTOR VARIABLES (CV'S) */
IF PROPIAN = "NO" THEN DO; /* DROP SELECTED TAXA FROM VECTOR DIRECTION */
  PRINT " TARGET VECTOR MEANS";
  PRINT DISCOL BETGNS TARMEANS;
  PRECTARG = CANMEANS | TARMEANS; /* PREDICTOR(S) = ALL CV'S */
END;
IF DROPTAX = "TES" THEN DO;
   DO ITERF = 1 TO NGDISC BY 1;
     IF DISCCOLTITERF, 1 = ELIMIAX THEN BD;
        INDEX = ITERF;
     END;
   END; /* ITERF LOOP */
   NEWCANS = CANMEANS(1:INDEX-(1),1//CANMEANS(INDEX+(1):NEDISC,1;
   NEWTARS = TARNEANS(1:INDEX-(1),)//TARNEANS(INDEX+(1):NGDISC,2;
   NEWBIGNS = BETGWS[1:INDEx-(1),]//BETGWS[INDEx+(1):WGDISC,];
   NEWDCOL = DISCCOL[1:INDEX-(1),]//DISCCOL[INDEX+(1):NGDISC,];
   PRINT "TARGET VECTOR MEANS ":
```

```
PRINT NEWDOOL NEWBIGNS NEWTARS (FORMAT = 6.2);
  PREDTARG = NEWCANS | NEWTARS; /* PREDICTOR(S) = ALL CV'S */
FREE NEWCANS NEWTARS NEWBIGNS ;
  NGDISC = NGDISC - (1);
END; /* DROPTAX LOOP */
TARLASL = VECTTARG;
NEWRLABL = CVLABCOL//TARLABL;NEWCLABL = NEWRLABL';
NEWNVAR = NVAR+(1);
FREE TARMEANS;
COLMEANS # PREDTARG(:,);
MEANMAT = REPEAT(COLMEANS, NGDISC, 1);
DEVSMAT = PREDTARG-MEANMAT;
FREE MEANMAT;
PTARSSCP = DEVSMAT "BEVSNAT;
FREE DEVSMAT;
PTARGEOV = PTARSSEP*((NGDISC-1)**-1.D); /* PREDICTOR-TARGET VARIANCE COVARIANCE MATRIX*/
FREE PTARSSCP;
PRINT NEWPAGE;
PRINT " TARGET-PREBICTORS VARIANCE-COVARIANCE MATRIX";
NEWCLABL = NEWRLABL';
PRINT PTARGCOV (FORMAT= 6.2 ROWNANE = NEWRLABL COLNAME = NEWCLABL);
FREE GRUPROW;
TARGVAR = PTARGCOV(NEWNVAR, NEWNVAR);
TARGSTD = SQRT(TARGVAR);
TARSDCOL = REPEAT(TARGSTO, NVAR, 1);
PREDVARA = PTARGCOV(1:NVAR,1:NVAR);
PREDVARI = VECDIAG(PREDVARA);
                                     /* PREDICTOR VARIANCES */
FREE PREDVARA;
PTARCOV = PTARGCOV [NEWNVAR, 1:NVAR];
PTCOVCOL = PTARCOV';
                                      /*TARGET-PREDICTOR COVARIANCES */
  PTVARS = VECD1AG(PTARGCOV);
  PTARSTD = SORT(PTVARS);
  PISTDING = PTARSTD ## -1.0;
  PISTONAT = OFAG(PISTDINY);
  PTARCORR = PISTONAT * PTARGCOV * PISTONAT; /*PREDICTOR-TARGET CORRELATION WATRIX*/
 FREE PTARCOV PTVARS PISIDNAT PISIDINV;
 PTCORRS = PTARCORR (NEWNVAR, 1:NVAR);
 FREE PTARCORR;
  PTCORRCOL = PTCORRS";
FREE PTCORRS:
  PTCORRSQ = PTCORRCDL##2;
 REGCOEFF = PTCORRCOL # TARSOCOL##-1.0 # PTARSTD[1:NVAR,1;
   SSACOEFF = REGCOEFF[##,];
   ROOTSSAC = SQRT(SSACOEFF);
   INVRTSSQ = ROOTSSQC##-1.0;
   DIRECCOS = REGCOEFF#INVRTSSQ; /* DIRECTION COSINES */
   RADIANS = ARCOS(DIRECCOS);
   ANGLES = RADIANS#57.295779;
 PRINT NEUPAGE;
```

```
FRINT CYLABOOL
 PREDVARI [FORMAT=5.2]
 PTCOVCOL [FORMAT =5.2]
 PTCORRCOL [FORMAT=5.2]
 PTCORRSQ [FORMAT=5.2]
 REGCOEFF [FORMAT=6.4]
 DIRECCOS [FORMAT=6.5]
 ANGLES [FORMAT=4.1];
FREE PTCORRSG PTCORRCDL PTARGCOV PTCORRS SSGCOEFF ROOTSSGC INVRTSSG PREDVAR PTCOVCOL;
COEFEV12 = REGEDEFF[1:2,];
FREE REGCOEFF;
ssacv12 = coercv12(##,];
ROOTCV12 = SQRT (SSOCV12);
 INVCV12 = ROOTCV12##-1.0;
EV12COS = COEFCV12#INVEV12;
CY12RADS = ARCDS(CY12COS):
 CV12ANGL = CV12RADS # 57.295779;
PRINTUM;
 PRINT "PROJECTED ANGLE OF TARGET VECTOR WITH CV1 AND CV2";
 PRINT CV12ANGL (FORMAT=4, 1);
 SMALLANG = CV12ANGL[1,1];
 RADANGLE = SMALLANG # 0.017453293;
 THETATAN = TAN(RADANGLE); /* FIND DURNY MARKERS FOR PLOTTING*/
 PRINT THETATAN;
 C1 = (5);
 C2 = (10);
 HEIGHT1 = C1 # THETATAH;
 HEIGHT2 = C2 # THETATAN;
 POS1 = C1 | HEIGHT1;
 POS2 = C2 | HEIGHT2;
 POSMARKS = POS1//POS2;
 NEGMARKS = - POSMARKS;
 PRINT POSNARKS NEGMARKS;
 FREE SINTEMP SINTHETA CI CZ NYPOTI HTPOTZ HTTEMPI HTTEMPZ NEIGHTI HEIGHTZ;
 END; /* SIZE VECTOR COSINES LOOP */
 IF PLEY = "NED" | PLEY = "MAX" THEN DD;
/*---- PLOTTING ROUTINES - ORIGINAL CANONICAL VARIATES -----*/
    IF AKES = "MAX" THEN DO;
       MAX1SCOR = MAX(CANSCORS(, 1));
       MINISCOR = MINICANSCORSE, 11);
       MAN2SCOR = MAX(CANSCORS[,2]);
       MINZSCOR = MIN(CANSCORS(,21);
       MAXXYS = MAX1SCOR | MAX2SCOR;
       MINXYS = MINISCOR | |MIN2SCOR;
       RANGESXY = MAXXTS//HINXYS;
    EHD; /*---> AXES = MAX */
```

```
BLANKS = (" ", " ");
```

```
FREE MAXISCOR MINISCOR MAX25COR MIN2SCOR MAXXYS MINXYS MAXMEANS MINHEANS;
IF PLOTSET = "ARB" THEN NPLOTS = NUM(PLOTNUM);
IF PLOTSET = "FIND" THEN BO;
END;
IF PLOTSET = "ALL" THEN DD;
    POSCOUNT = (0);
    ITVAL = NROW(CVEIGVAL);
    DO ITERY = 1 TO ITVAL BY 1;
      IF CVEIGVAL[ITERY] > 0 THEN DO;
          POSCOUNT = POSCOUNT + {1};
       ENB;
    END;
    MPLOT1 = POSCOUNT/2 + 3/4;
    NPLOTS = INT(NPLOT1);
    IF RUM = "MAND" YHEN IF NPLOTS = 6 THEN NPLOTS = 5;
    IF RUN = "SKULL" THEN IF NPLOTS = 10 THEN NPLOTS = 9;
 END; /* ···> PLOTSET # ALL */
DO ITERA = 1 TO NPLOTS BY 1;
XYMAT = CANSCORST, XAX: YAX3; /* SORT ROLTINES FOR EACH PLOT */
CVBARS = CANNEANS[,XAK:TAX];
CVX = XYMAT (, 11;
CVB = CVBARS[,1];
RNKS1 = RANK(CVX);
RNKS2 = RANK[CV8);
SORTIDS = ACCINDIB;
SURTSCOR = NYMAT;
SORTHEAN = CVBARS;
SORTGLAS = DISCOUL;
  DO ITER8 = 1 TO DISCASES BY 1;
     RJ1 = RNK$1[[TERB];
     SORTIDS(RUL) = ACCINGID(ITERB,);
     SORTSCOR [RU1,] = XYMAT [ITERB,];
  ENB; /* ---> LTERB LOOP */
  DD ITERC = 1 TO NGDISC BY 1;
     RJ2 = RNKS2(ITERC);
     SORTGLAB [RJ2,] = DISCODL [ITERC,];
     SORTHEAN (R.JZ,) = CVBARS [[TERC,];
  END; /* ---> ITERC LOOP */
  SCORPRNT = SORTSCOR;
  MEANPRNT = SORTHEAN;
FREE CHARSCOR CHARMEAN CHOPSCOR CHOPMEAN;
    PLOTSYN1 = SUBSTR(SORTIDS, 1, 1);
    PLOTSTR2 = SUBSTRESORTGLAB, 1, 1);
    PLOTSYN1 = PLOTSYN1//BLANKS;
    PLOTSYN2 = PLDTSYN2//BLANKS;
    SORTSCOR = SORTSCOR//RANGESHY;
    SORTHEAN = SORTHEAN //RANGESXY;
 PRINT NEWPAGE;
 PRINT "SORTED SCORES FOR " TAX "VS" MAX, SORTEDS SCORPRNT;
```

;

i,

```
PRINT NEWPAGE:
   CALL PGRAF(SORTSCOR, PLOTSYNT, CVLABCOLDIAX), CVLABCOL[YAK]];
 PRINT NEWPAGE;
  PRINT "SORTED CANONICAL MEANS FOR " TAX "VS" XAX, SORTGLAB MEANPRINT;
PRINT NEWPAGE;
 CALL PGRAF(SORTHEAN, PLOTSYNZ, CVLABCOLD(AX), CVLABCOL(YAX));
OLDXAX = XAX:
DLDYAX = YAX;
XAX = OLDYAX+(1);
YAX = DLOXAX+(3);
  END; /* ---> NPLOTS LOOP */
END; /* PLEV MED MAX BLOCK */
IF PLEV = "MAX" THEN BO;
/*-- AMONG-GROUPS GENERALIZED DISTANCES WITHOUT VECTOR REMOVEL----"/
D = J(NGD1SC,NGD1SC);
DO ITERONE = 1 TO NGDISC BY 1;
   DD ITERTHD = ITERONE TO HEDISC BY 1;
   IF ITERTWO = ITERONE THEN DO;
     DITTERONE, ITERTION = (0);
   END;
   IF ITERTWO '= ITERONE THEN DO:
     DIFFS = CANNEANS [ITERONE,] -CANNEANS [ITERTNO,];
      SUNDSOR = SSQ(D[FFS);
      D [ITERONE, ITERTWO] = SORT (SUNDSOR);
     D(ITERTWO, ITERONE) = SQRT(SUNDSQR);
   END:
   END; /*ITERTWO*/
END; /*ITEROWE*/
  MINISUB1 = SUBSTR(DISCGRPS,1,1);
  MINISUB2 = SUBSTR(DISCGRPS,5,1);
  NEWGROW = CONCAT(MINISUB1, MINISUB2);
  NEWGCOL = NEWGROW';
PRENT NEWPAGE;
PRINT D (FORMAT=3.0 ROWMANE=NEWGCOL COLNAME = NEWGROW);
END: /* PLEV BLOCK */
IF REMOVECT = "BURN" THEN DO;
/*----- BURNABY'S METHOD FOR VECTOR(S) RENOVAL ------*/
/* PalO L = 1 - F(FtF)-1Ft WHERE F = DIRECTION COSINES IN CV SPACE */
 IDENTMAT = I(NVAR);
 ELIMVECT = DIRECCOS; /* VECTOR TO ELIMINATE IS DIRECTION COSINES OF SIZE VARIABLE */
FREE DIRECCOS;
    ELIMNAT = ELIMNECT' * ELIMNECT;
    ELIMINY = INV(ELIMMAT);
FREE ELINHAT;
    ALLVECT = ELINVECT * ELININV * ELINVECT';
FREE ELIMINY ELIMVECT;
   PROJMAY = IDENTNAT - ALLVECT;
FREE IDENTHAT ALLVECT;
    PROJUAT = CANNEAKS * PROJMAT; /* PROJECT CANONICAL MEANS TO ORTHOGONAL PLANE */
```

```
FREE CANNEANS;
BURNLABL = SUBSTR(DISCCOL, 1,1);
BLANKS =(" "," ");
CANMLABL = BURNLABL//BLANKS;
PRINT NEWPAGE;
PRINT "TARGET VECTOR-FREE DATA BASED ON BURNABY'S METHOD";
PRINT PROJUCT [FORMAT=4.1 ROMMANE = DISCOOL COLMANE * CVLABROW];
MAXVAL = MAX(PROUDAT);
MINVAL = NIN(PROJDAT);
 PRINT MAXVAL MINVAL;
MAXIS = REPEAT(MAXVAL, 1, 2);
 MINIS = REPEAT(MINVAL, 1, 2);
 COLS12 = PROJOAT [,1:2];
 PLOT12 = COLS12//MAKIS//MINIS;
 COLS34 = PROJEAT [,3:4];
PLOT34 = COLS34//MAXES//MINIS;
PRINT NEWPAGE;
CALL PGRAF(PLOT12, CAMMLABL, "SIZE-FREE CV1", "SIZE-FREE CV2");
PRINT NEWPAGE;
CALL PGRAF(PLOT34, CANNLABL, "SIZE-FREE CV3", "SIZE-FREE CV4");
/* ----- REORTHOGONALIZE BURNABY DATA USING PCA ------*/
PONEANS = PROJUNT [:,];
MEANMAT = REPEAT(POMEANS, NGDISC, 1);
PEDEVS = PROJUNT - MEANMAT; /* DEVIATIONS OF PROJECTED DATA FROM MEANS */
FREE MEANMAT;
PCSSCP = PCDEVS' * PCDEVS;
PCCOV = PCSSCP * (NGDISC-(1))**-1.0; /* COVARIANCE MATRIX OF PROJECTED DATA */
CALL EIGEN(PCEIGVAL, PCEIGVEC, PCCOV);
ADDVALS = PCEIGVAL[+,];
VALPERCS = (PCE1GVAL*ADOVALS**-1.0)*100;
CUMUPERC = CUSUM(VALPERCS);
VALSUM = PCEIGVAL | VALPERCS | CUMUPERC;
VALSUAB = (EIGENVALUE POFTOTAL CUMULATIVE);
PRINT NEWPAGE
PRINT "EIGENVALUES";
PRINT VALSUM (FORMAT=5.3 ROWNANE = CVLABCOL COLMANE = VALSUAB);
PRINT "SUM OF THE EIGENVALUES";
PRINT ADDVALS[FORMAT=6.1];
PRINT NEWPAGE;
PRINT POEIGVAL [FORMAT=6.2];
PRINT POEIGVEC [FORMAT=6.4];
NOVECSC = PROJUNT * POEIGVEC;
SCORMEAN = NOVECSC(:,];
HEANNAT = REPEAT(SCORMEAN, NGDISC,1);
                                       /* MEAN-CENTERED SCORES */
KOVECCEN = NOVECSC - MEANNAT;
PRINT NEWPAGE;
PRINT NOVECCEN (FORMAT=4.1 ROWNAME = DISCOL COUNAME = CVLABROW);
MAXSCOR = MAX(NOVECCEN);
MINSCOR = MIN(NOVECCEN);
```

PRINT MAXSCOR MINSCOR; REPMAX = REPEAT (MAXSCOR, 1, 2); REPMIN = REPEAT (MINSCOR, 1, 2); PC1PC2 = NOVECCEN [,1:2]; PCPLOT12 = PC1PC2//REPMAX//REPMIN; PC3PC4 = NOVECCEN [,3:4];

416

,