GERALD SCOTT BALES

A MULTIVARIATE MORPHOMETRIC STUDY OF LIVING AND FOSSIL RHINOCEROS SKULLS

UNIVERSITY OF SOUTHERN CALIFORNIA

1995

i
i

1

A MULTIVARIATE MORPHOMETRIC STUDY OF LIVING AND FOgBII RHINOCEROS BKULLS

by
Gerald Scott Balea

A Disgertation Presented to the
faculty or the graduate school UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY (Anatomy and Cell Biology) MAY 2995

UMI Microform 9616934
Copyright 1996, by UMI Company. All rights reserved.
This microform edition is protected agaiast unauthorized copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Artor, MI 48103

UNIVERSITY OF SOUTHERN CALIFORNLA
THE GRADUATE SCHOOL
UNIVERSITY PARK
LOS ANGELES. CALIFONNIA 90007

This dissertation, written by
GERALD S. BALES
under the direction of his........ Dissertation Committee, and approved by all its members, has been presented to and accepted by The Graduate School, in partial fulfillment of requirements for the degree of

DOCTOR OF PHILOSOPHY
cainc. Ren
Dean of Graduate Sinudies

Date Jamary 25, 1995

DISSERTATION COMMITTEE

ACENOWLEDGEMIFNTS

```
I grateEully thank
    -the Curators of the various Mupemms of Natural History for
    allowing me to btudy the materiale under their care.
    O Dr. Richard L. Wood and the Department of Anatomy & Cell
    Biology Eor invaluable logistical support.
    -) the membera of my Ph.D. Guidance Committee for their
    individual and combined time and efforts:
        * Dr. Judy A. Garner
            for helping so far from the nervous syotem.
        * Dr. Stanley Azen
            for atatigtical oversight so late in the process.
        Dr. Mikel ह. Snow
            for always encouraging my anatomy skills.
        * Dr. Donald R, Prothero
            for directing we to the venerable rhinoceroseg.
        and especially,
        * Dr. Gene H. Albrecht. Committee Chairman.
        for giving so much time to unfamiliar ungulatas.
but most of all:
    -> I thank my mother and father.
```

 This dissertation is dedicated to Consuelo Lorenzo.
 ii.
 ACKNOWLEDGEMENTS ii.
LIST OF TABLES vi.
LIST OE EIGURES vii.
ABSTRACT xi.
Chapter 1. INTRODUCTION 1.
Overview 1.
Reasarch questions 3.
Within-group Studies 3.
Among-groups Studies 4.
Background 4.
Superfamily Rhinocerotoidea 4.
Morphometric Methods 15.
Chapter 2. MATERIACS AND METHODS 17.
Materials 17.
Methods 29.
Measurements 29
Data and Statistics 30.
Chapter 3. WITHIN-GROUP RELATIONSHIPS

- PRINCIPAL COMPONENTS ANALYSIS (PC) 40.
Kultivariate Variation and PC 40.
Strategy and Significance of PC 41.
Sex Dimorphism 42.
Analyses of Individual Genera 43.
Living Genera 55.
Diceros 56.
ceratotherium 84.
Rhinoceros 94.
Dicerorhinus 102.
Fossil Genera 108.
Aceratherium 108.
Amynodion 114.
Aphelops 125.
Diceratherium 124.
Forstercooperia 131.
Hyrachyus 134.
Hyracodon 140.
Indricotherium 145.
Menoceras 150.
Peraceras 159.
Subhyzacodon 167
Teleoceras 171
Trigonias 183.
Zaisanamynodon 187.
Pooled Within-group Dispergions 193.
Skail 193.
Mandible 199.
Chapter 4. AMONG-GROUPS RELATIONSHIPS
- CANONICAL VARIATES ANALYSIS (CV) 204.
Multivariate Variation and CV 204.
Strategy and Significance of CV 205.
Interpretation of CV 206.
Ordination - Specimena By Genus 220.
Ordination - Keans and Concentration Ellipses 225.
Texonomic Patterns - Genera 233.
Taxonomic Patterns - Families and Subfamilies ... 240.
Taxonomic Patterns - Character Stateg 247.
Functional Patterns - Aorn Arrangement 256.
Functional Patterns - Herbivory Type 260.
Temporal Patterns - Intergeneric 270.
Temporal Patterng - Intrageneric 273.
Chapter 5. OISCUSSION 282.
REFERENCES 292.
APPENDIX 1. Specimen Identification 303.
APPENDIX 2. Data Sheet 309.
APPENDIX 3. Measurement Degcriptions 310
APPENDIX 4. Raw Data 326.
APPENDIX 5. Univariate Statistics 352.
APPENDIX 6. SAS-IMC Programs 380.
Tabie Number Description Page

1. Skull and mandible sample aizes 19.
2. Generic and subgeneric information for akulls 20.
3. Generic and 日ubgeneric information for mandibles 24.
4. Short definitions of linear measurementa 31.
5. Eigenvalues for Principal Components analyges 44.
6. Eigenvalues for Canonical Variates analyses 208.
7. Canonical variate means for gkuils 209.
8. Canonical variate meang for mandibles 211.
9. Generalized distances for gkull canonical means 213.
10. Generalized distances for mandible canonical means 216.
11. Sumary of intersubgroup generalized distances 219.

LIST OF FIGURES

23. EC = Rhinoceros akulla by locality 98.
24. PC - Rhinoceros mandibles by locality 100.
25. PC - Dicerorhinus skulla 104.
26. PC - Dicerorhinus mandibleg 106
27. PC - Aceratherium gkulla 110
29. PC - Aceratherium mandblea 112
29. PC - Amynodon Bkulla 116
30. PC - Aphelops skulle 119.
31. PC - Aphelops mandibles 122
32. PC - Diceratherium skulls 126.
33. PC - Diceratheriun mandibles 129.
34. PC - Foxstexcoaperia skulls 132.
35. FC - Forstercooperia mandibles 135.
36. PC - Hyrachyus akulla 138.
37. PC - Hyrachyos mandiblea 141.
38. PC - Hyracodon bkulla 144.
39. PC - Hyracodon mandibleg 147
40. PC $=$ Henoceras skulls by locality 152.
41. PC - Henoceras mkulla by aex 155.
42. PC - Henoceras mandibles 157.
43. PC - Peraceras akulle 161.
44. TC - Peraceras mandibles 165.
45. PC - Subhyracodon akulla 169.
46. PC - Subhyracodon mandibles 172.
47. PC - Teleoceras Ekulle 175.
48. PC - Teleaceras mandiblea 180.
49. PC $=$ Trigonias gkulls 184.
50. PC - Trigonias mandibles 188.
51. PC - Zaisanamynodon mandiblea 191.
52. Pooled within-groups PC, akulls by genera 194.
53. Pooled within-groups PC, akulls by gubgeneric groups 197.
54. Pooled within-groups PC, mandibles by genera 200.
55. Pooled within-groups PC, mandibles by subgeneric groups 202 .56. Canonical variates (CV) plot of akull data -individual specimeng221.
57. Canonical variates (CV) Flot of mandible data -individual specimens223.
58. CV plot of skull subgroup means - 90 percent concentration ellipges 227.
59. Canonical variates (CV) plot of mandible subgroup means-90 percent concentration ellipges231.
60. CV - skull bubgroups by genus 235.
61. CV - Mandible subgroupa by genus 238.
62. CV - Skull subgroups by family and subfamily 242.
63. CV - Mandible subgroups by family and subfamily 245.
64. $C V=$ SkuIl subgroups by phylogenatic character gtates 249.
65. CV - Mandibie subgroups by phylagenetic character atates 253.66. CV - Skull subgroups by horn arrangement257.
67. CV - Mandible bubgroupe by horn arrangement 261.
68. CV - Skull bubgroupe by herbivory type 264.
69. CV - Mandible gubgroups by herbivory type 268.
70. cV - Skull subgroups with intergeneric phylogenies 271.
11. cV - Mandible eubgroups with intergeneric phylogenies ... 274.72. CV - Skull subgroups with intersubgroup time vectors277.
73. CV - Mandible aubgroups with intersubgroup time vectors . 279.
74. Thin-plate apline analysis of ahape transformation-
Subhyzacodon to Rhinoceros 288.

Abstract

ABsIRACL

The Rhinocerotoides is a Suparfamily of perigsodactyl mammals whose evolutionary higtory extends from the Eocene epoch to the Present. This history ie represented by a collection of fossils which is qualitatively and quantitatively one of the best among vertebrates. Such a fossil record allows study of larger geale aspects of morphological evolution in vertebrates, particularly in large mamalian herbivores. Rhinocerotold diversity comprises fifty-five genera in three families with four extant genera. This study is a multivariate morphometric investigation of within-group and among-groupg variation in the skulls and mandibles of the living and fossil genera. The living genera are biological analogues by which the fossil genera may be more confidently interpreted. Osteo-dental landmarks provided 19 linear measurements for skulls and 11 linear meagurements for mandibles. Adult akulla (83 living; 101 fossil) and adult mandibles (EO living; 117 foseily were analysed for four living and fourteen fossil genera. Measurements and sample sizes were maximized under the constraints required by complete data. Some measurements were estimated by a multiple regrespion technique. Each genus was analyzed by the principal components method (PC, within-group analyaes) where specimens axe ordinated along axes of maximum variation. Living genera were analysed first: geographic, taxonomic, and sex dimorphic correlations with morphometric

CEAPRER 2.

INTRODUCTION

OVERVIEW

Abstract

The periabodactyl superfamily Rhinocerotoidea is one of the many mamalian groupg which evolved in the cenozoic Era, Like other mampalian fadiations, rhinocerotoids evolved from a few, mal2, primitive torms to a variety of more gpecialized, often larger, forms regulting in a large divergity of taxa most of which have become extinct. Among vertebrates, the Rhinocerotoidea has one of the largest fossil records and is thus amenable to studies of morphological \{gkeletal) evolution within a long-lived, higher taxon. This abundance of fossils increases the probability that all groups (primitive, derived, and trangitional) are included and that the range of nomal variation within groups or populations is represented. A further important adyantage of the rhinoceros superfamily is the persigtence to the preaent of five species that can serve as analogues of the fossil taxa. Morphological variation in analogue taxa, cocrelated with ecogeographical, physiological, behavioral, and other biological factors, provides the most appropriate measure for interpreting intraspecific, intrageneric, and intergeneric morphological variation in extinct taxa. This study is a multivariate morphometric analysis of akull and mandible morphology both within and among 15 fossil and 4


```
living shinocerotoid genera. Genera are the initial focus of
analysis becauge generic-level taxonomies are more complete,
accurate, and gtable than are species-level asaignments. Multiple
measurements of osteological features from representative samples
of skulla and mandibles provide the data far analysis. Within-
group analymes geek to: (a) compare living and foesil generic
variation, (b) disgect the variation in each genus using
geographic, temporal/gtratigraphic, taxonomic, and variational data
relevant to subgeneric level variation, and (c) provide a standard
of within-group variation for u日e in comparative gtudieg of among-
groups variation and relationshipg. Among-groups analyse0 seek to
be both descriptive and explanatory by observing the patterng and
correlates of morphology with respect to morphometric affinitieg,
taxonomy, phylogenetic character states, horn typem, diet, and
temporal sequences.
    The Rhinocerotoidea has been legs studied relative to the
Bize of its fogsil record than a comparable group, the Equoidea
(horgea). The latter group has played a prominent role in
discusgions of vertebrate evolution. This study of rhinocerotaid
skull morphology will contribute to those discubsiong by providing
further ingighta into the evolution of vertebrates in general and
of large mammalian herbivores in particular.
```


RESEARCH QUESTIONS

Within-group studios

(1) What is the pattern of variation in living taxa across genera and mpecien?
(2) How does morphological variation in fossil thinoceros genera compare to that of living genera and gpecies?
(3) Is foseil generic variation reducible to subgeneric groups based on factors known to be correlated with gpecien-level variation (e.g., time/stratigraphy, ecogeography, diet, or other Biological factors)?
(4) Is variation in fossil subgeneric groups consistent with specieb-level variation in living analogues and with previous speries-level taxonomic asaignments?
(5) Are size and ohape differences among demes and between sexes congigtent with those in living analogues?
(6) What evolutionary size-shape changes occurred within fossil genera?

Anong-groups studiea

(1) What are the morphometric affinitea of apecimens and group means observed in the canonical variates space?
(2) What are the morphometric relationshipa of the genericsubgeneric groups with respect to recent taxonomies and taxonomic chaxacters?
(4) Are there morphological relationships based on anatomical/functional/behavioral graupings auch as mode of herbivory or horn arrangenent?
(5) What are the patterns of size and shape evolution relative to hypothegized intrageneric and intergeneric phylogenieaz

BACKGROUND

The following is a brief discusaion of the rhinocerotoid euperfamily and its component familiss. Detailed diacuseions of genera are given in Chapter 3 as prefaces to the within-group gtudies of each genus.

Superfanily ghinocerotoiden

The Rhinocerotoidea is a lazge, diverse guperfamily of perissodactyl mamals compriged of three monophyletic families:

Abstract

Anynodontidae, Hyracodontidae, and Rhinocerotidae (Figure 1). Four genera have gurvived to the Recent and comprige the living African and Asian rhinocerotids. In North America, Ihinocerotoida populated much of the western interior (Intermontane and Great plains regiona) from the early Eocene through the Miocene as documented by relatively numerous fossila. During much of this time, various gpecies were believed to have been ecologically dominant by virtue of their large body-sizes and relative abundances. Understanding the pattern of fhimoceros evolution in North America is complicated by migrations to and from Europe and Asia via continental land bridgen (Figure 2). During most of the Cenozoic, an above sea-level connection between Alaska and Siberia (Bering Land Bridge) provided an ice-free route for bidirectional movement of reapective biotas. Rhinocerotoids which may have used this route were Hyrachyus (from Asia), Forstarcooperia (to Asia[?]), and Trigonias (from Asia). Several routes of migration were open between Europe and North America (MeKenna, 1972, 1975) and may have been uagd by Menoceras (and posaibly Trigonias).

FIGURE 1. Most current phylogentic classification of the genera of Rhinocerotoidea (after Prothero et al., 1986). Genera uged in this study indicated by asterisks (*). Hyrachyus is the primitive ancestor.

PIGURE 2. Historical diatributions of living and fosail
rhinocerotoid genera. Arrows indicate potential migration routes \{land bridges) during periods of lowered sea level.


```
        previous studien of rhinocerotoid systematics and phylogeny
include thome of osborn (1903, 1904), Matthew (1931, 1932), Wood
(1941). RadinskY (1967a), Hooijer (1976, 1978), and Groves (1983),
and Groves and Chakraborty (1983). Descrigtive gtudies of apecific genera including living forms include Cooper (1911, 1924, 1934). Matthew, (1924), Osborn (1923. 1924). Wood (1931), Granger and Gregory (1936). Tanner (1969). Groveg (1972). Groves and Chakraborty (1983), Grovea and Kurt (1972), Yatkola and Tanner (1979), Lucas et al. (1981), Russell (1982), Laurie et al. (1983), and Hanson (1989).
Recent reviews of the Rhinocertoidea and its families include, Prothero (in press, a and b), Prothero and Manning (1987), Erothero et al.. (1986, 1989). Wall (1989), and Lucas and sobus (19日9). This study re2ies primarily on these most current views about rhinocerotoid systematics (Figure l) and phylogeny (Figure 3) -
Hyrachyus -- The most primitive rhinocerotoid genus is Hyzachyus, Comprised of small animals (Great Dane-sized) resenbling Hyracotherium, the most primitive equid. The status of Hyrachyus as the primitive sister-taxon to the three chinocerotoid families is based primarily on dental characters (Prothero et al.. 2986)Radinaky (1967b) considered this genus to be a helaletid tapiroid, but acknowledged its ancestry to the Ehinocerotoids. In this gtudy. Hyrachyus is used as the bagal group ("primitive
```

[^0]

```
morphotype") for compariaons of ancestor-descendent gize-shape
changes in each of the families. Although believed to be an
emigrant from Asia, Hyrachyus is known predominantly from middle
Eocene beds in the Bridger Formation of Wyoming where it is one of
the most common genera of fossil mammals of this period.
    Amynodontidae -- Amynodontids appeared in the middle Eocene
where some had already achieved the size of cattle (Amynodon).
Subsequent evolutionazy size increages - to the size of modern
chinoceroses - mads them among the largest land mammals of the late
Eocene holarctic cegion (Wall, 1999), Family characters of
amynodontids include conical incisors, enlarged male canines,
reduced premolars, and preorbital fosmae (Prothero et al., 1986).
Other specializations within the family included high-crowned cheek
teeth, convergence to hippopotamus-like proportions in the semi-
aquatic riverine genus Matamynodon, and (pos⿴ibiy) a tapir-like
probogcis in the terregtrial genus Cadurcodon (Wall. 1980).
    Hyracodontidae -- The hyracodontids evolved in the iate
Eocene and Oligocene from Hyrachyus or a Hyrachyug-iike form.
Primitively sheep-sized and adapted for running (cursorial), this
family evolved larger body gizen (cow-aized in North America). In
Agia, Paraceratherium achieved a 日ize greater than that of
elephants but paradoxically retained limb proportions indicative of
curgoriality. Members of this family hate equal-sized incisors and
small canines (i.e., tuskless) among other features upon which
```

```
their claseification ia baged (Radingky, 1966). More recently,
Prothero et al. (1986) considered limb characters to be more
important taxonomically.
    Rhingcerotidae -- Primitive rhinocerotids were sheep-sized
animals which probably immigrated from Asia. geginning in the
early oligocene, rhinocerotids became larger, culminating in
Diceratherium which reached the size of modern rhinoceroaeg.
Dicexatherium was the only known genus of rhinocerotid in North
America for approximately 14 million yearg. During this period
(mid-Oligocene to mid-Miocene), they were the largegt mammals found
in terregtrial communities (with regard to large gize, they were
preceded by the titanotheres and paraceratheres, and followed by
the mastodons). In the mid-Miocene, sheep-sized repregentativea of
the divergent aceratherine (Aphelops) and teleoceratine
(Teleoceras) lineages immigrated to North America from Europe or
Euragia. Species in both groups evolved to the size of modern
rhinoceroses but dwarfing also occurred. Ecological diversity in
later mhinocerotids ia exemplified by a dichotomy between
teleoceratine grazers and aceratherine browsers (Prothero, in press
a), Characters which distinguish rhinocerotids from other families
include facial bone arrangement and Eooth size, ghape and enamel
patterns (Prothero et al., 19BG). Horns are not a universal
characterigtic of the family, but occur in all extant genera.
```


Multivarinte Morphonatric Mothode

Among living vertebrates, PC has been applied to fish (Bookstein et al, 2985), painted turtles (Jolicoeur and Mosimann, 2960). birda (Schnell, 1970; Blondel et al., Vuilleumier, Karcub, and Terouanne, 1984\}, bata (Freeman and Lemen, 1991), voles (Flury and Riedwyl, 1988), martens (Jolicoeur, 1963), and primates (Albrecht, 1978. 1980). Studies of fossils uging PC include horses (Winans, 1989) and Dinosauvia (Chapman et al., 1981; weishampel and Chapman, 1981).
canonical variates analysis of living vertebrates include ahrews (Gower and Rosa, 1969), primates (Aahton et al.. 1965; Oxnard, 1967; Albrecht, 1978; reviewed by Albrecht and Miller 1991), anteaters (Reeve, 1941), and canids (Wayne, 1986).

Applications of $C V$ to fossil vertebrate groupa, or to groupg with both fasail and living represantatives, have been legs numerous than PC studies. Such groups include primated fOxnard, 1969; Eilsborough, 19B4) and moas (Cracraft, 1976).

CHAPTER 2.

MATERIALS MND HETHODS

MATERIALS


```
mandible. When both sides of the mandible were pregent, one side
was choben for measurement based on completeness and other factors.
    sample sizes of measured living and foseil gkulle and
mandibles are given in Table 1. Becauge akulig and mandiblea were
treated sepazately and independently, total numbers of skull and
mandible elements exceed the total number of specimens {data
gheets). Aging of specimens was based on: (I) absence of deciduous
teeth, (2) at least 3/4 eruption of the third molar (relative to a
fully erupted gecond molar), and (3) presence of some firgt molar
wear. The subsample of adults used in this gtudy was derived by
reduction of the sample of measured adults. Captive epecimena of
extant taxa were excluded. Incomplete fosail adult specimens were
excluded because of the atatistical need for complete data gets
(discussed below under methods). The data reductions regulted in
the following aamples for analysig: skulls - 83 extant, 101 fogsil;
mandibleg - B0 extant, 117 fogsil. Identification of thege
specimens by mugeum number in given in Appendix 1. Individual
specimen numbers arranged by genus are ligted in Table 2 (skull)
and Table 3 (mandible), with associated taxonomic, geographic,
temporal, and Bample Bize information.
```


TABLE 1. Comparison of sample sizes for numbers of specimens caasured versus number of specimens used in analyges.

AOUENILES MEASURED

TABLE 2. Generic and sugeneric graup information for akull specimens used in the analysis. The four living geners are listed first shphabeticsily and sfe foll towed by 13 fassil genera, Ifsted alphabeticaliy,

Genus	Code ${ }^{\prime \prime}$	N^{2}	Species ${ }^{3}$	Local ity ${ }^{4}$	Age ${ }^{5}$	Specimen mes ${ }^{6}$
teratotherion	ceras	19	"siman ${ }^{\text {a }}$	Eest Africa	Recent	$\begin{aligned} & 22,59,90,101, \\ & 102,701,106,141, \\ & 142,298,360,366 \\ & 357,368,360,370, \\ & 371,372,451 \end{aligned}$
Dicterorhinus	Suwas	2	"gumat rentis"	Southeast asia	Recent	21. 46
Aiceros	atcos	48	"blcomis"	East Alrica	Recent	147,149,150,151, 152, 155, 157,161, 166, 167, 160, 169 , 170.174. 176. 177 . 379, 382, 184, 306, 397, 388, 389, 390 , 393, 394, 305,396, 405,407,408,409, $410,411,412,414$, 478,436,437,441
Rhinceeras	UnICs	d	"unicornis"	Indie/wepal	Recent	$\begin{gathered} 48,53,55,303 \\ 340,426,427,430, \end{gathered}$
	Javas	4	"sondaicus"	Jova	Recent	17. 10,299,351

Genus	code	N	Species	Locality	Age	Specimens
Aceratheriom	ACER1S	1	"depereti"	Honsolla	Hemphillian	245
	Acerzs	1	"inctaivlume	Europe	alancan	124
Amprodon	AMYMS	2	"advenus"	Washakle gasin, wyoming Uinta Co., Urah	Uintan Uintan	$\begin{aligned} & 111 \\ & 401 \end{aligned}$
Aphetops	APME is	1	megeloctus	gon Butte Co., Nebrasks	Nemingfordian	205
	APHE2S	B	megalodus	Cherry Co., Nebragka	Clarendonion	$\begin{aligned} & 268,269,270,271, \\ & 272,330,334,335 \end{aligned}$
Diceratherium	dicels	3	annect tens "ranumpt	Oregon	01facene	239
				Hroming	Arikareean	203,204
	DICE2S	1	nlobrarerse	Nebraska	Arlkareean	266
	dice3s	2	"armaturn'	Mictrara Co, Hyoming	Artarareeen	240, 267
Forstercooperia	FOM55	2	"sharamuranens is"	inner Mongolia	Uintan-duchesrean	127,930
Nyrachyus	Hyanis	2	"modestus"	Wroning	aridgerion (92)	4, 5
	hymers	3	"princeps"	?	aridgerian (C6)	10
			"eximius"	Wrowing	日ridgerisn (05)	6, 12
Hyracodon	HYCOS	4	"rebraskenols"	South Oakota 4 Webrasko	orellan	116,117,120,460

$\stackrel{N}{\sim}$

Genus	code	N	Species	Lacality	Age	Specimens
Indicatherium	IMORS	1	transoural ham	7	7	250
menocerss	menos	18	"arlkarense" $?$ $?$	Sioux Co., Mebrasks Platte Co., hyoming	Arikareean Arikareean	$\begin{aligned} & 171,195,194,197, \\ & 198,200,201,453, \\ & 454,456,457 \\ & 452, \\ & 143,158,172,186, \\ & 197,180, \end{aligned}$
Peraceras	PERA1s	2	"heasel" "profectum"	New Hexico New Rexico	Barstovian	$\begin{aligned} & 324 \\ & 276 \end{aligned}$
	Perazs	3	"supercifilonum"	Mebraska	Clarendontan	326,327,329
Subhyratodon	suents	5	mitia "trigonodem" "copti" "mivis"	South Dakota South Dakote byoning	chedronien Orellan ?	$\begin{aligned} & 28,29,31 \\ & 27 \\ & 32 \end{aligned}$
	Sush2s	4	sceidental is "octidentails"	South oakata	oreilan	$\begin{array}{ll} 38, & 64 \\ 35, & 61 \end{array}$
	SUBH3S	7	"tridactylun"	Scuth Dakota	Whitneyan	$\begin{aligned} & 226,229,231,233, \\ & 236,279,45 \mathrm{~g} \end{aligned}$

Genus	code	N	Species	Locelity	Age	Specimens
Teteoceras	fele is	2	armericanum	Hebrsske	Hemingfordian	341,342
	IELE2s	4	medicarnutum medil cornutum "thamani"	Nebraske	Barstovian "	$\begin{aligned} & 317,318,364 \\ & 255 \end{aligned}$
	teless	6	najor	Netrasks	ctarendorian	$\begin{aligned} & 311,312,513,3144 \\ & 315,316 \end{aligned}$
	TELE4S	3	"hicks!"	Calarado	Lete Hemphillion	281,496,497
	reless	4	Pogsiger fosolger fagelger "tassiger"	Mebraska Kanses Temas Cal orado	Early Hemphillian	$\begin{aligned} & 294 \\ & 207 \\ & 291 \\ & 424 \end{aligned}$
Prigonias	trics	13	osbornd osberni	Washington Co., colorado Held co., Calaredo	Chedronien	$\begin{aligned} & 482 \\ & 422,463,468,469, \\ & 470,471,472,476 \end{aligned}$
			osborni "coaki" asborni		1	475
			"preocecidentalif" osborni		"	492
			"hypostylualt		${ }^{\prime \prime}$	490
			"osborni"	Shannon Ca. , South Dakota	\cdots	23

1. Cades refer to the subgeneric groups determined In Chapter 3.
2. Sarple sizes of the groups indicated under the code colven.
3. Spectes nemes in protes are those essociated with muselm tags
4. Localities are derived from Information asacioted with miseum specimens.
5. Age is given as Harth American Land Marmal Age where possibla (ste Figure 3).
6. Specimeh menters were assigned sequentially as speciment were metaured and correspond to page manbers in the original data book.

TABLE 3. Generic and slbgenberic sroup information far manditile specimens used in the analyses. The four living genera are listed first alphabetically and are fallowed by 13 fosail genern, listed slphaberically.

Gernes	Code ${ }^{1}$	$\#^{2}$	Species ${ }^{3}$	Localtey ${ }^{4}$	Age ${ }^{5}$	Specinens m, B^{6}
Ceratotherium	teran	19	"stmun"	East Africa	Recent	22. 59, 99, 101, 102, 103, 104, 141. 142,297, 298, 300, 306,367,368,369. 370,371,431
Dteerortinus	SLIMAM	2	"gumatrensis"	Sumatra	Recent	21, 46
bicerts	Bicom	47	"bicbrals"	East Africs	Recent	147,149,150,151, 155, 157,161, 166, 157, 168, 169.176, 174,176, 177,178, 181,296,295,305. 379,382,304,386, 302,303,306,396, 397,390,402,405. 407,400,410,411. $412,414,418,436$ 。 $437,441,443$
Rhinoceres	UNICH	θ	"unlcarnia'	India/Hepal	Recent	$\begin{aligned} & 48,53,55,303, \\ & 340,349,426,427, \\ & 429 \end{aligned}$
	JAVAM	3	"sondaicus"	Java	Recent	17. 10,299

Cerms	Code	N	Species	Locality	Age	Specinerns
Aceratherlum	acerin	2	"depereti"	Mongolia	Hempitlian	206,245
	ACER2W	2	"frecisiviem"	Europe	Blancan	124,212
Aphel ops	AP擕IN	4	megal ocks Mmege todas"	Mebrasks	Barstovian	$\begin{aligned} & 209,211 \\ & 207,200 \end{aligned}$
	APHE2M	6	megelochs	Nebraska	Clartandonian	$\begin{aligned} & 213,27,274 \\ & 330,351,333 \end{aligned}$
		4	```malcortinus " matacarhimus "long+pes"```	0klahoma texas Fioride		$\begin{aligned} & 214 \\ & 215 \\ & 216,275 \end{aligned}$
	APHELM	4	"muttils" mutilis " 14 . Ponder $1 a^{4}$	「enag Col oredo	Lete Hemiphitifan	$\begin{aligned} & \mathbf{3 2 2 , 3 3 8} \\ & \mathbf{3 3 9}, 494 \end{aligned}$
olceratheriom		1	"armaturis	Niobrera Co., Wyoming	Arikareean	249
	DICEZM	1	"nilabrarense"	Hitbrara Co., Kyoming	Arikareean	451

Genus	Code	N	Species	Locality	Age	Specimens
forstercooperis	forsim	1	"Sharamuranensis"	Irver Mangalia, china	Ulintan Ducheanian	126
	fors ${ }^{\text {\% }}$	2	"confluens"	Mongolia	$?$	128,129
Hyrachyus	HYRAIM	2	"modesatus"	Uroming	Bridgar (8)	4,323
	Hypazm	2	"enimius"	?	Gridger (0)	6,8
Hyracodon	HYCON	4	nebroskensis	South Dakota, Webraska	Orettan	117,120,280,480
Indricotherime	IMORA	1	transuraticten	$?$?	258
Nenoceras	MENDIM	10	orikarense	Wabrasks	Arikareean	$\begin{aligned} & 189,190,191,192 \\ & 194,454,457 \end{aligned}$
			7	Wronimg	"	158, 172,186
	MEWOSM	1	berboury "maralandiensia"	Wew Hexico	Hemingfordion	132

Genus	code	*	Speciea	Lecality	Age	Specimens
Penetrigonias	PENETH	1	"daketense"	South Cothota	Olfgrene	15
Peracerss	Perain	3	"profectun" "heasei"	New Mexico	Eargtovian	$\begin{aligned} & 276,340 \\ & 326 \end{aligned}$
	PERACM	2	"supercill	Hew Mexito	Barstavian	319,325
suchyracodon	su8xim	1	"eccidentalis"	South Daketa	Orelton	$\begin{aligned} & 35,41,44 \\ & 28,29,38 \\ & 49,65 \end{aligned}$
	SUBHzu	2	${ }^{1 m i t i s t}$	tyoming	$?$	32, 33
	Stariman	6	'tridectylun'	South pakots	Witneyan	231,232,234, 279
			N	*	Whteneyan	458
					?	425
Teleocerab	TEEE年	3	asericaman	Mebrasko	Hemingfordion	249,250,253
	7ELEZM	6	medicornutum	Nek Mextio	Garstovian	346,347
			+	4	\#	259,200
			medicormutum "thanson!"	Nebraska	1	254, 255

Genus	code	*	species	Locality	Age	Specimens
Teleoceras (ctd)	TELE3H	12	$m \times j$ er	Netbraska	clerenconian	$\begin{aligned} & 217,218,219, \\ & 221 A, 2218,262, \\ & 263,264,312, \\ & 313,314 \end{aligned}$
				South Dakots	"	261
	TELECM	4	nicksi	Coloredo	Late Memphitifion	226,281,282,283
	TELE5M	2	"fasolger"	Kangas	Eariy Memphitilan	266,424
		6	fosuiger	Oklahoma, texas		$\begin{aligned} & 223,224,225 \\ & 227,290,292 \end{aligned}$
trigonias	TRIEM	13	osborni	South Dakote	chedronitan	421
			esbornif "taylarl"	colarado	"	491
			asbornl	Colorado	$\begin{aligned} & \prime \prime \\ & " 1 \end{aligned}$	$\begin{aligned} & 423,470,474, \\ & 477,479,480, \\ & 461,433,484, \\ & 485,460 \end{aligned}$
2alamempodon	2AIStin	1	7	Incer monyolia	Chadronian	107
	2AIS2N	1	7	Oregon	chadronlan	114

1. Codes refer to the subgeneric aroups determined in chaptor 3.
2. Saple sizes of aubgeneric proupa.
3. Specles nanes in quates are thoae ansociatad whth macum tass.
4. Lacalitiea are derivad from infarmation maciated with amachum specimenc.
5. Age in glven as Amerltan land hamsi Age where possible (ase flgure 3.)
6. Specimen numbers were assigned sequentialiy as specinens were measured and correspond ta page numbere in the ariginal data book.

METHODS

Neasurtatnts

Abstract

A moxphometric suite of 83 linear measurements (57 skuli: 26 mandible) was deaigned to include both global and local information about size and shape, and to include information from gagittal, coronal, and horizontal planes. A major constraint on measurement design was the ease and probability of finding landmarks on fossil specimens. Heasurement of horns was not considered because many fossil taxa are hornless, horns are not preserved in fobsil taxa with horns, and rhinoceros horns are epidermal (keratinous), not onteological features. To maximize data retrieved from fragmentary and reconatructed specimens, measurements were estimated when: (l) bilateral symnety allowed doubling of a measurement made to the median plane, (2) caliper placement could be done by eye, or (3) when a feature (landmark) could be reconetructed using clay. Further, measurements were noted as estimatea when: (1) a landmark was part of a queationable reconstruction, (2) a landmark was good but distortion evident, or (3) a landmark was poorly defined on a good specimen. All measurements were taken to the nearest millineter using a gtandardized sequence. complete descriptions of ingtruments, landmarks, and all original measurements are given in Appendix 3. of the original measurement suite, a subset 119 gkull; 11 mandible) was ueed for analysia. Many original meaburemente


```
were excluded to reduce the number of miasing values in the data
get (discussed below). Brief definitions and abbreviationg of the
meagurementa uged are ligted in Table 4 and are illugtrated in
Figure 4 (bkulL) and Figure 5 (mandible).
```

Date and statistics

Initial gcreening of the data inciuded ingpection of means, gtandard deviations, skewness, kurtosis, histograms, bivariate plots, and preliminary principal componenta results. Identification of trangcription and gross measurement errors resulted in some data correctiona. In caseg where simple migtakea were not obvious, modifications or exclugiong of guspect data were baged on all available biological, statistical, and procedural information available. Then possible, measurements were checked against specimen photographa of known ncale.

The incompleteneds of forsil apecimens resulted in many
missing values in the data get. Because of the requirement for complete data by multivariate methods, the number of misising values was reduced by excluding: (1) specimens with many migeing valuea across meagurements, and (2) measurements with many missing values across specimens. Exclugions were done until no more than Eive percent of values were migsing for any given specimen or measurement, The remaining 19 skull and 11 mandible measurements (Table 4) indicate which atructures and landmazks have most often

```
TABLE 4. Short definitions of linear meagurements uged for analysis. Measurements are illugtrated in Figures 4 (skull) and 5 (mandible). A complete list of all g3 oxiginal measurements with full definitions is given in Appendix 3.
```

```
SKULL (19 measurementa)
AEAE - Articular eminence to articular eminence
AEOR = Articular eminence to orbit
AEP2 - Articular eminence to eecond upper premolar
BICN - Bicondylar breadth
BIZY - Outer bizygomatic breadth
LFHT - Lower face height
LOXB - Lower occipital breadth
M1M1 - Breadth acroas upper &irat molarg
M3M3 - Breadth acrosa upper third molarg
MGAE - Foramen magnum to articular eminence
MXGT - Maxillary grinding tooth row length
MXMO - Maxillary molar tooth row length
OCP2 - occipital condyle to uppez gecond premolar
OXAE - Occiput to articular eminence
OXOR - Occiput to anterior orbital wargin
PQRB - Postorbital congtriction width
TFIN - Temporal fossa length
2YHT - zygomatic process height
ZYLN - zygomatic procens length
MANDIBLE (11 meaburementa)
ANGD - Mandibulaz angle depth
ANGw - Mandibulat angle width
BDBR - Mandibular body breadth
BDM1 - Mandibular body plus MD height
BDHT - Mandibulaz body height
CNH3 - Mandibular condyle to third lower molar
LMlL - Lower first molar length
LM1w - Lower firgt molar width
MNMO - Mandibular molar tooth row length
RAHD - Mandibulaz ramus depth
RAMH - Mandibular ramus height
```


FIGURE 4. IIlustration of the linear measurementa taken on
 okulls. Endpoints of open rectangles indicate the landmarks for caliper placement. Measurement codes and ohoct definitions are given in Table 4.

FIGURE 5. Illustration of the linear measurementa taken on mandibles. Endpoints of open rectangles indicate the landmarks for callper placement. Measurement codes and ahort definitions are given in Table 4.


```
sucvived the geological burial-expooure eycle in fossil
rhinoceroses
```

The small number of remaining migsing values were estimated by a multiple stepwige regression technique illugtrated in Figure 6. skuld and mandible data sets were treated geparately and independently - Fox each data set, all living and fossil genera were simultaneously mean-centered about the origin, producing a gooled within-group diapersion. For each meagurement with misging values, a multiple regression equation was fit to the pooled data, where the measurement being estimated was the dependent variable and the remaining meaburements were the independent variables. This regulted in a number of equationg egual to the number of measurements with misging data. Migsing values within each genus were eqtimated using the mean of that genus and the parameters of the appropriate mtatiple regregsion equation. A total of 39 values (27 sikuli: 12 mandible) were estimated and are indicated in the somplete data sets for Ekulla and mandibles (Appendix 4).

Subsequent principal componenta amalytis of the complete data gets (Chapter 3) resulted in the identification of gubgeneric groups more cloaely reprementing species-level variation, Misaing value eqtimation whe repeated using a pooled within-group dispersion based on thene new subgenerie groups. Gstinateg from the mecond iteration were used for all subsaquent multivariate analysea, including reanalysis of the principal components regults.

a.

b.

c.

Abstract

A sezies of tents was run on the skull and mandible data to determine whether logarithmic transformation was required or advantageous. Means versizg standard deviations for both raw and bane-ten log-transformed data were plotted acrosa all groups for each meanurement. No consistent patterns of high correlation were observed between means and standard deviations for raw data. Additionally, no syatematic reductions of correlation were abaerved as a regult of logarithmic trangformation. The assumption that larger animals exhibit greater relative variation was not upported by the rhinoceros data sets. Therefore, all analyses were performed on the raw, untransformed data.

CHAPTER 3.

Abstract

WIPRIN-GRODP RBLATIONAHIPG - PRINCIPAL COAPONEATS ANAEYEIB

\section*{MULTIVARIATE VARIATION AND PRINCIPAL COMPONENTS ANALYSIS}

Multivaziate cfanial and mandibulax variation of living and fogsil genexa were analyged ubing principal componenta analyais (PC). This method allows the multivaciate data to be "observed" Ecom the parspactive of orthonozmal (mutually perpendicular), variance maximizing axeg, derived as lineaz combinations of the original variables. The PC axes are ordered such that variation explained is greategt alang the firgt axis, next greategt along the second axis, and so on until all of the variation of the original variables is accounted for by the new axes. Principal components ig a dinengion reduction technigue becauge much of the original gample vaziatlon (and vaxiation of interest) is usually included in the fixbt two qr three PC axes. Size differencen among specimens often contribute much to the total variation and are usually maximized along the Eirat PC axig. Speciment with large gize differences but gubtle shape differenceg will be separated more along the first axis, lesg on higher axes, Spacimena of ainilar size but with greater shape differences may be separated in different ways acrasg a ntamer of PC axes. Becauge the pc axes


```
define a unique morphological space, the closer opecimens or group
means plot together, the more similar they are in overall
morphology as defined by the particular measurement auite used,
```

STRATEGY AND SIGNIFICANCE OF PRINCIPAL COHPONENTS RESULTS


```
the genera of a lazge, diverge, and evolutinnarily gignificant
vertebrate taxon, and 2) provide a standard (pooled within-eromp
variation) by which the morphologieal relationghips among groups
can be agsegsed.
```

SEX DIMORPHISM

Systematic differences in size and/or shape of males and femalea may contribute to intraspecific osteometric variation. It may, thus, be important in comparisons of interspecific and intergeneric differences both within and between living and fogail groups. Taxonomic errore can oceur (eapecially in fossils) when males and femalas are so disaimilar as to be interpretated as two taxa (Kurten, 1969). Among the living rhinos, Nowak and Paradiso (1983) state bluntly that Emales are bmaller than males. Becauge many of the living rhino specimens were sexed at the time they were shot, it was possible to invegtigate anltivariate sex dimorphimm in two of the living genera (Diceras and Cerstotherium). Among the fossil taxa, evidence for multivariate morphometric eex dimorphism tan be asBessed by correlation of morphological clustering of specimeng with qualitative characters believed to represent dimorphism a priori. In this study it was posgible to investigate sex dimorphism of gkull morphology in the fogsil genus Menoceras.

PRINCIPAL COMPONENTS ANALYSES OF INDIVIDUAY GENERA

Abstract

Total PC variation (sum of all eigenvalues) and the first three eigenvalues for each genus are sumarized in Table 5 . Among the living genera, Diceros and Ceratotheriun have similar amounts of total variation for both skull and mandible data sets. Since these two taxa repreaent good single species and the sample sizes are reasonably large ($n=48$ and $n=19$, respectively), their total variation is the best estimate by which the fosgil samples may be compared. Also aignificant is the higher total variation in Rhinoceros, repregenting two species. Least gignificant for comparison with foseils is the total variation for Dicerorhinus skulls and mandibles. The large total variation is probably an artifact of inadequate sample size ($n=2$). Thus, when comparing total variation between living and fossil genera, sarople sizes mugt be considered. For smaller sample sizes, it is the relative dispergion of the points rather than the numeric value of the total variation which is inportant. scatter plote of PCl vergus PC2 for each genus are sumarized in Figure 7 and figure 8. Axes were get to include the extremes of the most variable genera and are the mame across all of the generic PC plots. They thus allow direct comparisons of multivariate


```
TABLE 5. Eigenvalues, percent of total, and total variation for the first three axes of each generic principal components analysig.
Total variation is for all axes (19 akuli; 11 mandible).
```

SKULE

gewus	PC1	2	PCZ	z	PC3	x	Total
Dicerortinus	11445.0	100.0	0.0	0.0	0.0	0.0	11445.0
Diceras	1996.1	60.2	263.9	7.9	218.1	6.5	3314.4
Ceratotheriom	1978.6	59.9	335.5	10.1	214.5	6.5	3298.8
Rhinoceros	6176.8	82.2	46.7	5.5	378.9	5.0	7512.3
Acerather in	12120.0	100.0	0.0	0.0	0.0	0.0	12120.0
Amprooton	3570.0	100.0	0.0	0.0	0.0	0.0	3570.0
Aphelops	6178.2	73.9	1017.8	12.1	472.3	5.6	¢ 553.2
Diceratherium	10276.6	88.8	809.1	6.9	351.3	3.0	11669.0
Forstercoopería	3731.5	100.0	0.0	0.0	0.0	0.0	3731.5
Hyracodon	718.8	65.9	313.3	28.7	57.4	0.1	1089.7
Hyractiyus	7896.3	88.3	839.7	9.3	128.3	1.4	8939.4
Mernceeras	1316.3	53.9	353.3	14.4	186.9	7.6	2437.9
Peraceras	43586.0	96.8	555.9	1.2	481.7	1.0	44969.1
Subhyracodon	5529.3	79.2	439.7	6.3	346.2	4.9	6980.5
Teleoceras	5988.3	61.2	1273.1	\$3.0	1058.?	10.9	9775.2
Trigonias	2106.2	43.2	1309.1	26.8	515.8	0.1	4869.6

MANDIELE

cenus	PCI	x	PL2	\%	PC3	\%	Tatal
Diterorminus	3958.5	100.0	0.0	0.0	0.0	0.0	3958.5
Dieeros	373.7	50.7	152.0	20.6	72.2	9.8	735.8
Ceratotheritar	362.2	44.1	155.1	19.9	123.7	15.9	775.7
Rhinoceros	2069.1	87.8	130.2	5.5	68.7	2.9	2354.3
Aceratherium	296.5	59.3	135.6	27.3	65.6	13.2	495.9
Apheleps	3204.8	86.1	206.6	5.5	160.7	6.3	3720.0
Diceratherium	1206.7	85.9	121.0	8.6	33.6	2.3	\$401.0
Forstercooperia	1769.9	93.2	127.0	6.6	0.0	0.0	1897.0
Hyracooon	140.0	66.6	41.5	19.7	$2 \mathrm{C}$.	13.6	210.1
Нуrachyus	1461.3	96.5	33.3	2.1	19.1	1.2	1513.9
Memseeras	308.4	69.7	86.5	17.0	49.9	9.8	507.9
Peraceras	2512.4	92.8	151.0	5.5	36.4	1.3	2722.4
Suhhyracodori	596.9	71.3	112.7	11.5	79.5	8.1	977.4
Teleoceras	1120.7	61.6	301.9	16.5	136.2	7.4	1919. 3
Trigomias	212.9	47.1	B5. 3	18.9	84.0	18.6	451.2
Zaisanmmynodon	1008.0	100.0	0.0	0.0	0.0	0.0	0.0

PIGURE 7. Sumany of principal components plots of gkulls for
 living and fogsil genera. Living genera are ghown first followed by fombil genera in alphabetical order. All plots are to the oame scale.

SUMMARY OF PRINCIPAL COMPONENTS ANALYSES - SKULLS

SUMMARY OF PRINCIPAL COMPONENTS ANALYSES - SKULLS

SUMMARY OF PRINCIPAL COMPONENTS ANALYSES - SKULLS

$\stackrel{\text { a }}{\infty}$

SUMMARY OF PRINCIPAL COMPONENTS ANALYSES - SKULLS

$\stackrel{\rightharpoonup}{\circ}$

```
FIGURE B. Summary of principal eomponents plots of mandibles for
living and fossil genera. Living genera are shown first followed by
fosgil genera in alphabetical order. All plots are to the same
gcale.
```


SUMMARY OF PRINCIPAL COMPONENTS ANALYSES - MANDIBLES

$\stackrel{n}{3}$

SUMMARY OF PRINCIPAL COMPONENTS ANALYSES - MANDIBLES

ํ

$\stackrel{\text { w }}{\omega}$

SUMMARY OF PRINCIPAL COMPONENTS ANALYSES - MANDIBLES

\%

```
variation for skull and mandible characters. For example, among
the akull samples, patterng range from Diceras, with the mogt
homogeneous clustering of points, to Peraceras with a few widely
scatterd points. Significantly, among all genera, Rhinoceros with
its two component species shows the clearest bimodal clustering of
apecimens.
    The PC analybeg of each genus are discussed in detail below.
Living rhinos ace digcusged first fallowed by the fossil genera.
Each genus discusgion begins with a brief introduction to the taxon
followed by separate discussions of gkull and mandible morphometric
resulをs.
```

Living Rhingcerones

Locality data on the living rhinoceroges varies from relatively precise (e.g, the name of a town or river\} to overly braad (e.g., "Africa"). Moat often, the localities given indicate the political unito in effect at the time the rhinos were collected (e.g., "British East Africa" or "Tanganyika"). Such regional geographic designations represent maxima since species inhabit patches within a given range at a given acale. For example, Goddard (1970) reported that the largegt population of black rhinos exigted within the 23,500 km^{2} confines of Taavo National Park (Kenya) and that within this range thirteen habitat types with local populations were recognized. In the Serengeti (Tanzania), "green regiong",

```
driven by rainfall, vary spatially and temporally (Sinciair, 1979).
and this probably influences the ranges of local populationg of
rhinos. When the name of a town is given foz the locality of
several rhinob, it only indicates they are from the Bame region but
not neceggarily from the same local population. The locality data
allow a limitied analysis of regional differentiation among the
rhinoceros specimens.
```


Diceroa


```
the geographic range of sampled specimens as well as the amount of
envixommental neterogeneity within that range.
    Two modern gtudies of black rhinocerog variation are those of
Zukowaky (1964) and Groves (1967). 2ukowsky proposed at least 16
"well differentiated" gubapecien for D. bicornis based on
observations of 95 gkulls from European mugeuma, zoo animala,
photographs, and bibliographic sources. This amount of gubapecific
variation ig questionable because of the gmall gample sizes
(averaging six skulls per subspecies) and zukowgky'g own admission
of great individual variation in the ghape and gtructure of black
rhino skulls. Grovea criticized Zukowgky's work on the above
grounde and noted that akull meamurements do not often discriminate
between the proposed subspecieg. Using additional material, Groves
studied Eagt African populations in more detail and reported the
existence of two size clines within the region formed by several
subspecies and "intergradeg" {Groves, 1967). The locality
information for the specimens used in this study was insufficient
for a detailed analysis of geographic variation in the black rhino.
However, this study ghows evidence of nome geographic
differentiation, supporting two of Grave's gubdivigions (see
below).
Neither Groves (1967) nor Zukowaky (1964. Engliah surnary) discussed gex dimorphigm in the black rhino. Jarman (1983) auggested that male and female black rhinos reached similar weights
```


FIGURE 9. Principal components plot of Diceros (black rhino\} gkulls with epecimens identified to the largest geographic political unit based on museum tag information: \mathbf{B} - British East Africa, X - Kenya, t - Tanzania. Scales are the same as ail other akull plota in this chapter ($\begin{aligned} & \text { eef Figure 7). Corresponding plot of }\end{aligned}$ mandiblea is shown in Figure 14.

a

```
collectively inhabiting Kenya versum those inhabiting Tamzania. A
more detailed analyeis of geographic variation is shown in Pigure
10, based on limited locality data associated with the specimens.
Although nothing can be concluded about differences between
gpecimeng from N. Guaso Nyiro and Rasargngai River, or between
gpecimens from Tana River and Charangani Hills, N. Guaso Nyiro and
Tana River specimens are distinct with respect to size. This
supporta Groveg' (1967) observation of a west-to-east gize cline
among East African rhinos. The position of the Lakiundu River
specimens confinms Grove's statement that Lakiundu populationg are
intermediate in the cline.
    As mentioned previously, the nature and number of black
rhino gubspecies is not well egtablighed. Two relatively recent
gtudies varied from 7 subgpecieg (Groves, 1967) to at leagt 16
gubspecien (Zukownky, 1964). The fozmer ntudy relied more on
osteometric data, the later gtudy on okwil morphology and visual
appearance. Many, &f not most, of the original subopecific
classifications of wild-caught speciment are probably meaningless
In terms of biological information about real subspecies. More
likely, in many cases, they represent local populations and were
classified arbitrarily by non-experts. However, although the
subgpecific names may be wrong, there may be other important
information confounded with them, such as geographie variation.
Figure ll shows apecimens identified according to the subsperific
```

PIGURE 10. Principal componente plot of Diceros (black rhinol
gkulls with gpecimens identified to regional locality based on
mugeum tag information. Shaded areas include all specimens from
the game locality, Dote represent specimens for which no locality
data is known. Corresponding plot of mandibles is shown in figure
15.

¿

```
FIGURE 11. Principal componenta plot of Diceros (black rhino)
gkulls with epecimeng identified by aubapeciea deaignations given
on museum tags. Shaded areas include all members of the same
subspecies. Dots represent specimens for which no subspecies
denignation was given: E - D. b. holmmoodi, s - D. b. bicornis,
s - D. b. somaliensis. Corregponding plot of mandibleg is ahown in
Figure 16.
```


Diceros -SKULLS Subspecies by museum tags.

\because

Abstract

designations given on museum tags. Based on Groves' analysis, the subspecific epithets of Figure 11 would be mostly incorrect for the Eollowing reagong: (1) D. b. holmwoodi, now synonymous with D. b. minor, probably represented a wastebagket taxon since few of the orginal holmwoodi specimens are attributable to D. b. minor, (2) D. b. somsliensig is now a synonym of o. b. brueii, and found only in northera Somalia, and (3) 0. b. bicornis ig now restricted to animals from southern and gouthwestern Africa. of interest morphometrically, however, is the separation of specimens labeljed D. b. bicornis versus those labelled D. b. somaliensis which may indicate that the original aubspecific claseifications of those two groups were baged on real biological differences. Furfher analysis of gubspecific variation ig ghown in Eigure 12 where locality data was used to matched specimens with Groves' (1967) subspecies and intergradea. The majority of identifiable specimens were agsignable to D. b. michaeli or to a D. b. michaeli - D. b. ladoensis intergrade category. The morphometric sepacation of these two groups lies along an oblique axis fupper left to lower right) and suggeats that the intergrade categary is perhapg moze of a real group than Groves gave it credit for. conversely, the D. b. ladoensis specimens appear not to be digtinguishable from either group.

FIGURE 12. Principal componente plot of Diceros (black rhino) skulla with gaecimeng identified to subapecies based on thoge of Groves (1967)- Shaded areas include all specimens of the same oubspecies, Dots indicate specimens for which no subspecific assignment was determinable: M-D.b. michaeli, $N-D . b-m i n o z$, I - D. b. michaalilladoensis intergrade, z - o. b. Ladoensis. Corresponding plot of mandibles is ahown in Figure 17.

Diceros - SKULLS Subspecies after Groves, 1967.

Abstract

An analysig of bex dinorphism of the black rinino gkulls is shown in Figure 13 based on museum tag information. Sexing of the rhinos probably occurred at the time of collection but was not conaistently recorded. The largest specimens in the analysis (right aide of PC1) were not gexed. Kost or all of these gpecimens could be males if males are actually larger than females on average and if there was a biag by the expeditions to take the larger (presumably buli) members during hunts. The following discusgion of the pattern of the sexer specimens takes the data at face value. Inapection of the first axis indicates a tendency for females to be larger than males, contrary to Nowak and Paradiso (1983) who state that females are gmaller than males (for ail rhinos). The bypothesis that the female gample represents generally larger animals was tested using a Wilcoxan Rank Sum Test which gave a marginally ingignificant result (SUM male $=67: \operatorname{SUM}_{\text {female }}=104 ;$ $T_{L}=66 ; T_{R}=1051$. The suggestion that females are larger than males in black chinos would place this speciea among the minority of mammala exhibiting this phenomenon (Ralla, 1976). Although there is no aignificant aize dimorghiam, there is evidence for sex dimorphism in terme of shape or of gize and shape combined. The prineipal component separation of males and female skulls shown in Figure 13 lies along an oblique axis (upper left to the lowez right which would be a linear composite of PCI and PC2. The


```
FIGURE 13. Principal eomponents plot of Diceros (black rhino)
skulls with specimens identified by sex baged on musewn tag
information. Shaded areas include opecimens of the same sex. Dots repregent specimens for which sex was not determined: M - male, F female. Arfow repregents an approximate axis (vector) of skull Bex dinorphism in the PC morphospace. Corfesponding plot of mandibleg ia shown in Figure 18.
```

Diceros - SKULLS Sex dimorphism.

z
details of thege ahape differences and their poasible explanations have not been determined.

In sumary, gpecies level variation in Diceros skulls includea variation associated with geographic factors (interlocality and aubspecific level vaziation) and with gex differences in skull bhape. Demonstration of thege factors of variation in this living analog is important and useful because fobsil species can be expected to have exhibited these same kinds of variation.

Mandible (Figures 14-10) -- Principal components ordinations for black rhinoceros mandibles are given in Figures 14-1B, which are different versions of the ame pc plot. These plots parallel those of the skull studies in terms of the way apecimens are labelled. Similarly, PCl appeara to be largely a \quad ize axis with Bmaller specimens on the left.

The results of geographic analyses are generally similar to those of the gkull. At the lowest geographic resolution (country, Figure 14), Kenyan specimens determine the ranges of pC1-PC2 variation, while Tanzanian and BEA specimens lie within that dispersion, The Tanzanian mandibles, howevex, are more dispersed relative to the Kenyan mandible variation than are the Tanzanian skulls relative to Kenyan skull variation. Locality data for the black rhino mandibles (Figure 15) supporta the akull data with regpect to: exiatence and extent of local geographic variation,

```
FIGURE 14. principal components plot of Diceros (black rhino) mandibles with specimens identified to the largest gecgraphic political unit baged on mugeum tag infromation.B - British East Africa, \(k=\) Kenya, \(T\) - Tanzanian. Scales are the same as all other mandible plots in thit chapter (gee Figure 8). Corresponding plot of skulis is shown in Eigure 9.
```

Diceros - MANDIBLES Geographic provenience by country.

[^1]Diceros -mandibles Locality data.

$\stackrel{\rightharpoonup}{a}$

```
similavity of Charangani Hills and Tana River mpecimens, and an
eant-went size Cline (N, Guano Nyiro - Tana River). The pattern
of morphological variation of the mandibles differs from that of
the gkulls in the following ways: Lakiundu River specimens are not
intermediate in the size cline, Kagarongai River specimens are not
gimilar to N. Guaso Nyiro gpecimens, and there is relatively more
pc2 variation with regpect to localities.
    Results of subgpecies analyses on the mandibles are also
gimilaz to the gkull resultg. Figure }16\mathrm{ supports the morphological
difference between those specimeng originally asbigned to D. b.
bicornis and thoge assigned to D, b. somaliensis. Figure 17
aupporta the skuli result that the D. b. michaelilladoensis
intergrades form a group digtinct from D. b. michaeli while D. b.
ladoensis is not digtinct. This result is legs convincing becauge
of the greater overlap in the mandible plot. It is interesting,
however, that the separation of the intergrades and D.b.
michaeli, to the extent that it ia zeal, lies predominantly along
the second axig. Thug, as in the locality analygis, mandibles
appear to differ more by shape while skulls differ more by size.
    Sex dimorphism was not obgerved in the black shino mandibles
(Figure IQ), Both the largegt and smallest gexed specimens were
females, and the regults of a Nilcoxan Rank Sum Tegt relative to
```



```
=90). Thus, the sex dimorphigm in black rhinog obgerved in
```

```
FIGURE 16. Principal components plot of Diceros (black rhino)
mandibles with specimens identified by aubspecies deaignations from
museum tagg. Shaded areas include all memberg of the game
subapecies. Dots repregent specimens for which no subspecies
designation was given: E - D. b. holmwoodi, B - D. b. bicornis, s -
D. b. someliensig. Corresponding plot of skulls is ghown in Figure
11.
```


Diceros - MANDIBLES Subspecies by museum tags.


```
FIGURE 17. Principal components plots of Diceros (black rhino) mandibies with apecimens identified to subepecies based on those of Groven (2967). Shaded areas include all specimens of the same subspecies. Dots indicate specimens which were not assignable to one of Grove's subspecies: N - D. b. michaeli, N - D. b, minor, I D. b. michaeli/ladoensis intergrade, 4 - D. b. Ladoensis. Corresponding plot of skulls is ghown in Figure 12.
```


Diceros - MANDIBLES Subspecies after Groves, 1967.

FIGURE 18. Principal componenta plot of Diceros (black chino) mandibles with gpecjmans identified by sex based on museum tag information. Shacked arean include all specimens of the same sex. Dots represent specimens for which sex was not determined. Corresponding plot of akulls is shown in Figure 13 ,

Diceros -MANDIBLES Sex dimorphism.

$\stackrel{\infty}{\infty}$

```
this study is regionalized to some features of the craniorostral
gkeleton (see discusaion under Ceratotherium).
    In gummary, as compared to the skull sample, epecies level
variation of the mandible sample appears to be lese confounded by
geographic and sex differences and is more often associated with
PC2. It ghould be noted that, unlike the fosgila, the living
analog samples repregent matched skull-mandible pairs. Mandibles
might give sygtenatically different reaults, perhapg due to
regionalized differences in development and selection (mosaic
evolution). This ghould be congidered when interpreting the
fogailg,
```


Ceratotherin

```
    ceratotherium is represented by a single gpeciea, c. simum,
the white rhinoceros. It primarily inhabits grassland and open torest (bughveidt in gouthern Africa) where it grazes unselectively on grasseg. Historically, this specien geographic diatribution consigted of two disjunct regions in Africa including a northern range (Chad, Central African Republic, S.w. Sudan, N.E. 2aire, and N. W. Uganda) and a southern range (S.E. Angola, s. K. Zambia, Mozambique, Rhodesia, Eotawana, E. Namibia, and W. and E. South Afzica) (Groves, 1975; Nowak and Paradiso. 1983). Each of the Ewo geographic groups is considered a single pubapecies with \(C . s\).
```

```
cottoni in the north and C. s. simum in the south (Groves, 1972;
1975)- Groves found differences between theae subspecies to be
very slight, but streased the flatter skull and shorter maxillary
sooth row in C. s. cottoni. All of the specimens in the sample
atudied here are c. s. cottoni from the region northwest of Lake
Victoria including parte of zaire, Uganda, and sudan. The two most
Lmportant collecting centers were Faradje (N.E. Zaire) and Lado
Rhino Camp (Albert Nile, Uganda). This range ia approximately
gimilar in area to that for the black rhino gample, and gimilarly,
may only represent a subsample of the total white mhino variation.
Because no gtudies have suggested that C. s. cottoni represents
more than one true subspecies, it was not possible to demonstrate
variation due to Eubspecific variation in Ceratotherium. PC2 and
total variation in the white chino skull and mandible samples at
the species level are approximately the same as that of the black
rhino samples (Figure 7) despite differences in subapecific
differentiation. This similarity of total variation between two
digtinct species lends support for the use of the living analogues
as a gauge of specific level variation in fossil groupa. Total
variation for the white rhing gkulla in gecond loweat among all the
genera (only Menoceres ia lower) and, among the mandible groups,
only four fosBil genera have lower total variation (Table 5).
```

```
    Skull (Fiqures 19-20) -- The principal componentg zesults
for Ceratotherium akulls were analyzed with respect to locality
(Figure 19) and sex (Figure 20). These plots have the same scales
(as Eor all skull plotg), and PCl is a gize axig. The white chino
Bample was collected, as noted above, from two relatively specific
geographic foci: Faradje and Laco Rhino Camp. Although it is not
known how far, nor in how many directions collectore may have
forayed from thege hubs, the pC regultg indicate that the regional
papulations being aampled were morphologically different. As shown
in Figare 19, the Faradje and Lado specimeng, which are separated
along PC2 with little overlap, are digtinguished by signifieant
interlocality Bhape variation. Interlocality differences (in both
black and white rhinos} suggeat that rhino populations are
sensitive to habitat heterogeneity and/or are paztially imolated by
barrierg to gene flow. Fagsil gpecies are presumed to have the
game potential for interlocality variability depending on the
various biologieal and phymical factors operating at the time.
    Evidence for mex dimorphign in white rhino skulls is shown in
Figure 20. Females are gmaller than males (Wilcoxan Rank Sum Test:
SUH}\mp@subsup{f}{\mathrm{ fmale }}{=43; SUMmale }=77;\mp@subsup{T}{L}{}=49;\mp@subsup{T}{R}{}=79, but appear to b
|imilar in shape. This supporta Jarmans (1983) conclusion that
male rhinos are largez than females but gimilar in shape, but is
```

```
FIGURE 19. Principal components plot of Ceratatherium (white
rhino) skulls with specimens identified to the most specific
geographic locality known. Shaded areas include all specimeng from
the game locality: F - Faradje (2aire), L - Lado Rhino Camp,
(Upper Nile, Uganda), W - Wadelia Rhino Camp (?), s - Sudan,
U - Uganda, V - Vanckerhovenville (Zaire).
```


Ceratotherium - SKULLS Locality data.

${ }_{\infty}^{\infty}$

```
FIGURE 20. Principal components plot of Ceratotherium (white Ihino) okulls with specimens identified by gex. Shaded areas include all spacimens of the same sex. Dots indicate specimens for which sex information is unavailable: M - Male, F - Female.
```

Ceratotherium - SKULLS Sex dimorphism.

:

```
different than the dimorphigai in the black rhino which includea a
significant shape aspect.
    In gummary, the multivariate variation of white rhino bkulls
includes both interlocality and sex differenceg within a widely
digpersed gubgpecieg. In comparison with the black rhino, white
rhino locality differences are gimilar in magnitude, gexeg differ
more in gize than Bhape, and gubopecific differentiation is less
well-developed. Thus, although the black and white rhinos exhibit
similar multivariate variation in the principal momponents space,
the nature and caused underlying that variation are gubstantially
different.
```



```
FIGURE 21. Principal componente plot of Ceratotherium (white
rhino) mandibles with specimens identified to the most specific
geographic locality known. shaded areas include all specimens from
the same locality: F - Faradje (2aire), L - Lado Rhino Camp (upper
Nile, Uganda), W - Wadelia Rhino Camp, s - Sudan, U - Uganda, V -
```

Vanckerhovenville.

옹

```
    Cerarocheriun mandibles (Figure 22) show the same sex
difference with respect to gize ag seen in the bkullm (Figure 20).
Maleg are larger than females (PCI) with little dimorphism in shape
along PC2
```


Dhinaceros

Abstract

The genub Rhinoceras compriges two species of Aaisn onehorned rhinocerogeg: R. unicornis, the greater Indian rhinoceros, and R. sondaicus, the Java rhino. Nowak and Paradibo (1983) Btate that both gpecies Live in the tall grans or reed beds of swampy jungles and eat grass, reeds, and twige. Whitten et al. (1987) reported the diet of the Javan shino as succulent secondary growth.

The higtorical range of the Indian rhino included northern Pakigtan. northern India, Nepal, and Aasam. Recorded localities for the specimens of this study are "India". "Nepal", and "Royal Chittawan National Park" (Nepal). The Indian specimens are most likely Erom the Ganges River Valley or from the Brahnaputra River Valley in the eastern province of Asgam. The historical range of the Javan rhino included Sikkim, eastern India to Viet Nam and日outhern china, the malay Peninsula, Sumatra, and Java. The gpecimens of this otudy were collected in western Java in the area of Bantam.

FTGURE 22. Principal components plot of Ceratotherium (white rhinol mandibles with specimens identified by sex. Shaded areas include all specimens of the sam sex. Dots indicate specimens for which sex data is unavallable. M - Male F - Female


```
    PC resulta for skulla and mandibleg are gimilar and are
discugaed together. No analysis of sex dimorphigm was posssible
for Rhinoceros becauge of the abgence of gex data.
    Skulls and Mandibleg (Figures 23-24) -- Principal components
regults for Rhinoceros are Bhown in Figure 23 (bkulls) and Figure
24 (mandibles). The two species are clearly digtinct and, in the
context of this gtudy, are considered subgeneric groups based on
taxonomy, locality, and morghology (size). Within species, little
can be gaid about the nature of the variation because of the
paucity of data, R. unicornis has a larger diapergion than R.
sondaicus, at least partly due to a larger gample size, and among
the apecimeng, thoge from Chittawan park are identified as the
largest. The legser variation among Javan gpecimens might be a
gampling artifact, but geveral other factors may be involved,
including the relict status and insular digtribution of the
species. Groves and Guerin (2980) state that the entire gize range
Of the Javan rhino is repregented on Java but it is not known
whether the Bantam specimeng represent that size range.
    More important for thia study is the larger generif variation
asoociated with two well-defined specieg. The total variation
among the Rhinocezos skulls is more than twice that of Diceros or
Ceratotherium and total variation among the mandibles is more than
three timea that of the black or white rhinog (Figure 7, Table 5).
```


FIGURE 23. Principal componante plot of Rhinocezos (Indian and Javan rhinos) skulls with gpecimeng identified to locality. Shaded areas include all specimens from the aame locality.

Rhinoceros -SKULLS Locality data.

FIGURE 24. Principal components plot of Rhinaceros (Indian and Javan rhinos) mandibles with specimens identified to locality. Shaded areas include all specimena from the same locality.


```
Because thinoceros is the only multispecies genus among the living
analogues, it provides a valuable contribution as a clear example
of interspecific level variation. Thus, the Agian one-horned
rhinos together with the black and white rhinos, an living
analogues, provide a gauge of aubspecific, 隹ecific, and
interspecific (intrageneric) variation to which the Eoasil genera
may be compared.
```

Dicerorhinus

Abstract

Skull and Handible (Figurea 25-26) -- Principal componenta reaultg for Dicerorhinus are shown in Figure 25 (bkulls) and Figure 26 (mandibleg). The small sample size and wide gepazation of the two specimens make Dicerorhinus one of the most problematic genera. The large total variation (Table 5) associated with this result is not ugeful as an indicator of either intergpecific ar large intraspecific levels of variation. If the specimens are nomal individuals from a single species with variation similar to that of the black or white thino, then they must be representative of the extremes of that variability. This is consistent with the geographic disjunction (approximately 1000 milea) between the specimens. Differences in habitat and limitations to gene flow could result in geographic/subspecific variants at these localities. A larger gample size in such a case might reveal the bulk of the variation in intermediate forms and intergradea as in the case of the black rhino. Alternatively, these two specimens might have been gampled from distinct groups repregenting incipient or unidentified gpecieg with a variational pattern oimilar to the Indian and Javan rhinos. A third posgibility is that one or both of the specimens are abnormal outlierg, falling outside the range of normal yariability for that group. Thare is evidence that the Malay specimen is abnormal, and perhaps pathological. Notations taken during meagurement indicate that this skull is highly rugoee

FIGURE 25. Principal camponente plot of Dicerorhinus (Sumatran zhino) skulls with specimens identified to locality. Shaded area includes all specimens of the same spcies.

Dicerorhinus - SKULLS Locality data.

H
i

FIGURE 26. Principal componente plot of Dicerorhinus (Sumatran chino) mandibles with 日pecimeng identified to locality. Shaded area includes all specimens of the same \quad pecies.

Dicerorhinus - MANDIBLES Locality data.

$\stackrel{5}{3}$

```
(almost ornately sculptured), is very light for its size. and has
an abnocmally curved tooth row. Justification far including it
derives from the fact that it gurvived well into adiulthood and was
wild caught. Bizarre pathological or mutational variations
occagionally occur in mature and are an agpect of variation to be
considered when aspegsing fossil gamples.
```


Fosgil Rhinoceroses

Aceratherip.


```
Because taxonomic revision is not the purpose here, the two
specimens used are considered to reprement Aceratheriun.
    SkulI (Figure 27) *- The Bmall sample size precludes grouping
of gpecimeng baged on subgeneric variational patterng. Separation
of the two gpecimeng ia similar to that of the Sumatran rhino
gkul1B and, in the absence of other infommation, the same arguments
would apply. The two specimens might be extremes of a single
gpecies or they might repreaent distinct taxa. The geographic and
temporal information asgociated with the epetimeng indicates that
they are from digtinct populationg in time and space, and probably
represent apecies level variation consibtent with the species
clasBifications of the specimens. Each specimen is retained as a
gubgeneric group (ACER1S; ACER2S).
    Mandible (Figure 2B) -- The total variation (Table 5) and
pCI-PC2 digpersion for this sample are similat to those of
Henocerag (discugged below) which is one of the least variable of
the fogsil genera and is mostly comprised of a single-species
quarry sample. The similarity with Henoceras and the absence of
obvious clustering of the specimens would not lead to subdivision
Of this generic gample. However, the two specimeng on the left of
Figuze 27 are from the late Miocene of Inner Mongolia and
clambified as A. depereti (ACERIM), while the two gpecimeng on the
right are from the late Miocene of Europe and claggified as A.
inEisivum (ACER2M). The geparation of the two subgroupg is similar
```


FIGURE 27. Principal components plot of Aceratheriur skulls with specimens identified by speciea, locality, and age. shaded areas include all specimens in the same subgeneric group.

Aceratherium -skulis

FIGURE 28. Principal components plot of Aceratherium mandibles with specimens irientified by species, locality, and age. Shaded areas include all epecimens of the ame bubgeneric group.

Aceratherium - MANDIBLES

E
to that of some of the geographic subgroups in Diceros. Thus, Aceratherium mandiblea exhibit some minor levels of morphological variation related to time and geography, which has been reflected in their taxonomic assigrments.

Arynodon

Abstract

Amynodon is an evolutionarily and morphologically intermediate genus in the family Amyodontidae, Ealling between basal forms (more like Hyrachyus) and more derived genera (cadurocodonts and metanynodonts). Amynodontids are characterized in part by relatively large sagittal ereats, enlaxged canines. ahortened facial regiong, and well-developed preorbital fasgae. Menbers of Anynodon were hornless rhinacerotoids regtricted to the North American Eocene (Uintan A - Uintan C) and divided into two apecies, A. reedi and A. advenus, of which the latter was significantly laxger (Wall, 1982. 1989). The peledecology of amynodons has been little studied; they probably prowsed on soft vegetation with their relatively low-crowned cheek teeth (molars and reduced non-molariform premolars). Two akulis of Amynodon were measured; no mandibles are included in the analysis.


```
    Skullg (Figure 29) >- Both specimens are from middle Eocene
(Uintan) gtrata in adjacent western states and are clasaified as A.
advenus (the larger specimen is tagged "advenus", the smaller
unlabelled opecimen was asBigned to the opecies by Wall, 1982)
The PCL variation and dispersion of the Amynodon sample is
congistent with that for single-species living analogs and supports
Walls' conclugion. Based on the preceding evidence, Anynodon was
not divided into gubgeneric groups.
```


Apholope

FIGURE 29. Principai components plot of Anynodon akulia with

 specimens identified by species, iocaiity, and age. shaded area includes ali specimens in the game subgeneric groug.
Amynodon - SKULLS

EIGURE 30. Principal componenta plot of Aphelops akulla with
 specimens identified to locality and age. Shaded areas include all
 specimens in the same subgeneric group.

Aphelops - Skulls

Abstract

species vafiation (catagtrophic burials guch as volcanic ash falls only mample a single dene at one point in time) Entraguarcy variation may inciude interdemic to aubapecifle or even chronompecific variation depending on the amount of time-averaging and size of the area sampled by the depositional syatern. The Kat and Leptarcus quacry specimens were grouped with the xman quarry gkulls because of their temporal, geographic, and morphological 日imilarity (APHE2S). Although the Kat gpecimen ig an outlier. there is no other information to suggest that it repreaents a 日eparate subgroup.

Mandible (Figure 3l) -- Total and PCl variation of the gample
(Table 5), which is among the largest, ig sinilar to that of
Peraceras. Disaection of this large anount of variation into
ceasonable subgeneric groups congigtent with living analog
Variation resulted in four groups sinowing minimal overiap. Aptelu
uniteg four Bazatovian gpecimens attributed to A. megalodrs.
APHF2K unites gix Clarendonian apecimens, including four from one
quariy (Xmas), also attributed to A. megalodus (Prothero, peraonal
communication). These two groupa are etraightforward and
gatiafactory based on their temporal, geographic, and morphological
patterns. The fact that they are curzentiy classified as one
species may be interpreted in two wayg either gignificant,
localized mandible gize evolution occured within the gpecieg, or
theae two aubgroupg actually repregent two gpecies. compared with

```
FIGURE 31. Principal components plot of Aphelops mandibles with
specimens identified to locality and age. Shaded areas include all
specimens in the same subgeneric group.
```


§

```
variation within and among other mubgroups, the latter
interpretation is not unreasonable. The remaining specimens ara
all Hemphillian and account for much of the Aphelops mandible
variation. Subdivigion of these specimens was based on time-
taxonomic correlations guch that some geographic confounding is
present. APHE3M includea mandibles clagsified as A. malacorhinus
from several early Hemphillian localities including texas. The
great mize range of thin Bubgroup might suggest two species by
comparison with living forms, but much of this range in spanned by
two specimens from the same locality (Florida). The wide
geparation of the Florida specimens is itself problematic but is
accepted here, given the other problema. APHE4M compxiseB
specimens attributable to an A. mutilis - late Hemphillian
correlation and also includes specimens from Texas. The
digpergions of APHE3M and APHE4M, as single specieb, are less
satigfactory in compazison with othex groups and probably repregent
cmmpromiaes given limited data and sample sizes. Explanations for
the large early Remphillian divergity of Aphelops mandibles might
include rapid size evolution within the gyecies or, as indicated by
the Florida specimens, greater than average variation.
```


Dicerteharien

The genus Dicerathexium in currently considered to include those fassil Thinoceroses exhibiting (probably in males only)

Abstract

paired (aide-by-gide), aubterminal, antero-posteriorly elongated nasal flanges (ridges). Thasa boney characters are believed to have underlain epidermal horne. Earlier definitions of the genus included all rhinocerases with paired nasal protuberances (diceratheres sensu obsoletum). Those forms with terminal, spherical hocn bassea are now classified as Menoceras (discussed below). Diceratherium is further meparated from Menoceras by retaining simple, primitive cheek teeth lacking much development of crochets and cristae. Diceratherium apecies are found in upper Oligocene to lower Miocene localities (Whltneyan - Arikareean) from Oregon to the Great plains. These species differ mostly in size, With later forms achieving relatively large size. For example, the holotype D. armatum from the John Day foxmation of eastern Oregon was approximately two-thirds the $日$ ize of the Indian rhino. Rhinoceroses were not generically diverse during the time Diceratherium was extant, Rather, Diceratherium species were the predominant rhino members of faunas for approximately 10 million years spanning the Whitneyan and Arikareean ages. Prior to Axtinction, Diceratheriun coexisted with Henoceras during the mid to Late Miocene (Matthew, 1931; Peterson, 1920; Prothero, in press a; Prothero et al., 1986, 1989; Tanner, 1969; Troxel1, 1921). Skyll (Figure 32) -- The total and PC1 variation, which is Eourth highest among the gkulls, is agsociated with a fairly wide gcatter of a few data pointy. The emall ample aize regults in relatively

FIGURE 32. Principal componenta plot of Diceratherium akulis with
specimens identified by opeciea, locality, and age. Shaded areas
include all specimens in the same subgeneric group.

*

```
ungatigfactory subgroups in termb of dispersion. Two specimens are grouped as DICE3S repreaenting Oligocene D. axmatum. DICE1S and DICE3S are well separated and consigtent with interspecies variation. However, DICE3S and two specimens of DICE1S are from the same quarry ( 77 Hill ) in Wyoming. Thus, this interpretation accepta a polyphyletic sample from that locality. The single specimen of DICE2S is problematic. Although, consistent in time with DICEIS, it may be a distinct apecies (D. niobrarense). It'a inclugion with DICEIS would algo be congigtent with variation in single species subgroups.
Mandible (Figure 33) -- The scatter of this small sample does not suggest any subgeneric matphometric grouping. Available data for three of the apecimens suggests that they are taxonomically unique. Although similar in locality and age, the morphometric separation of D. niobrarense (DICE2m) and D. armaturt (DICEIM) supports the notion of two species occurring at that time (also suggested by the skull analyais). In the absence of other data, locality alone wag not considered gufficient to unite DICE3M and DICEAM. In gumary, each of the gpecimens was retained as a single-6pecimen aubgeneric group (DICE1M, DICE2M, DICE3M, DICE4M)-
```


FIGURE 33. Principal components plot of Diceratherium mandibles with gpecimens identified by species, locality, and age. shaded areas inciude all specimens in the aame subgeneric group.

!

FIGURE 34. Principal components plot of Forstercooperia akulla with specimens identified by species, locality, and/or geologic age. Shaded area includes all specimens in the ame subgeneric group.

Forstercooperia - SKULLS


```
This taxonomic confusion is not important for thig study gince the
two specimens represent smaller, more primitive hyracodontids
regardlegs of their name
    Mancible (Figure 35) -* Total variation, greater than in
Diceros but less than in Rhinoceros {Table 5), is marginally
consistent with a two-species hypothesis. The three specimens were
divided into two gubgeneric groupg: FORSIM, a single Epecimen of F.
sharamuramense, and FORS2M, two gpecimens classified ag F.
confluens. Variation within FORS2M is consistent with a single
gpecies when compared against the monotypie living taxa. In
summary, total variation, taxonomic data, and morphological
separation gupport the division of the mandibles into two
subgeneric groups.
```


Gyrachyas

The Eocene genus Hyrachyus cepresente the most primitive Ihinocerotoid condition. It is similar in size and ahape to the most primitive members of other perisgodactyl superfamilies, for example, Hyracotherium, a basal form of the Equoidea (horses), and Heptodon, a basal form of the Tapiroidea. Primitive features in Hyzachyus include small size, distinct gagittal crest, narrow posterior projecting occiput, convex doreal akull profile, amooth

FIGURE 35, Principal components plot of Forstercooperia mandibles with specimens identified by specieb, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

Forstercooperia - MANDIBLES.

$\stackrel{\leftrightarrows}{6}$

FIGURE 36. Principal components plot of Hyrachyus skulls with specimens identified by apecies, locality, and/or geologic age. Shaded areas include all specimens in the same subgeneric group.

Hyrachyus - skulls

$\stackrel{\sim}{\omega}$

```
HYRA2S was based in part on the affinities of C and D faumas and on
its morphological affinity with H. eximiug. The H. grincegs
specimen is probably H. eximius (Frothero, personal communication).
Several authors (Wortman, 1901, WOod, 1934, and Gazin, 1976) have
considered the faunal differences between beds A-B and C-D
sufficient to divide the Bridger Formation into two members (Negt,
1987). Their conclusions guppport the division of Hyrachyus skulla
into two subgeneric groupg.
    Mandible (Figure 37) -- Thig analysis parallels that for the
Bkulls. Two specimena of H. modestus from Bridger B form a group
(HYPAIM) distinct from two specimens of H. eximius from Bridger D
(HYRA2M). This pattern is consiatent with the variation seen in
the polytypic living analog Rhinoceros. Among the foseil genera,
Hyrachyus Bhows the highest gimilarity between the gkull and
mandible principal components plote.
```


Hyracodan

Hyracodon ig the mogt commonly found genus of
hyracodontid. Skeletons and teefh are known from many localitiea
spanning one of the longegt time ranges of any mamalian genus fmid
Eocene to late oligocene) - Hyracodon retained many of the
primitive features of Hyrachyus including absence of horns and
retention of a full complement of incisors and canines. Derived
characters include: distinctive conical shape of incigora, flared

FIGUFE 37. Principal components plot of Hyrachyus mandibles with вpecimens identified by species, locality, and/or geologic age.

Shaded areab include all specimens in the bame subgeneric group.

Hyrachyus - MANDIBLES

$\stackrel{4}{*}$

Abstract

zygomatic arches, and molarization of premolars. Though mediumsized in general, Hyracodon species differed mostly in size with the average or conmonest forms usually deacribed as sheep or great dane sized. Slender, elongated limbs and other pasteranial features indicate that Hyracodon was very curborial, a Iifestyle ugually aggociated with relatively open habitats guch as savanna or grassland. The latter inference would suggest that byracodon was a grazer, which is supported by its relatively hypsodont cheek teeth. However, the teeth are otherwige simple and primitive which auggeats a browsing habit. Further confusing this igsue is the lack of any well-defined ecological facies associated with the fossils (Troxell, 1921; Sinclaix, 1922; Wood, 1926; Radinaky, 1967b; Prothero, 1987, in presa b; Fzothero et al. 1986, 1989). Sycull (Figure 38) -- Hyracodon was the least variable of ali genera with total variation considerably less than Dicercs. This pattern is consigtent with aingle-apecies variation in the context of this study and is consistent with the classification of all four gpecimens as H. nebraskensis. Relative to the living analogs, H. nebraskensis (as represented by these apecimens) appears to be a well-defined morphologic species. The small separation between the South Dakota and Nebraska specimens may indicate some geographic differentiation within the species or temporal diffezentiation within the Orellan.

FIGURE 38. Principal components plot of Hyracodon skulls with
specimens identified by species, locality, and/or geologic age.
Shaded areas include all epecimens in the aame subgeneric group.

Hyracodon - SKULLS

苦

Abstract

Mandible (Fiqure 39) -- The pattern of the mandible plot is very aimilar to that for the akulls and is baged on the bame four apecimens (mandibles are matched with the okulls). They are therefore grouped similarly as fYCOS. However, in this case the "outifer" is a South Dakota specimen while the Nebragka mandible is more closely associated with other South Dakota specimens. The mandible resultg aupport the conclusions atated in the skull analyais.

Indricotherim

The Indricotherium specimen used in this study represents a lineage of oligocene hyracodontidg which became the largest land marmals yet discoverad (approximately 15 to 18 feet at the日houlder). These rhinocetotoids retained many primitive characters including relatively long narcow skulls (dolichocephaly) without horns, long linbs with alender proportiona, and retention of incibors. The incigors form a well-developed functional complex (vertical I^{2} and procumbent I^{2}) conoidered to be an evolutionary novelty which unites the members as a monophyletic group. slightly Mypsodont. but otherwise primitive teeth, combined with large aize suggest that indricotheres browsed on soft tree-top vegetation. Ocripital and postcranial features indicate they fed in a head down ponition. Members of this group have historically been placed in

FIGURE 39. Princlpal componentg plot of Hyracadon mandibles with
gpecimens identified by apacies, locality, and/or geologic age.
Shaded area includes all specimens in the same subgeneric group.

Hyracodon - MANDIBLES

$\stackrel{\text { ■ }}{\infty}$

```
three genera: Indricotherium, Baluchitheritm, and Paraceratherium
all of which belong to the subfamily Indricotheriinae. The
gimilarity of specimens in these genera has led to arguments for
the gynonyny of Paraceratheriun and Baluchitherium (both are more
gimilar in size and amaller than Indricotherium), or of all three
genera. In either cage Pazaceratheriun has priority (Forster-
Cooper, 1911, 1924, 1934; Granger and Gregory, 1935. 1936; Lucas
and Sobus, 1989; Osborn, 1923; Prothero et al., 1986, 1989, in
prees b)
    Skull and_Mandible, (no figures) -- Single gpecimens cannot be
analysed by PC since no axes can be found which maximize variance
```



```
Hence, there are no principal components plots for the
Indricotherium okull or mandible. However, the gingle gpecimen
does represent a real population of indricotheres and is therefore
an estimate of the mean of that population which wili be uged in
later canonical variates analyoeg (Chapter 4). The anount and kind
of variation repregented in the indricotheres by this one specimen
depends on aystematic opinion: Lucas and Sobus (1989} considered
the cranial differences between Indricotherium and Paraceratherium
(` Baluchitherium) not to be of generic level importance and
therefore the specimena congtitute a aingle genus, Paraceratherimm.
Further, they argue that any differences which do exist between the
forms can be interpreted as repreaenting sex dimorphism.
```

```
Regardless of what taxonomic level is ansigned to the differenceg between the originally defined genera, the specimen used here represents all of the indricotheres.
```


Fernccart


```
premaxillary bones, reduced sagittal crest, shortened basicranium,
and heavy Lower jaws with everted, rugose angles. Additionally,
Menoceras and the higher rhinoceroses developed extensions of their
molar cross-lopha resulting in crochets, antecrochets, and cristae,
which fuged to form foggettes and lakes in the dentine. The
digappearance (extinction) of both Dicerathezium and Menoceras
in the Heningfordian age is correlated with the appearance of
aceratherine and teleoceratine shinoceroges which were algo
probably immigrant taxa (Peterson, 1920; Protheror in press a;
Prothero and Manning, 1987; Prothero et al., 1986, 1989; Tanner,
1969; Troxe11, 1921).
    Skull (Figureg 40-4l) -- Principal componenta regultg for
Menoceras skulls are shown in Figure 40. Among the fossil genera,
Henoceras is one of the more homogeneous groups. Total variation
among the skulls is below that of Dicezos and therefore consistent
with a hypothesis of a gingle species. Thig is further supported
by the fact that the skull sample was not divigable into subgeneric
groups by any criteria. The gample is primarily composed of
gpecimens from two localities, the Agate Springs and Roll quarrieg.
The Agate specimens are classified as H, axikarense. The
unclas@ified specimens from Roll quarry form a mearly non-
overlapping clugter eeparated from the arikarense group along the
second PC axin. If the Roll specimens are Azikarense, which is
```


FIGURE 40. Principal components plot of Menoceras skulla with
 specimens identified by species, locality, and/or geologic age.
 Shaded area includes all specimens in the same subgeneric group.

Menoceras - SkULLS


```
consiatent with the single species hypothesis suggeated by the variation pattern, then the small differences in shape between the quazries may be attributed to geographit and/or temporal factors. Confounding the total variation in Menoceras is variation due to gex dimorphism. Several specimens were labeled as to 日ex, which was probably determined by relative gize differencea of haxn bos日eв. Mixed gpecimens from the same locality have either large horn bosseg (presumably males) or little to no horn bosses (presumably females). Sexing of specimens was checked against photographs from which additional sexing was accomplished- An analysis of eex dimorphiam in Henoceras is shown in figure 41. The Roll quazry group in male except for one lazge female and does not provide evidence for sex dimorphism by itaelf. Dimorphism in the M. arikarense Agate quarry bample appears to be obvious when obsezved graphically (Figure 4lb) and is marginally muported by a Wilcoxan Rank Sum Test (SUM \(=38\); \(\operatorname{SUM}_{\mathrm{M}}=40 ; \mathrm{T}_{\mathrm{L}}=41 ; \mathrm{T}_{\mathrm{R}}=63\) ). When Bexes of the total sample are grouped (Figure 41c), the dimorphiam is less obvious but the larger anaple aize resulte in a significant Wilcoxan teat for differencen between malea and females (Suk \(=60\); \(\operatorname{SUM}_{M}=111 ; \mathrm{T}_{\mathrm{L}}=66 ; \mathrm{T}_{\mathrm{R}}=105\) ). Mandibleg (Fiqure 42) -- Principal components results for Menoceras mandibles are shown in Figure 42. Except for a single specimen (MENO2M), the mandible results are bimilar to those for
```

FIGURE 41. Principal components plot of Menoceras skulis with
specimens identified by gex. Shaded areas include all specimens of the same sex.

a. Menoceras - Skulus Maver end Farrabor within localfides.

b.

C.

FIGURE 42. Principal components plot of Menoceras mandibles with specimens identified by taxonomy, locality, and/or geologic age. Shaded areas include all specimens in the game subgeneric group.

Menoceras - MANDIBLES

```
the skull. Within an Arikareean group of relatively low variation,
the Agate (H. arikarense) and Roll gpecimens are digtinct
morphologically to a degree consibtent with geographic and/or
temporal variation within a species. Although the MgNo2M specimen
is not gignificantly outlying morphologically from meNolm, it was
retained ag a subgeneric group based on information that euggeste
it represents a different biological population in time and space.
Sex dimorphism was not analysed in the mandibles becauge of the
lack of any characters comparable to the horn bosges for sexing
apecimens.
```


Perrantas:

Abstract

are associated with other characteristics. Smaller members (\mathcal{A}. profactum and P. hesseij were primitive hornlegs browgerg while larger menbers $\{P$ - supereiliosum) had small texminal horns and may have been grazexs (Oaborn, 1904; prothero in press a; prothero et al. 1986, 1989; Prothero and Manning, 1987; Prothero and Sereno. 1982).

Skull fFigure 43) - The total and PCl variation Eor Peracezas akulis are the largeat of all the genera. Thia muggeata, by somparison with the living analoge and fossil genera analyzed thug far, that multiple species may be repzesented by the aample. Moat of the variation is along the PCl aize axis. Indeed, the Extremes of the pel geale were set for all of the skull pc plots by the Peracezas eample. It was pogaible to divide Peraceras into two subgeneric groups, but not without eonfounding information within each group. pERAls congistt of the two smallegt specimens. Both are from the Bargtovian of New Mexico but are classified as different \quad pecieg. This confounding of taxonomy $f(P$. hessei and p. profectum) into a subgeneric group was based on geography, time, moxphology, and variation. Firgt, they are more morphologically sinilax to each other than either it to the three specimens of P. superciliosun (PERA2S). Second, the range of variation ghown by the two 日pecimens is conaigtent with that of a single apecies in

FIGURE 43. Principal eomponents plot of Peraceras gkulla with

specimena identified by taxonamy, locality, and/or geologic age.

Shaded areas include all specimens in the same subgeneric group.

\%

Abstract

Mandible (Figure 44) -- Total Pc variation, which ia among the highest of the genera (Table S), tuggeats the presence of multiple subgeneric groups. Two subgeneric groups were identified based on tdxonomy, geography, moxphology, and zelative amounts of variation. PERAIM (like PERAIS) includea apecimena from the New Mexico Bargtovian which are clasoified as either P. profectum or P. hessei. Thege 日pecimeng form a morphometric group, conaibent with other fossil and living groups, which supports the grouping of P. hessei and P. profectum. Here, the two profectum specimens exhibit a range of aize neacly incluatve of the hessei speciruen, with one of the P. profectum more similar to hessei than to the other P. profectum. PERAIM ia clearly distinct from PERA2M which represents P. superciliosum from the New Mexico Baratovian. The separation of PERAIM and PERA2M fa bimilar to the geparation of pgRAis and PERA2S but an important difference is that the p. superciliosum mandibles are from the game locality and time as the hessei/profectua subgroup. The relative contemporaneity and gympatry of PERAM and PERA2M, combined with the gize difference between the two groups, further emphasizes the morphometric similarity of P. profectum and P. hessei. Prothero (1989) recognizad hessai as a valid species.

FIGURE 44. Principal componenta plot of Peraceras mandibles with gpecimens identified by taxonomy, locality, and/or gealogic age. Shaded areas include all specimens in the game gubgeneric group.

閭

Suhkyracodon

FHGURE 45. Principal componente plot of subhyracodon akulla with Bpecimens identified by ppecies and age- Shaded areas include all epecimens in the same subgeneric group.

Subhyracodon - skulls


```
Bequenced from left to right (earlier to later) indicating
evolution of larger gize with time.
    Mandible (Eigure 4G) -- Total and PCl variation is al&ghtly
larger than that of the black or white rhinos (Table 5). The
gpecimens form a cloud of variation approximately equal to that of
the white zhino but represent the same three time taxonomic groups
as determined for the skull data. They were thus subdivided into
analagous subgeneric groupg (SUBHIM, SUGH2M and SUGH3M) on the sarae
basis. However, overlap is significant here with s. mitis entirely
within the gize range of s. occidentalis ouch that the temporal
pattern geen in the gkullg is geen here only between }S\mathrm{ ,
occidentalis and s. tridactylum.
```


Teleoceras

Teleoceras is a common mid-to-late Miocene genus which

 probably immigrated to North America from Eurasia. Abundant fobsils are found in many localities, especially thone of the northern Great Plaine. These localities are usually interpreted as river channel deposits, euggesting that Teleoceras frequented riparian habitate and perhaps was significantly aquatic in its behavior. Hody proportiona similar to those of the living hippopotanus (i.e. barrel-like trunk and stumpy limbs) have been cited as aquatic adaptations, However, there are no unusualFIGUAE 46. Principal components plot of Subhyracodon mandibles with apecimens identified by apecies and age. shaded areas include all specimens of the same subgeneric group.

$\underset{\sim}{\text { H }}$

```
adaptations of the Teleoceras skull which might correlate with an
aquatic lifegtyle (in contragt, the hippopotanus has dorgally
shifted orbita, nares, and auditory meati). Armong Miocene
rhinoceroges, Teleoceras hag hypgodont (high-crowned) teeth, a
character traditionally associated with grazing and curgosial
habitg. Teleoceras is thus paradoxical vis-a-vis the hypsodonty-
curgoriality correlation. A further convolution ig the grazing
analogy between Teleoceras and the hippopotamug, since the
hippopotamus ig a brachydont (low-crowned) grazer. The game
localitien which yield Teleoceras usually also contain a
brachydont, browsing rhinoceros which is typieally Aphelops or a
related form (thege browsera have not been hypothesized as
aquatiE). Size changes in Teleocerds were irregular guch that
later forms were not the largegt. At leagt one small form may have
been a dwarfed lineage. Diagnostic featureg of the Teleoceras
gkull include: brachycephaiy, hypeodonty, broad lambdoid creste and
zygomatic arches, Eused and laterally downturned nasal boneg,
shallow nagal incigion, reduced premolarg, and setained upper
incigoxe. Most, but not all, Teleoceras had a small terminal
rugogity on the nasal tip indicating the presence of a gingle,
median horn {Oaborn, 1904; Prothero, 19a7; Prothero et al., 1986,
1989; Prothero and Manning, 1987; Prothero and Sereno, 1982;
Hooijer, 1978; Voorhies and Thomagson, 1979; .
```

FIGURE 47. Principal componenta plot of teleceeras akulla with
opecimens identified by apecies and age. Shaded areas include all
specimens in the same subgeneric group.

Teleoceras - SKULLS

Abstract

SkuIl (Figure 47) -- Total PC variation is greater than in Rhinoceros and similar to Diceratherium among the fosails. PCI variation is slightly less than in Rhinoceros. Taking both PC axes Into account, Teleocezas hag one of the largest seatter of points among all the genera. Digeection of this variation resulted in five subgeneric groups, principally distinguished by age and taxonomy. Geographically, the sample ia from plaing states fsee Table 2), and none of the bubgeneric groupg repreaent large or complex rangea, eapecially when compared with the range of the black zhino. TELE1S compriees two morphologically gimilaz Hemingfordian specimenn (T. americanum). The agsociation af these smallest specimens with the earliest time interval is gimilar to the patterne of aize evolution observed in other chinocerotoid genera. TELE2S unites Bargtovian opecimens from Nebraska Classified as T. medicornutum (including one specimen labeled as T. thompsoni). The digpersion of this group is gimilar to other subgroups in other genera based on the same typer of information. In comparison with living rhinos, no more than aingleagecies variation is indicated. TELE3S repreaente T. major from the Clarendonian of Nebragka. Dispergion size and minimal overlap with other groups auggest that TELE3S is a morphometrically distinct group, different fron other Telaoceras at other times, and probably a single species. TELE4S comprisen late Hexphiliian group of T. hicksi. It in morphometrically diatinct from TELE3S and TELE4S and


```
its dispersion is congistent with those groups. TELE5S is a time-
taxonomic group representing early femphillian T. fossiger,
This ig a problematic group because of the morphometric overlap
with TELE4s and ita odd dispersion. In auch casea of overiap,
morphometric distinctivenegs might be revealed by analyses of
variation along higher axes.
    Becauge the five gubgeneric groupg reprement five consecutive
land mammal ages, some tentative gtatements about size-ghape
evolution in Teleoceras may be attempted. This as⿴umes that the
groupe (populations) at any one time are derived from the previous
group (or very bimilar, but unknown, group). Because there ig no
temporal unidirectionality among the Teleoceras groups in terme of
gize and ahape change, the subgeneric pattern may be analyged
pairwise with the following results. Toleoceras increased in gize
from the Hemingfordian to the Bargtovian (TELEls to TELE2S). From
the Baratovian to the Clarendonian (TELE2S to TELE3S), there
appears to have been some significant shape change since these two
groupg are aeparated along the gecond PC axis by as much as any two
groupa in this study. It also appeara that a size decrease may
have acompanied this change. From the Clarendonian to the early
Hemphillian (TELE3S to TELE5S), gize increased but without any
apparent change in average shape. The youngegt group, TELE4S (late
Hemphillian), appears to be alightly smaller than TELESS (but not
gmaller than T. hickgi within TELE4S). The temporal (and
```

```
evolutionary?) pattern of the subgeneric groups is conaistent with
earlier observations by Prothero and Sereno (1987) that Teleaceras
does not simply follow a gradient of gradual increage in size
through time. A gtatement by the game authors that T. fossiger is
unuBually large is not supported by the skull results presented
bere. Lagtly, it should be noted that mome specimens from three of
the groupg (TELE2S. TELE3S, and TELESS) are clugtered near the
center of the plot and are morphometrically similar,
    Kandible (Figure 48) -- The total PC variation associated
with the Teleoceras mandibles is intermediate (gomewhat less than
Rhinoceros). This amount of variation, not by itself indicative of
wultiple gpecies, is associated with the largest PCI-PC2 scatter of
any genus (akull or mandible) in the study. Accordingly, the
variation in this sample was the most difficult to analyse of all
the genera {skull or mandible} and produced the leagt gatisfactory
results. Generally, the subgeneric graups have more "irregular"
and larger dispersions, and exhibit more morphometric overlap, than
any other sample. As with the gkull sample, the Teleoceras
mandible variation was grossly reducible by grouping specimens to
age and age-associated taxonomies; dispersion and geoegraphy were
not helpful. Five subgeneric groups were determined. TELE1M
represents the earliegt specimeng and are among the smallest in the
Bample (Hemingfordian T. dmericanum) ( TELE2M is a Barstovian group
of T. medicornutum (which includes two gpecimeng labeled as T.
```

FIGURE 48. Pxincipal components plot of Teleoceras mandibles with specimens identified by species and age. Shaded azeas include all specimens in the same subgeneric group.

Teleoceras - MANDIBLES


```
thomsoni as in the skull analysis). This group significantly a overlaps the Clarendonian group (TELE3M), which was not the cage with the skulls (i.e., Bargtovian and clarendonian mandibles appear to be more similar in aize and shape than are the skulla). TELE 3M unites Clacenconian gpecimens oE \(T\). majos, but as is typical in this genug, it has a large disperaion indicative of polyspecific variation. As previously gtated, the gignificant overlap with apecimens from the Barstovian (TELE2M) was not observed in the gkulla. Specimeng from the Hemphillian were subdivided into early (TELE5M - T. fossiger) and late (TELE4M - T. hicksi) groupe. TELESM ia fairly distinct from TELE3M (Clarendonian) along the gecond axis, reflecting morphometric shape differences, but they overlap greatly in aize. If the lazge outlier in TELESM were removed from this group, the remaining dispersion would be very conaistent with afngle species variation as shown by the living anaiogues and well-defined fossil groups. TELE4M is problematic because of its small sample size and odd dispersion, Little can be said except that it overlaps in both shape and size with three other groups. Temporally, the only obvious evolutionary change observed is a shape change between the earlier \(T\). vajor and the later T. fossiger asguming they are more or less linked in a lineage. These unsatisfactory results for Teleoceras mandibies, given good resuits elsewhere, suggest either that their
```

```
clasgifications and gtratigraphy are less accurate, or that they
are evolving in more mogaic, leas patterned ways.
```


Trígoniat

```
Trigonias \(\ddagger s\) the most primitive genue among the rhinocerotids, or true rhinoceroges, and probably evolved in North Aruerica within a lineage leading back to Hyrachyus and including Teletaceras and penetrigonias. By the early Oligocene, Trigonias was distributed over the High Plains and is best known from abundant quarry samples in Colorado. Trigonias was a medium-sized rhinocerog with a relatively long, narzow gkull (dolichocephalic). a concave or saddle-shaped dorsal skull profile, an extended occiput with flared lambdoid crests, low broad sagittal cresta, long nasal bones, zetained canines, and a dorsally convex, medially tilted mandibular condyle with straight anterior and posterior borders. Highiy variable premolars among the specimeng within quarcy eamples led to typological taxonomic splitting by early paleontologist (Matthew, 1931; Prothero in press a; Prothero et a1., 1989; Rassell. 1982; Kood, 1931).
Skull (Figure 49) -* Total variation is intermediate to low atoong the fogsil genera and is interemediate between Diceros and Rhinoceros among the living analogues (Table 5). All of the specimens are late Eocene (Chadronian) in age, and all but one are from Weld County, Colorado. Neither taxonomic nor morphometric
```


FIGURE 49. Principal componenta plot of Trigonias skulls with specimens identified by taxonomy, locality, and/or geologic age.
 Shaded areas include all specimens in the same aungenerie group.

Trigonias - SKULLS

Abstract

Mandible (Figure 50) -- Total variation is less than that for any of the extant rhinoceroses and auggeats that the multivariate variation of the sample is consistent with that found in gingle species. This is supported by the size and shape of the dispersion in the principal components space fcompare with Diceros and Henoceras, Figurea 9 and 41). Additionally, the sample is geographically and temporally constrained with no taxonomic differentiation indicated. Thug, there is no coabination of evidence to guggest that more than one distinct gubgeneric group exigto. All of the Trigoniag mandibles were therefore retained as a group (TRIGM) for gubgequent arong-groups analyses. At leat one of the two specimens classified to specieg is invalid becauge there ia no evidence that they represent different populations. Complete morphometzic overlap of mandibles labelled only "Weld, co." with those from Hoxbetail creek suggestis that they represent the same populational-variational unit, contrary to the result seen in the gkulls. However, the five "Weld" gpecimeng are fairly well clustered in a pattern that would perhaps suggest some locality differentiation.

Saigaramyodon

[^2]
FIGURE 50. Principal components plot of Trigonias mandibles with
 apeciment identified by taxanomy, locality, and/or geologic age.
 Shaded areas include all epecimens in the gane subgeneric group.

Trigonias - MANDIBLES

$\stackrel{\text { ® }}{\boldsymbol{\circ}}$

FIGURE 51. Principal Eomponents plot of zaisananynodon mandiblea with epecimens identified by taxonony, locality, and/or geologic age. Shaded areas include ald specimens in the same subgeneric group.

Zaisanamynodon - MANDIBLES

N

GENERIC AND SUGGEHERIC POOLED WITHIN-GROUP DISPERSIONS

The subgeneric groups detesmined in the preceding analysea will be uged in the among-groups analyseg of chapter 4 to derive a moolea within-group diapersion. This di日persion is ubed as a gtandard by which to judge aroong-graupg variation in the canonical variates analyseg. Here, the pooled generic and pooled gubgeneric dispersions Eor both gkull and mandible are presented. They graphically show the effect of dissecting the generic variation into subgeneric groups.

skull


```
FIGURE 52. Principal components plot of all living and fogsil
skull bpecimens, pooled by mean-centered genera. Axes are the same
ag for Figure 53. Foggil - dark circles. Living - open triangles.
Specimens of the Javan rhinoceros (upper left) and Indian
thinoceros (lower right) are indicated by dotted Lines.
```

POOLED GENERA - SKULLS LIVING (\triangle) FOSSIL ((\cdot)

FIGURE 53. Principal componente plot of all living and fossil
skull specimens, pooled by mean-centered subgeneric groups. Axes are the game as for Fiqure 52. Fasail - dark circles. Living open triangles.

$\stackrel{\square}{\infty}$

```
analogues is a reagonable measure of species/population level
variation in rhinocerotoids generally, When fogsil genera are
dissected into hypothegized population or species level subgeneric
groups, the overall fossil variation conforms well to that of the
living analogues. Therefore, the pooled subgeneric data get
provides a good estimate of within-group variation by which to
maximize variation among those groups.
```


Mandible

Pooled Gegera (Figure 54) ~- In general, the results for mandiblea are gimilar to that for skulls (diseugaed above). That in, variation in most of the fogsilg is not much greater than that of the living forms (scme living specimens are peripheral). The more extreme outlying specimens belong to a few of the more variable fossil genera. Most of the circumferential fo日sils are Teleoceras specimens, but unlike the pooled skull dispersion, the extreme left and right outlying mandibles are Aphelops.

Ppoled Subgeneric groups (Figure 55) -- As in the skull analysis, when the genera are aubdivided based on known correlatea of population or apecies level variation, the pooled dispersion becones more homogenous and suggeats that the living analogues are good measures of apecies level variation in rhinocerotoids generally.

FIGURE 54. Principal componenta plot of all living and fossil mandible specimens, pooled by mean-centered genera. Axes are the same as for Figure 55. Fossil - dark circles. Living - open triangles. Specimens of the Javan rbinoceros (left) and Indian rhinoceros (right) are indicated by doted lines.

FIGURE 55. Principal componenta plot of all living and foesil
mandible specimens, pooled by mean-centered subgeneric. Axes are the same as for Figure 54. Fossil - dack circles. Living - open triangles.

CHAPTER 4.

Abstract

AHOMG-GROUPB RELATIONBEIPE - CANONICAL FARIATES ANALYEEB

MILTIVARIATE VARIATION AND CANONICAL VARIATES ANALYSIS

Each of the gubgeneric groups detexmined in the previous chapter may be repreaented by its multivariate mean (centroid). The reaulting bet of group means may then be treated as data points analogous to the specimens in principal eamponents analysis. Similarly, the variation among the group means can be partitioned among a new get of mutually orthogonal, variance-maximizing axea (Campbell and Atchley, 1981; Albrecht, 1980, 1992)- However, canonical variates analygis (CV) is not simply a principal componentg analysia of group means. Two features digtinguish $C V$ from PC: (1) CV maximizes the proportion of among-groupg variation relative to within-group variation (hence, the emphagis on withingroup variation in Chapter 3): and (2) the $C V$ axes are sealed such that they represent equivalent unite of within-group variation, effectively eliminating within-group corrslations. The overall effect of $C V$ is to maximally geparate groups along each respective axis. Because the new $C V$ axes define a morphospace (as do the PC axes), means reflecting similar morphologies plot more closely together, while means reflecting different morphologies plot more distantly from each other.

STRATEGY AND SIGNIFICANCE OF CANONICAL VARIATES RESULTS

Abstract

The gtrategy in Chapter 3 of disgecting the variation of living and fogsil genera regulted in gubgroups whoge variation approximateg the range of individual differencea at the population or apecies level. The relative homogeneity of the living and fos日il subgroupe providea the batis for pooling of theae pregumably gimilar groups. The pooled within-group dispersion is a better egtimate of within-group variation acrogs all chinoceros genera. Canonical raziates (CV) analygis uses thí pooled withinmgroup egtimate to maximize among-gгoupg variation in the multivariate morphompace -

Abstract

Once the pattern of group celationsinips is established in the CV morphospace, the morphological affinities of groups can be interpreted in terng of various biological correlates. This analysis of among-groups variation is analogous to the disaection of the specimens in the principal components analyaes. In the following bection, the morphological relationshipg in cV space are analysed in three major waya, First, the multivariate morphology is observed relative to more traditional, character-based taxonomic investigations (including posteranial and non-morphological characters), Taxonomic correlations are analyzed with respect to genera, families and aubfamilies, and cladistic character states. Second, the multivariate morphology ig observed relative to two structural-functional aspects of rhinoceros skull biology, in particular, horn arrangement and feeding gtrategy. Third, temporal patterns of morphological change are analysed with regpect to intergeneric and intrageneric variation.

INTERPRETATION OF CANONICAL VARIATES RESULTS
For each data get fakull or mandibles, one CV analysis was
done, based on the appropriate pooled within-group dispersion.
Each cV analygis resulted in an ordination of the subgeneric means
along a new get of variance-maximizing axes. Within skulla or
mandiblea, the same equally scaled-cV axes are used for all plots.
Figures 58-73 are baged on the mame fundamental canonical variateg
result where the meang of the gubgeneric groups arg shown in the

```
plane of the firgt two canonical axes. The subgroups correapond to
those in Table 2 (gkull) and Table }3\mathrm{ (mandible).
    Eigenvalues (variances) of the canonical variate axes are
gummarized in table 6. The firgt two canonical axeg include much
Of the total variation for both fkulls and mandiblea (828 and 869,
reapectively). The firgt CV axis, like the first PC axis, is a
Gize axig (digcumged below). The canonical variate means of
gubgroups are given in Tablea 7 (skull) and a (mandible) for all cv
axes on which there is among-groups variation. Theae means
represent the Bcores of the group centroids on the respective axes.
The range of mean values for a given axis decreasea from lower to
higher axes, as indicated by the decreasing eigenvalues of Table G.
    Becaube the group means exist within a multidimensional
hyperepace, the separation of the meang in the plane of two cV axes
may not always aceurately reflect the true distancea between them.
The more the firat two axes account for the total variation, the
more the diatances will reflect the true distances. One measure of
the distances between means in the multidimensioanl space is the
generalized distance (GD), D2. Generalized digtancea are given in
Table 9 (ekull) and Table 10 (mandible). For those genera with
Bubgroups, inter-subgroup distances are gummarized in Table 11.
```

TABLE 6. Summary of eigenvalues, percent of total variance, and cumulative percent of total variance for gkull and mandible canonical variates.
sKusc

cv	Eigenvalues	3 of Total	Cumulative \%
cv1	93.4	61.7	61.7
CV2	33.3	21.8	83.1
cr3	6.3	4.1	87.2
EV4	4.6	3.0	90.2
cus	3.0	2.0	92.2
cvo	2.9	1.9	94.2
cV7	1.7	1.1	95.3
cve	1.7	1.1	96.4
cro	1.2	0.8	97.3
cv10	0.8	0.6	97.8
cV11	0.7	0.5	98.3
cv12	0.7	0.5	98.8
cuts	0.5	0.4	99.2
CVI6	0.5	0.3	99.5
cV15	0.3	0.2	99.7
cvib	0.2	0.1	99.6
cvil	0.1	0.1	99.9
c\%18	0.1	0.1	99.9
CV19	0.1	0.1	100.0

MANDIBLE

cV	Eigenvalues	8 of Totel	Cumblarive ${ }^{\text {a }}$
cv9	69.9	77.3	77.3
cr2	10.5	19.1	88.4
ev3	3.8	4.2	92.7
Cv4	2.4	2.7	95.4
cVs	1.2	1.3	96.8
cv6	1.1	1.2	98.7
cv7	0.5	0.6	98.7
cve	0.5	0.5	90.5
cvo	0.2	0.3	99.5
Cv10	0.2	0.2	99.8
cy11	0.1	0.2	100.0

TABLE 7. Canonical varlate means for bkull aubgroups, Genera and subgroups are libted in the same order ae in Table 2. Eigenvalues (EIGEN) and percentages of total among-aubgroup variance (o) are given at the bottom.

SUEGROUP	cbl	cv2	C43	CV4	cv5	Cv6	cv7	cvA	cv9	cıl0	c 411	Cul2	cvi3	cV14	CV15	cV16	cv17	cv18	cu19
cepas	9.8	-0.6	2.3	-7.4	-1.0	-2.1	-1.4	-1.2	-0.2	-0. 2	-0.0	-0.7	-0.1	0.5	-0.0	0.1	0.2	0.0	0.0
sumus	-2.9	1.6	4.9	-1.0	-1.0	3.7	0.6	3.2	0.5	0.3	1.2	0.4	0.3	-0.3	-0.3	0.0	-0.2	-0.2	-0.9
dicos	4.6	1.1	2.2	+1.6	1.6	- 0.3	-1.8	-1.2	-1.5	0.7	-1.2	1.2	-8. 1	-0.1	-0.0	-0.5	-0.2	-0.0	8.1
unics	7.3	6.9	2.7	0.9	-0.3	-1.7	-0.3	-0.3	0.4	$\cdot 1.2$	-0.4	-0.6	-0.2	1.2	-0.3	-0.2	0.9	-0.1	-0.1
davas	3.5	6.2	2.6	0.3	-0.1	-0.3	- 3.3	-0.6	-2.1	0.1	-0.3	-0.1	-0.5	-0.0	0.2	-0.1	-0.2	-0.1	0.0
acer is	4.0	1.7	0.3	1.2	-1.0	-3.6	1.0	-3.6	0.2	1.1	-0.2	0.1	0.4	-0.6	0.0	-0.9	-0.3	-0.1	0.1
aceris	6.3	-1.3	8.5	1.1	-0.8	2.4	3.5	-0.2	-1.0	8, 8	1.2	0.1	-0.1	0.0	0.0	0.3	0.1	0.3	0.0
AHYMS	-5.3	-5.9	-0.9	0.3	-2.5	0.7	0.0	-0.9	0.6	0.7	0.6	3.1	0.0	0.2	0.2	0.5	0.0	-0.2	-8. 1
APHE1S	-0.9	-0.8	-0.4	-1.8	-2.0	4.1	0.3	0.7	0.2	1.3	-2.0	-0.9	0.2	0.7	-0.3	0.3	-0.5	0.3	0.1
APHE2S	2.7	2.4	1.1	-2.0	1.2	2.5	-1.8	-1.1	1.5	0.9	1.3	-0.3	-0.5	0.6	0.0	0.2	0.3	-0.5	-0.6
OICEIS	-5.8	-2.3	-0.2	1.0	0.9	2.8	0.3	0.1	-0.3	-1.6	-2.0	-0.2	0.2	0.5	0.1	0.5	0.3	0.4	-0.3
dicezs	-3.1	-3.2	-1.3	-0.4	0.5	0.4	0.3	0.9	-0.1	0.6	-1.3	-0.2	-1.0	-0.6	0.0	-0.1	0.2	-0.4	0.3
dicess	0.1	-3.3	-2.9	-0.5	3.8	1.6	-0.6	-1.5	-0.3	1.0	0.2	0.6	1.1	1.1	0.3	-0.5	0.6	0.2	0.5
FOASS	-5.2	-4.1	-0.4	-2.1	1.5	1.8	0.1	-0.2	-2.3	-1.4	1.0	0.3	-0.2	-1.3	-0,8	-0.1	-0.2	0.2	-0.3
Hrhals	-16.0	-3.4	-0.0	0.8	-1.1	-0.7	-1.8	1.1	0.6	-0.0	0.1	-0.6	-0.2	-0.1	-0.2	0.4	-0.3	0.1	0.1
hYMazs	-13.0	-3.0	-0.4	0.4	-2.0	-0.8	-8.7	0.9	-0.0	-1.0	-0.1	0.3	0.9	-0.0	-8.3	-0.0	0.3	-0.1	-0.4
hYCOS	-13.0	-5.4	D. 5	0.6	-1.5	-1.2	0.2	0.0	0.3	-0.6	0.9	-1.2	-0.9	0.9	0.5	-0.6	-0.5	8.2	0.4
IMDRS	37.7	-18.0	-1.8	2.1	-0.4	-0.5	-0.6	1.0	D. 4	-0.4	0.0	-0.3	0.3	-0.0	0.0	-0.1	-0.1	-8.1	-0.0
mewos	-7.7	-0.3	-8. 1	0.3	1.1	0.9	-0. 2	0.0	0.3	0.5	0.9	-1.0	1.2	-0.7	0.6	-0.1	-0.3	-0.4	0.2
perals	-1.6	2.7	0.1	-1.0	-1.8	-1.4	0.0	-0.5	0.5	-0.7	-0.2	-0.1	1.5	0.1	-0.9	-0.8	-0.5	-0.5	-0.2
PERALS	7.8	8.0	2.0	0.6	-0.0	2.5	-0.5	-1.0	2.5	-2.4	-0.0	0.8	-0.5	-1.0	0.3	-0.2	-0.3	0.3	0.4
Suartis	-6.3	-2.0	-0.9	-0.2	. 0.5	-0.3	0.7	0.3	-0.4	0.0	-0.1	-0.5	-0.7	. 0.9	0.8	-0,0	0.6	-0.2	-0.2
Subltas	-4.2	-2.6	-0.5	-0.4	-0.6	-0.1	0.6	-0.8	0.2	-0.1	-0.1	-0.7	0.7	-1.0	0.1	1.0	0.6	-0.4	0.3
Suakis	-3.1	-2.0	-1.9	-0.1	2.1	0.1	0.4	0.4	0.8	0.9	-0.2	0.2	-0.8	-0.2	0.7	-0.7	0.2	0.5	-D. 5

Suecroup	cul	cV2	cv3	CV4	cy 5	cvo	cv7	cva	cv9	evio	cvil	cy12	cy13	cula	Cu15	CV16	cV17	culs	CW19
teleis	$\cdot 0.0$	5.9	-1.2	1.5	2.9	0.7	-0.1	-0.9	-0.1	-0.0	0.9	-0.0	1.2	0.8	0.1	-0.0	-0. 4	0.6	-0.2
telezs	5.6	8.6	$\cdot 3.7$	2.6	0.3	0.4	2.2	0.3	-0.0	0.7	0.3	-0.6	-0.9	0.2	-0.6	0.2	$\cdot 0.3$	-0.5	-0.4
tele3s	4.7	6.9	-3.7	-0.0	-1.8	-1.1	-0.2	1.5	0.3	1.0	0.4	0.1	0.1	-0.9	-1.3	-0.2	0.6	0.5	0.5
TELE4S	6.5	9.1	. 2.4	-2.7	- 1.3	-1.4	$\cdot 1.1$	1.0	0.0	0.4	-0.1	-0.3	0.7	. 0.7	1.0	0.6	-0.3	0.7	. 0.4
TELE5s	7.8	8.9	- 3.4	-0.8	-0.3	-0.3	1.3	1.4	-1.5	-1,2	0.1	0.8	-0.1	0.8	0.8	0.3	-0.1	-0.6	0.3
tales	-4.0	. 3.0	-1.6	-0.6	-0.5	-0.6	2.2	-0.6	-0.0	-0.4	0.2	0.3	-0.1	0.8	-0.4	-0.2	-0.4	0.0	0.1
EIGEN.	93.4	33.3	6.3	4.6	3.0	2.9	1.7	1.7	1.2	0.8	0.7	0.7	0.5	0.5	0.3	0.2	0.1	0.1	0.1
*	61.2	21.8	4.1	3.0	2.0	1.9	1.1	1.1	0.8	0.5	0.3	0.5	0.4	0.3	0.2	0.1	0.1	0.1	0.1

TABLE B. Canonical variate means for mandible subgroups. Genera and subgroups are liated in the same order as in Table 3. Eigenvalues (EIGEN) and percentages of total among-gubgroups variance are given at the bottom.

sulgraup	cvi	cv2	cv3	CV4	cus	cV6	cv7	cva	cup	cvil	cvil
ceram	7.6	-5.9	0.5	2.2	0.5	0.8	-1.9	2.0	-1.0	-0.4	0.2
stman	1.6	-7.9	1.2	-0.9	-5.8	0.5	1.3	0.1	-0.2	0.8	-0.3
Bicon	3.8	-4.8	1.4	-0.2	0.3	1.9	-0.2	0.3	1.2	-0.3	0.3
UNICA	5.8	-2.5	2.1	0.9	-2.0	-2.2	-0.4	- 1.2	-0.5	-0.4	0.
Javis	0.1	-1.6	2.2	0.7	0.5	0.0	0.6	0.0	1,0	-0.5	0.2
ACERIM	2.5	-0.3	0.0	0.1	-0.3	0.2	0.3	0.3	-0.1	-0.1	-0.1
acerzm	1.1	-0.2	2.0	1.1	-2.7	0.2	0.1	0.5	0.1	0.6	-0.4
APHEIM	0.6	-1.3	-1.6	1.1	-0.9	0.7	0.4	-0.6	-0.7	-0.1	-0.2
APHERH	1.7	-0.7	0.1	0.7	-1.7	-0.2	-0.4	0.6	-0.2	-0.5	-0.2
APHESH	7.7	-0.7	-1.2	1.2	-0.7	0.7	1.0	-0.0	0.2	0.1	-0.4
APHESM	10.6	-1.1	-3.6	- 0.6	-1.0	-0.2	1.7	0.9	1.0	1.0	-0.0
OICETM	-0.7	1.5	-1.1	- 3.3	0.2	-0.3	1.0	0.5	0.8	-0.6	-0.3
Ofсeza	-7.8	-0.7	4.9	-0.9	0.0	-1.1	-1.6	0.2	-0.6	-0.0	0.1
forsim	-5.1	4.3	1.2	-1.7	0.8	0.9	0.1	1.2	. 0.6	-0.2	-0.2
forsin	-9.7	1.9	-0.5	0.2	0.1	1.0	0.4	0.4	0.0	-0.5	-0.3
hyrain	-17.0	-0.1	0.5	0.8	0.8	0.5	0.1	0.2	0.4	-0.0	-0.2
HYRACM	-13.2	1.6	-0.2	0.6	0.7	-0.1	-0.1	0.8	0.2	0.6	-0.0
HYCOM	-14.0	0.3	$\cdot 1.0$	1.6	-0.3	0.6	-0.2	-0.3	0.5	0.3	-0.2
Imam	23.2	3.2	4.9	0.0	0.6	0.6	1.6	0.2	0.2	0.5	0.1
MEWOIM	-7.8	-0.2	3.8	-0.0	0.0	-0.9	-1.5	-0.7	0.5	0.3	0.2
MENOZM	-3.7	. 2.2	1.0	-1.3	-0.1	-1.7	-0.5	-1.9	0.2	0.3	-0.2
PEWEIM	-11.0	-1.6	-0.9	-0.7	-0.8	-0.1	1.3	-0.5	-0.1	0.7	0.2
peratin	0.6	-1.8	-2.3	-1.2	0.0	0.6	1.3	-0.5	-0. 1	0.7	0.2
perazm	8.6	-1.1	-2.2	-0.1	1.4	0.3	1.5	-0.5	-0.7	0.1	0.0

$\stackrel{N}{5}$

SUAGROUP	cV1	cv2	CV	CV4	CV5	CV6	Cu7	cva	cv9	culd	c.v11
SUBH14	-6.4	0.2	-0.4	-0.5	0.1	0.2	0.4	-0.3	-0.2	-0.3	0.2
Sushew	-6.8	0.7	-1.4	0.7	0.1	0.2	-0.0	0.2	0.0	0.4	0.6
Sush3u	-4.4	0.9	-0.3	-0.1	1.4	1.5	0.5	-0.3	0.0	-0.2	0.2
TELE 1h	2.5	-0.1	-0.9	-0.8	1.5	-0.1	1.2	0.3	. 0.2	-0.4	-0.2
TELEZH	5.4	-0.5	-1.1	-0.1	-0.1	0.1	-0.1	-0.6	-0.4	0.5	0.4
1ELES ${ }_{\text {\% }}$	4.7	-1.8	$\cdot 1.2$	-1.2	0.3	0.0	0.1	-0.5	0.1	-1.1	-0.1
1ELESM	7.5	-2.9	-0.0	-8.5	-1.1	-0.4	-0.1	-0.4	0.5	-1.1	8. 2
TELE5H	7.7	-2.1	-1.9	-0.6	-0.8	0.8	-1.0	-1.1	-0.2	0.1	-0.2
IRICH	-4.1	0.3	-1.4	-0.1	0.2	-0.0	0.4	-0.1	-0.4	0.0	0.8
2A1SM	5.3	0.2	-0.8	5.3	1.9	2.2	-1.0	-1.0	0.2	-0.0	-0.0
2A1s2H	7.1	11.1	-0.5	-2.7	-1.8	-1.9	-0.6	0.2	-0.2	-0.3	0.2
EIGEN.	69.9	10.5	3.8	2.4	1.2	1.1	0.5	0.4	0.2	0.2	0.1
\%	77.3	11.1	4.2	2.7	1.3	1.2	0.6	0.5	0.2	0.2	0.2

TABLE 9. Generalized distances (VD^{2}) for skull cV means. 5^{2} matrix is shown in two panels (left and right halves). Suhgroup symbols correapond to those in Figure 58 and are listed below.

A1 - ACERIS	Aceratherium
A2 - ACER2S	Aceratheriom
AH - AMYNS	Araynodon
BI - eicos	Diceros (black shino)
CR - CERAS	Ceratotherium (white rhino)
D1 - DICE1s	Dicerathezium
D2 - DICE2S	Diceratherium
D3 - DICE35	Dicezatherium
FO - FORSS	Forstercooperia
HY - HYCOS	Hyracodon
IN - INDRS	Indricotherium
JV - JAVAS	Rhinoceros (Javan rhino)
21-APHE1S	Aphelops
L1 - APHE2S	Aphelops
WTS - MENOS	Menoceras
P1 - PERA1S	Peraceras
P2 - PERA2S	Peraceras
S1 - sUBH1S	Subhyracodon
s2 - SU8H2s	Subhyracodon
53 - Sugh3s	Subhyracodon
SU - SUMAS	Dicerorhinus (Sumatran rhino)
T1 - TELE1S	Teleocerss
T2 - TELE2S	Teleoceras
T3 - TELE3S	Teleoceras
Ta - TELE4S	Teleoceras
TS - TELESS	Teleoceras
TR - TRIGS	Teleaceras
UN - UNICS	Rhinoceros (Indian rhino)
Y1 - HYRA1S	Hyrachyus
Y2- HYRA2S	Hyrachyus

	A1	A2	*	BI	ce	01	d2	03	FO	HY	IH	44	11	\$2	*	P)	P2
A		12.4	14.3	7.9	12.1	13.2	11.7	11.4	14.6	19.4	40.0	10.6	12.0	9.4	14.2	9.5	11.8
A2	12.4		16.6	10.4	13.1	16.1	14.7	14.9	16.2	21.9	37.7	13.6	13.0	11.7	17.3	13.5	13.3
$\mathrm{AH}^{\text {a }}$	14.3	16.6		14.2	16.9	7.6	6.7	9.6	7.5	9.4	45.2	17.6	9.3	13.4	8.6	10.4	20.2
81	7.9	10.4	14.2		9.0	12.4	11.0	9.4	12.7	19.9	38.9	10.1	9.7	5.8	13.9	9.0	10.1
CE	12.1	13.1	18.9	9.0		18.8	16.5	14.8	17.6	24.7	34.9	16.9	14.5	11.2	19.9	14.7	13.8
01	13.2	16.1	7.4	12.4	18.8		4.3	8.0	5.7	0.3	46.6	15.1	8.0	11.0	4.1	8.4	18.1
02	11.7	14.7	6.7	11.0	16.5	4.3		6.2	6.8	11.0	43.8	14.6	6.7	10.2	6.7	7.6	17.0
D3	11.4	\$4.9	9.6	9.4	14.8	8.0	6.2		8.3	15.4	41.1	14.8	8.6	8.7	10.0	0.6	16.1
f0	14.6	16.2	2.5	12.7	17.6	5.7	6.8	8.3		10.3	45.8	17.2	8.8	11.9	6.7	9.4	19.0
Hr	19.4	21.9	0.4	19.9	24.7	0.3	11.0	15.4	10.3		52.4	21.6	14.6	18.6	8.5	14.4	25,4
IN	40.0	37.7	45.2	30.0	34.9	46.6	43.8	41.1	45.8	52.4		42.8	43.1	41.4	49.1	45.2	40.6
JV	10.6	13.6	17.6	10.1	16.9	15.1	44.6	14.8	17.2	21.6	42.8		14.0	10.7	15.5	11.5	10.0
19	12.0	13.0	9.3	9.7	14.5	8.8	6.7	8.6	8.8	14.4	43.1	14.0		8.0	9.4	6.2	14.4
L2	9.4	11.7	13.4	5.8	11.2	41.6	10.2	8.7	11.9	18.6	41.4	10.7	8.0		11.9	7.1	9.4
HE	14.2	17.3	8.6	13.9	19.9	4.1	6.7	10.0	6.7	8.5	49.1	15.5	0.4	14.9		8.0	18.5
P1	9.5	13.5	10.4	0.0	44.7	8.4	7.6	9.6	9.4	14.4	45.2	11.5	6.2	7.1	0.0		12.2
P2	11.8	13.3	20.2	10.1	13.8	48.1	17.0	16.1	19.0	25.4	40.4	10.0	14.4	9.4	18.5	12.2	
51	12.8	\$6.5	6.4	13.0	18.4	4.3	5.1	9.3	5.7	8.2	47.2	15.8	8.3	11.8	4.2	7.7	18.3
S2	11.6	14.8	5.5	11.2	16.6	4.7	3.6	7.8	6.1	9.7	45.0	14.8	8.6	10.1	5.6	7.0	17.0
53	14.0	35.4	7.6	10.3	16.1	5.0	4.6	5.5	6.0	11.6	44.2	16.1	7.7	9.0	6.5	7.6	16.1
SU	12.8	14.3	13.7	11.0	16.5	9.7	40.5	12.5	14.9	15.1	46.3	13.9	12.5	11.4	10.2	10.3	45.8
11	9.9	15.0	14.7	9.3	16.2	10.4	10.6	10.1	12.7	18.1	45.1	9.0	10.6	7.5	10.5	7.0	10.4
12	10.7	16.3	19.4	11.8	16.1	16.8	15.5	14.8	18.4	23.9	42.2	10.0	14.2	11.0	17.0	11.7	6.8
13	9.7	15.0	17.1	10.1	13.7	15.6	13.8	13.3	16.5	22.2	41.8	10.4	12.2	9.6	15.7	9.7	9.3
14	12.1	16.9	20.3	11.1	13.2	18.2	18.8	16.2	19.0	25.0	42.2	12.2	14.6	10.9	18.3	12.2	8.7
15	11.8	16.6	20.7	11.2	13.8	48.5	17.0	15.7	19.4	25.8	40.8	11.8	14.8	11.3	18.9	12.7	6.1
IR	11.4	15.4	6.6	11.7	16.7	4.7	4.1	7.2	5.7	10.2	44.8	15.8	8.0	11.0	6.4	7.6	17.6
UN	0.6	11.7	19.0	8.8	12.0	17.0	15.4	15.4	18.3	23.8	40.0	8.4	13.4	9.1	17.6	11.1	5.6
41	22.0	24.8	12.0	22.1	27.5	11.4	13.6	17.7	12.6	4.9	55,8	22.0	18.7	20.5	9.7	16.9	27.1
Y2	18.7	21.6	9.9	19.0	24.3	8.6	10.7	15.2	9.9	4.3	52.8	20.3	13.7	17.7	7.2	12.7	23.8

	s1	s2	53	Su	11	12	13	14	15	TR	UN	7	Y2
11	12.8	11.6	11.0	12.8	9.9	10.7	9.7	12.1	11.8	11.4	9.6	22.0	18.7
A2	16.5	14.8	15.4	14.3	15.0	16.3	15.8	16.9	16.6	15.4	11.7	24.8	21.6
A	6.4	5.5	7.6	13.7	14.7	19.4	17.1	20.3	20.7	6.4	19.0	12.0	9.1
日 1	13.0	11.2	10.3	11.0	9.3	11.8	10.1	11.1	11.2	11.7	8.0	22.1	19.0
CE	18.4	16.6	16.9	16.5	16.2	16.3	13.7	13.2	13,8	18.7	12.0	27.5	24.3
D1	4.3	4.7	5.0	9.7	10.4	16.8	15.6	18.2	18.5	6.7	17.0	11.4	8.4
02	5.1	3.6	6.6	10.5	10.4	15.5	13.8	16.8	17.0	4.1	15.4	13.6	10.7
03	9.3	7.8	5.5	12.5	10.1	14.8	13.3	16.2	15.7	7.2	15.4	17.7	15.2
FO	5.7	6.0	6.0	11.9	12.7	18.4	16.5	19.0	19.4	5.7	18.3	12.6	9.9
HY	8.2	9.7	11.6	15.1	18.1	23.9	22.2	25.0	25.8	10.2	23.8	4.9	4.3
IN	47.2	45.0	46.2	46.3	45.1	42.2	41.8	42.2	40.8	44.8	40.0	55.8	52.8
JV	15.8	14.8	14.1	13.9	9.0	10.0	10.6	12.2	11.8	15.8	8.1	22.9	20.3
41	8.3	6.6	7.7	12.5	10.6	14.2	12.2	14.6	14.8	8.0	13.4	16.7	13.7
12	11.8	10.1	9.0	11.4	7.5	11.0	9.6	10.9	11.3	11.0	9.1	20.5	17.7
He	4.2	5.6	6.5	10.2	10.5	17.0	15.7	18.3	18.9	6.4	17.6	9.7	7.2
P1	7.7	7.0	7.6	10.3	7.0	11.7	9.7	12.2	12.7	7.6	11.1	10.1	12.7
P2	18.3	17.0	16.1	15.8	10.4	8.8	9.3	8.7	8.1	17.6	5.6	27.1	23.8
51		3.1	5.1	10.6	11.4	16.7	14.9	17.8	18.6	4.2	17.1	10.6	7.5
52	3.1		4.4	9.9	10.8	15.8	13.9	16.5	17.3	3.6	15.7	12.3	9.3
s3	5.3	4.4		1D. 3	9.3	14.6	13.1	16.2	16.2	4.0	15.2	13.9	11.3
50	10.6	9.9	10.3		10.8	15.9	14.7	15.9	17.0	10.5	14.2	16.6	14.0
11	11.4	10.8	9.3	10.8		8.7	8.4	10.4	10.2	10.8	10.0	19.3	16.6
12	16.7	15.8	14.6	15.9	8.1		5.2	7.4	5.3	15.7	8.2	25.5	22.6
55	16.9	13.9	13.1	14.7	8.4	5.2		5.6	5.6	14.2	7.8	23.7	20.7
14	17.8	16.6	16.2	15.9	10.4	7.4	5.6		4.9	17.2	8.0	26.4	23.4
P5	18.4	17.3	16.2	17.0	10.2	5.3	5.6	4.9		17.2	7.7	27.4	24.3
TR	4.2	3.6	4.0	10.5	10.8	15.7	14.2	17.2	17.2		16.2	13.2	10.0
UH1	17.7	15.7	15.2	14.2	10.0	8.2	7.8	8.0	7.7	16.2		25.8	22.5
41	10.6	12.3	13.9	16.6	19.3	25.5	23.7	26.4	27.4	13.2	25.8		4.5
72	7.5	9,3	11.3	14.0	16.6	22.6	20.7	23.4	24.3	10.0	22.5	4.5	

TABLE 10., Generalized distances ($\mathrm{V} \mathrm{D}^{2}$) for mandible canonical means. D^{2} matrix is shown in two panels (left and right halvea). Subgroup symbols correspond to those in Pigure 59 and are listed below.

A1 - ACERIM	Aceratherium
A2 - ACER2M	Aceratherium
BI - BICOM	Diceros (black rhing)
CE - CERAM	Ceratatherium (white rhino)
D1 - DICE1M	Diceratherium
D2 - DICE2M	Diceratherium
F1 - FORS1M	Forstercooperia
P2 - FORS2M	Forstercooperia
EY - HYCOM	Hyracodon
IN - INDRM	Indricotheriun
JV - JAVAM	Rhinoceros (Javan rhino)
L1 - APHE1M	Aphelops
L2 - APHE2M	Aphelops
L3 - APHE 3H	Aphelops
LA - APHE4M	Aphe Lops
M1 - MENOLM	Henoceras
$\mathrm{H2}$ - MENO2M	Henoceras
PE - PENEIM	Penetrigonias
P1 - PERA1M	Peraceras
P2 - PERA2M	Peraceras
S1 - SUBHIM	Subhyracodon
S2 - SUBH2M	Subhyracodon
\$3 - SUBH3H	Subhyracadon
SU - SUMPM	Dicerarhinus (Sumatran shino)
T1 - TELE1M	Teleaceras
T2 - TELE2M	Teleoceras
T3 - TELE3M	Teleoceras
T4 - TELE4M	Teleoceras
T5 - TELE5M	Teleoceras
TR - TRIGM	Teleoceras
UN - UNICH	Rhinoceros (Indian zhino)
Y1 - HYRAIM	Hyrachyus
Y2 - HYRA2M	Hyrachyus
21 - zAIS1m	Zaisanamyrodon
22-2AIS2M	Zaisanamynodon

TABEE 11. Summary of akull and mandible inter-aubgroup generalized digtances in genera with more than one subgroup. For genera with more than two subgroups, values in the table represent means. The Iiving genus Rhinoceros (Aaian one-horned rhinol is given firat. followed by fossil genera ligted alphabetically.

GENUS (Subgroupa)	SKULE	MANDIBLE
Rhinoceros (UN, JV)	8.1	6.7
Aceratherium (Al-A2)	12.4	3.8
Aphelops (士1-L2), (LI-L4)	8.0	7.0
Diceratherium (D1-D3), (D1-D2)	6.2	9.8
Forstercooperia (FI-F2)	---	5.8
Hyrachyus (Y1-Y2)	4.5	4.3
Peraceras (P1-P2)	12.2	6.2
Subhyracodon (SI-S3)	4.3	2.8
Teleoceras (T1-T5)	7.1	4.3
Zaisanamynodon (ZI-z2)	---	9.2

Abstract

Ordinntion - Spacimang Plotead By Ganus

Figure 56 (skull) and Figure 57 (mandible\} ghow the individual gpecimens plotted about their respective subgroup means (not shown), However, becauge the specimens are identified only by genus, direct comparisons may only be made between monotypic genera (whose generic and subgroup means are identical). These plots nicely show the amount of generic differentiation in morphology. Several features are common to the plots of skizis and mandibles. In both plote, fyrachyus and Indricotherism, which repreaent the gize extremes among the Rhinocerotoidea, are the extreme left and right specimens. Several analyses (not shown) confirmed that the size axis ia approximately parallel to CV1. This is more obvious in the mandible plot than in the skull plot where a line through firrachyus and Indricotherium would be oblique to CVI. Alpo shown in both plots is the effect of the cy method on within group correlations. For example, comparison of the $C V$ and pc (Figure B) for the monotypic black rhino dispecsions shows how the withingroup variation has been made circular by the $C V$. The same effect occurs for each of the gubgroupa, but is only observable here in the monotypic genera. The skull and mandible cV ciouda of black rhinos approximate the pooled within-group digpersions uged for those respective analyses. The digpersions also approximate the gize of the concentration ellipges in \boldsymbol{F} igures 58 and 59 of the following gection. Finally, it ghould be noted again that

CANONICAL VARIATES - INDIVIDUAL SKULL SPECIMENS


```
FIGURE 57. Canonical variates plot of living and fogsil mandible
gpecimens. Differences between number of symbols plotted and
gample sizes (Table 3) are due to overgtrikes. Specimens are
identified to genus as indicated below.
Key to symbols (ligted alphabetically):
B - Diceros (black rhino)
C - Ceratotherium (white ghino)
D - Diceratherium
F - Forstercooperia
B - Hyracodon
I - Indricotherium
J - Rhinoceros (Javan Ihino)
L - Aphelops
M - Henoceras
N - Penetrigonias
P = Peraceras
9 - Aceratherium
R - Trigonias
s - Subhyracodon
T - Teleocezas
U - Rhinoceros (Indian Ehino}
x - Hyrachyug
x - Dicerorhinus (Sumatran rhino)
2 - Zaisanamynodon
```

CANONICAL VARIATES - INDIVIDUAL MANDIBLE SPECIMENS


```
morphologically gimilar specimens clugter together in the
multivariate CV morphospace. This is clearly observed for the
gpecimens of the black and white shinoceroses in Figures 56 and 57,
and ig also true for the subgroup means in the following plots.
    Ordipution - Subgroup Mennt Hith Concentration Ellipsea
    This gection pregents the ordination of the gubgroupg with
908 concentration ellipaes (circles) around each group.
Statigtically, each ellipse theoretically includes 90% of all
individuale from its group within its boundaxy. The ellipses are
standardized and uniform in both skull and mandible plote such that
the radii are equivalent to 2.15 standard deviations. The apparent
size difference of the ellipaes between akull and mandible plots is
due to the difference in scales. Hecause the ellipge la baged on
the pooled within-group dispersion, it representa the best eatimate
of the variation around a given mean. Some authors {e.g., Neff and
Marcus, 1980) argue that groups with smaller ample gizes ghouid
have correapondingly larger confidence (or concentration) limita
because of greater uncertainty about the position of the mean.
However, the philogophy taken here is that the mean of the
apecimens available (even if a gingle specimen) repregents the best
eatimate of the true mean, and that therefore the begt egtimate of
group variation over all groups ghould apply to that mean.
Einally, it should te noted that the ellipaes are not meant to
imply any kind of statiatical teat for differences between meang.
```



```
FIGIJRE 58. canonical variates plot of living and foseil gubgroup
means for gkulla showing 908 concentration ellipaes, Subgroups
correapond to those in Table 2. Circles are 90% concentration
ellipgen {radius = 2.15} babed on the paoled within-group
dispersion for skulla. Shaded circles indicate living groupa.
Key to symbols (ligted alphabetically):
A1 - ACERIS Aceratherium
N2 - ACER2S Aceratherium
MM - AHYNS AmynOcion
BI - EICOS Diceros (black rhinol
er - CERAS Ceratotherium (white rhinol
D1 - DICE1S Diceratherium
D2 - DICE2S Diceratherium
D3 - DICE3S Diceratherium
FO - FORSS FOrstercooperia
BY - HYCOS Hyracodon
IN - INDRS Indricothezium
JY - JAvaS Rhinoceros (Javan rhino)
L1 - APHELS Aphelops
LI - APHE2S Aphelops
MS - MENOS Menoceras
P1 - PERALS geraceras
P2 - PERA2S peraceras
S1 - SUBHIS Subhyracodon
S2 - SUBH2S subhyracodon
S3 - SUBH3S Subhyracodon
su - SUMAS Dicerorhinus (Sumatran rhino)
T1 - TELE1S Teleoceras
T2 - TELE2S Teleoceras
T3 - TELE3S Teleoceras
T4 - TELE4S Teleoceras
TS * TEIE5S Teleoceras
TR - TRIGS Teleoceras
UN - UNICS Rhinoceros (Indian rhinc)
Y1 - HYRA1S Hyzachyus
Y2 - HYRA25 Hyrachyus
```

CANONICAL VARIATE MEANS - SKUL SUBGROUPS - 90% CONCENTRATION ELLIPSES


```
average interaubgroup GD (Table 11). Among the larger, later
chinos thers is more morphological differentiation. Teleoceras (T1-T5) and Rhinoceros (ON-Indian and JV-Javan shinos) with Peraceras (P2) form a cluster separate from Diceros (BI), Ceratotherium (CE), and Aceratherium (A1-A2). GO's show that A2 is Eurther from \(C E\), and \(J V\) is further from \(\mathbf{T} 3\) than ia indicated in the plot. Also, Tl is closer to T2-TS than is shown. These two clusters seem to form branches which geparate out along cV2. Dicerorhintus (SU-Sumatran rhino) appearg to be morphometrically primitive and in fact, is clogest to \(\$ 3\) based on generalized digtance.
Generic digtinctions are clearly greater among the later rhinos. For example, among the living forme, the four genera do not overlap but the two species of Rhinoceros (UN, JV) do overlap. This morphometric regult ig consistent with the curfently accepted taxonomy for the living analogues. Superficially, it appeazs that the Sumatran rhino could be ancestral to the other living rhinos. However, when the morphometric affinities with fossils are considered the picture becomes problematic. The sumatran rhino is phylogeneticaliy younger than Teleoceras and Aceratherium, and is not believed to be anceetral to them. The consequences of this are, one, that the Sumatran rhino is very congexvative (statie), and two, that the affinities of the other living genera with the fobsils represent convergences or paralleligms. Alternatively, if the moxphomatric affinities repregent comon phylogenies, then
```

```
Diceros, Ceratotherium, and Rhinoceros may have evolved from a
group much older than Dicerorhinus.
    Mandible (Figure 59) -- The mandible CV plot is gimilar to
the skull plot in that Indricotherium (IN) ig a gize outlier, and
most of the remaining living and fosgil groups form a continuous
cloud of variation. This again suggests that there are missing
fogsila morphometrically uniting Indricotherium (IN) with its
ancestors (unless galtatory evolution occurred). Differences with
the skull plot include less relative aize difference (about 10,
rather than 20, gtandard deviations from its nearest neighbor along
the firgt axis), and less aecond axis difference from the other
genera. These latter two Eeatureg of the mandible plot guggeat
that Inciricotherium (IN) had a relatively small, conservative
mandible for ita size. Generalized dietances (Table li) agree well
With the apparent distances to its nearest neighbors in the plane
of CVl-CV2
Another difference with the akull plot is the addition of the zaisanamynodon (Zl-z2) gubgroups as outliers from the main continuum of genera, beparated primarily along the second axis. They differ most from Diceros (BI), Dicerorhinus (SU), and Ceratatherium (CE) which are all on the opposite side of the continuum. That all of the living groups are on one side is intereating, but Rhinoceros (JV, UN) may also be interpreted as being part of the main group
```

```
FIGURE 59. Canonical variates plot of living and fossil subgroup
means for mandibles showing 90% concentration ellipses. Subgroups
correspond to those in Table 3. Circles are 90% concentration
ellipses (radius = 2.I5) based on the pooled within-group
dispergion for mandibleg. Shaded circles indicate living groupg.
Key to Bymbals (listed alphabeticaily):
```

A2 - ACERIM Acerathezium
n2 - ACER2M Acerathezium
BI - BICOM Diceros (black chino)
CE - CERAM Ceratotherium (white rhina)
Dl - DICEiM Diceratherium
D2 - DICE2M Diceratherium
F1 - FORSlu corstercooperia
F2 - FORS2M Foxstercooperia
EY - HYCOM Byracodon
IN - INDR Indricotherium
JV - JAVAM Rhincceros (Javan rhino)
L1 - APHE1M Aphelops
12 - APHE2M Aphelops
L3 - APHE3M Aphelops
Le - APHE4M Aphelops
MI - MENOLM Menoceras
K2 - MENO2M Hneoceras
PE - PENEIM Penetrigonias
P1 - PERAIM Pezaceras
P2 - PERA2M Peraceras
s1 - SU日H1M Subhyracodon
s2 - SUBH2M Subhyracodon
s3 - SUBM3M Subhyzacodon
st - SUMAM Dicerorhinus (Sumatran rhino)
T1 - TELE1M Teleoceras
T2 - TELE2M Teleoceras
T3 - TELE3M Teleoceras
T4 - TELE4M Teleoceras
T5 - TELE5M Teleocerzs
TR - TRIGM Teleqceras
UN - UNICM Rhinoceros (Indian rhino)
Y1 - HYRALM Hyrachyus
Y2 - HXRA2M Hyrachyus
zi - zalsiM zaisanamynodon
22 - 2AIS2M zaisanamynodion

CANONICAL VARIATE MEANS - MANDIELE SUBGROUPS - 90\% CONCENTRATION ELLIPSES

Abstract

The morphometric continuity of the majority of groups is striking. There is less differentiation and distinction of the later, larger groupg than was evident in the akulls. Diceros (BI) and Ceratotherium (CE) are somewhat distinct but are not asgociated with Aceratherium (A2-A2). The latter genus is mixed in with other fossils, The Indian rhino mandibleg (UN) are associated with Teleacaras (T3,T4), as in the gkull analysis, but the Javan shino (JV) mandible is legs $日 0$. The Indian and Javan rhinos are separated by as much as are the other genera of living rhinos. Here, it is the Javan rhino which is the most primitive among the living analogues. The Sumatran (SU) rhino is an outlier, in digtinct contragt to the cage for skulis where it was the most primitive. In general, all of the rhinocerotid groups appaar to be more congervative in terms of shape differentiation. Differences in morphometric affinities and differentiation between the skull and mandible CV plots suggegt that there has been some evolutionary mosaicism between thege two regions of the rhinoceros head. TAxagonic Patterns = Rolationshipg of Gontra It is of interest to observe whether the morphometric relationships of the subgroup meang correspond to the taxonomies based on whole organigm biology. Such taxonomies include information about morpholagical characters (cranial and postcranial, soft and hard tigsues), molecular data, behavior and ecology, biogecgraphy, and other relevant features of an organigms'

biology. In thia section, means are labelled and grouped according to genera. Comparigons are made with respect to relative morphometric span of each genus, and to overlap/non-overlap relationahips.

Skulp (Figure 60) -- Of the eight genera compriged of more than one subgeneric group, four occupy non-overlapping parta of the morphometric opace. These are fyrachyus (Y1-Y2), Aceratherium (AlA2), Aphelops (L1-L2), and Teleoceras (T1-T5). The remaining four genera form two sets of overlapping genera; Subhyzacodon (Sl-52)Diceratherium (D1-D2) and Rhinoceros (TV,UN)-Peraceras (P1-P2), All of the polytypic genera except Teleoceras and Peraceras appear to have approximately similar ranges of CV1-CV2 subgroup separation. However, generalized digtances (Tables 9 and 11) indicate a more diverse range. If Rhinoceros (JV, UN) is taken as a 日tandard $(G D=8.2)$, Aceratherium (A1-A2) has a greater intersubgroup diatance, while the rest have gmaller distances. The A1-A2 distance is in fact gimilar to the PI-P2 diatance and bath distances are greater than JV-UN or gI-CE distances. This suggests that Al-A2 and Pl-P2 each represent apecies level variation at a minimum, but may indicate generic level also. If Pl and p2 are distinct generically, then the overlap of peraceras and Rhinoceros (JV, UN) is not meaningful. Among the other polytypic genera, the smaller digtances auggeat that theic subgroups represent species level or Lesser amounts of variation. Within Teleoceras (T1-'T5).

```
FIGURE 60. Canonical variatea plot of living and fossil
gubgroup means for akulls with subgroups shown by genus. Means are
labeled by genus. Shaded arean include all subgroupe of the same
genus.
```

Key to symbols (listed alphabetically):
A1 - ACER1S Aceratheriun
n2 - ACER2S Aceratherium
NH - AMYNS Amynodon
$8 I$ - aICOS Diceros (black rhino)
CE - CgRAS Ceratotheriun (white rhino)
D1 F DICE1S Diceratherium
D2 - DICE2S Diceratheriun
D3 - DICE3S Diceratherium
FO - FORSS Forstercooperia
HY - HYCOS Hyracodon
IN - INDRS Indricotherium
JV - JAvAS Rhinoceros (Javan rhino)
L1 - APHEls Aphelops
工1 - APHE2S Aphelops
MB = MENOS Henoceras
P1 - PERAIS peraceras
P2 - PERA2s Peraceras
s1 - SUBH1s Subhyracodon
s2 - SUAH2S Subhyracodon
53 - subliss Subhyracodon
SU - SUMAS Dicerorhinus (Sumatran rhino)
T1 - TELE1S Teleoceras
T2 - TELE2s Teleoceras
T3 - TELE3s Teleoceras
TA - TELEAS Teleoceras
T5 - TELE5S Teleoceras
TR ~ TRIGS Teleoceras
UN - UNICS Ahinoceros (Indian rhino)
Y1 - HYRAlS Hyrachyus
$\mathbf{Y 2}$ - HYRAZS Hyfachyus

CANONICAL VARIATE MEANS - SKUL SUBGROUPS - BY GENUS


```
gubgroupe (including T1) are geparated by dibtanceg which are on
average slightly lege than that between JV and UN. Overall, most
the fossil genera appear to te morphometrically coherent when
compared againgt living anaiogue differences and, in general, the
morphometric relationships are fairly congistent with generic level
taxonomies.
```

Mandible (Figure 61) -- Eleven of the sixteen genera are represented by means for more than one subgroup. of these genera, three are morphometricaliy diatinct: Byrachyus (Y1-Y2). Forstereooperia (F1-F2), and Zaisanamynodon (Z1-Z2), atoong which Hyrachyug is overlapped by the monotypic genus Hyracodon (EY), The zemaining polytypic genera are arranged in two elusters of overlapping genera. One cluster consista of the gmalier forms Subhyracodon (S1-S3), Menoceras (M1-M2), Diceratherium (D1-D4). The other sluster consists of the larger forms Aceratheriua (AlA2), Teleoceras (T1-T5). Aphelops (L1-亡3), Peraceras (P1-P3), and Rhinoceros (JV, UN). Within these two groupg there is significant overlap of the genera. As with the skulls, intersubgroup morphometric digtancea are more accurately reflected by the generalized distances (Tablea 10 and 11). Analysis of the genexalized distances ghows that Aphelops (51-L4). Hyzachyus (Y1Y2), and Zaisanamynodon (Z1-Z2) have average intersubgroup dietancen greater than that between the Indian (UN) and Javan (JV) rhinos ($G D=6,7$). This guggeats species level or greater variation. In Eact, the distance between UN and JV is greater

```
FrguRE 61. Canonical variates plot of living and fossil mubgroup
means for mandible data with subgroups shown by genus. Means are
labeled by genus. Shaded areas include all subgroupa of the same
genug.
```

Key to symbols \{listed alphabetically):

A1 - ACERIM	Acerathegium
BI - BICOM	Diceros (black rhino)
CS - CERAM	Ceratotherium (white rhinol
D1 - DICE1M	Diceratherium
D2 - DICE2M	Diceratherium
F1 - FORS1M	Forstercooperia
F2 - FORS 2 M	Forstercooperia
HY - HYCOM	Hyracodon
IM - INDRM	Indricotherimm
JV = JAVAM	Rhinoceros (Javan rhino)
H2 - APFE1M	Aphelops
L2 - APHE2M	Aphelops
L3 - APHE3M	Aphelops
LA - APHE4M	Aphelops
M1 - MENO1M	Menoceras
$122-\mathrm{MENOLM}$	Menoceras
PE - PENELM	Penetrigonias
P1 - PERA1M	Peraceras
P2 - PERA2M	Peraceras
s1 - SUBRIM	Subhyracodon
82-SUBH2M	Subhyracodon
83 - SUBH3M	Subhyracodon
SU - SUMAM	Dicerorhinus (Sumatran rhino)
T1 TECEIM	Teleoceras
22-TELE2M	Teleaceras
23- TELE3M	Teleaceras
T4 = TELE4M	Teleaceras
25-TELESM	Teleaceras
TR - TRIGM	Teleoceras
UN - UNICM	Rhinoceras (Indian thinol
Y1 - HYRAIM	Hyrachyus
Y2 - HYRA2M	Hyzachyus
51 - 2AISMM	zaisanamynadon
22-2AIS2M	zaisanamynodon

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - BY GENUS

than that between the black (BI) and white (CE) rhinog. That
mandibles within Rhinoceros are more different than mandiblea
between Diceros and Ceratotherium further suggeats bone degree of
mosaicism in rhinoceros akull evolution. Overall, there is less
corxespondence between morphometric uniquenesa and generic levei
taxonomy for mandiblea than for skulls.

Taxonomic Patterns - Fanily and Subfanily Relationohips

In addition to the generic and subgeneric levels, it is also of interegt to compare morphometric patterns at higher levels of the taxonomic hierarchy, In this section, the genera are identified by family and sometimes by subfamily. Although more subfamilies have been defined in the taxonomic iiterature, only thoge two eubfamilies which include the higher rhinocerotids are investigated here. The three rhinocerotoid familiea vary in the number and diveraity of skulls available for uge in this study. It has already been stated that there is a large gap in fossil representation of relatively complete hyracodontid skulls and mandibles (between Forstercooperia [FO] and Indricacherium [IN]). Anynodontidae are also poorly represented (here only Amynodon [AM] for the skulls and Zaisanamynodon [z1-z2] for the mandiblea). Accordingly, the following digcussions are primarily cancerned with the Rhinocerotidae and its two gubfamilies, Aceratheriinae and Rhinocerotinae.

Abstract

Skull (Figure 62) -- Little can be said about the morphometric relationshipe of the non-xhinocerotid families because of the suall number of taxa represented. Hyrachyus is distinct as a genus and probably also as an ancestral fanily. It is not known what kind of morphometric diversity is represented by the Anynodon skull, but the amynodontid mandibies (see below) suggegt that this family is distinct. The amynodontid gkul2 has affinities with both primitive rininocerotids and hyracodontida. The Hyracodontidae is undoubtedly distinct at the family level given the position of Indricotherium. The shading which uniteg forstercooperia (FO) and Indricotherium doea not necesgarily represent the part of the morphometric mpace that would be occupied by the "missing" hyracodontids. The divergity of genera included within Rhinocerotidae forms two digtinct morphometric groups. A basal group unites Menoceras (ME). Subhyracodon (51-54), Diceratherium (D1-D3), and Trigonias (TR). Subfamilies have been propobed for these genera (see Prothero et al., 1986), but there is not enough morphometric diversity to analyze them at the higher level. A more advanced group consigts of the remaining rhinocezotid genera, clasgified in two subfamilies, Rhinocerotinae and Aceratheriinae. Morphometrically, the subfamilies are completely overiappingThus, at the aubfamily level, there are no morphological differences detected by the meagurements used. Both gubfamilieg


```
FIGURE 62. Canonical variates plot of living and fogsil subgroup
means for skull data with subgroups shown by family and subfamily.
Means are grouped by family and subfamily clagsifications after
Prothero et al. (1986).
```

Key to symbols (listed alphabetically):

A1 - ACER2S	Aceratherium
A2 - ACER2S	Aceratherium
NH - AMYNS	Amynodon
BI - EICOS	Diceros (black rhino)
CE - CERAS	ceratotherium (white rhino)
D1 - DICE1S	Diceratherium
D2 - DICE2S	Diceratherium
D3 - DICE3S	Diceratherium
FO - FORSS	Forstercooperia
HY - HYCOS	Hyracodon
IH - INDRS	Indricotheriun
JV - JAVAS	Rhinoceros (Javan Ehino)
41 - APHE1S	Aphelops
51 - APHE2S	Aphelops
MES - MENOS	Menoceras
P1 - PERA1S	Peraceras
P2 - PERA2S	Peraceras
S1 - SUBHIS	Subhyracodon
S2 - subires	Subhyracodon
S3 - SUBH3s	Subhyracodon
SU - Sumas	Dicerorhinus (Sumatran chino)
T1 - TELEIS	Teleoceras
T2 - TELE2S	Teleoceras
T3 - TELE3S	Teleoceras
T4 - TELE4S	Telecceras
T5 - TELE5S	Teleoceras
Th - TRIGS	Teleoceras
UH - UNICS	Rhinocercs (Indian rhino)
Y1 - HYPALS	Hyrachyus
Y2 - HYRA2S	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - FAMILY \& SUBFAMILY GROUPS


```
appear to confound the groupings suggested by morphology. For
example, P2 is morphologically bimilax to T4, but they are in
different subfamilieg. Likewige, A2 and CE are similar but in
different subfamilies
    Mandible (Figure 63) =- Small gample sizes (few genera) for
Amynodontidae and Hyracodontidae limit the interpretations that can
be made at the family level. The outlying pogition of
2aisanamynodon (2l-22) suggests that this family is
morphometrically unique. The intermediate pogition of
Hyracodontidae between Amynodontidae and Rhinocerotidae may or may
not be indicative of the morphometric relations of this family.
The Rhinocerotidae is morphometrically distinct from Hyrachyus (Yl-
Y2). Amynodontidae, and Hyzacodontidae. As with the akulls, there
appears to be two rhinocerotid groupinga; a basal group and a more
advanced group. The basal group does not present any morphometric
gubgroupings which correapond to proposed gubfamilies (Bee Prothera
et al., 1986). The advanced genera are claesified into two
gubfamilieg, Aceratheriinae and Rhinocerotinae. Like the akulls,
thege overlap gignificantly but in a different way. Diceros (BI),
Ceratotherium [CE], and Dicerorhinus (St) mandibles are
morphometrically digtinct from other thinocerotinae. Conversely,
the morphological affinites of Teleoceras (T1-T5) and Rhinoceros
(JV, UN) with Aceratheriinae do not corrrespond to the subfamilial
taxonomy. Reasons for this non-correspondence were suggested in
the discusaion of the skulls
```

```
FIGURE 63. Canonical variates plot of living and fospil gubgroup
means for mandible data with subgroups Ehown by family and
gubFamily. Means are grouped by family and gubfamily
Classifications after Prothero et al. (1986)
Key to symbols (ligted alphabetically):
A1 - ACERIM Aceratherium
M2 - ACER2M Aceratherium
HI - EICOH Diceros (black rhino)
CE = CERAM Ceratotherium (white rhino)
Dl - DICElm Dicenatherivar
D2 - DICE2M Diceratherium
F1 - FORSIM Forstergooperia
F2 - FORS2M Forstercooperia
HY - HYCOM Hyzacodon
I* - INDRM Indricotherium
JV - JAVAM Rhinoceros (Javan rhino)
L1 - APHEIM Aphelops
L2 - APHE2M Aphelops
L3 - APHE3M Aphelops
L4 - APHE4M Aphelops
M - MENO1M Menoceras
M2 - MENO2M Henoceras
PE - PENEIM Penetrigonias
PI = PERAIM Pezaceras
P2 - PERA2M Peraceras
S1 - SUSH1M Subhyzacodon
s2 - SUBH2M Subhyracodon
s3 - sUBH3M Subhyracodon
SU - SUMAM Dicerorhinus (Sumatran rhino)
T1 - TELEIM Teleoceras
T2 - TELE2M Teleoceras
T3 - TELE3M Teleocerds
T4 - TELE4M Teleoceras
55 - TELE5H Teleoceras
TR - TRIGM Teleoceras
UN - UNICH Rhinoceros (Indian rhino)
YI - HYRAIM Hyrachyus
Y2 - HYRA2M Hyrachyus
21 - 2AISIM Zaisanamynodon
22-2AIS2M Zaisanamynodon
```

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - FAMILY \& SUBFAMILY GROUPS

Abstract

raxononic patterns - phylogenetic Character states

The relationships between mhinoceros morphonetry and clagsification were discusged in the previous two sections. Because clageifications are ubually based on a vaciety of characters, ox chazacter gtates, it is appropxiate to investigate the relationohips between the morphometric results and apecific characters ued in clasgification. The characterg chosen for this analygis were geiected from thoge used by prothero et al. (1986) to formuiate theix phylogenetic hypotheses for the Rhinocerotoidea. Specifically, only those characters believed to directly or indirectiy affect akull and/or mandible morphology were uged. Currently, u uch taxonomic characters are most often presented in explicitly phylogenetic contextg under the umbrella of "cladistic analysis," Here, the queation is being asked: are there any correlations between multivariate morphological affinities and qualitative morphological characters uged in classification? Although gome of the characters uged are specific to the skull or mandible, the game get of characters was uged for both akull and mandible. This was done for two reasons: (i) differences in the skull and mandible plots can be compared more directly, and (2) characters in one region having effects on the other region might be detected. That is, to some extent, the skull and mandible muat coevolve (for example, matching of upper and lower teeth for efficient occlusion and mastication). In the following discusaions


```
af skull and mandible CV zegultg, a list of eleven numbered
characters ig given for each plot. The characterg were extracted
from Table & of Prothero et al. (1906, page 349) and the numbers in
that table correspond with those in the plots here. The numbers in
the table likewige corregpond to the numbered nodes in Figure 4 of
Prathero et al. (1986). Not all of theee charatters define nodeb
by themselves; many are from ligta including a variety of
Characters definining a particular node. The characters are
dicusged in numerical gequence.
Skull (Figure 64) -- Reduction of the preorbital skuli (NODE 4) is a derived feature of Amynodon (AM) (and Zaisanamynodon). Unfortunately, mogt of the original measurements in this region were not retained due to the prevalence of misging or broken premaxillae and nasal bones. Only AEP2 and OcP2 (gee Fiqure 4) might directly detect guch a change if the tooth row is corregpondingiy shortened or moved posteriorly- Because Amynodon (AM) is mozphometrically oimilar to Forstercooperia (FO) and Diceratherium ( \(\mathrm{D} 1 \rightarrow \mathrm{D} 3\) ), whith do not have reduced preorbital regions, it may be concluded that the reduction in Amynodon did not significantiy affect other parts of the akull. Increased relative length of the cheek tooth row (NODE 13) tharacterizes hyracodontids and fhinocerotids. This thasacter is general and does not appear to contribute to any mofphometric Beparation of these two families.
```

```
FIGURE 64. Canonical variates plot of living and fog日il subgroup
means for skull data with eubgroups ghown by phylogenetic character
etates. Means are grouped by selected character gtates uged for
the phylogenetic hypotheses used in Prothero et al. (1986)-
```

Key to symbols (listed alphabetically) =

A1 - AcEals	Aceratherium
A2 - ACER2S	Aceratherium
AM - AMYNS	Amynodon
81 - Brcos	Dicerag (black rhino)
CE - CERAS	ceratatherium (white rhino)
D1 - DICE1S	Dicezatherium
D2 - DICE2S	Diceratherium
D3 - DICE3S	Diceratherium
PO - FOFSS	Forstercaoperia
HY - HYCOS	Hyzacodon
IN - INDRS	Indricotherium
JV - JAVAS	Rhinoceras (Javan rhino)
L1 - APHEIS	Aphelops
L1 - APHE2S	Aphelops
ME - MENOS	Menoceras
P1 - PERA1S	Peraceras
P2 - PERA2S	Peraceras
s1 - SUBH15	Subhyracodan
s2 - Sugh2s	subhyracadon
53 - SUBH35	Subhyracodon
St - suras	Dicerorhinus (Sumatran rhina)
T1 - TELEIS	Teleoceras
T2 - TELE2S	Teleaceras
T3 - TELE3S	Telegceras
T4 - TELE4S	relegceras
T5 - TELE5S	releoceras
TR - TRIGS	Teleoceras
UN - UNICS	Rhinoceras (Indian rhino)
Y1 - EYRA2S	Hyrachyos
Y2 - HYRA2S	Hyrachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - CHARACTER STATES


```
from the others. Increased relative hypsodonty (tooth height) is
another general character (NODES 19, 23. and 28). It probably has
more overall affect on the mandible (ramus height for example) than
on the gkull, but may affect face heignt gince both maxillary and
mandibular teeth mugt increase in height (equally or
proportionally). There ig no obvious morphometric correlation with
this character, at leagt partiy due to itg non-exclugive une as a
taxonomic character, Increased hypaodonty alone ig not likely to
account for the shape differences soparating Inciricotherium (IN)
from the other rhinoceromes along the aecond cV axis. A broad
mandibular ramus (NODE 2日) distinguishes the rhinocerotidg in this
analysis from several genera not repregented in the present
morphometric gtudy, It is therefore difficult to asseas its
contribution to the uniquenegs of the skull morphology of the
rhinocerotids uged here. Two derived charactera af Trigonigs (TR),
cited as digtinguishing it from later rhinocerotids, are an
extended occiput and an anterodorgally inflected basicranium (NODE
30). Thege characters would be expected to influence morphometry
of the skull, especially measurements to the ocoiput. However, the
Trigonias (TR) Bkulls are morphometrically very similar to the
Subhyxacodon (Sl-S4) and Diceratherium (D1-D3) and thus do not
reflect the changes morphometrically (given the meagurements used).
Roughly, as a group, the higher rhinocerotids (Aceratherilnae and
Rhinocerotinae) are characterized by larger aize (NODE 35).
```



```
FIGURE 65. Canonical variatea plot of living and fosgil subgroug
means for mandible data with subgroups shown by phylogenetic
character atates. Means are grouped by gelected character atates
used for the phylogenetic hypotheses in Prothero et al., 198G.
Key to symbols (listed alphabetically):
```

A1 - ACER1M	Aceratherium
M2 - ACER2M	Aceratherium
BI - BICOM	Diceros (black rhino)
CE - CERAM	ceratotherium (white rhino)
D1 - DICE1M	Diceratherium
D2 - OICE2M	Diceratherium
F1 - FORSIM	Forstercooperia
F2-FOR52M	Forstercooperia
BY - HYCOM	Hyracodon
IM - INDRM	Indricotherium
JV - JAVAM	Rhinoceros (Javan rhinol
L1 - APHE1M	Aphelops
L2 - APHE2M	Aphelops
t3 - APHE3M	Aphalops
L4 - APHE4M	Aphelops
K1 - MENOIM	Mencceras
H2 - MENO2M	Menoceras
PE - PENEIM	Penetrigonias
P1 - PERAIM	Peraceras
P2 - PERA2K	Peraceras
s1 - SUBH1M	Subhyracodon
52 - SUBH2M	Subhyracodon
53 - SUBH3x	Subhyraccion
SU = SUREAM	Dicerorhinus (Sumatran rhino)
T1-5ELEM	Teleoceras
T2 - TELE2M	Teleoceras
23-TELE3H	Teleoceras
T4 - TELE4M	Teleoceras
T5 - TELESM	Teleoceras
2R - TRIGH	Teleocerss
UN - UNICH	Rhinoceros (Indian shino)
Yi - HYRAIM	Hy=achyus
Y2 - HYRA2M	Hyrachyus
31 - ZAISIM	Zaisanamynodon
32 - zAIS2M	Zaisanamyrodon

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - CHAPACTER STATES


```
Among the most obvious external features of the living rhinoceroses are the median gagittal horna located on the dorgal agpect of the skull. Although the horns are features of the head, they are not osteological features of the bony skull (in contrast to titanothere horns or bovid horn cores, for example). Rather, they are unique epidermal specializations that are fairly loosely attached to the underlying periosteum- Bony featurea related to horn presence vary from surface rugosity to elevated, rounded horn bogses. The horns therefore, probably have little direct infiuence on skull morphology, particulasly from a mechanical veiw point. A
priozi, correlation between horn morphology and non-boss skull
morphology could be attributed to developmental interactions and/ar
to Bhared phylogeny. Because of these potentlal relationships, it
is of interest to compare horn morpholagies (i.e., number and
arrangement) with the morphometric patterng. In Figures 66 and 67.
the living and fogsil genera are grouped according to three types
af recognized horn arrangement: paired nasal horng (aide-by-side on
the nasal bones); single nasal horns (single boss on the nasal
bones in the median plane); and tandem horns (boss or rugosities in
the median plane, anteriorly on the nasals and posteriorly on the
frontals).
    Skuly (Figure 66) -- Diceratherium (D1-D3) and Menoceras (ME)
have gimilar horn arrangements characterized by paired nagal
```

```
FIGURE 66. Canonical variater plot of living and fogeil subgroup
means for gkull data with subgroups shown by horn arrangement,
Means are grouped by qualitative arrangement of horns.
```

Key to symbols (listed alphabetically):

n1- ACERIS	Aceratherium
M2 - ACER2S	Aceracherium
AN - AMYNS	Ampnodon
BI $=$ aICOs	Diceros (black rhino)
CE - CERAS	Ceratotherium (white rhino)
D1 - DICE1S	Diceratherium
D2 - DICE25	Diceratherium
D3 - DICE3S	Diceratherium
FO - FORSS	Forstercooperia
HY - HYCOS	Hyracodon
IN - INDRS	Indricotherium
JV - JAVAS	Rhinoceros (Javan rhino)
L1 - APHEIS	Aphelops
L1 - APHE2S	Aphelops
MS \rightarrow MENOS	menoceras
P1 - EERA1S	Peraceras
P2 - PERA2S	Peraceras
S1-subils	subhyracodon
S2 - SUBH2S	Subhyracodon
S3 - SUBH3s	Subhyracodon
SU - SUMAS	Dicerarhinus (Sumatran rhino)
T1 - TELE15	Telecceras
T2 - TELE2S	Teleoceras
T3 - TELE3S	Teleoceras
T4 - TELE4S	Teleacsras
25 - TELE5S	Teleoceras
TR - TRIGS	Teleoceras
ON - UNTCS	Rhinoceros (Indian rhinol
YI - HYRAIS	Hyrachyus
Y2 - HYRA2S	Hytachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - HORN TYPES


```
subfamily, Dicerorhinus (SU), Diceros (BI), and Ceratotherium (CE)
are not united at lower taxonomic levels. Dicerorhinus (SU) and
Rhinocaros (JV,UN) have been united at the subtribe level (Prothero
et al., 3986, Table 4, NODE 44; this paper, Figure 64, NODE 45j. The non-overlapping morphometric unity of tandem-horned rhinocezoses aupports the view of a closer relationship than previously hypathesized.
Mandible (Figure 67) -- The morphometrie distinctnesg of horn arrangement groups observed in the skulls is more evident with the mandibles. This ig good evidence for the reality of thege groups because in the previous analyses, tandibles have been less uniquely differentiated (more uniform) in morphology than the skulls. Fuzther, if mechanical/developmental arguments wers plausible, the mandible would be leps directly affected by horn arrangement than the skull. Here also, Dicerorhinus (SU\} has a clear affinity with Diceros (BI) and Ceratotherium (CE). Hencer morphometry of the mandible geeme to have detected unique groupa, cozrelated with horn arrangement, and mogt likely indicating common ancestries for those arrangements.
```

Functional Pattorn* - Rerbivory Type
In the vertebrate foasil record, distinguishing herbivores
from carnivores is trivial. Within herbivores, distinguishing
dietary habits is mare difficuit. Primarily, herbivores are
polarized around two types: grazing (on grasees) and browsing

FIGURE 67. Canonical variates plot of living and fossil subgroup means for mandible data with subgroups ghown by horn arrangement.

Means are grouped by qualitative arrangenent of horns.

Key to symbols (listed alphabetically):

A1 - ACER1M	Aceratherium
$\mathrm{A2}$ - ACER2H	Aceratheritam
BI - BICOM	Diceros (black rhinol
Cz - CERAM	ceratotherium (white rhino)
D1 - DICE1H	Dicerathsrium
D2 - DICE2M	Diceratheritum
FI - FORSIM	Forstercooperia
F2-FORS2M	Forgtercooperia
HY - HYCOM	Hyzacodon
IN - INDRM	Indricotherium
JV - JAVAM	Rhinocsros (Javan zhino)
L1 - APHE1M	Aphelops
L2 - APHE2M	Aphelops
23 - APHE3M	Aphelops
L4 - APHE4M	Aphelops
K1 - MENOIM	Menoceras
M2 - MENO2M	Henoceras
PE - PENE1M	Ponetrigonias
P1 - PERA1M	Peraceras
P2 - PERA2M	Peraceras
31-SUBH1M	Subhyracodon
S2 - SUBH2M	Subhyracodon
\$3 - SU8H3M	Subhyracodon
SU - SUMPM	Dicerorhinus (Sumatzan rhino)
T1 - TELE1H	Teleoceras
22- TELE2H	Teleoceras
T3-TELE3M	тeleoceras
TA - TELE4H	Teleoceras
T5 - TELESM	Teleoceras
TR - TRIGM	Teleoceras
US - UNICM	Rhinoceros (Indian rhino)
Y1 - HYRA1M	Hyrachyus
Y2 - HYRA2M	Hyrachyus
31 - ZAISIM	zaisanamynodon
z2- zAIS2M	Zaisanamynodon

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - HORN TYPES


```
(on herbs, ghrubs, and trees). Typically, the browser-gra2er
spectrum has been correlated to one character, seiative cheektooth
height (iaw, or brachydont, for browaers; high, or hypaodont, far
grazers). Other features primarily or secondarily related to diet
include position of the occiput (related to head carriage) and
position of the anterior dentition (related to procuring
vegetation]. Evolutionary changes of diet may therefore reault in
changeg of mandible and akull morphology. Hence, it ig of interest
to investigate morphometric zesults in relation to hypothesized
diet (herbivory type).
    In Figures 68 and 69, genera or groups of genera are
identified where posaible by herbivory type. ciassification is
derived from previous authorg' interpretations of diet baged on
both direct and indirect evidence. If thege determinationg are
accurate and diet syotematically influences morphology, then
herbivory types ohould be detectable morphometricaily,
Erimitively, there is little doubt that Hyrachyus (Yl-Y2) was a
browger and that subgequent "grazing morphologies", therefore,
evolved from the browsing condltian. Here it is possible to
hypothesize that dietary changes were related to the morphological
changes. Convereely, morphological changes between a primitive
browser and an advanced browaer cannat directly be attributed to
diet (at leagt at the resolution of this gtudy)
    Skull (Figure 68) -- Eyrachyus (Y1-Y2) and Hyracodon (BY) are
not obviously different despite increased hypsodonty and a
```

```
FIGURE 68. Canonical variates plot of living and fossil aubgroup
means for skull data with subgroups shown by herbivory type. Means
are gzouped by hypotheaized type of herbivory.
```

Key to symbols (listed alphabetically):
A1 - ACERIS Aceratherium
A2 - ACER2S Aceratherium
AN - AMYNS Amynodon
EI - BICOS Diceros (black rhino\}
C* - CERAS Cerratotheriun (white rhino)
D1 - DICE15 Diceracheriun
D2 - DICE2S Diceracheriun
D3 - DICE3S Diceratherium
FO - FORSS Forgtercooperia
EX - HYCOS Hyracadon
IN - INDRS Indricotherium
JV - Javas Rhinoceros (Javan rhino)
Lil - APHEIS Aphelops
L1 - APHE2S Aphelops
1* - MENOS Henoceras
P1 - PERA1S peraceras
P2 - PERA2S Peraceras
81 - SUBHis Subhyracodon
$s 2$ - SU日H2S Subhyracodon
33 - SuBH3S Subhyracodon
su - Sumas aicerorhinus (Sumatran rhino)
T1 - TELE1S Teleoceras
T2 - TELE2S Teleoceras
T3 - TELE3S Teleoceras
TA - TELE4S Teleoceras
T与 - TELE5S Teleoceras
TR - TRIGS Teleaceras
UN - UNICS Rhinoceros (Indian rhino)
Y1 - HYRA1S Byrachyus
Y2 - HYRA2S Hyzachyus

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - HERBIVORY TYPES


```
FIGURE 69. Canonical variates plot of living and fossil subgroup
means for mandible data with gubgroups shown by herbivory type.
Means are grouped by hypothegized type of herbivory.
```

Key to symbols (listed alphabetically):

AI - ACERIM	Aceratherium
A2 - ACER2M	Aceratherium
BI - BICOM	Diceros (black rhino)
CE - CERAM	Ceratotherium (white rhino)
D1 - DICE1M	Dicsratherium
D2 - DICE2M	Diceratherium
F1-FORS1M	Forstercooperia
$F 2$ - FORS $2 M$	Forstercooperia
EY - HYCOM	Hyracodon
IN - INDRE	Indricatherium
JY - JAVAM	Rhinoceros (uavan khing)
LI - APHE1M	Aphelops
L2 - AFHE2M	Aphelops
L3 - APHE3M	Aphelops
L4 - APHE4M	Aphelops
M2 - MENOLM	Menoceras
M2 - MENO2M	Menocezas
PE - PENELM	Penetrigonias
P1 - PERA1M	Peraceras
P2 - PERA2M	Peraceras
S1 - SLBH2M	Subhyracodon
S2 - SubH2M	Subhyracodon
53 - SUBH3M	Subhyracocion
SU - SUMAM	Dicerorhinus (Sumatran rhino)
T1 - TELE1M	Teleacsras
T2 - TELE2M	Teleoceras
T3 - TELE3H	Teleoceras
T4 - TELE4M	Tsleoceras
T5 - TELESM	Teleoceras
TR - TRIGM	Teleoceras
UN - UNICM	Rhinoceros (Indian rhino)
Y1 - HYRA1M	Hyrachyus
Y2 - HYRA2H	Hyrschyus
21 - ZAISIM	2aisanamynodon
22-2ALS2H	Zaisanamynodon

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - HERBIVORY TYPES

Abstract

The last two sections of this chapter discuss the skull and mandible morphometric patterns in a temparal-phylogenetic contert. This provides an overall impression and comparison of morphological evolution between and within genera. Straight arrows are uged to indicate a regultant morphological vector from earlier to later groups in the $C V$ morphoapace. where a genus has multiple gubgroups, the arrowheada end at a point approximating the average of those groups (for example, halfway between two subgroups). The arrows are not meant to imply that tine actual evolutionary trajectory was necessarily linear. Arrow length has no necessary meaning in terms of length of time or rate of change (CV 1 is a size, not necessarily a time, axis). Length of the arrows does indicate relative amounts of gize and shape change. In thia section, the vectors correapond to phylogenetic arrows shown in Figure 3. In effect, Figure 3 is mapped, where possible, onto the canonical variate plane represented by CV1-CV2. Arrows from Trigonias (TR) to Subhyracodon (S1-S4) and from Subhyracodon to Diceratheriun (D2-03) are not ghown becauge of the cloge morphometric affinity of thoge genera. Also, arrows to the Iiving genera are not included because their phylogeny is poorly known. Skull (Figure 70) -- This plot is a basic synthesia of morphology, phylogeny, and time at the generic level. The general impression observed is that rhinocerogea diverge in both size and


```
FIGURE 70. Canonical variates plot of living and fogsil subgroup
means for akull data with ghowing intergeneric phylogenies.
Hypotheaized phylogenetic trends among genera are indicated by
arrows.
Key to symbols (listed alphabetically):
N2 - ACER1S Aceratherium
A2 - ACER2S Aceratherium
AM - AMYNS Amyncdon
BI - BICOS Diceros (black rhino)
CE - CERAS Ceratotherium (white rhino)
D1 - DICsis Diceratheriun
D2 - DICE2S Diceratherium
D3 - DICE3S Diceratherium
FO - FORSS Forstercooperia
gY - bYCOS Eyracodon
IN - INORS Indricatherium
JV - JAVAS Rhinocaros (Javan rhino)
L1 - APHEIS Aphelops
21 - APHE2S Aphelops
NE - MENOS Menoceras
P1 - PERA1S pexaceras
P2 - PERA2S peraceras
s1 - SUBH1S subhyracodon
s2 - SUBH2s subhyracodon
S3 - SUBH3s Subhyracodon
sU - SUMAS Dicerorhinus (Sumatran rhino)
Ti - TELElS Telsoceras
T2 - TELE2S Teleoceras
T3 - TELE3S Teleoceras
T4 - TELE4S Teleoceras
T5 - TELESS Teleoceras
TR - TRIGS Teleaceras
UN = URICS Rhinoceros (Indian rhino)
Y1 = HYRAlS Hyrachyus
Y2 - HYPA2S Hyrachyus
```

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - INTERGENERIC PHYLOGENIES


```
shape with time and that ghape diverges with increasing size. It
also shows (especialiy by comparison with the intrageneric analygis
below} that mont of rhinocerotoid trends in size and shape
evolution occur at the generic level. The trends toward gize
increage fzom ancegtral to descendant genera illustrate well Cope's
Eule of evolutionary aize increage which is obgerved in the foseil
record for many groups.
    Mandible (Figure 71) -- Inspection of the time-phylogeny
vectorg for mandibles shows legger degreeg of divergence than
skulls. Size increase ig clearly the dominant ehange between
ancegtral and degcendant genera. Thia regult gupporte earlier
conclusiong about the congervativeness of rhinocerotoid mandible
evolution.
```


FIGURE 71. Canonical variaten plot of living and fosajl gubgronp means for mandible data showing intergeneric phylogenies.
 Hypothesized phylogenetic trends among genera are indicated by

 arrows.Key to symbale (linted alphabetically):

```
A1 = ACERIM Aceratherimm
A2 - ACER2M Aceratherium
BI - BICOM Diceros (black rhino)
C5 - CERAM Ceratotherium (white rhino)
D1 - DICEIM Diceratherium
D2 - DICE2M Diceratherium
F1 - FORSLM Forstercooperia
F2 - FORS2M Forstercooperia
HY - HYCOM Hyracodon
IN - INDRM Indricotherium
JV - JAVAM Rhinoceras (Javan rhino)
L1 - APHE1M Apholaps
L2 - APHE2M Aphelops
L3 - APHE3M Aphelops
I.4 - APHE4M Aphelops
M1 - MENOLM Henoceras
H2 - HENO2H Menoceras
PE - PENEIM Penetrigonias
P1 - PEFAIM Peraceras
P2 - PEHA2M Peraceras
S1 - SUBH2M Subhyracodon
s2 - suBH2M Subhyracodon
83 - SUBH3M Subhyracodon
sU - SUMAM Dicerorhinus (Sumatran rhino)
T1 - TELEIH TeLeacezas
r2 - TELE2H Teleoceras
T3 - TELESM Teleoceras
T4 - TELE4M Teleoceras
T5 = TELE5M Teleoceras
TR - TRIGM Teleoceras
UN - UNICM Rhinoceros (Indian rhino)
Y1 - HYRAIM Hyrachyus
Y2 - HYRA2M Hyrachyus
z1 - 2AISlM Zaisanamynodon
z2 - 2AIS2M Zaisanamynodon
```

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - INTERGENERIC PHYLOGENIES


```
partly by time. Arrows indicate direction of time (earlier to
each genus.
Key to symbola (liated alphabetically):
AI - ACERIS Aceratherium
N2 - AcgR2S Agaratheriun
D2 - DICE2S Diceratherium
D3 - DICE3S Diceratherium
L1 - APHEIS Aphelops
L1 - APHE2S Aphelops
3I - SUBHLS Subhyracodon
s2 - SUBk2S subhyracodon
s3 - SUBH3S Subhyracodon
T1 - TELElS Teleoceras
T2 - TELE2s Teleoceras
T3 - TELE3S Teleoceras
T4 - TELE45 Teleoceras
T5 - TELE5S Teleoceras
Y1 - HYRALS Hyrachyus
Y2 - HYRA2S Hyrechyus
```

FIGURE 72. Canonical variates plot of living and foasil aubgroup
means for skull data showing only those gubgroupa defined wholly or
2ater) and connect age-adjacent (time-sequential) uubgroups within

CANONICAL VARIATE MEANS - SKULL SUBGROUPS - INTERSUBGROUP TIME VECTORS

FIGURE 73. Canonical variates plot of living and fosail gubgroup means for mandible data. only intrageneric subgroups defined wholly or partly by time are shown. Arrows indicate direction of time (earlier to later) and connect age-adjacent (time-requential)
subgroups within each genus.
Key to gymbols (listed alphabetically):

A1 - ACERIM	Aceratherium Aceratherium
L1 - APHEIM	Aphelops
L2 - APHE2M	Aphelops
L3 - APHE3M	Aphelops
L4 - APHE4M	Aphelops
M1 - MENOIM	Menoceras
K2 - MENO2M	Menoceras
82- SUBH1M	Subhyracodon
52-SUBH2M	Subhyracodon
s3 - SUBH3M	subhyracodon
SU - SUMAM	Dicerorhinus (Sumatran rhino)
T1 - TELE1M	Teleaceras
T2 - TELE2M	Teleocerts
T3 - TELE3M	Teleoceras
T4 - TELE4M	Teleoceras
T5 - TELE5M	Teleaceras
Y1 - HYRAIM	Myzachyus
Y2 - HYRA2M	Hyrachyus

CANONICAL VARIATE MEANS - MANDIBLE SUBGROUPS - INTERSUBGROUP TIME VECTORS


```
changes but there are no clear trendg. Teleoceras (T1-T5) exhibits
several types of change, Gverall, the mandible vectors have
gmaller anglea with respect to cVl than in Figure 72. Thig
indicates lesg shape change which is congigtent with eariier
conclusions about the con*ervativenegs of rhinocertoid mandibles.
Comparison of the time vector results with the intergeneric vectors
suggest that general morphological trends in the Rhinocerotoidea
occur at the generic ievel, while at the gubgeneric and epecific
level, evolutionary changes are more varied. Kuch of these
evolutionary changes at lower levels may be considered noise
relative to higher level trends.
```


CHAPTER 5.

DI8CDSBION

in bedimentary roek. Differentiai movemente of the rock may alter (distort) the morphology of gpecimens in both regular and random ways. Morphological variation is, thus, also affected. It is probably axiomatic that every fossil specimen is distorted to some degree. However, only a bingle ingtanee was recognized where an outlying specimen appeared to be so because of distortion (see Trigonias, Chapter 3). In general, the effects of distortion were ingufficient to obscure real morphological relationships. This lack of any aignificant effect of distortion acrogs many taxa from many ages, and many sedimentary conditions is an important result. It shows that rhino akulla that have survived the geological cycle have retained most of their biologically determined morphology.

A gecond important result deriving from the pC fidelity relates to the suite of meagurementa upan which the moxphological discriminations were based. The majority of the original measurements were excluded from analysia beause of the number of migsing values. For example, gince prenaxillae and the anterior dentition were often absent, measurements related to thoge areas were excluded by necegsity from further consideration, The remaining measurements are therefore a non-random gelection representing those pazts of the akull or mandible which most often survive the rigors of forsilization. It was a concern that this subset of measurements might not contain enough morphological information to provida meaningful reaults. The PC analyees ahow that the "surviving" measurements do characterize much of the

```
biologically relevant morghology. Dtfferences between the gkull
and mandible regults, however, might be partially attributable to
differences in the degree to which the reapective gets of
measurementa adequately characterize the morphology- The minimal
effect of these potential problems shows that the "gignal-to-noise
ratio" in foseil rhino skulla is relatively high.
    This study benefited greatly from the availability of living
rhino taxa to serve as true biological analogues, providing an
important link between biology and paleontology. The amount and
kind of variation in the monotypic genera (black and white shinos)
turned out to be fairly representative of recognizable monotypic
groups or presumed populational samples among the fossils. Thus,
the analogues played more of a corroborative role gince there were
no casea were fosails were arbitrarily made to "fit" them.
Ironically, the demonatration of gimilarity of analogue and fosail
variation suggests that studiea of variation in gimilar fogsil
groups without analogues (for example, titanotherea) may be
reasonable with as few as one good geographically and temporally
circumecribed quarry mample to Berve as a gtandard of variation.
of courge, when living analoguee are available, they should be
uped.
The dibsection of variation within the rhinoceros genera, the nature of the pooled within-group digpersion, and the variational overlap within and among genera ahow that evalutionary change in rhinoceros bicull form ig more or leas continuous. That is, the
```

```
"average" morphology (from apecies to opecies, or genus to genus)
ghifts acrogs a continuum of morphospace and is characterized by
variational overlap anong temporally adjacent, phylogenetically
related groups. It is dignificant that thig pattern emerges when
what is considered a relatively good fossil record is observed.
Although, there is much current interest in the presence or abgence
(appearance or digappearance) of qualitative taxonomic characterg
in regards to deciphering phylogenies, the morphological "base" to
which characterg are added or gubtracted appears to evolve
conservatively in rhinocerotoids. The complimentarity of overall
morphology to character etudies provides a richer, more complete
pleture of akull evolution. It may also provide insight into the
relationghipe of development and evolution. There does not appear
to have been any major reorganizations of skull morphology as might
be expected if early changes in development were the caueation of
morphological differences. Rather, the kinds and amounts of
overall morphological change among rhino specien and genera appear
to be consistent with thoge expected from natural selection acting
on populatione of individuals who vary in their temminal
Cevelopnental morphologies. Although Indricotherium might be an
exception, achieving large size and shape differences relatively
quickly, it is more likely that the gap between Indricotherium and
ita ancestors repreaents unfound (or unforsilized) moxphologies
whose variational patterns would be continuous accoss the
morphometric gap. Even if Indricotherium was the product of nome
```

```
saltatory type procese, it is the exception rather than the rule
among rhinocerotoids.
    Inve0tigation of more specific aspecta of morphological change
in Ihino mkulls was beyond the scope of this study. There are
diffieulties ambociated with identifying these from multivariate
regulta, and some details were certainly loat in the unuged
meagurements. One limitation is the number and digtribution of
meggurements across the morphology; generally gmaller, more local
measurementa are more difficult to obtain, Another limitation
regults from correlationg and redundancies of information in
multiple measurementa making interpretation of PC loadings
difeicult.
    Because of the difficulty in interpreting morphology from
multivariate reaults, there has been much intereat in the use of
landmark methode for the characterization of shape changes.
Although the number and distribution of landmazks result in similar
limitations for oharactexizing details of morphological change, the
graphical nature of the methods makes them potentially easier to
interpret. Currently, guch methods are more developed for two-
dimengional zather than three-dimenaional problemg. Together,
measurement and landmark methods provide a complimentary and more
complete view of morphology. A preliminary gtudy of evolutionary
shape change in rhinoceros skulls was undertaken uging the method
of Thin Plate Splines (TPS). This ia a recent computer
implementation of Thompsonian trangforuation gridg based on
```


FIGURE 74. Thin-plate spline (TPS) analysis of shape Erangfonmation from Subhyracodon to Rhinoceros (Indian Ehino).
(a) Untransformed Subhyracodon with landmarks and reference grid.
(b) Trangformed grid showing the deformation required to map
Subhyracodon landmarks on to a homologous set of landmarks on Rhinoceros (not shown; outline represents deformed Subhyracodon).
a.

b.


```
regulting in a primarily vertical pull {elevation}. Thug, one of the major changes in \(日 k u l l\) shape in the Rhinocerotidae may have been related to agpects of matication, bite force, and diet. Because only a subgample of the known rhinocerotoid genera was analyzed, the question arises about how idioayncratic the reaults of this study might be. There remains the posaibility that aome of the unanalyzed fossil genera and lineages might have unique aspects to their biological variation and evolution. Thia ia probably more true at the family level because the two main outliers (Zaisanamynodon and Indricotherium) are each members of different families and are outlying from Rhinocerotidae. It is eleaz that one commonality among families is the evolution of larger sizes. This phenomenon, generalized among all animals as cope's Rule, is exemplified by the Rhinocerotoidea.
Taxonomic revision was not a goal of this gtudy. Indeed, some gtability and accuracy of classification was desired a prioriHowever, because many specimens are unallocated, eopecially at the apecies level, and because multivariate data has not played a gignificant role in current taxonomies, the morphometric results may be helpful in clazifying, supporting, or questioning the taxonomic affinities of specimens to each other and to existing taxa. For example, in subgeneric groupg where unidentified specimens were grouped with apecimens given epecies names, the provisional asoumption is that they are the aame species, in the absence of contrary information. In termb of sorting out potential
```

```
gyatematic relationghips, the most interesting regults are the
morphometric affinities of the living rhinos with the fogsils. The
cloge mimilarity of norphology of Rhinoceros or Dicerorhinus to
extinct forms may help to clarify the phylogenies of extant rhinos.
The affinities also confimm the notion that these living rhinos are
indeed "living fossila".
    The many fogaila which zecord the long higtory of the
Rhinocerotoidea, provide a rare observation into the nature of
morphological evolution in a well-defined mammalian clade. This
natural gampling of the evolutionary process in rhinocerases ahould
continue to be a rich source for analyses of morphological,
aystematic, and evolutionary problemg. Here, several specific
quantitative methods were used to characterize the nature of
Variation in the skull and mandible uging a limited eample of taxa
and measurements. The application of many methods, both ald and
new, to cranial and postcranial elements, ghould continue to
improve our undergtanding of rhinoceros evolution.
```


REFERENCE8

Albrecht G. H.: The craniofacial morphology of the sulawesi macaçues. Kultivariate approaches to biological problems. Contributions to Primatology 13:1-i51 (1979).

Albrecht, G.H.: Kultivariate analysis and the study of form, with gpecial reference to canonical variate analysis. American Zoologist 20:679-693 (1980).

Albrecht, G.H.: Agsegsing the affinities of fogsilg uging canonical variates and generalized digtances. Buman Evoiution 5:5-11 (1992).

Aibrecht, G.H., and Millex, J.k.A.: Geographic variation in primates. A review with implications for interpreting fossils. IN: Kimbel, W.H. and Martin, L.B. editora, species, species CONCEPTS, AND PRIMATE EVOLUTION, pp. 223-161 (Plenum Press, New York 2993.

Anderson, T.W.: MULTIVARIATE STATISTICAL ANRIYSIS (Johin Wiley and Song, New York 1958).

Ashton, E.H., Healy, M.J.R., Oxnard, C.E., and Spence, T.F.: The combination of locomator features of the primate shoulder girdle by canonical analysis. Journal of zoology 147:406-429 (1965).

Atchley, W.R., and Eryant, E.H.: MULTIVARIATE STATISTICAC METHODS: AMONG-GROUPS COVARIATION. BENCAPGRK PAPERS IN SYSTEMATIC AND EVOLUTIONARY BIOLOGY VOL.2. (Dowden, Hutchinson, and Ross, Stroudsburg, Penngylvania 2975).

Bales, G.S.: Thin-plate epline analygis of shape differences between a primitive and modern rhinoceros. The paleontological Society Special Fublication No.G. Fifth North American Paleontological Convention, Abstracta and Program (1992).

Bartlett, M.S.: Multivariate gtatistics. IN: Haterman T.K. and Korowitz, H.J. editors, THEORETICAL AND MATHEMATICAL BIOLOGY, pp. 201-224 (Blaisdell Press, New York 1965).

Bilsborough. A.: Multivaciate analysis and cranial diversity in plio-pleistocene hominids. IN: van Vark, G.N. and dowells, W. F. editorb, MULTIVARIATE STATISTICAL METHODS IN PHYSICAL ANTHROROLOGY, PP. 351-375 (D. Reidel, Dordrecht, Netherlands 1984).

Blackith, R.E.: Morphometrich. IN: Waterman, T.H. and Morowitz, H.J. editorg, THEORETICAL AND HATHEHATICAL BIOLOGY, 225-249 (Blaisdell Pxege, New York 1965).

Blondel. J., Vuilleumier, F., Marcus, L.F., and Terouanne, E.: Is there ecomorphological convergence among Mediterranean bird compunities of Chile, California, and France. In: Hecht, M.K., Wallace, B., and Prance, G.T. editorg, EVOLUTIONARY BIOLOGY voL. 18, pp. 141-213 (Plenum Prese, New York, 19B4).

Bookstein, F.i., Chernoff, B., Elder, R.L., Humphries, J.M., Jr., Smith, G.R., and Straume, R.E. : HORPHOMETRICS IN EVOLUTIONARY BIOLOGY. THE ACADEYY OF NATURAL SCIENCES OF PHILADELPMIA SPECIAL PUBLICATION 15 (19日5).

Gookstein, F.L.: MORPHOMETRIC TCOLS FOR LANDKARX DATA. GEOMETRY AND grology. (Cambridge University Prege, New York 1991).

Bryant, E.f., and Atchley, W.R.: HULTIVARIATE STATISTICAL METBODS. WITHIN-GROUPS COVARIATION. BENCHMARX PAPERS IN SYSTEHATIC AND EVOLUTIONARY BIOLOGY VOL.1. (Dowden, Kutchinson, and Ross, Stroudeburg, Pennaylvania 1975).

Camphell. N.A., and Atchley, w.R.: The geometry of canonical variate analyais. Systematic Zoology 30:268-280 (1981).

Chapman, R.E., Galton, P.M.. Sepkoaki, J.J., Jx., and wall, W.P.: A morphometric study of the cranium of the pachycepialogaurid dinosaur stegosaurus. Journal of paleontology 55:608-618 (1981) .

Clark, J-: The вtratigraphy and paleontology of the chadron Formation in the Big Badlands of South Dakota. Annals of the Carnegie Muaeum 25:261-351 (1937).

Colbert, E.H.: Siwalik mamals in the American Museum of Natural History. Transactions of the American Philosophical Society Ser. 2 26:1-401 (1935).
cooley, W.W., and Lohnee, P.R.: MULTIVARIATE DATA ANALYSIS. (JOhn Wiley and Song, New York 1971].

Cooper, C.F.: Paraceratherium bugtiense, a new genus of Rhinocerotidae from the Bugti Hills of Baluchiatan. Annala of the Magazine of Natural Hiatory 5er.a 8:711-717 (1911).

Cooper, C.F:; Baluchitherium osborni (? ayn. Indricotherium turgaicun, Borriasyak). Philoacphical Trangactiona of the Royal Society London g. 212:35-66 (1923).

Cooper, G.F.: On che skull and dentition of Paraceratherium bugtiense: a genue of aberrant rhinoceroses from the Lower Miocene deposits of Dera Bugti. Philooophical Transactions of the Royal Society London B 212:369-394 (1924).

Cooper, C.E.: The extinct rhinocerobes of Baluchistan. Philosophical Transactions of the Royal Society London B 223:569-620 (1934).

Davis, J.c.: STATKSTICS AND DATA ANALYSIS IN GEOLOGY. (John Wiley and Sons, New York 1973).

Fluyy, B., and Riedwyl, $H .:$ muttivariate statistics. (Chapman and Hall, London 1988).

Foote, M.: Analysia of morphological data. IN: Gilinaky, N.L. and Signor, P.W. editors, ANALYTICAL PALEOBIOLOGY. SHORT COURSES IN PALEONTOLOGY NO. 4. pp. 59-86 (The Paleontological society 1991).

Freman, P.W., and Lemen, C.A.: Morphometrics of the family Emballonuridae. Bulletin of the American Huseum of Natural Hietory 206:54-61 (1991).

Gazin, C.L.: Mammalian faunal zoneø of the Bridger Middle Eocene. Smithsonian Contributione to Paleobiology No. 26 (1976).

Goddard, J.: Age cxiteria and vital etatigtics of a black rhinoceros population. East African Wildlife Journal 8:305-123 (1970).

Gower, J. C., and Ross, G.J.S.: Kinimum spanning trees and and gingle Iinkage clugter analysia. Applied statistics 18:54-64 (1969).

Granger. W., and Gregory, W.K.: A revised restoration of the skeleton of Baluchitherium, gigantic fosail rhinoceros of central haia. American Museum Novitate日 787:1-3 (1935)

Granger, W., and Gregory, W.K.: Further notes on the gigantic extinct rhinoceros, Baluchitherium, from the oligocene of Mongolia. Bulletin of the Amecican Museum of Natural tistory 72:1-81 (1936).

Green, P.E.: MATHEYATICAL TOOLS FQR APPLIED MULTIVARIATE ANALYSIS. (Academic Press, New York 1976).

Green, P.E. : ANALYSING MULTIVARIATE DATA. (Dryden PresB, Hinsdale, I11inois 1978).

Groves, C.P.: Gengraphic variation in the Black Rhinoceros Dicerog bicarnis (L, 1758). zeitachrift fur Saugetierkunde 32:267-276 (1967).

Groves, C.P.: Ceratothezium gimum. Mamalian Species No. 8 pp. 1-6 (Anerican society of Mamalogists 1972).

Groves, C.9.: Taxonomic notes on the White Rhinoceros ceratotheritu simun (Burchell, 1671). Sonderdruck aus Saugetierkundliche Mittleilungen 23:200-212 (1975).

Groves, c.t. : Phylogeny of the living species of Rhinoceros. Zeitgehrift fur zoolagiache und Evolutiongforschung 21:293-313 (1983)

Groves, C.P., and Chakraborty, S.: The Calcutta collection of Agian rhinoceros. Records of the zoological Survey, India 80:251-263 (1983)

Groveg, C.P., and Guerin, C.: Le Rhinocsras sondaicus annamiticis (Mamalia, Perimbodactyla) D'Indochine: distinction taxonomique et anatomique; relations phyletiquea. Gaobios 13:199-208 (1980).

Grovea, C.P., and Kurt, K.: Dicerorhinus sumatrensis. Mamalian Species No. 21 pp. 1-6 (American Society of Mamalogistg 1972).

Hanson, C.B.: Telataceras radinskyi, a new primitive rhinocerotid from the Late Eocene Clarno Formation, Oregon. IN: Prothero, D.R., and Schoch, R.M. editore. THE EVOLUTION OF PERISSODACTYLS. Oxfozd Monographs On Geolagy and Geophyaica so. $15 \mathrm{Pp} .379-398$ (Oxford Univeraity Preas, New York, 1989).

Harfie, R.J.: mJLTIVARIATE STATISTICS. (Academic Press, New York 1975).

Harrison, J.A.. and Manning, E.K.: Extreme carpal variability in Teleoceras (Rhinocerotidae, Mammalia). Journal of Vertebrate paleontalogy 3:58-64 (1983).

Hooijer, D.A.: Phylogeny of the shinocerotids of Afriea. Annala of the South African Huseum 71:167-168 (1976).

Hooijer, D.A.: Rhinocerotidae. In: Haglio, V.J., and cooke, H.B.S. editors. EVOLUTION OF AFRICAN MMMALS, pp. $371-378$ (Harvard Univeraity Press, Boston 1973).

Jarman, P.: Mating sytem and bexual dimorphism in large, terrestrial, mamalian herbivoreb. Biological Reviews 58:485520 (1983).
 ANALYSIS. (Prentice Hall, Engelwood Cliffa, New Jergey 1982).

Jolicoeur, \mathcal{P}, : The degree of robubtnesa in Martes americana. Growth 27:1-27 (1963).

Jolicoeur, P, and Mosimann, J.E.: size and shape variation in the painted turtle. A principal componenta analyais. Growth 24:339354 (1963).

Kingdon, J.: EAST AFRICAN MAMMALS. AN ATLAS OF EVOLUTION IN AFRICA. VOLHME III PART B. (LARGE MAMMALS). (Univeraity of Chicago Press, Chicago 1979).

Kurten, B.: Sexual dimorphism in fossil mamals. In: Wegtermann, G.E.G. editor. SEXDAL DIMORPHISH IN FOSSIL MBTAZOA AND TAXONOMTC TMPLICATIONS. International Union of Geological Sciences Sezies A, No. 1. pp. 226-233 (Stuttgart, Gezmany 969).

Laurie, स.A., Lang, E.M., and Groves, C.P.: Rhinoceros unicornib. Hammalian Species No. 211 pp-307-341 (American Society of Hamalogista 1982).

Lucas, S.G., Schoch, R.M., and Kanning, E.: The bystematien of Forstercooperia, a Hiddle to Late Eocene hyracodontid (Perisgodactyla: Rhinocerotoidea) from Abia and Weatern North America. Journal of Paleontology 55:826-841 (1981).

Lucas. S.G., and Sobus, J.C.: The aystematice of the indricotheres (Mammalia, Ferissodactyla). In: Prothero, D.R., and Schoch, R.M. editors, THE EVOLJTIOH OF PERISSODACTYLS. Oxford Honographs on Geology and Geophysice No. 15 pp. 358-37B (Oxford University Press, New York 1989).

Marcus, L.F.: Traditional morphometrice. In: PROCEEDINGS OF TBE KICHIGAN MORPHOHETRICS WORKSHOP. Special Publication Number 2, pp. 77-122 (University of Michigan Kueeum of Zoology, Ann Arbor, Michigan 1990).

Marcus, L.E., Bello, E., Valdecases, A.: CONTRIBUTIONS TO morphometrics. (Museo Nacional de Ciencian Naturales, Madrid, Spain 1993).

Matthew, W.D.: Third contribution to the Snake Creek Eauna. Bulletin of the American Kuceum of Natural gibtory 50:150-153 (1924) .

Matthew, W.D.: Critical observations on the phylogeny of rhinoceroses. Univereity of California Publications in Geolagical Sciences 20:1-9 (1931).

Matthew, W.D.: A review of the rhinoceroses with a description of Aphelops material from the pliocene of Texas. University of California publications in Geological Sciences 20:411-480 (1932) .

Mckenna, M.C.: Was Europe connected directly to North America prior to the Middle Eocene? IN: Dobzhansky, T-. Hecht, M.K., and steere, w.c. editora, EVOLUTIONARY 日IOLOGY VOL. 6 pp. 179-188 (Appleton-Century-Crofte, New York 1972),

Mekenna, M.C.: Fossil mammals and Early Eocene north Atlantic land continuity. Annals of the Misbouri Eotanical Gardeng 62:335-353 (1975).

McNaughton, S.J.: Grassland-herbivore dynamice. In: Sinclair, A.R.E. and Norton-Griffiths, M. editorg, SERENGETI. DYNAMICS OF AN ECOSYSTEM, Pp. (Univerbity of Chicago Presa, Chicago 1979).

Meeater, J., and Setzer, H.W.: THE MAMMALS OF AFRICA. AN IDENTIFICRTION MANUAL. (Smithsonian Institution Press, Waghington, D.C. 1971).

Horrison, P.F.: MILTIVARIATE STATISTICAL METHODS, (HCGEaw-Hill, New York 1967).

Neff, N.A., and Marcig, L.f.: A SURVEY OF MOETIVARIATE METHODS gOR SYSTEMATICs. (Privately publiahed, Naw York 1980).

Nowak, R.N., and Paradigo, J.L.: WALKER'S MAMPALS OF THE WORLD 4TH ED. VoL.2. (Johns Hopking Univergity Press, Baltimore 1983).

Osborn, H.F.: The extinct rhinocerobes. Hemoirs of the American Museum of Natural History 1:75-164 (1898).

Oaborn, H.F. F New Miocene rhinoceroseg with revigion of known species. Bulletin of the American MuBeum of Natural Higtary 20:307-326 (1904).

Obborn, H.E.: The extinct giant rhinoceras Baiuchitherium of western and central Asia. Natural Figtory 23:209-228 (1923).

Osborn. H.F.: Cadurcotherium ardynense, oligocene, Mongolia. American Mugeum Novitateg 147:1-4 (1924).
oxnard, C.E.: The functional morphology of the primate shoulder as revealed by comparative anatomical, oateonetric, and diecriminant function technigueg. American Journal of Phyoical Anthrapology 26:219-240 (1967).

Oxnard, C.E. Mathematics, ehape, and function: a study in primate anatomy. American Scientist 57:75-96 (1969).

Peterson, 0.A.: The American diceratheres. Memoirs of the carnegie Museum 7:399-477 (1920).

Pimentel, R.A.: MORPHOMETRICS. THE MULTIVARIATE ANALYSIS OF BIOLOGICAL DATA. (Kenda11/Hunt, Dubugue, Iowa 1979).

Protinero, D.R.: The rige and fall of the Araerlean rhino. Natural Higtory 8:26-33 (1987).

Prothero, D.R.: Rhinocerotidae. In: K.M. seott, L. Jacobs, and C. Janis, eds., EVOLUTION OF THE TERTIARY MAMHALS OF NORTH AMERICA. (Carbridge University Presg, New York in press a).

Prothero, D.R.: Hyracodantidae. In: K.M. Scott, E. Jacobe, and C. Janis, edg. EVOLUTION OF THE TERTIARY MAMMALS OF NORTH AMERICA. (Cambridge Univereity Press, New York in press bl.

Prothero, D.R., Guecin, C., and Kanning, S . : The history of the Rhinocerotoidea. IN: Prothero, D.R., and Schoch, R.M. editorg, THE EVOLUTION OF THE PERISSODACTYLS. Oxford Monographs on Geology and Geophysice No. 15. IOxfard Univeraity Press, New York 1989).

Prothero, D.R., Manning, E.. and Hanson, C.B.: The phylogeny of the Rhinocerotoidea (Marmailia. Perisgodactyl). Zoological Journal of the Linnean Society $07: 341-366$ (1986).

Prothera, D.R., and Manning. E.: Hiocene rhinoceroses from the Texas Gulf Coastal Plain. Journal of Paleontology 61:389-423 (1987).

Prothero, D.R., and Sereno, P.C.: Allometry and paleoecology of Medial Hiocene rhinoceroses from the Texas gulf coastal plain. Paleobiology 8:16-30 (1982).

Radingky, L. B : The Eamilies of the Rhinocerotoidea (Mamalia, Perissodactyla). Journal of Mamalogy 47:631-639 (1966).

Radinaky, L.H.: A review of the rhinocerotoid family Hyracodontidae (Perisaodactyla). Bulletin of the American Mugeum of Natural Higtory 136:2-45 (1967a).

Hadinsky, L. $=$ Hyrachyus, Chasmotherium, and the early evolution of helaletid tapiroids. American Museum Novitates 2313:1-23 (1967b).

Rails, K.: Mamuala in which females are larger than males, Quarterly Review of Biology 51:245-276 (1976).

Repve, E.C.R.: A gtatigtical analysia of taxonomic differences within the genus Tamandua Gray (Xenarthra). Proceedinga of the Royal Society London A. 111:279-302 (1941).

Reyment, R.A., Blackith, R.E., and Campbell. N.A. = MUTIUARIATE MORPHOMETRICS. (Academic Press, New York 1984).

Reyment, R.A.: MULTIDIMENSIONAL PALABOBIOLOGY. (Pergamon Presa, Oxford, England 1991).

Rohlf, F.J.: Morphometrics. Annual Review of Ecology and Systematica 21:299-316 (1990).

Rohlf, F.J., and Boakgtein, E.I. editors: PROCEEDINGS OF THE MICHIGAN MORPHOMETRICS WORKSHOP. Special Publication Number 2. (Univergity of Michigan Kubeum of Zoology, Ann Arbot 1990).

Rohlf. F.J., and Marcus, L.F. : A revolution in morphometries. Trends in Ecology and Evolution 8:129-132 (1993).

Rusaell, L.S.: Tertiary mamala of Sabicatchewan Part VI: The Oligocene zhinoceroses. Royal Ontario Museum Publications in Life sciences 133:1-58 (1982).

Schnell, G.D.: A phenetic atudy of the suborder Lari (Aves). I. Methoda and robults of principal components analybes. Sygtematic zoology 19:35-57 (1970).

Simpson, G.G.: Evolution, interchange, and regenblance of the North American and Euxasian Cenozoic mamalian faunas. Evolution 1:218-220 (1947).

Sinclaix, W.J.: Hyracodons from the Big gadlande of South Dakota. Proceedings of the American Philoaophical society 61:65-79 (1922).

Sneath, P.H.A., and SOkal, R.R.: NUHERICAL TAXONOMY. THE PRINCIPLES AND PRACTICE OF NUMERICAL TAXONOMY. (W.H. Ereeman, San Francisco 1973).

Tanner, L.G: A new rhinoceros from the Nebraska Miocene. Builetin of the University of Nebraska State Museum 8:395-412 (1969).

Tattersall. I., Delson, E., and van Couvering, J. editors: ENGYCLOPEDIA OE HUMAN EVOLUTION AND PREHISTORY. (Garland Publishing, New York 1988.

Timm, N.f. : HOLTIVARIATE ANAEYSIS. (Brooks/Cole Publishing, Monterey, California 1975).

Troxell. E.L. A atudy of biceratheriun and the dicezatherea. Anerican Journal of Science 202:197-209 (1921).

Voorhieg, M.R., and Thomasaon, J.R. : Fogsil grags anthoecia within Miocene rhinaceras gkeletons: diet in an extinct species. Science 206:331-333 (1979).

Wall, W.p.: Cranial evidence for a proboscia in Cadurcodon and a review of gnout atructure in the family Amynodontidae (Perigsodactyla, Rhinoverotoidea). Journal of Paleontology 54:968-977 (1980).

Wall, W.P.: The genus Amynodon and its relationship to other members of the Amynodontidae (Perisagodactyla, Rhinocerotoidea). Journal of Paleontology 56:434-443 (1982).

Wall, W.P.: The phylogenetic history and adaptive radiation of the Amynodontidae (Perispodactyla, Rhinocerotoidea). IN: Prothero. D.R., and Schoch, R.M. editore, THE EVOLUTION OF PERISSODACTYLS. Oxford Monographs on Geology and Geophyaica No. 15. Pp. 341-354 (oxford Univeraity Pre日g, New York 1989).

Wayne, R.k. Limb morphology of domentic and wild canids: the influence of development on morphologic change. Journal of Morphology 187:301-319 (1986).

Weishampel, D.B., and Chapman, R.E.: Morphometric atudy of Plateosaurus from Troabingen (Baden-*urtemberg, Federal Republic of Germany) IN: Carpenter, K., and Currie, P.J. editorg, DINDSAUR SYSTEMATICS. APPROACHES AND PERSPECTIVES. pp. 43-52. (Cambridge Univerbity Presa, New York 1981).

West, R.M.: Eocene (Wasatchian through Duchesnean) biochronology of North America. IN: Woodburne, M.O. editor, CENOZOIC MAMMALS OF NORTH ANERICA. GEOCHRONOLOGY AND BIOSTRATIGRAFHY, PR. 77-117 (University of california press, Berkeley 1987).

Hhitten, A.J., Damanik, S.J., Anwar, J., and Hisyam, N.: THE ECOLOGY OF SUMATRA. (Gadjah Mada Univergity Preas, Yogyakarta, Indonesia 1987).

Winans, M.C.: A quantitative study of North American foseil species of the genus Equus. IN: Prothero. D.R., and Schoch, R.M editors, THE EVOLUTION OF PERTSSODACTYLS. OXford Monographs on Geology and Geophyaicg wo. 15 pp . 262-297, (Oxford Univergity Press, New York, 1989\}.

Wood. H.E., II,: Hyracodon petersoni, a new curgorial rhinoceros from the Lower oligocene. Annals of the Carnegie Museum of Natural History 61:315-319 (1926).

Wood, H.E., II, A Anerican Oligocene rhinoceroses - a postacript. Journal of Mamalogy 10:63-75 (1929).

Wood, H.E., IT, $:$ Lower oligocene chinoceroges of the genus Trigonias. Journal of Mammalogy 12:414-428 (1931).

Hood, H.E., II, : Revision of the Hyrachyidae. Bulletin of the American Huseum of Natural Eietory 67:182-295 (1934).

Wood, H.E., II,: Trends in rhinoceros evolution. Transactions of the New Yosk Academy of Sciences Ser.II. 3:83-96 (1941).

Woodburne, 4.0 . editor : CENOZOIC MAMMALS OF NORTH AMERICA. GECCHRONOLOGY AND 8IOSTRATIGRAPAY. \{Univeraity of California preas, Berkeley, California 1987).

Wortman, J. L.: Studies of Eocene mammalia in the Marsh collection, Peabody Kuaeum. Pt.1: Carnivora. American Journal of Science 4th ger. 11:333-348 (1901).

Yatkola, D., and Tanner, L.G.: Arachypotheriun from the Tertiary of North America. Occasional Papers 77:1-11 (Univergity of Xansas Nugeum of Natural History, Lawrence 1979).

2ukowsky, Von Ludwig: Die aystematik der Gattung Diceros Gray 1821. Der 2oologiache Garten (N.F.) 30:1-179 (1964).

APPENDI異 1.

GPBCIMEN IDENTEFTCATION

```
Specimens used in this study are listed by number in ascending
order with skulla liated first. Codes represent the firgt four
letters of the subgroup codes listed in Tabies 2 and 3. Identical
specimen numberg in both skull and mandible lints indicate a
matched ekull-mandible pair.
```

MUSEUM ABBREVIATIONS

```
ANNH - American Museum of Natural History
DNNH - Denver Museum of Natural History
FAM - Fricke Collection of the American Museum of Natural Higtory
FMNH - Field Museum of Natural History
KUVP - Univergity of Kansas Museum of Natural History
KCz - Museum of Comparative Zoology, Harvard Univergity
USNM - National kugeum of Natural History
```

SKULL SPECIMENS

Genus	Sper.	Musem
HYCO	116	FAN 112168
HYCO	117	ANWH 12296
HYCD	120	ANM 38996
ence	124	Am\% 1000
Fors	127	AMWH 26037
FOR5	130	ANMH 21608
cera	141	ANuH 51858
CERA	142	Amin 51055
HENO	163	fam 112328
stco	147	AMHH 90055
8ico	149	АВНत 18850?
BICD	150	AHMN ESITS
atco	151	AHNH 85181
BICD	152	ANH 85176
81co	155	AMan 27755
Bico	157	AnN+ 56311
MENO	158	MNWH 112255
gico	161	АНNH 27\%S8
aico	166	AMMH 85174
Quco	167	NHWH 85179
aicd	268	NHNH B5178
atco	169	ANMN 85180
alco	170	AMNH 85181
Mewo	171	MANH 14236
hema	172	FAN 112244
alco	174	ANNH 85182
8 co	176	A푼 90206
BICO	177	MMN: 54303
bico	178	AHNW 34739
8tco	181	AHWH 34742
MENO	186	FAM 112265
heme	187	FAM 112250
HEw	188	SaM 112254
Mewo	195	Nawn lshelf 3.133)
MENO	196	АММн Ishelf 3.1331
meno	197	AMMH 27866
MEWC	198	M NNH (shelf 3.131 J
MENO	200	АНан 86220
MEND	201	AㅐHH 16213
BICE	203	FAM 112194
DICE	204	FAM 112187
APHE	205	AMNH 95546
SUBE	238	AMMH 1126
SUBI	229	AMNH 561
5UbH	231	Anin 1137
Suen	233	ANHH 1121

Stuen	236	Minh	11865
DIEE	239	Апл.	7324
DICE	360	FM	112176
OacE	245	NHWH	26215
TELE	255	AMH	115297
(M0R	258	AHWH	1865,
dice	266	Onmer	82591
OICE	267	OMM	Lusk 119-707
APHE	268	FAM	114313
APHE	269	Mowh	Ains. 108
APHE	270	FAM	116314
APHE	271	AMWH	104624
APHE	272	SMEH	114315
PERA	276	NOWH	108338
SUEH	278	aver	1122
TELE	281	FAM	114588
TELE	284	FAM	114590
tele	287	fan	116547
TELE	291	FAM	114577
6tco	295	MCZ	27135
cera	298	MCZ	26917
Java	294	MC2	27324
Unic	303	MC2	26269
8ico	305	MCZ	15895
tele	311	FAM	116524
TELE	312	FAM	116526
tele	313	FAM	114523
TELE	314	FAM	104209
Peie	315	FNM	114560
TELE	316	FAM	114538
TELE	317	FAH	42979
TELE	318	FAM	42978
PERA	324	Fan	109360
Pera	326	FaM	114409
PERA	327	MINH	8380
PERA	328	FAM	114396
APNE	330	FAM	116317
APME	534	Fan	114321
APME	335	FAM	116327
TELE	341	FAM	114614
TELE	342	Fam	114416
tele	344	FAM	146422
UNIC	348	USNM	54587
java	351	USHM	156507
CERA	350	USMn	199709
CERA	366	USNM	164592

HYRA	4	Amwh 11651
HYga	6	N0WH 1286
HYRA	8	And 12355
PENE	15	AMH 1110
Java	17	Now 43
Java	18	NHWH 146718
Suma	21	WMN 81892
cera	22	MWH S1854
sugh	28	AWN 529
StaH	29	Anen 1689
Suen	32	FAK 112162
sugh	33	FAM LUSK 0-117-2113
suber	35	AMUS 38995
Stcan	58	ANWH 50-211-3667
suik	40	SNWN $50-18-464$
518 m	43	NHWH 1134
Suan	44	AOHH 1128
suma	46	MANH 54763
UWIC	48	AHWN 54654
UWIC	53	ANHN 54455
UWIC	55	NWH 35759
cera	59	MNH 51856
Sugh	65	M MNH 4S6-22186
CERA	9	AIMH [cabinet 960]
CERA	101	MMNH S1860
CERA	102	NWH S18,
CERA	103	WNH 51859
CERA	104	NGWN S1857
2015	107	Mun 26102
2 AlS	114	NONH 90381
HYCD	117	ANXH 12296
HYCO	120	ANHL 389\%6
acer	126	ANWH 1000
FLRS	126	AM以 20286
Fters	128	AMNH 26850
FORS	129	MUM 26686
MEm0	132	FAM 116063
cera	141	M MNH 51858
CERA	142	ANOH 51855
alco	167	MNH 9005s
B1CD	149	MNNH 118602
8160	150	
BICO	451	An+H 85181

Genus Spec. \# Nusern:

91co	155	NMNH	27755
Bico	157	Num	54311
MENO	159	мемй	112255
Bico	161	SNW	27759
BICO	166	лงмn	85174
Bico	167	Nบบㄴ	ES179
aIco	188	AWH	85178
aico	169	New	85180
aIco	170	Numb	85181
MExD	172	FMN	11224
alto	174	Nown	85182
Bico	176	AMH	50204
asco	177	A*W	54383
atco	178	NOWH	36739
-1C0	119	Alinh	34742
MEND	186	Fa*	112245
MEND	189	HMWH	Agate E
MEMD	190	NHWH	agate L
MEND	191	NKH	Agate \%
MEMO	192	АМНН	Agate A
HEND	194	HuNH	8S218
ACER	206	AMNS	26218
APHE	207	FAM	114647
APHE	208	AMNH	114650
APME	209	FAM	114651
APkE	211	FAM	114672
ACER	212	AMNH	08036
APHE	213	FAM	114780
APSE	214	FAM	114826
APME	215	FAM	11480
APHE	216	NMRH	FLATAS-2725
TELE	217	FAM	11526s
IELE	218	FAM	115267
TELE	219	FAM	115275
TELE	2214	FAM	115618
TELE	2218	arum	13874
TELE	223	FAN	115782
TELE	226	FAN	115951
TELE	225	FMN	115958
TELE	226	FAM	115880
TELE	227	FAN	115967
Stalit	231	АМНН	1137
SUBH	232	АМлй	543

Genus spec．＊Musen ：

suar	234	ANM	1121
OICE	261	M－3\％	thex 117 －［710］
ACER	265	M Min	26215
TELE	249	N（1）${ }^{\text {a }}$	18924
TELE	250	ANW	214\％6
TELE	253	N00：	115026
TELE	254	Newn	115079
FELE	255	NOIM	115297
IMCR	258	ARNH	18650 ［see foctnote］
FELE	259	FAM	115370
TELE	260	FN0	11537i
TELE	261	Amen	10878
TELE	262	fan	14509
TELE	263	FNM	115582
TELE	266	FN0	115252
ADHE	273	Nown	Ains．74－2
APHE	276	FAH	104623
APHE	23	Avin	FLA 166－2565
PERA	276	NHEN	108338
SuBh	279	NMW	1109
HYCO	280	ATONH	14633
TELE	281	FAM	116588
TELE	2 BZ	FAM	114585
tele	283	FAM	114597
TELE	286		2623
tele	290	Aumh	8391
TELE	292	FAN	116570
Blco	294	HC2	47993
alco	295	MCZ	27135
CERA	297	HCZ	34850
cera	298	MCZ	24917
JAva	299	MCZ	27324
twic	303	nc2	26269
8IC0	305	nc2	15695
TELE	312	FAN	114526
TELE	313	FAN	142523
TELE	314	FAM	104209
PERA	319	Fen	114310
APHE	322	FMM	114358
HYRA	323	FAN	12664
PEAA	324	FAM	169360
PERA	325	FAM	146432
ADHE	330	FAR	166317
APME	33i	ENM	114319
APHE	333	FRH	114322
APME	338	EAM	174352

Genus Spec．\＃Museun

APre	330	FAM	114357
Pera	340	FHM	114407
TELE	366	FAN	114436
TELE	347	FMN	164437
UNIC	349	USWM	545867
UntC	349	USm4	545848
CERA	360	usma	199709
CERA	366	uswa	164592
CERA	367	U5NM	164593
cera	368	USHM	164594
cera	369	USWM	164595
CERA	370	USMN	164596
CESA	371	USNW	164597
BICD	379	USNM	161924
－180	382	USNH	16293：
－150	384	USMM	162933
8100	386	USun	；62935
9150	387	USNW	162937
－1C0	388	USWM	162936
－1co	389	USIW：	162939
8150	390	USM：	162938
8160	392	USMM	16294；
OICD	393	USMA	162943
8ico	396	USW0．	162942
8 tco	396	USW＊	162944
日lco	397	USME	162966
8150	398	USwn	162968
Elco	402	USNM	182018
－150	405	USW	182046
日100	407	USM	182194
－1c0	408	USMM	199058
8150	410	USシ1	199067
8150	411	USNA	19906\％
8150	412	USNW	199070
B1c0	414	USMM	199522
8160	418	USWH	540004
TRIG	421	USNM	4815
TRIG	423	USNK	5667
TELE	426	xuvp	［mownted
SUBh	425	KUVP	2787
UMIC	426	FRHH	25707
UHIC	427	FMAH	25708
UNIC	429	FMm＊	57639
cera	431	f（MAH	29176
8100	436	¢ткн	36279
8190	437	frwn	85429

Gerus Spec. \# Museven

Bico	641	FM\%h 127849
8ico	463	F\%NH 127851
dice	451	FMNH UE385
MEMD	454	FMOH UC 1355
MEWD	457	FMIN P15146
SUBH	458	Frow Plzols
HYCD	450	FNHM PlZOII
trit	470	DMNH 1510
Tejg	474	OMAN F-926
TRIG	477	DWWH 2712
TRJG	479	OWWH 267%
TRIG	480	DINH 412
TRJE	481	
TRIt	483	DMW 895
tRIG	484	Own 2676
Tric	485	GMNH 1037
TRIG	486	OMIH 2726
7016	491	Damm 1029
pera	494	Davh 32

Nate: AMNK 18650 is a cast.

APPENDIX 2.

DATA BHEBT

Data form used for each specimen (shown reduced in size).
Measurementa were taken from top-to-bottom, left-to-right. Ancillary data included genus/apecies/gubspecies designations (G\S\S), collection information (COLL.), museum identification (MUS.), field notes (FIELD), male/female (M\F), and localityatratigraphy (LOCAL). Teeth present and firgt molar wear gtage were also recorded ($p^{1}=$ first deciduous premolar; $p=$ first permanent premolar).

GEs: MLA:		cots ค月ㅁ:		acpaje: MरF
MNOL : 1		Gcy vimbariona		
MNOGE :				
CRANIUM			MANDTELE	
Oxip	OXTO	BIPG	CNP2	
0×12	OXPF	CNPO	CPP2	
0 OCP	L0×8	gave.	CNCN	
0×10	Blicm	oxat	CNMM	
BİPA	CNIN	A5pr	CPMS	
812Y	U0X9	stich	CPary	
2YYY	Mox	AEAE	Pavo	
POPB	EOMH	Wint	Reath	
TRCS	COMM	Mapl.	ANOD	
TITN	ENPO.	Plat	ANGW	
Znat		PLOR	Cocer	
3 H		M MBT	MCNM-	
Frwis		MaM\%	MNOT	
Trert		UM12	MNM	
UFHT			LM1L	
LFFT		IEat.	LY1\%	
ORIP		мим		
ORNa			alma	
gnes		exper	8139	
SONA		POH	BPP2	
eame		TERH	P2TP	
Prax		9 M	18 FP	
INFH		P1LE	3 CMI	
NEW			EDHT	
			sper	
			gyMe	
			SMWW	

MPRENDIX 3.

MgASUREMENT DEFTNITIONS

APPARATUS

Roman numerala indicate inatrument (caliper) type or measurement aid (plexiglas): lowercage letters refer to caliper subparta or to different aids. The numerals and letters are referred to in the descriptions of meagurements.
I. Fowler 12* Digital Caliper. (Swigs). This allowg outside measurements only using longer squared-tip jaws (I.a) or shorter pointed-tip jaws (I.b). The metric range is $0-369 \mathrm{~mm}$, accurate to 0.01 mm .
II. Fowler (Sylvac) Oltracal II 6" Digital Caliper-(Swisg). Includes longer, pointed jawn for outside measurement (II.a), shorter, pointed jaws for inside diameters (II.b), and a depth gauge (II.e). The metric range is $0-153$ mm, accurate to 0.01 mm .
III. GPM Anthroponeter.(Swiag). A specialized oaliper designed for taking human somatic measurements. Jaws are long (22cm) and the tip-to-tip measurement range is $0-210 \mathrm{~cm}$, accurate to 0.5 mm .
IV. Helios 12" DisI Caliper.(Nest Geraan). Similar to I, but nondigital. Includea depth gage (IV.a) with maximim depth of 33 cm , accurate to 0.05 mm .
Y. Plexiglas Plates. Rectangles, 10° by $1^{\prime \prime}, 2^{n}$, or 3^{n} (V.a).
 rectangle with ruler attached to surface (V.C). plate thicknegs is 5 mu (nearest mis):

Uppercase lettera identify apecific landmarks and are referred to in the description of meagurements.
A. Most posterior point in the nedian plane along the nuchal margin

Given the diveraity and irregularity of the occipital region, some judgement is required to locate this point. When there is a diatinct nuchal ridge, it is oimply followed to the median plane, and if the ridge is thick, the superior margin ig used. Where the ridge is leas distinct, it must be decided where the doraal gurface of the akull "ends" and the occipital surface "begins". Because the zidge may turn inferiorly as it approachea the midine, this landmark does not necesaarily carcespond to the most superior point. of the occiput, not to the moat pooterior point of the occiput, depending on the inclination of the occipital "plane" and the presence of tuberous and rugose arbas.

Measuremente to this point: oXTP, oXPZ, oxpo, oxTo, OXLE, oXAE, OXOR, OXM3

B. Posterior margin on the basiocciput

Between the occipital condyles inferiorly, the basiocciput presents a rounded poaterior margin which is somewhat external and inferior to the true foramen magnum aperture. The most posterior point of the margin in the median plane is marked while observing the gkull pooteriorly at the level of the occipital condyles.

Meagurements to this point: OXTO, KGPL
c. Host latBral point on the articular eminence

The articulas gurface is ugually gmoother than surrounding bone and may have a different hue. These two factors help in following the margin to its most lateral extent. This point does not necessarily correspond to the most lateral point of bone in the region, or of the zygomatic arch.

Meaguremente to this point: OXAE, AEAE, AEP2, AEOR
D. Nost anterioz point on the margin of the orbit

```
This point ig difficult to determine for several reagons: the
orbital margin is not well-defined, being rather rounded and
mmoothly continuous with adjacent bone, and the lacrimal process
and foraminae may appear to occupy the position. In much cames,
the point is considered as just infarior to the lacrimal process.
Meagurementa to thig point: OXOR, AEOR, BIOR, ORP2, ORNA, ORTP,
ORMX
E. Nost anterolateral point on the alveolar margin of the second upper premolar
The anterior and lateral margins of the alveolus are continuous at the anterolateral "corner". The center of this curved part is detemined by eye.
Measarements to this point: OXP2, OCP2, AEP2, P2MX
```

F. Most posterior point on tho palate in the median plane

This is atraightforward when the auture between the palatine bones ia tight or fuged. If there is a cleft between the two bones, the point must be imagined as lying on the plane tangent to the posteromost medial points of both sides.

Measurements to this point: MGPL, PALL,
G. Host lateral point on the mandibular condylar artieular surface

As with the articular eminence, texture and hue usually distinguish
it from the surrounding bone. It is uswally at or fust medial to the most lateral point of bone.

Measurements to this point: CNCN, MCNL, CNP2. CNM3

```
8. Anteriof margin of the mandibular zamus in the occlusal plane
of the tooth row
This point is constructed by placing the broad part of V.e on the
mandibular teeth Buch that the narrower bection passes along the
lateral surface of the mandibular ramus and the indented edge abuts
the anterior margin of the ramus. The inferior surface of the
plastic is used to mark the point.
Measurements to this point: RAMD
I. (Note: "I" in omitted an a landmark identifier to avoid
confugion with the Roman numeral I above, indicating an ingtrument
type).
J. Postexioz mazgin of the mandibulaz ramus in the plane of the
tooth row
Position V.e as for E. With the projecting flange againot the
ramus, mark the posterior margin of the ramus in the plane of the
inferior surface of the flange.
Measurements to this point: gald
K. Most posteralateral point on the grinding surface of the lawer
thira molar
When the posterior loph is worn, its most posterior point is easily
identified. In the unworn tooth, the grinding turface is
conaidered to be the ridge of the loph.
Measurements to this point: OXM3
L. Host superior point on the coronoid process
From the side, maxk the top of the arc of the superior surface of
the coronoid process. If the coronoid procese is flattened
superiorly, the point is considered to lie midway along the
superiormogt extent.
Measurements to this point: CPCP, CPP2 , CPM3 , CPRH
```

```
M. Anterior limit of the temporal line
The temporal line may be digtinguished as a ridge or line
separating the relatively gmooth bone of the temporal fogsa from
the rougher bone of the dorsal gkull surface. Anteriorly, the line
ends above and benind the orbit. poateriorly, the lins turns
laterally and may grade into the rugosity of the nuchal ridge.
Some judgement is therefore reguired to determine the exact points.
Measure ubing I.b. In Diceros bicornis, the temporal line
intersects a second ridge coursing anterosuperiorly from the optic
and mandibular foraminae. The intersection is the marked point in
this came.
Measurements to this point: TFLN
N. Posterior limit of the temporal fossa
As the temporal line courses posteriorly (see M), it eventually
archee laterally along the occipital margin. Judging the most
postexior point of this arch requires care, and it may be more
lateral or more medial depending on the species.
Measurements to this point: TFLN
O. Intersection of the alveolar margin with the plane passing
through the anterior margin of the orbit and perpendicular to the
tooth row
Use V.a to approximate the plane and itg orientation.
Measurements to this point: TFHT, LFHT
P. Most anterior point on the maxillary bones
Where functional incisorg are absent, this point is on a projection
of bone. Care must be taken to asgess any breakage. In opecies
with incigorg, the point is located sagittaliy between Eirst
incisors.
Measurements to thia point: P2MX, ORMX
```

0. Nost poaterior point on the alveolar margin of the third upper moldr

Measurements to thia point: oxa3, M3M3. MXGT, MXMO

R- Host posterior point on the occiusal surface of the most posterior molar

Measurements to this point: CNM3, CPM3, BIM3, MNGT, HNMO
\$- Host anterior extent of the attachment of the masseter to the zygomatic arch

The inferior margin of the zygomatic arch is marked by ridges and/ar rugosities. The point is marked where there appear to end at or near the maxillary root of the arch.

Measurements to this point: zYLN
T. point on the inferior margin of the mandible in the plane passing through the mandibular notch and perpenticular to the plane of the tooth row

Heasurements to this point: RAMH

MEASUREMENT DESCRIPTIONS

The following degcriptions are grouped by gkull and mandibie. Within each group, measurements are liated alphabetically.

Skwll

MEAE - Biarticular eminence breadth. Distance between the most lateral points of the articular eminences (C to C).

ASOR - Articular eminence to orbit. C to D using I.

ABP2 - Articular eminence to second upper prenolar Most lateral point of the TMJ articular \quad ourface to most posterior margin of P2.

BICN - Bicondylar breadth. Horizontal digtance between the moat lateral points on the occipital condyles uging I.a.

BIOR - Biorbital breadth. D to D using III. The orientation of the caliper is not important as long as the tips are in the sagittal planes through the points. If lacrimal processes prevent placement of the tips directiy on the pointe, position the tips by eye so that a line along the caliper jaw projects through the point.

BIPG - Bipostglenoid breadth. Ingide distance between the postglenoid processes measuxed at their bases.

AIzY - Outer bizygomatic breadth. Distance between the most lateral points of the sygomatic arches. place jaw of III vertically against the arch and close againgt the corresponding point on the opposite side.

ENRS - Binasal breadth. Nasal breadth measured at an estimated point 50% of the distance between the most posterior point of the nasal incision and the midilne in the plane of the nasal tips.

CNWN - Occipitai condyle length. Place I-a against the most redial margin of the condyle and close down againgt the most lateral margin of the condyle. This neasurement ghould be approximately parallel to the long axis of the condyle.

CNPG - Condyle to postglenoid process. Distance between the occipital condyleg and the postglenoid procegses. place III against the posterior surfaces of the occipital condyles and clome down against the procesges anterioxly.

ENDO - Endocranial leagth. Endocranial length measured from the guperior margin of the foramen magnum (as defined for FOMH) in the median plane to either side of the cribriform plate using IV.a.

ExINA - External nasal aperture breadth. Outaide diameter of the anterior nagal aperture measured at its most lateral pointa when viewed anteriorly, Pace I.a againgt the lateral side of the nasal wall and elose the opposite jaw against the analogous point on the opposite side of the akull.

FHit - Face height including upper first molar. Digtance from the lateral occlusal margin of te firgt upper molar to the dorsal midine of the craniun in a plane passing through D.

Fown - Foramen magnum height. Foramen magnum height from the superior to inferior marging uaing II.b. Place a jaw againat the table of bone forming the floor of the foramen and spread the other jaw to the buperior margin. The auperior margin often includes irregular bony outgrowthg or a vertical alit in the midiine. In either case, the "upper margin" ia obtained by estimating a gmothiy extrapolated curvature baged on the remaining margin of the foramen. Smailer specimens may require the use of iI.b. FOWN - Foramen magnum width. Distance between the most lateral margins of the foramen magnum. Uee the jawn of III (either end) as inside calipers. True distance is the reading plue 20.0 mm to correct for the width of the caliper jaws (as in zYzY). Smaller specimens may require the uge of II.b.

IMFR = Infraorbital foranen height. Vertical height of the infraorbital foramen. Using I.a, make a judgement as to the boundary of the foramen and meagure in the mont convenient orientation of the caliper.

INFW - Infraorbital foramen vidth. Horizontal wideh of the infraorbital foramen. Meagured as for INFH but in the horizontal plane.

LFHT - Lower face height. D to ousing I.b.
IOZB - Lower occipital breadth. Breadth of the occiput in the horizontal plane passing through the superior margin of the occipital condyles.
made - Foramen magnum to articular eminence. Posterior margin of the basiocciput to the lateral articular eminence.

MrPL - Foramen magnum to palate. Distance from B to the posterior margin of the hard paiate in the median plane. Place a jaw of I.a at B and the other jaw tip at the poaterior median point of the palate.

MOIB - Middle occipital breadth. Distance between lateral occipital margins at a level between LOXB and toxs and meagured in two ways depending on the nature of the oceipital region: (a) where the occiput is concave, the minjmum diatance is meaaured, (b) where it is atraight or convex, the distance is measured in an estimated plane SO\% of the distance between A and LoXB.
magr - Maxiliary grinding tooth row length, Digtance from the most anterior point of $P 2$ to the most posterior point of M3 along the grinding surface.

Mtion - Haxillazy molar tooth row length. Diatance from the most anterior point of M1 to the most posterior point of M3 along the grinding surface.

M1N1 - Breadth across upper first molars. Distance across across the firgt upper molars measured between the buccal crown surfaces at their most lateral pointr inferior to the alveolar margin. Place tip or edge of I.a against one tooth and close against opposite tooth such that comparable parts of the jaws are in contact with the tooth. If the teath are loose, they mugt be gtabilised (with the free hand) in the position which is judged most natural.

M3M3 - Ezeãdh across upper third molars. Outside diameter across the thicd upper molarg meamured at the distal root. place I-a with tip in the plane of the alveolar margin and side vertical against most lateral surface of tooth. With calipers horizontal, close jaw against opposite tooth. If the teeth aze looge, they must be stabilised (with the free hand) in the position which seens most natural.

OCP2 - Occipital condyle to second upper premolar. Occipital condyle to D. Hold jaw of III against the posterior surface of the occipital condyle. Spread second jaw point to D of same side.
ornc - Orbit to maxillary tip. D to the midline in the plane of the most anterior projection of the maxillary/premaxillary bones.

```
ORMA - Orbit to nasal incision. Most ponterior point on the margin
of nagal incigion to D. Place jaw of I.a against the margin of the
incision and the other jaw tip at the indicated point.
ORHP - Orbit to nasal tips. D to the midline in the vertical plane
of the namal tipa using V.a.
OxAE - Occiput to articular emingnce. A to C using I.a.
orut = occipital length. Digtance from A to B using I.b.
Om3 - occiput to third upper molar. A to q using I.b.
OZOR - Occiput to anterior orbital margin A to D uging III.
oxp2 - occiput to secand upper premolar. A to D. From the side of the skull, place the tips of III at the indicated pointa. In cases where both pointa cannot be seen at the game time, it mu日t be decided which point is most easily held in place while out of view.
OrNO - Total occipital height. Total vertical length of the accipital region measured from the external gurface of the inferior margin of the foramen magnum to A .
oxyP - occiput to masal tipg. plane of the mogt anterior points of the nasal bones to \(A\). Place \(V . b\) across nasal tips to define plane. place a jaw of III. against the plate in the midiine and close opposite jaw point to A. This method does not account for distances between the nasal tips or presence or abeence of bone in the midline pogterior to the tipa.
PAID - Palate depth. Depth of the palate measured across the first molar. place V.a across the first molars. Measure anteriorly from the plate to the midine of the palate with II.c.
PGLI - Postglenoid process height. place v.a (1") horixontally across the tip of the postglenoid process. Use II.C to measure vertically from the plate to the bone at the bage of the process. Correct for thickness of the plastic.
```

PLOR - Palate to orbit. Poaterior margin of the palate in the median plane (P) to the most anterior point on the margin of the orbit (D).

PhP2 - Palate to second upper premolar. Posterior margin of the palate in the median plane to the anterolateral margin of the alveolug of the second upper premolar.

PORB - Postorbital constriction vidth. Digtance acrons the narzowest constriction of the cranium posterior to the orbits and medial to the zygomatic archs. Judging frotu directly above, place one jaw of III verticaliy against one side at the narrowegt point and close apposite jaw againat corresponding aurface on the opposite side.

PILE - First upper premolar length. Eength of the upper firat premolar measured with t.b. from the anterior to pogterior margins along the midtoothrow axis.

P2MX - Second upper premolar to maxillary tip. Anterolateral margin of the second upper premolar to the midline in the plane passing through the tipa of the (pre)maxiliary bones.

P272 - Breadth across second upper promolars. Outside diameter across the second upper premolars measured beween the most lateral partat the distal root. Place $1, a$ with tip in the plane of the alveolar margin and aide vertical againgt most lateral surface of tooth. With calipers horizontal, close jaw against opposite tooth. If the teeth are loose, they mast be otabilised (with the free hand) in the position which geems most natural.

TERB - Biterygoid process breadth. Breadth of the pterygoid procegaes measured between their most lateral pointa. place a jaw of I.a againgt the most lateral point of one process and close down the other jaw on the corresponding oppoaite point.

TERZ - Pterygoid process height. Vertical height of the pterygoid procesaes. Place V.a (I") across the inferior limita of the pterygoid processes and balance perpendicular to the processea. At the pogterior edge of the plate in the midinne, uee II.t to measure the distance to the bone.

TFIT - Total face height. Diatance from 0 to the midine doraally in the plane passing through the anteriot margin of the orbit and perpendicular to the tooth row.

TFLN - Temporal fossa length. K to N uging I.a or III.

TFOS - Temporal fossa opening. Distance across the temporal fosga, approximately anteroposteriorly, where the fosea opens inferiorly. place the jaws of III through the fossa and gpread to the widest points, making aure that comparable parta of the jawa are touching bone.

UFAT - Opper face height. Digtance from D to the dorsal median surface in the plane passing through 0 and 0 .

UHIL - Maxillary first molar length. Length of the first upper molar measured aczoss the greatest extent of the buccal surface.

WHW - Maxillary first molar breadth. Width of the first upger molar meadured between roots as close as pogaible to both alveolar margins.

UOKB - Upper occipital breadth. Breadth of the occiput auperiorly either: (3) where the nuchal ridge ends and the margin turns anterioriy or inferiorly, or (b) where the margin has a maximum distingighed from the minimum in moxs

3yHx - Zygomatic height. Meabure vertically in the plane pasaing through As and approximately parallel to the external burface of the arch.
zYw - Zygomatic process length. Masseter attachment along the length of the zygomatic arch meamured from co s.

ZYZY - Inner bizygonatic breadth. Digtance between the medial gides of the zygomatic arches in the coronal plane that pagses through the most lateral pointa on the medial sides of the arches. Ubing III as an inside caliper, place one jaw againgt the internal gurface of the zygomatic arch where the internal aurface is farthest from the sagittal plane. The true distance equals the reading plus 20.0 mm to correct for the width of the jaws.

Mandible

NoD - Mandibular angle depth. Distance across the lateral Burface of the mandibular angle meagured from H to a point approximately 50: of the distance along the arc between I and T.

MNGW - Mandibulaz angle width. Mediolateral width of the mandibular rarkus measured at a point 50\% of the distance along the arc between J and T. With $I * a$, grip the mandible at and gently rock until minimum digtance ig attained.

BDM: - Mandibular body plus first molar height. Distance from the lateral upper edge of the first molar crown to the inferior margin of the body in the plane between the roots of H1 and perpendicular to the tooth row (as for BDHT).

BDET - Mandibular body height. Vertical depth of the mandibular body measured from the margin of the alveolus between the roots of H1 perpendicular to the tooth row and body along the external gurface. Place VI against mandible inferior to the firgt molar. place I.a tip at alveolar margin and cloge opposite jaw againat plastic.

BDBR - Mandibular body breadth. Mediolateral width of the mandibular body in the plane through the roota of Ml. Place I.a vertically against the body then close down jaw againgt opposite surface.

Brw3 - Breadth across third lower molars. R to R ubing II.

BIM1 - Breadth across first lower molars. Distance acrosa the first lower molarg measured between the buccal crown surfaces at their mogt lateral points above the alveolar margins.

BIP2 - Breadth acrass seond lower premolar. Digtance acrosg both tooth rows at the level of the second lower premolar mesaured from D to Dusing I.a.

CNPZ - Condyle to second lower premolar. Most lateral point of the occipital condyle to the most anterior point of P2 at the grinding surface.

CPCP - Bieoronoid process breadth. Distance between the the most superior points of the coronoid processes (I to w) ubing I.b.

CPR2 - Coronoid process to second lower premolar. Superiormost point of the coronoid process to the most anterior point of the second lower premolar at the grinding surface.

CNCN - Handibular bicondyle breadth. Distance between the most lateral points of the articular surfaces of the mandibular condyles (G to ©). Position opposite jaw points of I.a at the marked points indicated.

CNM3 - Condyle to third Lower molar. G to k using I.b.

CPM3 - Coronoid process to third lower molar. Most Bugerior point on the coronoid process (L) to the most posterior point of M3 (K) at the grinding burface. If the top of the coronoid proceas appears flattened then take the midpoint.

CPRH - Coronoid process height. From a tangent plane pasaing through the inferiormost part of the mandibular notch and parallel to the tooth row to L . place a jaw of I.a adjacent to the lateral sioe of the ramus in the appropriate plane of the notch, then cloge down the opposite jaw to the top of the process. This measurement is usually glightly off vertical.

LEP1 - First lower premolar length. Length of the firgt lower premolar measured at the grinding surface along the axis of the tooth row using I.B.

MCIL - Mandibular condyle length. Length of the mandibular condylar articular surface measured from the most medial point to O. The discugsion of 0 above also applies to the most medial point.

Mrgr - Mandibular grinding tooth row length. Digtance fram the mogt anterior point of P2 at the grinding surface to the most posterior point of M3 along the grinding aurface perpendicular to the tooth row.

Nono - Mandibular molar tooth rov length. Distance from the mogt anterior point of M1 to the mont posterior paint of M3 along the grinding aurface perpendicular to the tooth row.

HuL - Lower first molar length. Length of the firgt lower molar at the grinding surface. Place the tip of II.b across the most anterior point of the tooth gurface with the jaw perpendicular to the tooth row. close down the opposite jaw to the tooth or an analogous plane.

IM1W - Lower first molar width. Mediolateral width of MI perpendicular to the tooth row measured across the middle of the distal root. Place the tip of I.a at the alveolar margin midway between the posterior margin and the tooth constriction. With the firat jaw verticai, close the gecond jaw againgt the lateral surface of the tooth.

P2TP - Second lower premolar to nasal tip. Distance from the anterior margin of the occlusal aurface of the second lower premolar to the anterior limit of the mandibular gymphysis in the midarggital plane. Use I.a.

RND - Mandibular ramus depth. Distance frome to \mathbf{t} uing I.a.

RanB - Handibular ramus height. Diatance from the inferiormont point of the mandibular notch to the inferior margin of the mandible, perpendicular to the plane of the tooth row.

SIIL - Mandibular symphysis length. Greateat length of the mandibular aymphysis in the median plane. place tip I.a againat the most anterior limit then clobe opposite jaw against posterior limit guch that correaponding parts of the caliper jaws are touching bone. Nay measured from above or below.
sYma - Handibular symphysis depth. Maximum thicknesa of the mandibular aymphysis in the median plane measured from the pooterioz aapect. From below and between the bodies, place I.a againat internal (\quad uperior) surface of symphyais and close opposite jaw againat external (inferior surface) burface. Some rugosity of the lower aurface may be included but any distinct ridge or other boney exenaions not directly contributing to the connection of the mandibular bodies should be excluded.

APPENDIX 4.

RAM DATA

Raw data for specimens ueed in analyses. Skulls ($\mathrm{N}=184$) are listed first, followed by mandibles (N=1B7). Genera and epecimens are listed In ths game order as in Tobles 2 (B ull) and 3 (mandible). Skull data is presented in two parta: AEAE \rightarrow MXGT and MXMO 2YLN. Estimated measurements are indicated by bxackets (). All masourementio are in millimeters.

SKULL (AEAE - MXGT)

CERA 22	cera	ceras	332	250	455	151	332	125	228	211	138	229	280
CEAA 59	cera	ceras	331	235	449	151	334	123	239	218	134	229	279
CERA 99	CERA	ceras	361	234	453	152	363	139	216	210	146	257	279
CERA 101	CERA	ceras	344	247	451	154	357	130	267	224	144	239	287
CERA 102	CERA	ceras	309	211	431	136	317	125	228	201	136	215	280
CERA 103	CERA	ceras	337	251	454	145	360	926	242	290	134	236	263
CERA 104	CERA	ceras	340	242	448	150	358	151	241	291	132	244	263
CERA 161	CERA	tenas	349	242	451	147	342	132	245	220	146	234	265
CERA 142	CERA	CERAS	342	244	460	154	345	183	257	205	124	240	275
CERA 298	CERA	ceblas	330	238	451	154	334	146	255	207	135	233	25

10	GENLS	SUAGEN	AEAE	AEDR	AEP2	日lch	8：2Y	LFHP	cox ${ }^{\text {c }}$	HIMI	HSM3	MGAE	MxG
CEAA 360	CERA	CERAS	326	242	439	152	325	130	238	203	130	221	269
CEEA 366	CERA	CERAS	318	250	457	139	318	138	239	214	134	226	256
CERA 367	CERA	CERhS	323	245	445	142	322	129	258	203	140	236	262
CERA 368	CERA	Cerns	338	262	455	142	331	139	246	205	136	226	270
CERA 369	CERA	CERAS	320	241	435	138	318	128	242	197	129	221	262
CERA 370	CEAA	CEARS	343	265	453	147	341	125	259	219	139	241	275
CERA 371	CERA	Cemas	335	239	433	134	335	128	235	214	130	228	257
CERA 372	CERA	ceras	372	264	444	143	33	145	255	201	145	255	251
cera 431	cera	ceras	336	255	843	145	340	138	248	207	140	242	272
SUMA 21	suma	sumas	284	185	304	97	310	96	198	178	119	169	187
SLIMA 48	Sund	sumas	142	186	300	123	300	86	194	171	115	171	204
eico 147	8150	bicos	335	222	384	138	340	100	227	208	138	228	255
Bico 149	alco	bices	316	244	177	135	332	91	229	193	122	209	249
BICO 150	Bjco	BICOS	310	223	374	128	326	97	225	192	121	197	231
BICO 151	Bico	alcos	317	232	374	149	322	91	255	196	119	210	272
BICO 152	Bico	aicos	323	23日	382	132	356	80	238	198	133	218	269
日ico 155	bice	aicos	289	212	358	131	310	73	215	186	115	182	245
日ico 157	bice	bicos	347	248	408	152	$35:$	95	249	199	126	221	251
日lco 181	9ICO	Eicos	331	230	380	125	340	92	232	203	121	222	246
日IC0 166	－1co	bices	313	237	386	132	326	95	243	192	135	202	236
BICO 187	日ico	micos	327	233	382	128	338	95	242	202	123	215	285
alco 188	－180	bicos	325	245	399	137	345	97	237	186	135	223	243
alco 169	Blco	8icos	311	232	368	133	328	184	215	179	129	195	241
BIC0 170	8160	Bicos	314	223	376	138	334	89	236	200	129	217	250
BICO 174	Blco	aicos	330	233	379	137	343	100	252	208	132	208	259
日lco 176	Bico	日lcos	317	248	375	126	327	87	237	203	117	205	259

8160177	eico	8icos	321	245	382	128	332	89	237	203	125	215	263
sico 178	Bico	Bicos	310	215	357	111	323	92	212	178	125	204	234
atco 181	BICD	ElCOS	319	228	363	124	338	87	233	187	124	208	239
gico 295	BJco	etcos	305	216	353	123	312	77	217	184	116	185	238
elco 305	BIco	aicos	338	241	387	125	348	83	231	198	127	213	263
B150 379	Bico	eicos	310	226	354	128	323	80	224	197	120	213	241
81C0 382	eico	alcos	320	247	3 B 2	130	346	99	248	210	132	212	244
－1co 384	Bico	8icos	124	231	369	141	346	96	239	211	138	217	260
alco 386	Eica	atcos	314	242	369	151	340	89	238	197	135	209	235
alco 307	sico	bicos	313	252	389	136	329	94	264	203	121	212	273
gico 388	elco	aicos	332	224	386	149	342	100	242	191	137	214	239
alco 389	日IC0	bicos	297	237	398	132	317	104	226	172	146	211	246
日1c0 390	81co	－ices	318	219	383	131	334	96	241	197	123	220	253
B1c0 393	81co	eicos	341	249	391	452	356	100	254	200	133	223	250
atco 384	alco	elcos	326	235	383	133	337	87	251	209	121	214	259
81c0 385	Bico	日icos	318	231	383	139	339	102	233	214	128	213	263
日1c0 306	asco	alces	324	237	405	144	357	90	240	208	123	216	270
Bito 397	aico	atcos	317	239	387	142	336	90	229	210	118	212	272
日ico 388	alco	eicos	310	223	302	133	325	78	220	193	114	209	258
Q1c0 402	BICO	Bices	316	229	356	132	331	90	220	198	135	206	241
aico 404	日lco	eicas	324	244	377	133	331	85	222	199	130	215	252
Bico 405	日ico	eicos	299	243	370	138	313	91	222	200	111	198	250
－160 407	bico	8：cos	308	210	330	124	325	98	215	183	120	202	222
SICO 408	atco	－	317	227	177	131	327	B7	230	19	116	205	245
11c0 409	alco	bicos	306	218	360	135	317	86	217	479	113	202	236
－160 410	bico	eicos	312	224	356	134	321	85	221	195	120	197	256
B1co 411	Bico	81605	299	217	351	134	310	20	218	17	137	198	246
8100412	eico	bicas	308	217	361	137	324	78	213	192	132	202	241

10	gentus	SUAGEN	AEAE	AEOR	AEP2	BICN	812%	(FHT	L0>8	H1M1	M3M3	MGAE	Mxat
BICO 414	Bica	-1cos	316	237	376	131	321	96	221	194	124	209	237
EICO 418	BICO	8icos	313	237	370	128	345	85	232	183	126	205	242
81ca 436	Bico	alcos	298	225	359	129	305	87	226	182	114	198	239
B1C0 437	Bico	aicos	315	226	366	128	331	87	229	199	120	207	259
EICO 441	Blco	alcos	317	234	372	126	341	91	234	197	121	206	247
UHIC 48	UH」A	UNICs	342	265	380	136	356	98	273	215	142	217	200
Unic 53	UMJA	UMICS	328	239	365	141	347	109	270	204	127	226	257
UNIC 55	UNJA	UnICs	347	247	380	135	372	91	286	222	146	221	262
UNIC 303	UMJA	unics	370	251	376	147	377	117	287	220	115	240	264
UNIC 348	UHJA	Unics	365	268	409	137	372	126	296	224	146	231	255
UNIC 426	UNJA	UNIES	343	256	370	138	359	102	286	215	152	216	234
UNIC 427	UNJA	UNICS	351	267	381	138	380	110	272	227	143	217	253
UNIC 430	UNJA	Unics	352	249	386	162	370	114	227	224	12?	228	261
Java 17	LHada	Javas	332	236	327	136	144	69	298	193	112	204	231
JhUn 18	THJA	Jayas	319	234	317	125	331	77	285	190	110	188	221
JAva 299	UNJA	javas	332	242	319	151	346	65	276	197	110	215	223
JAVA 351	UHJA	Javas	328	248	323	143	338	61	282	[191]	114	206	220
ACER 245	acen	ACER1S	290	232	352	116	293	73	226	(186)	102	210	239
ACER 124	acer	ACER2S	365	196	342	130	357	121	258	206	129	268	245
AMYN 111	AHYM	AMYMS	194	123	228	85	130	48	102	123	96	1418	154
NHYN 661	AMYH	ahys	195	130	221	84	205	53	100	107	82	138	140

10		genus	SUBGEM	aere	AEON	AEP2	81CN	8127	LFHY	L0x ${ }^{\text {a }}$	HINI	M3M3	MGAE	MKGT
APHE	205	APHE	APME1S	262	169	286	86	236	86	140	119	91	165	192
APHE	268	APHE	APHETS	315	194	345	135	325	85	235	180	128	1\%	226
APHE	269	${ }^{\text {APHE }}$	APHE2S	292	210	350	123	295	95	216	179	113	178	275
APHE	270	APHE	APHESS	294	209	356	128	299	80	202	180	124	185	226
APHE	271	APHE	APHE2S	327	217	365	137	336	76	227	184	147	196	240
АРНе	272	APHE	APHE2S	310	194	337	122	306	71	208	164	107	171	217
APhe	330	APHE	APHE2S	325	216	377	134	327	107	241	172	124	192	219
APHE	334	APME	APHE2S	297	213	379	127	300	92	212	186	118	180	24.5
APHE	335	APHE	APHE2S	283	188	330	124	288	π	194	186	115	183	243
OICE	239	DICE	dicets	213	162	243	80	236	45	122	142	87	154	169
DICE	203	dice	diceis	194	167	241	34	[226)	42	122	128	83	132	186
DICE	204	dice	DICE15	207	168	259	93	229	55	127	141	74	138	195
OtCE	256	Dtce	DICE2s	214	181	269	95	226	65	125	130	87	154	182
Dice	240	DICE	Dice3s	243	208	317	118	247	54	149	130	89	174	217
dice	267	DICE	D1CE3s	271	195	320	112	285	$\Delta 1$	158	159	117	164	204
FORS	127	fors	Forss	230	160	275	84	249	47	133	138	102	154	165
fors	130	fors	FORSS	236	135	255	76	[230)	65	104	127	81	132	157
ayra	4	HYRA	nrrais	111	\&	139	48	122	31	87	78	59	75	83
hyra	5	HYRA	hyrats	7	76	123	38	B6	27	55	54	35	46	72
htra	10	hyma	hyrazs	126	103	168	51	133	35	71	98	62	90	106
HYRA	6	HYAA	HYRA2S	162	112	184	58	179	32	90	110	76	106	116
HYRA	12	HYRA	Mrrazs	112	116	167	48	82	39	67	r	49	74	92

Hyco 116	HYCO	HYCOS	130	95	151	52	135	33	82	82	55	101	104
Hyco 117	HYCO	hycos	107	88	151	49	128	38	68	90	42	83	109
HYCO 120	HyCO	hycos	108	98	160	46	115	45	71	86	52	93	113
HYCO 460	HYCO	HYCOS	115	B8	141	46	125	38	71	89	51	88	101
INDA 258	INDR	Indors	570	374	632	309	588	145	-- 150	279	214	498	376
HENO 171	MENO	MENOS	208	164	257	79	240	44	143	130	89	129	175
MEND 195	MEND	mends	171	147	228	71	175	41	109	111	58	118	159
MEND 196	MENO	MEMOS	156	139	221	70	161	42	113	117	59	104	156
MEND 187	MEHO	MENDS	191	135	226	70	188	42	131	111	69	115	147
MEND 198	MERO	MEHDS	165	127	214	71	206	50	131	110	60	121	156
MEND 200	HEMO	Hemas	160	129	212	65	162	47	103	104	61	113	154
MEND 209	MEND	hemos	178	147	236	74	182	55	116	102	61	114	165
MEND 453	MENO	MENOS	177	129	254	78	213	51	126	129	87	128	160
WEHC 454	MEMS	menos	201	142	236	84	238	46	138	122	77	119	158
MEEC 458	MEWD	mendos	180	144	232	73	184	43	116	123	79	121	156
MENO 457	MEND	MENOS	192	133	241	81	190	41	[127]	128	81	120	157
MEHO 452	MEND	HEHCS	180	135	217	74	189	(39)	113	121	62	111	168
We.fo 143	HEND	MENOS	189	145	231	78	237	47	129	117	74	121	152
Hewo 158	MEND	WEHDS	198	152	243	B0	200	56	129	128	70	119	163
hend 172	MEMd	HENOS	168	153	236	65	170	49	109	105	so	113	164
Mend 186	HEND	mehtos	191	146	230	76	203	48	122	102	66	134	160
MEND 187	MENO	MEMOS	198	160	251	84	227	49	130	118	72	124	171
MENO 188	MEND	Mencs	[181]	157	236	70	194	51	114	106	52	117	156

PERA 324	PERA	Perats	226	178	［289］	B5	237	63	142	（1481	94	140	182
PEAA 276	PERA	perats	280	186	305	90	253	79	176	156	96	165	208
PERA 326	PERA	PERA2S	345	210	352	140	359	85	239	209	152	225	263
PEAR 327	pera	PERA2S	405	258	309	151	429	\％	268	260	153	234	272
fERA 329	pelan	Pearas	387	250	417	162	412	91	279	236	160	238	287
SUEH 28	subr	SUaH1s	191	152	242	72	196	So	115	［117］	1751	130	163
SUEH 29	SUINH	5uah 15	170	145	238	72	176	57	109	105	5	126	146
SURH 31	SUBH	Suan is	196	160	242	77	219	56	125	129	81	135	178
SUEH 27	Sual	subits	188	136	217	7	197	39	116	112	76	137	143
SUEH 32	SUBH	SUAH15	189	152	258	76	200	70	112	131	69	137	170
SUEH 38	SUA日	SUaH2S	195	146	247	80	200	64	116	116	85	［1401	163
SUBM 64	SU3H	Sushes	221	154	252	94	235	3	141	130	93	164	169
SUTH 35	SU배	Stiohas	208	158	257	95	220	69	130	168	92	138	176
SUAM 63	SUBN	SU8H25	190	162	264	86	197	56	122	106	81	140	166
SUEN 228	SUBH	Sueh3s	239	189	271	105	280	37	181	140	102	186	177
SUEH 229	SUB\＃	Sular3s	235	176	295	96	264	56	152	124	83	141	182
SUEM 231	SUaM	SUAH3s	252	173	271	110	269	55	145	151	107	160	192
SUSH 233	SJaH	SUeh3s	225	167	265	96	263	44	147	140	102	133	156
SU日H 238	Sund	suar 3 s	246	165	281	99	257	60	155	144	107	156	189
SW日H 278	SUABH	Subi35	227	175	270	102	237	52	139	146	95	154	188
SUBH 458	S 518 BH	SUBH3S	244	170	278	95	260	［82］	143	131	99	162	192

tele 341	tele	1ELETS	281	232	328	124	320	70	198	181	102	163	225
tele 342	HELE	IELE is	288	221	325	99	306	59	211	178	(90)	161	230
tele 317	tele	telezs	333	241	351	132	360	93	231	165	123	207	245
TELE 318	tele	telezs	318	276	365	100	355	78	227	186	107	192	254
TELE 344	TELE	1ELE2S	347	259	374	134	386	94	289	181	118	207	237
TELE 255	tele	telezs	308	263	372	127	319	68	237	163	115	180	250
tele 311	TELE	tele3s	296	248	361	111	305	111	206	173	122	192	233
TELE 312	tele	tele3s	318	251	[369]	123	331	98	216	163	127	190	200
tele 313	1eLE	tele3s	307	230	355	124	310	98	216	94	[112]	198	160
TELE 314	TELE	tele3s	312	244	351	131	123	60	237	173	101	187	227
1ELE 315	tele	tetejs	300	268	394	130	323	87	228	194	130	170	253
TELE 316	tele	tele3s	273	251	376	113	265	101	198	149	91	161	231
TELE 289	tele	TELEAS	294	200	397	132	305	126	224	170	84	188	258
TELE 498	TELE	telehs	319	256	412	161	340	108	236	213	125	190	270
TELE 497	tele	teleas	332	270	420	128	352	113	234	208	128	190	256
TELE 284	tele	TELE5S	335	294	428	142	374	115	[257]	195	128	205	260
tele za?	fele	TELESS	343	265	416	136	347	90	227	198	117	196	[267]
tele 291	tele	TELESS	170	281	420	145	372	105	283	205	133	224	280
tele 424	TELE	TELE5S	298	246	356	113	314	93	(221)	192	[190]	175	269

TRIG 462	trig	trigs	210	164	254	87	227	54	128	132	86	148	187
TRIO 422	TRIG	trigs	208	162	265	78	228	53	121	149	82	168	194
1RIS 463	Thig	trics	172	140	232	72	177	64	147	105	74	130	159
1710468	\%fo	frios	212	135	230	89	234	66	136	131	84	158	170
1810 469	1atis	fries	206	175	206	77	217	66	111	126	96	150	184
TRIG 470	TRIG	titics	209	170	201	74	219	65	121	131	73	154	176
TRIG 471	TRIE	I\#ics	201	173	261	73	200	69	105	124	80	137	170
tris 472	fric	trios	193	175	290	66	205	67	82	118	72	131	177
TRIG 470	inis	thigs	226	156	262	67	249	41	126	152	93	149	168
TRIG 473	thic	trias	237	970	260	86	240	42	120	148	84	160	106
thig 492	tric	talas	221	762	273	(84]	244	51	129	150	106	148	189
ThIC 490	trig	thias	230	667	262	85	260	60	118	轱 1	95	157	168
raic 23	trig	thies	244	193	281	88	292	59	428	146	108	159	174

```
SKULL (MXMO - 2YLN
```

10 GEMUS SUBGEH MXHO OCP2 OXAE OXDM PORE TFLK 2YHT 2YLH

CERA 22	CERA	ceras	167	828	315	480	109	357	66	286
CERA 59	CEPA	CERAS	161	626	330	488	105	341	89	270
CERA 99	cera	CERAS	172	843	335	492	108	370	69	278
CERA 101	cera	ceras	161	832	335	492	112	360	77	278
CERA 102	CERA	CERAS	158	590	301	435	110	315	71	244
CERA 103	cera	CERAS	162	628	110	470	112	376	73	295
CERA 104	cera	CERAS	166	643	343	504	110	363	78	288
CERA 141	cera	CERAS	151	606	143	514	114	363	78	283
CERA 142	cera	CERAS	180	846	354	520	119	372	62	282
CER 298	cera	CERAS	151	618	338	498	116	370	77	301
CERA 360	cera	CERA5	169	603	301	445	103	329	76	254
CEAA 366	CERA	CERAS	157	427	$3{ }^{3} 7$	479	112	355	58	27
CEEA 367	CEma	ceras	142	634	329	503	115	369	68	295
CERA 368	cera	ceras	149	624	310	472	112	347	65	270
CERA 369	cera	CERAS	167	599	299	439	419	349	65	237
CERA 370	cera	CERAS	155	646	325	488	121	376	76	29
CERA 371	CERA	cehas	159	610	321	473	192	359	5	283
cera 372	CERA	ceras	158	638	356	516	119	372	79	298
CERA 431	cera	ceras	163	612	321	464	112	348	69	257
Sind 21	SLMA	Suma	119	400	222	313	115	211	44	379
sumer 46	Suma	suma	120	414	212	289	116	189	43	169

10	genus	subgen	Mк＾0	OCP2	OXAE	OKOR	PORE	IFLM	37\＃	$\boldsymbol{T H}$ IM
81c0 147	8180	EICPS	155	550	295	411	122	295	53	220
8100149	日ico	81cas	166	526	264	385	117	282	48	227
日lce 150	8180	B！cos	145	509	267	384	119	280	51	210
6ico 151	－1co	elcos	162	514	274	387	118	290	52	211
E1co 152	－1co	bicas	151	529	276	403	118	280	42	215
日ico 155	日1co	Blcas	143	490	256	347	103	240	48	204
alca 157	alco	bicas	148	555	301	435	124	306	57	226
－1c0 161	alco	elcas	151	536	290	339	140	289	80	218
日lco 166	alco	B1cas	144	528	270	417	122	280	49	225
A1c0 167	8100	81C85	160	520	279	397	122	272	54	242
Blco 168	8160	81cas	145	547	209	429	131	312	55	222
81c0 169	8150	bicos	147	493	265	391	116	295	49	215
8100170	8100	bicas	149	522	279	406	120	23	53	212
日leo 174	alce	Breas	152	521	279	396	134	27	49	219
日1co 176	－1co	8icos	154	510	27	395	131	286	50	201
日100 177	Bics	bicos	157	528	284	426	122	290	46	231
日ico 778	alco	eicos	135	488	259	364	116	272	47	198
－1co 181	B1co	bicos	142	508	275	383	108	260	43	238
91co 295	H1ce	bJcos	141	482	250	345	110	244	52	207
sico 305	Bleo	sicos	154	514	279	410	125	2\％	50	240
－1c0 379	alcs	bicos	148	505	255	367	110	277	51	225
81CO 302	Blco	81c05	103	532	268	409	127	309	51	234
81c0 384	BICO	bicos	156	542	286	412	128	200	49	227
－1ca 386	8ico	bicos	141	520	276	415	116	323	45	235
日1co 387	sica	bicas	146	530	279	414	120	298	47	226
日lce 388	bico	gicos	141	535	286	403	119	277	57	278
8ico 389	Btco	日icos	149	552	261	395	118	293	46	228
BICs 390	8150	B1cos	156	542	276	393	112	295	54	262

to GENUS SLIGGEN MKKO OCP2 GXAE OXOR POPR TFLH 2YHT 2YLM

alco 393	EtCO	Bicos	150	545	298	445	123	311	57	239
alca 394	alco	alcos	153	525	275	414	119	270	48	243
alco 395	E1co	bicos	165	537	270	447	118	278	48	224
-1ce 396	CiCO	bicos	162	560	285	420	125	298	45	229
atce 397	BICO	alcos	153	540	282	388	118	281	51	238
AIC8 398	BICO	aicos	154	516	273	336	111	291	42	235
B1co 402	steo	sicos	141	501	265	379	115	281	52	211
Bics 404	Etc]	sicos	144	532	268	397	124	270	50	227
Bice 405	Btcs	gices	152	511	269	403	115	297	45	218
aico 407	BICO	BICbs	136	474	249	355	110	250	45	192
Bico 408	BICO	bicbs	145	516	271	373	116	269	53	222
Brco 409	bica	EIcos	146	490	249	369	115	263	50	209
Bjco 418	Blco	Eicas	148	488	2.55	358	103	273	53	203
Bico 411	bico	cicos	136	493	250	365	111	245	45	244
Bico 412	sics	alcos	149	505	270	376	123	261	49	227
Bico 414	H1c0	bitos	145	525	275	399	114	27	54	207
Bico 418	asca	83cas	148	510	270	390	111	272	49	211
B100 436	Blco	日icos	144	495	257	367	107	265	46	207
日1c0 437	Bica	gicos	151	513	275	396	125	276	45	215
8180441	bico	atcos	148	513	266	408	117	290	48	206
UNIC 48	UKJA	UNICS	145	512	263	361	111	268	73	252
UNIC 53	UnJA	umics	145	508	259	356	100	253	70	225
UNIC 55	UNJA	untcs	167	517	271	358	110	251	88	226
UNIC 303	UNJA	UNICS	150	519	284	365	116	250	80	236
LWIC 348	unja	units	155	556	291	391	120	284	77	257
UNIC 426	UHJA	unics	145	518	256	367	112	289	72	337
UNIC 427	unda	unics	155	517	269	378	126	292	72	242

UNIC 430	Unja	umics	147	535	262	358	108	277	67	240
java 17	UNJA	Javas	126	456	233	314	121	236	52	175
Java 18	UNJA	Javas	130	432	229	299	110	205	56	162
Java 209	UMAJA	Javas	131	463	252	519	118	218	54	204
Java 351	UNJA	Javas	129	461	229	334	114	234	54	207
acer 245	acer	aceris	145	484	270	394	91	267	67	219
ACER 124	ADER	aceras	144	517	294	37	138	277	63	192
NHYH 111	AMY	AHYHS	112	323	170	284	61	201	34	120
AMYM 461	Anr ${ }^{\text {H }}$	AHYHS	95	326	160	268	63	200	35	121
APHE 205	APME	APHE1S	115	399	192	291	72	230	52	179
APNE 288	APHE	APhEZS	134	455	250	362	10.5	263	69	213
APHE 269	APHE	APNE2S	132	469	241	359	110	234	76	215
APHE 270	APHE	aphe2s	135	480	230	341	113	238	71	216
APHE 271	APHE	aphe2s	145	470	235	366	112	259	71	219
APHE 272	APHE	APHE2S	126	438	260	374	187	263	56	204
APHE 330	APHE	APhE2S	125	495	263	383	121	256	67	229
APHE 334	APHE	nPHE2S	144	588	241	361	102	251	67	216
APHE 335	APIE	MPHE2S	141	445	229	296	96	218	68	184
DICE 239	OICE	Biceis	99	350	178	294	81	215	36	164
DICE 203	Bice	DICEIS	182	538	164	251	93	181	37	14.8
DICE 204	dice	DICEIS	117	358	155	260	91	200	43	147
DICE 266	OICE	DICE2S	187	379	184	297	84	232	49	159

10	gekus	Subgen	Mumb	OCP2	OXAE	OXOR	PORE	IFLM	2YHT	2 Y LH
Dice 240	dice	Dice3s	140	451	229	337	101	260	65	186
plce 267	OICE	dicess	129	429	223	373	113	273	51	177
fors 127	FORS	FORSS	106	388	175	294	116	220	36	149
FORS 130	Fors	forss	105	364	187	285	61	217	[39]	142
Hyco 116	ayco	hrcos	59	236	140	205	57	156	29	93
hred 117	hreo	Hrcos	63	219	116	186	42	148	34	86
hyco 120	hyco	hycos	62	240	125	205	40	152	33	94
HYCO 460	HYCO	hycos	58	215	110	178	44	145	32	86
HYRA 4	HYRA	HYRAIS	52	190	100	188	48	120	22	91
HYRA 5	hrad	ayatis	46	167	71	131	37	92	[21]	73
hYRA 10	HYRA	Hyrazs	68	232	105	176	49	132	25	108
HyRA 6	Hyta	hyrazs	73	261	134	205	81	163	25	100
HYRA 12	hypa	nypazs	58	216	86	183	43	140	23	105
INDR 258	INDR	IMEAS	232	1025	525	802	194	602	101	371
MEWO 171	HEM0	Menos	106	338	149	231	79	175	45	149
MENO 195	meno	MENDS	90	311	142	210	81	161	44	149
HENO 1%	Meno	menos	97	306	136	226	65	168	40	139
MEND 197	mero	menos	88	279	138	221	68	160	40	137
HENO 198	HENO	menas	97	303	153	197	62	160	51	135
meno 200	MENO	Mentis	91	294	125	212	69	145	39	129
нено 201	MENO	MELOS	103	312	116	233	83	146	52	143
Hemo 453	MENO	Memos	97	327	137	230	80	168	54	131
M \times MO 454	WENO	mentis	98	313	161	240	82	172	46	132

10	GENUS	SUBCEN	M ${ }^{\text {（1）}}$	0cpr	OXAE	OMOR	PORS	ffic	2YHT	274N
MEND 456	MEND	mendis	95	319	136	219	7	160	37	141
NEWO 457	MENO	MEWOS	98	315	145	219	82	159	42	141
mino 143	MEND	MENCS	92	312	152	225	90	151	42	127
MENO 158	MENO	henos	97	323	166	234	80	160	S2	126
MEHD 172	MENO	memos	93	320	（137）	237	63	162	44	141
Memo 186	MENO	mends	96	329	146	236	71	144	61	138
Мепо 167	Meno	MENOS	101	324	157	214	$\%$	160	55	150
MENO 18 A	WENO	memos	99	324	184	236	68	167	$5]$	138
MENO 452	Meno	menos	103	295	131	187	76	148	42	132
PERA 324	PERA	PERA15	107	355	175	255	70	172	51	168
PERA 278	PERA	Perals	132	415	202	280	82	229	61	185
PERA 326	PERA	PERAS5	155	495	250	320	102	216	78	214
PERA 327	PER	perazs	177	531	294	352	125	245	82	250
PERA 329	PERA	perazs	166	552	281	361	124	248	76	254
SUOH 28	Su日H	Subils	101	341	160	285	55	201	42	128
SU日， 29	SUEH	SUAHIS	88	336	146	258	56	17	45	135
SU日 31	Subit	Scien is	103	350	153	258	π	174	46	134
SUEH 27	Subi	Sturis	97	314	151	247	π	172	40	142
SUBH 32	SUEA	SUBMIs	100	357	174	277	65	468	48	139
SUAH 38	SЈ浐	SUAH25	95	340	176	280	72	192	44	129
SUAH O4	Sulith	SUBH2S	101	369	184	290	68	215	41	149
SUAM 35	SUBH	SU3H25	114	354	17	285	72	209	44	136
Suan 63	SUBH	Suah2s	110	366	175	287	63	205	53	148
SU日H 228	suay	Subyts	105	395	231	326	101	227	44	153

Sueh 229	5UBH	suanls	116	387	216	336	77	245	61	184
Sular 239	SUAH	suands	119	410	200	322	88	226	47	168
suan 233	Sugn	sumhys	109	344	208	311	68	206	53	150
SUAH 236	SUEH	Suaths	118	383	222	348	79	250	59	179
SUBH 278	SUEH	SUPH3s	116	381	185	317	80	229	44	162
Sualt 458	SU6H	subils	115	395	188	294	B6	210	48	165
TELE 341	TELE	teleis	138	423	290	308	196	213	76	204
TELE 342	TELE	TELETS	146	408	205	304	93	217	59	186
TELE 317	TELE	telezs	161	459	228	325	89	236	79	173
TELE 319	TELE	telezs	170	471	219	342	04	259	79	205
TELE 346	TELE	telezs	152	490	247	358	101	247	96	220
TELE 255	TELE	TELE2S	162	505	214	350	89	241	86	229
TELE 311	TELE	telegs	147	499	252	344	92	222	76	205
TELE 392	tele	teless	148	[497	238	380	86	228	80	219
tele 313	HELE	telegs	[131]	480	227	337	79	236	79	200
TELE 314	IELE	teless	149	483	243	355	87	266	83	206
TELE 315	tele	telejs	168	493	215	338	89	246	71	229
TELE 316	lele	teless	153	471	209	313	59	254	87	203
TELE 281	TELE	TELE45	161	519	239	345	69	243	83	235
TELE 49\%	tele	TELE4S	177	519	228	382	85	242	74	221
TELE 497	lele	teleas	189	540	241	367	97	256	80	239
TELE 284	TELE	TELE5S	173	558	242	389	102	268	87	268
tele 287	TELE	Tele5s	179	[546]	242	371	85	267	92	252
tele 291	IELE	teless	185	562	260	382	106	282	79	254
TELE 424	lele	TELESS	184	491	207	331	72	273	73	211

IO	GENUS	SUBLEN MXMO	DCPR	OKAE	OXOR	PORB	TFLN	2YHT	2YLN		

HANDIBEE

10	GE蜈S	StİCEM	ANG	AHEN	60：R	Bint	60．41	CNH3	내11	LM14	＊成脸	FAN	RAM\＃
CERA 22	CERA	CERAK	152	54	59	116	149	250	43	30	\＄50	158	224
CERA 59	CESA	CEARH	147	53	59	121	148	243	47	35	133	459	223
CERA 9	cera	CERRH	153	64	70	117	152	264	39	30	159	171	251
CERA 101	CERA	CEAAM	164	61	64	122	157	23：	46	30	148	175	225
CERA 102	cera	CERAM	141	59	58	109	153	262	29	33	124	164	200
ceand 103	cera	CERAM	163	52	65	121	157	200	43	29	144	174	240
CERA 104	CERA	CEEAM	152	62	68	132	161	256	51	53	139	166	232
ceft 141	CERA	ceren	165	51	60	119	152	264	46	28	141	169	215
cera 142	CERA	CEEAM	168	60	63	197	154	280	32	33	147	186	211
ceran 297	cera	CERAM	177	55	60	127	149	298	31	28	138	177	248
ceph 298	CERA	CERAN	100	62	61	720	158	272	35	34	138	178	234
ceran 360	CERA	CEAM	140	55	59	112	144	251	37	29	147	157	218
cefn 366	CERA	cerah	160	48	62	110	138	265	32	36	160	175	231
CERA 367	CERA	CERA乗	162	55	62	112	146	273	46	28	146	182	239
CERA 368	CEFA	ceran	175	42	58	112	141	254	49	28	152	187	222
CERA 369	CEffa	CESAM	154	48	55	114	142	249	43	27	159	170	212
CERA 370	Cera	ceram	164	50	65	119	149	271	47	27	144	184	234
CERA 371	cent	cerar	169	54	57	117	146	273	39	30	140	135	230
CERA 431	cera	CERAM	175	49	61	121	150	258	49	27	152	188	249

10	genus	SUBGE	AMGP	ANGH	888	BOAT	8014	CNH]	LH1t	LM14	M M Mo	RAND	هАМН
SuM 21	SUMA	suman	113	38	34	63	83	189	40	22	166	168	152
Suma 46	suma	stmun	112	37	36	61	434	165	36	21	120	117	166
BICO 147	81co	8150m	123	48	52	89	124	185	52	32	155	124	178
alco 149	alco	aicom	140	40	52	B7	124	194	50	30	152	142	181
alco 150	bico	atcon	127	43	48	89	116	217	41	26	133	135	177
ajco 151	atco	8itom	145	49	51	88	123	207	46	29	143	155	188
atco 155	alco	Bricom	119	47	44	79	109	174	48	30	146	116	160
atco 157	atco	stcom	140	47	51	65	120	227	48	28	141	155	202
B1c0 161	B1C0	Bjcom	137	54	59	101	132	204	46	27	147	140	162
B160 166	blco	gicom	130	45	51	83	110	219	41	29	131	143	176
atco 167	- 160	Bicon	132	48	54	80	116	186	48	31	155	140	180
Bico 16t	bica	B1con	135	50	54	98	121	225	41	30	135	143	191
B1t0 169	bico	Bicom	130	47	50	84	112	203	43	30	133	127	166
81c0 170	-170	Bicom	116	47	47	84	119	205	44	26	136	133	162
alco 174	bica	alcom	130	51	52	88	123	195	49	29	148	136	186
日lco 176	bico	Bicom	135	51	57	B9	126	197	46	30	151	139	197
-1co 177	B1c0	BICOM	125	48	53	88	121	289	49	29	154	132	183
Bico 178	0160	atcom	114	34	57	73	96	197	42	29	135	123	166
Bicd 181	B1CJ	81 com	126	47	49	5	108	197	45	27	145	114	177
Bico 294	BICO	alcon	123	48	48	76	110	167	43	21	148	125	180
81c0 293	arco	ascom	115	48	51	79	109	187	43	29	137	115	181
8ica 305	BIco	BJcom	135	54	51	85	123	209	50	30	151	132	180
81c0 379	BICO	Bicom	140	50	53	7	111	182	48	29	150	147	155
8100382	blco	Bicom	140	48	55	92	126	214	47	27	147	148	194

10	GENUS	SUBGEN	ANGD	AHCW	6088	BDHT	88 nl	CNH3	LMIL	LHW	mNMo	navo	яAMH
B3CO 384	8160	8ICOM	133	50	56	87	119	213	45	28	144	140	189
BICO 386	Bico	arcan	124	50	50	81	108	209	42	29	133	139	189
日lco 387	sico	Bicon	139	41	56	96	123	201	43	2 B	141	130	164
BICO 388	Bfico	日icom	129	55	49	101	123	233	40	27	133	140	189
日1co 389	BICD	Bicon	141	40	48	93	119	218	43	27	142	150	181
B1c0 390	6ICO	bicon	141	45	53	67	124	220	49	30	147	145	201
8150392	arco	bsican	133	41	56	85	113	198	48	28	148	155	188
日ito 393	ajco	bicom	149	49	53	92	122	224	44	31	143	156	186
eico 394	Bico	bicon	134	41	58	100	132	207	48	27	146	137	180
85c0 396	alco	bican	133	48	54	82	109	178	52	26	154	133	179
alco 397	Bico	bicom	142	33	50	84	122	192	49	25	149	147	192
61c0 398	BICO	8icon	131	44	48	84	118	188	47	27	149	137	192
atco 402	BICO	bican	122	45	50	81	105	194	44	28	141	130	172
OICO 405	Bico	Bicow	125	40	57	97	130	193	47	28	151	128	167
8100407	Bico	B1ccm	106	43	48	88	106	204	41	28	133	121	163
B1c0 408	BICO	bican	124	39	49	74	106	199	40	28	147	130	163
OICO 410	8100	bicon	128	35	51	85	114	192	45	27	140	126	181
81CO 411	BICD	BICOM	121	36	46	81	98	199	38	22	128	127	177
Bico 412	8150	Bicow	131	42	54	85	113	210	43	27	140	140	195
B1c0 414	8160	Bican	129	50	50	90	115	206	40	27	131	134	163
B1co 418	HICO	8 CCOH	127	43	52	83	114	207	46	29	138	124	191
8jc0 436	BJco	Bicon	120	41	48	84	198	181	47	28	144	130	171
ajco 437	B1c0	вican	128	52	57	89	125	189	47	20	150	130	189
8150441	8100	Bicon	139	48	57	93	122	204	44	27	138	148	177
BICO 443	stico	ascon	140	45	57	88	116	227	43	30	138	150	179

10	genus	SUBCEH	ANSD	ANGM	80br	BDH7	mbN 1	CNM3	LMIL	LHIN	WNHO	RAND	RAMH
UWIC 48	UHJA	UMICH	159	39	51	83	112	228	42	26	143	158	238
UHIC 53	UNJA	UnICM	140	47	49	89	120	212	41	31	141	154	213
UNIC 55	URJA	UnIC\%	150	47	54	83	116	233	43	29	147	151	251
UNIC 303	UMJA	Uwicm	160	45	55	92	125	234	48	27	155	163	250
UWIC 348	UNJA	Unica	165	47	55	65	113	263	42	31	145	173	249
UHIC 349	UnJa	UNJCN	159	45	51	99	118	256	37	27	136	170	247
UHIC 426	UHJA	UnlCM	145	49	53	93	116	254	37	31	133	155	239
UNIC 627	UMSA	Unticm	142	52	50	83	108	247	41	30	140	153	223
UNIC 429	UNJA	UMICA	161	46	56	102	118	243	43	31	135	167	247
Java 17	Ulus	Javar	129	37	41	74	101	186	40	23	126	133	179
Java 18	Uwis	Javar	143	36	42	66	96	13	39	22	129	146	181
Java 290	URJA	Javal	141	39	42	68	95	185	41	24	128	144	186
ACER 206	acen	ACERTM	150	28	47	87	112	198	42	28	135	131	212
ACER 245	aten	ACERIM	151	32	42	85	107	206	61	27	134	152	197
ACER 124	acen	mCERza	156	36	44	78	109	201	43	29	125	150	221
ALEA 212	Acer	AcEazm	152	37	41	67	10.6	218	34	24	112	152	220
APHE 230	APHE	APHEIM	137	27	51	89	111	194	36	26	123	137	205
APHE 211	APHE	APHEIM	138	23	49	79	97	299	34	24	115	140	192
APHE 207	APHE	APHEIM	133	21	[45]	66	87	179	37	25	124	135	185
APHE 208	APHE	APHEIM	141	20	38	91	109	193	36	28	121	133	202
APHE 213	APHE	APHE2M	150	26	45	78	107	186	44	25	135	140	200
APHE 271	APHE	APHEZM	150	35	42	91	112	199	37	26	121	142	20%
APHE 274	APHE	APHE2\%	151	30	51	91	108	205	44	30	130	152	220
${ }^{\text {APHE }} 330$	APHE	APHE2M	[158]	34	45	105	121	236	30	24	121	150	229
APHE 331	APHE	APHEZM	153	32	41	97	117	210	41	28	125	135	210

10	GENUS	Subcen	AHCD	ANSH	BDer	BDHT	8id 1	CNMS	LMIL	LHTW	MNM ${ }^{\text {a }}$	RAL	RAMH
APHE 333	APHE	APHEZW	143	12	39	82	108	213	32	19	126	152	227
APHE 214	APHE	APhe 3n	150	28	55	86	111	224	46	32	146	154	224
APHE 215	APHE	APHE 3n	163	36	58	105	128	225	49	38	150	169	228
APHE 218	APHE	APhe3 $\mathrm{H}^{\text {a }}$	173	29	55	86	121	233	54	31	162	178	235
APHE 273	APHE	APHE3 ${ }^{\text {a }}$	201	32	57	116	153	252	54	31	163	101	278
APHE 322	APHE	APHEGH	182	34	81	121	151	229	58	[38]	180	175	272
APHE 338	APHE	APMEGM	190	32	60	138	169	253	58	39	161	166	264
AFHE 339	APhe	APHE4\%	188	28	65	115	149	270	51	36	162	191	280
APHE 484	APKE	APHE4 4	168	29	58	120	151	224	49	33	172	160	238
OICE 241	DIce	DICEM	134	14	29	73	94	152	43	23	136	112	171
DICE 451	OICE	DICEZA	104	40	25	57	71	144	23	18	85	88	138
FDas 126	fors	forsim	141	18	25	66	79	145	32	22	106	101	153
FOAS 128	fors	FORS2\%	127	11	23	56	66	130	26	17	84	102	137
FOns 129	fons	FORS2\%	97	7	26	50	62	97	27	15	80	78	124
HYRA 4	HYRA	hyadim	80	11	17	35	45	69	15	9	48	63	82
HiYRA 323	HYRA	hymaim	63	7	15	28	34	62	14	10	44	52	73
HYRA 6	hYRA	hymaza	103	9	20	49	60	97	21	14	56	69	118
HYRA 8	hyma	hyrazm	92	(8)	18	44	52	79	19	15	61	66	101
HYCD 117	HYCD	HYCOH	90	6	23	42	54	71	18	12	59	78	107
HYCO 120	hred	нYсOM	89	7	23	41	53	67	19	13	60	74	121
Hyco 280	HYCD	нусо\%	85	6	20	42	49	82	17	12	60	77	908
HyCd 460	hyco	HyCOM	81	6	22	40	51	74	18	12	57	68	100
INOR 258	INRR	INORM	255	67	79	129	106	353	75	53	223	226	330

ID		genus	Suteem	AMCD	ANGW	gobr	mont	80N1	CNM 3	LHIL	LMIH	HNMO	ANO	日***
MENA	189	MEMs	Menotim	98	36	26	53	67	111	30	19	98	78	137
MEM ${ }^{\text {d }}$	190	Mewo	Menoin	92	30	25	51	69	110	26	18	86	78	129
Meno	191	Wewo	ME WOTM	108	39	25	55	68	129	25	17	90	85	141
MEND	192	HEMB	Menoth	96	27	22	52	63	176	25	19	90	70	138
MENO	194	MEMD	MEMOIM	96	29	28	51	84	120	25	18	9	92	132
Meno	454	MEMO	MEMOTM	113	43	29	51	65	[147]	24	19	89	77	144
meno	457	MENO	MEmOTM	103	42	24	58	70	[141]	27	18	90	75	136
WEND	158	mena	mempla	108	34	28	59	78	129	29	20	92	89	138
Mend	172	Mend	Mewimin	100	24	27	48	74	116	31	20	100	100	147
HEND	186	MEND	HENDIM	99	46	31	57	72	134	24	21	91	96	148
MEMD	132	HEND	HENO2M	100	31	35	64	85	141	31	22	114	92	158
PEME	15	PERE	PEMEIM	81	10	22	47	57	105	20	13	70	82	115
PERA	276	PERA	PERAIM	113	19	43	79	101	180	41	29	136	135	199
PERA	340	PEAA	PEgAIN	121	22	40	67	97	162	42	27	135	111	168
PERA	324	PEra	peraim	113	13	38	92	94	173	35	26	116	117	164
PEAR	319	PERA	PEARZN	155	25	52	90	115	219	43	31	148	147	210
PERA	325	PEPA	PERAZN	152	26	[53]	B7	119	296	50	33	167	163	209
SUBH	35	SUBH	Subith	103	19	28	52	68	117	38	22	110	101	133
suen	43	SUBH	suarin	126	19	30	55	75	135	34	16	105	111	146
SUBH	44	SUBH	SUlenim	126	21	33	73	84	150	27	25	97	102	159
Suby	28	SLABH	SUBHIT	102	15	27	52	70	120	28	18	97	88	127
SUAE	29	SUBH	Sterith	103	13	28	57	70	141	25	18	85	102	138
Suat	38	SUEA	SUBHIM	108	15	27	55	65	138	27	19	89	107	129
Subi	40	Stid	suarin	121	14	22	73	86	127	30	20	104	112	158
SUBH	65	SUBH	SUBHIM	104	14	27	58	72	125	28	19	69	s8	131

genus subgen al

Suan 32	Sudit	SUPH2M	120	13	30	63	5	128	27	21	96	115	146
SU日星 33	SU0H	SUBHZM	114	15	31	60	76	120	28	20	95	105	141
SUBy 231	Sus	Subi3 ${ }^{\text {a }}$	133	18	35	60	79	［140］	33	21	112	108	148
SUaH 232	SUAH	SUBH3，	117	17	36	56	71	146	37	24	113	94	148
Subil 234	SUDH	Su6M3H	129	24	［38）	77	90	148	27	22	98	125	154
SU6H 279	SU日H	sumy3	120	13	37	57	74	137	32	21	108	112	169
SUBH 458	SUMEH	suansm	122	25	36	64	82	155	33	25	112	95	148
SUBH 425	SUAH	Starkin	121	42	26	61	（73）	139	32	21	106	108	146
TELE 249	TELE	TELETH	144	22	45	77	108	175	48	30	157	123	189
Tele 250	TELE	TELEIM	454	21	42	72	102	184	46	30	140	169	183
TELE 253	tele	TELEIM	149	28	39	88	106	207	37	20	131	142	183
TELE 346	TELE	TELEX	152	30	49	B6	114	201	46	36	150	146	218
TELE 347	TELE	TELE2M	149	26	49	83	109	185	48	36	159	132	183
TELE 259	TELE	TELE2M	141	31	53	103	121	215	41	29	153	124	227
TELE 280	TELE	TELESN	144	30	49	98	117	214	50	31	160	128	228
TELE 254	fele	YELE2M	167	［32］	46	101	121	221	38	32	143	172	222
TELE 255	TELE	TELEZN	154	33	45	94	114	229	41	31	138	153	236
TELE 217	tele	TELESH	152	20	44	90	124	186	48	29	155	［1］	202
TELE 218	tele	TELE3 ${ }^{\text {H }}$	164	23	47	102	125	217	44	27	144	148	240
TELE 219	YELE	TELE3	136	33	46	118	136	218	48	23	155	144	210
TELE 221a	TELE	TELEBH	127	29	48	84	112	196	48	27	154	128	200
TELE 2219	Pele	TELESM	138	15	44	69	100	181	49	25	15S	115	175
TELE 282	jele	1ELE3H	133	24	48	76	112	191	48	27	157	142	156
TELE 263	tele	TELESH	139	（30）	47	83	101	216	4	33	143	140	201
TELE 264	TELE	TELE3 ${ }^{\text {P }}$	115	4）	49	B7	113	188	44	31	156	435	208
tele 312	tele	TELE3 ${ }^{\text {P }}$	162	37	50	108	125	221	42	27	142	153	235
TELE 313	TELE	TELESH	148	24	48	95	119	201	45	29	144	134	205

tele 314	tele	telesm	150	39	54	81	102	226	47	29	145	162	203
TELE 261	TELE	TELESM	152	34	55	109	123	247	40	24	[160]	147	232
TELE 220	TELE	reLECH	150	33	51	90	105	246	43	28	142	165	213
fele 281	TELE	TELE4 ${ }^{\text {\% }}$	158	35	45	112	132	239	47	32	159	180	249
TELE 288	tele	TELEAM	141	52	60	113	135	241	52	32	126	141	212
TELE 285	TELE	TELE4	167	39	70	120	133	250	54	35	173	178	255
TELE 28S	tele	TELESM	138	24	50	98	121	202	45	33	160	129	216
TELE 424	tele	IELESM	154	27	45	98	[124]	191	49	31	170	123	207
TELE 223	TELE	TELESM	167	46	60	112	138	264	40	32	163	[162)	230
TELE 224	LELE	1ELESM	141	22	48	102	136	214	59	30	181	131	221
TELE 225	TELE	telesm	161	27	48	98	131	215	53	32	178	144	228
TELE 227	TELE	telesm	146	34	57	93	122	213	46	31	162	146	230
TELE 290	TELE	TELESM	138	26	55	109	123	[227]	49	30	163	136	225
TELE 202	IELE	TELESM	152	14	65	∞	136	210	56	30	171	152	228
TRIC 621	TAIG	THICM	126	12	32	65	80	156	33	23	115	[120]	168
TRIC 491	trig	IRIGH	125	15	31	67	81	148	27	22	102	126	154
TRIG 423	trig	TRICH	134	18	34	62	76	132	32	22	110	120	147
trig 470	IRIG	TRIGM	128	15	31	65	91	167	31	22	106	129	162
PR16 474	thig	trich	115	17	31	66	79	145	28	20	98	112	156
TRIG 477	thig	thice	129	17	32	70	85	159	28	20	9	122	154
TRIG 479	tatig	thich	117	20	40	71	85	138	32	22	111	106	170
IRIC 480	taig	Trich	120	18	32	66	83	137	30	23	112	116	152
TRJS 481	TRIG	ThISN	121	18	30	69	83	152	33	20	111	114	168
TH16483	thig	thige	110	11	37	63	73	158	30	24	109	106	146
IR1C 484	Ihit	trigh	126	13	35	75	89	119	31	21	111	118	155
TRJG 485	Th16	tricn	123	11	32	80	76	136	31	21	113	117	146
TRIG 48S	IRIG	trica	122	19	29	64	80	164	28	20	106	107	159

ID	cenus	Subcs	anco	ANCH	apar	bohr	8301	cnms	L414	LnIW	HNMO	RNO	RANH
2ais 107	zals	20151M	232	26	57	87	120	200	46	31	16\%	196	257
zats 114	2ats	2atsan	225	16	33	98	119	202	52	32	192	170	271

APPEADII 5.

ONIVARIATE SWATIBTICB

Sumary univariate statistics for skull and mandible subgeneric groupe respectively. Within each section, living groups are followed by fobsil groups. Subgroups are listed by code in the same order as in Table 2 (akull) and Table 3 (mandible).

SKULL

Sutgroup	w	variable	\cdots	Min	Hax	Wean	5.0.	c.v.
ceras	19	AEAE	19	309	372	335.6	14.80	4.4
		AEDR	19	211	265	246.1	12.56	5.1
		AEP2	19	431	460	467.7	8.33	1.8
		SICN	19	134	154	146.0	6.53	4.4
		81zY	19	317	375	339.2	16.82	6.9
		LFHT	19	123	163	134.2	10.71	7.9
		t0x8	19	216	267	244.0	12.75	5.2
		MIM1	19	197	226	208.9	7.56	3.6
		MJMS	19	124	146	136.3	5.99	6.3
		MTAE	19	215	257	234.3	10.96	4.6
		NXGT	19	251	287	267.1	10.24	3.8
		mxmo	19	142	180	158.9	9.43	5.9
		OCP2	19	590	646	625.7	16.50	2.6
		OXAE	19	299	556	325.5	17.05	5.2
		OXOR	19	435	520	482.6	24.87	S. 1
		PORE	19	103	121	112.1	4.59	4.0
		TFLM	19	315	576	355.4	16.26	4.5
		LTHT	15	58	79	71.1	6.10	8.5
		ZYLN	19	237	301	276.2	18.36	6.6

Sumas	2	AEAE	2	142	284	213.0	100.40	47.1
		AEDR	2	185	136	185.5	0.70	0.3
		AEPZ	2	300	304	302.0	2.82	0.9
		GICN	2	97	123	110.0	18.38	16.7
		alzr	2	300	310	305.0	7.07	2.3
		LFMT	2	86	96	91.0	7.07	7.7
		L0x日	2	194	198	196.0	2.82	1.4
		M1M1	2	171	178	174.5	4.94	2.8
		m3n	2	111	115	113.0	2.82	2.5
		meat	2	169	171	170.0	1.41	0.8
		MXGT	2	187	204	195.5	12.02	6.1
		N0MO	2	119	120	119.5	0.70	0.5
		OCPZ	2	400	414	407.0	0.89	2.6
		OXAE	2	212	222	217.0	7.07	3.2
		DXCR	2	299	313	301.0	16.97	5.6
		PORE	2	115	116	115.5	0.70	0.6
		TFLN	2	189	211	200.0	15.55	7.7
		2YHT	2	43	44	43.5	0.70	1.6
		2YL	2	16\%	179	176.0	7.07	4.0
Bicos	48	aEaE	49	299	347	316.9	11.56	3.6
		AEDR	48	210	252	231.7	10.80	4.6
		AEP2	48	330	408	374.5	15.13	4.0
		BICN	48	111	152	133.5	8.23	6.1
		Bi2Y	48	305	358	351.5	12.41	3.7
		Lfit	48	73	104	90.9	7.33	8.0
		LOM ${ }^{\text {a }}$	48	210	264	231.7	12.61	5.4
		M1M1	48	177	214	195.7	9.35	4.7
		$4 \mathrm{~m} / 23$	48	111	144	125.3	7.89	6.2
		MESE	48	182	228	208.8	B.93	4.2
		NXCGT	48	222	273	249.0	12.24	4.9
		HxMO	48	103	165	147.7	9.38	6.3
		OCP2	68	476	'560	519.1	20.59	3.9
		OXAE	48	249	301	272.4	13.26	6.8
		0xar	48	338	447	392.4	26.12	6.6
		PORE	48	103	140	118.5	7.57	6.3
		TFLH	48	240	323	281.3	17.66	6.2
		2rnt	48	42	60	49.7	4.040	8.0
		2YEN	48	192	278	222.7	16.26	7.3

Subyroup	H	variable	*	Min	Max	Mean	s.p.	c.v.
Unics	8	aeas	B	328	370	349.7	13.28	3.7
		AECA	8	239	268	255.2	10.59	4.1
		AFP2	B	365	489	382.0	12.46	3.2
		BIEM	8	135	147	139.2	3.91	2.8
		BIEY	8	367	377	364.1	10.19	2.7
		CFIT	B	94	126	108.3	19.14	10.2
		L0x8	B	227	296	274.6	27.27	7.7
		M1H1	8	204	227	218.8	7.37	3.3
		MSMS	8	115	152	137.2	12.71	0.2
		meat	8	216	240	226.5	8.40	3.7
		Mact	B	236	264	255.7	9.52	3.7
		N0\%	8	145	155	148.6	4.27	2.8
		OCP2	8	508	558	522.7	15.54	2.9
		OXAE	B	256	284	268.1	10.14	3.7
		$0 \times 0 \mathrm{Ca}$	8	356	391	366.7	12.06	3.2
		PORE	8	100	126	112.8	7.89	6.9
		TFLR	${ }^{8}$	250	292	270.5	17.49	6.4
		ZYHT	B	67	88	74.8	6.66	8.8
		2 YLN	8	225	257	236.8	10.77	4.2
javas	4	aEAE	4	319	332	327.7	6.13	1.8
		AEPR	4	234	248	240.0	6.32	2.6
		AEP2	4	317	327	321.5	4.43	1.3
		8108	4	125	151	138.7	11.02	7.9
		EI2Y	4	331	346	339.7	6.75	1.9
		LFHT	4	81	77	58.0	6.83	10.0
		60x	4	278	298	285. 7	8.65	3.0
		M1M	4	190	197	192.7	3.09	1.6
		U343	4	110	114	111.5	1.91	1.7
		meat	4	188	215	203.2	11.23	5.5
		HESGT	4	220	231	223.7	4.99	2.2
		nown	4	126	131	129.0	2.96	1.6
		OCP 2	6	432	463	453.0	14.30	3.1
		DKAE	4	229	252	235.7	10.99	4.6
		OXOR	4	299	334	316.5	14.43	4.5
		PDRE	4	110	121	115.7	4.78	4.1
		TFLH	4	205	236	223.2	14.59	6.5
		2YHT	4	52	56	54.0	1.63	3.0
		2YLM	4	182	207	196.5	11.38	5.7

Subgroup	N	Variable	*	min	Max	Mean	5.0.	C.v.
NHYNS	2	aEaE	2	194	195	196.5	0.70	0.3
		AECO	2	123	130	126.5	4.96	3.9
		AEP2	2	221	228	224.5	4.94	2.2
		Btcy	2	4	85	84.5	0.0	0.8
		BIzY	2	130	205	167.5	53.03	31.6
		LFHT	2	48	53	50.5	3.53	7.0
		LOXP	2	100	102	101.0	1.41	1.4
		Mim1	2	107	123	115.0	11.31	9.8
		M3043	2	12	96	80.0	9.89	11.1
		MEAE	2	138	148	163.0	7.07	4.9
		MXGT	2	160	154	147.0	9.89	6.7
		MEOU0	2	95	112	103.5	12.02	11.6
		OCP2	2	323	328	325.5	3.53	1.0
		OXAE	2	160	170	165.0	7.07	4.2
		OXOR	2	268	281	276.5	9.19	3.3
		PORE	2	61	63	62.0	1.41	2.2
		TFLN	2	201	208	204.5	4.96	2.6
		2YHT	2	34	35	36.5	0.70	2.0
		2YLN	2	120	121	120.5	0.70	0.5
APHE is	1	ame	1	262	262	262.0		
		AEOR	1	169	169	169.0		
		MEP2	1	286	286	286.0		
		-1ck	1	96	96	\%60		
		912\%	!	236	236	236.0		
		LFHT	1	86	86	86.0		
		LOME	1	160	140	140.0		
		M * 1	\%	119	119	119.0		
		HEMS	1	91	91	91.0		
		MGAE	1	165	165	165.0		
		MKGT	1	192	192	192.0		
		H0x\%	1	115	115	115.0		
		OPP	1	399	399	399.0		
		OXAE	1	192	192	192.0		
		Dxor	1	291	291	299.0		
		PORB	1	72	72	72.0		
		TFLN	1	230	230	230.0		
		2YHT	1	52	52	52.0		
		2YL\%	1	179	170	179.0		

Subgroup	H	Variable	*	Min	Hax	Mean	s.b.	c.v.
APHE2S	8	AEAE	8	283	327	305.3	16.23	5.3
		AEOR	8	188	217	205.1	11.34	5.5
		AEP2	8	330	370	354.8	17.88	5.0
		AICM	8	122	137	128.5	5.92	4.6
		B12Y	8	288	336	309.5	17.46	5.6
		LFMT	8	71	107	85.1	12.15	16.2
		LOMB	8	194	261	216.8	16.30	7.5
		M1M1	B	166	186	178.8	7.54	4.2
		MSN3	8	107	147	122.0	12.18	9.9
		MGAE	8	171	196	185.1	8.98	4.8
		MXGT	B	217	275	236.1	18.38	7.7
		mamo	8	125	165	135.2	7.62	5.6
		OCP2	8	439	500	46E. 7	22.01	4.6
		OXAE	8	229	263	263.6	12.95	5.3
		OXCR	8	296	383	357.7	28.46	7.9
		PORS	B	94	121	108.1	8.02	7.4
		TFLN	8	218	263	267.8	16.12	6.5
		zrit	8	56	76	88.1	5.71	8.3
		2YLM	8	184	229	212.0	13.26	6.2
DIEETS	3	AEAE	3	194	213	204.6	9.71	6.7
		AEOR	3	162	188	165.6	3.21	1.9
		AEP2	3	241	259	267.6	9.86	3.9
		81 CM	3	80	03	85.6	6.65	7.7
		B12Y	3	226	236	230.3	5.13	2.2
		LFHT	3	42	55	47.3	6.80	16.3
		LOMS	3	122	127	123.6	2.88	2.3
		M\% ${ }^{\text {H }}$	3	128	142	137.0	7.81	5.7
		MSM_{3}	3	74	B7	81.3	6.65	8.1
		MSAE	3	132	154	141.3	11.37	8.0
		MXGT	3	166	195	176.6	15.94	9.0
		W000	3	99	17	106.0	9.64	9.0
		OCP2	3	336	358	348.0	11.13	3.1
		OXAE	3	155	179	165.6	11.59	6.9
		DXOR	3	251	294	288.3	22.67	8.6
		POR ${ }^{\text {P }}$	3	81	93	88.3	6.42	7.2
		TFLM	3	181	215	198.6	17.03	8.5
		2YRT	3	36	43	38.6	3.78	9.7
		2YLN	3	147	164	153.0	9.53	6.2

Subaroup N variable W min max Mean s.d. C.V.

61CE2S	1	AEAE	1	244	244	244.8		
		HEDR	1	170	170	178.0		
		AEP2	1	278	278	278.0		
		-ICN	1	95	95	95.0		
		gizy	1	260	260	260.0		
		LFMT	1	62	62	62.0		
		LOXP	1	143	143	143.0		
		M141	1	131	131	131.0		
		Hxax	1	99	99	99.0		
		MGAE	1	162	162	162.0		
		MXGT	1	192	192	192.0		
		H2\%	1	115	115	115.0		
		OcPa	1	305	305	395.0		
		OXAE	1	188	188	188.0		
		OKOR	1	294	294	294.0		
		PORA	1	86	86	86.0		
		TFLN	1	210	210	210.0		
		2\%ht	1	48	48	48.0		
		2YLN	\uparrow	165	165	165.0		
dice3s	2	AEAE	2	263	271	257.0	19.79	7.7
		AEDR	2	105	208	201.5	9.19	6.5
		AEP2	2	317	320	318.5	2.12	0.6
		BICN	2	112	118	115.0	4.24	3.6
		BJZY	2	247	285	266.0	26.87	10.\%
		Lfit	2	54	61	57.5	4.94	8.6
		LOM自	2	149	158	153.5	6.36	6.1
		nin!	2	130	159	144.5	20.50	14.1
		M3n3	2	89	117	103.0	19.79	19.2
		MGAE	2	166	174	169.0	7.07	6.1
		migt	2	204	217	210.5	9.19	4.3
		Nxam	2	129	140	134.5	7.77	5.7
		OCPZ	2	429	651	640.0	15.55	3.5
		OXAE	2	223	229	226.0	6.26	1.8
		OHOR	2	337	373	355.0	25.45	7.1
		PORE	2	101	113	107.0	8.48	7.9
		TFLN	2	260	273	266.5	9.19	3.4
		2\%HT	2	51	65	58.0	9.89	17.0
		2YLM	2	177	186	181.5	6.36	3.5

Subgroup	N	Variable	N	Min	Nax	Mean	S.D.	c.v.
FORSS	2	aeam	2	230	236	233.8	4.24	1.8
		AEDA	2	135	150	167.5	17.67	11.9
		AEP2	2	255	275	265.8	16.14	5.3
		EICM	2	76	B4	80.8	5.65	7.0
		BIzY	2	236	249	242.5	9.19	3.7
		LFMT	2	67	65	56.8	12.72	22.7
		L0x8	2	104	133	118.5	20.50	17.3
		MTM1	2	127	139	132.5	7.77	5.8
		NTM3	2	81	102	91.5	14.84	16.2
		MgaE	2	132	156	144.0	16.97	11.7
		NXGT	2	157	165	161.0	5.65	3.5
		mano	2	104	105	104.5	0.73	0.6
		0 CP 2	2	366	388	377.0	15.55	6.1
		OKAE	2	175	187	181.0	8.48	4.6
		OXOR	2	285	294	289.5	6.36	2.1
		PORE	2	61	116	88.5	38.89	43.9
		TFLM	2	217	220	218.5	2.12	0.9
		2YHT	2	36	39	37.5	2.12	5.6
		2YLTM	2	142	149	145.5	4.94	3.4
hyrals	2	AEAE	2	73	119	92.0	26.87	29.2
		AECOR	2	76	88	B2.0	8.48	18.3
		AEP?	2	123	139	131.0	11.31	8.6
		BICN	2	38	48	43.0	7.87	16.4
		BIZY	2	86	122	104.0	25.45	24.4
		Lfrit	2	27	31	29.0	2.82	9.7
		Lext	2	55	67	61.0	B.48	13.9
		N149	2	54	78	68.8	16.97	25.7
		NBME	2	35	59	47.8	16.97	36.1
		MGAE	2	46	75	60.5	20.50	33.8
		MXXGT	2	72	83	77.5	7.77	10.0
		NXNO	2	44	52	48.0	5.65	11.7
		OCP2	2	167	190	178.5	16.26	9.1
		OXAE	2	71	108	85.5	20.50	23.9
		OXOR	2	131	168	149.5	26.16	17.5
		PDRE	2	37	48	42.5	7.77	18.3
		TFLN	2	92	120	106.0	19.70	18.6
		2YHT	2	21	22	21.5	0.70	3.2
		2YLN	2	73	91	82.8	12.72	15.5

Subgroup	N	variable	W	Min	Mak	Mean	5.0.	c.v.
hyrazs	3	meat	3	112	162	133.3	25.79	19.3
		AEDr	3	103	116	190.3	6.65	6.0
		AEP2	3	167	184	173.0	9.53	5.5
		日ICN	3	46	58	51.6	6.02	11.6
		sizy	3	82	179	151.3	48.52	36.9
		LFHT	3	32	39	35.3	3.51	9.9
		LOXP	3	67	90	76.0	12.28	16.1
		Mimi	3	75	110	94.3	17.78	18.8
		MSn3	3	49	76	62.3	13.50	21.6
		meat	3	74	108	90.0	16.00	17.7
		MXGT	3	92	116	104.6	12.05	11.5
		H000	3	58	73	66.3	7.63	11.5
		OCP2	3	216	261	236.3	22.61	9.6
		OXAE	3	86	136	108.3	26.17	22.3
		OXDR	3	176	205	188.0	15.13	8.0
		PCRE	3	43	61	51.0	9.16	17.9
		TFLH	3	132	963	145.0	16.09	51.0
		2YMT	3	25	28	26.0	1.73	6.6
		2YLH	3	100	108	104.3	4.04	3.8
hycos	4	AEAE	4	107	130	115.0	10.61	9.2
		AECR	4	88	98	92.2	5.05	5.6
		AEP2	4	141	160	150.7	7.76	5.1
		日ick	4	45	52	48.7	2.50	5.1
		alzy	4	115	135	125.7	8.30	6.6
		LFMT	4	33	65	38.5	4.93	12.8
		LOXA	4	66	82	72.5	6.75	9.3
		M1M1	4	92	90	86.7	3.59	4.1
		4343	4	42	55	50.0	5.59	11.1
		MEAE	4	63	tot	91.2	7.67	8.4
		HXGT	4	101	113	106.7	5.31	6.9
		10040	4	58	63	60.5	2.38	3.9
		OCP2	4	215	240	227.5	12.36	5.4
		axae	4	110	140	122.7	13.04	10.6
		OXOR	4	179	205	193.7	13.30	6.8
		Pors	4	40	57	45.7	7.67	16.7
		T FLM	4	145	156	149.7	5.ta	3.4
		2YHP	4	29	34	32.0	2.16	6.7
		2YL*	4	86	94	89.7	4.36	4.8

Subgroup	N	Variable	4	Min	Max	Hean	5.0.	c.v.
Inders	1	aEas	1	570	570	570.0		
		AED ${ }^{\text {a }}$	1	374	374	374.0		
		AEP2	1	632	632	632.0		
		BICN	1	309	309	309.0		
		BIZY	1	588	588	588.0		
		Lfat	1	145	145	145.0		
		LOMB	1	358	358	358.0		
		M1M1	1	279	279	279.0		
		MSNS	1	214	214	214.0		
		mede	1	498	498	498.0		
		HXGT	1	376	376	376.0		
		HX\%	1	232	232	232.0		
		OCPZ	1	1025	1025	1025.0		
		OXAE	1	525	525	525.0		
		OXOR	1	802	802	818.0		
		PCRE	1	194	194	194.0		
		TFLN	1	662	662	662.0		
		2YHT	1	101	101	101.0		
		2Y4N	1	371	371	371.0		
Memos	18	AEAE	18	156	288	181.3	14.10	7.7
		AEOR	18	129	164	143.6	10.78	7.5
		MEP2	18	212	257	233.0	13.17	5.6
		BtCN	18	65	84	74.6	5.78	7.7
		Btzy	18	161	260	197.7	26.59	12.4
		Cfit	18	39	56	46.7	4.88	10.4
		L0x8	18	105	143	122.1	11.00	9.0
		Miki	18	102	130	185.7	9.73	8.4
		NBM	18	50	89	68.1	11.35	16.6
		mgat	18	106	134	118.8	7.10	5.9
		nexet	18	147	175	160.7	7.08	4.4
		H20MO	18	88	106	96.8	4.76	4.9
		0 CP 2	18	279	338	313.5	16.34	4.5
		DCHE	18	116	164	143.8	13.31	9.2
		OXOR	18	189	24.	223.1	13.73	6.1
		PORE	18	62	90	7.2	7.93	10.5
		TFLN	18	144	175	159.2	9.21	5.7
		${ }^{\mathbf{2 Y H T}}$	18	37	61	46.6	6.72	14.4
		2YLN	18	126	150	137.6	7.33	5.3

Subgroup	ω	variable	H	Min	Max	Mean	5.0-	c.v.
Perals	2	mene	2	226	280	253.0	38.18	15.0
		NEDR	2	178	185	192.0	5.65	3.1
		AEP2	2	289	305	297.0	11.31	3.8
		BICM	2	85	90	87.5	3.53	4.0
		B12Y	2	237	253	265.0	11.31	4.6
		LFMT	2	63	78	71.0	19.31	15.9
		Loxs	2	142	176	159.0	24.04	15.1
		WIM1	2	148	156	152.0	5.65	3.7
		MSNS	2	94	98	96.0	2.82	2.9
		MGAE	2	140	165	152.5	17.67	11.5
		nXGT	2	182	208	185.0	18.38	9.4
		M00\%	2	107	132	119.5	17.67	14.7
		OCP2	2	355	415	385.0	42.42	11.0
		OXAE	2	175	202	188.5	19.09	10.1
		OXPR	2	255	280	267.5	17.67	6.6
		PCRE	2	70	82	76.0	8.48	11.1
		TFLN	2	192	229	210.5	26.16	12.4
		2YHT	2	51	61	56.0	7.07	12.6
		2YL	2	168	185	176.5	12.02	6.8
perazs	3	AEAE	3	345	605	379.0	30.78	9.1
		MEOR	3	210	258	239.3	25.71	10.7
		AEP2	3	352	417	389.3	33.56	8.6
		BICN	3	140	162	151.0	11.00	7.2
		8!2Y	3	359	429	400.0	36.51	9.1
		LFHT	3	85	96	90.6	5.50	6.0
		Loxe	3	239	279	262.0	20.66	7.8
		M141	3	209	260	335.0	25.51	10.8
		H363	3	140	153	148.3	7.23	4.8
		MESE	3	225	238	232.3	6.65	2.8
		nexg	3	263	287	274.0	12.12	4.4
		H010	3	155	177	165.3	11.06	6.6
		CCP2	3	495	552	526.0	28.82	5.4
		OXAE	3	250	294	268.3	22.89	8.5
		OXCR	3	320	361	344.3	21.54	6.2
		PORS	3	102	125	117.0	13.00	11.7
		TFLN	3	216	248	236.3	17.67	2.4
		2rit	3	76	82	78.6	3.05	3.8
		2YLN	3	214	254	239.3	22.63	9.2

Sungroup	H	Varisble	N	Min	Max	Mean	S.D.	c.v.
Suanis	5	AEAE	5	170	196	186.8	9.88	5.2
		aEDa	5	136	160	149.0	9.00	6.0
		AEP2	5	217	256	238.0	14.07	5.8
		BICN	5	72	77	74.0	2.34	3.1
		BtZY	5	176	218	197.6	15.27	7.7
		Lfry	5	39	70	54.4	11.28	20.7
		LOXB	5	101	125	113.8	8.64	7.5
		Nin1	5	105	131	118.8	11.09	9.3
		M3m3	5	75	89	79.2	6.07	7.5
		RGAE	5	126	137	135.0	4.84	3.6
		MPIGT	5	163	178	160.0	15.14	9.4
		Hy\%	5	67	103	95.8	7.66	7.9
		OCP2	5	314	357	339.6	16.44	6.8
		OXAE	5	166	174	156.8	10.86	6.9
		OXOR	5	267	277	260.6	11.19	4.2
		PCRB	5	55	77	66.0	t0.77	16.3
		TFLH	5	166	201	178.0	13.67	7.5
		ZYHT	5	60	68	43.9	5.19	7.2
		2YLN	5	128	142	135.6	5.31	3.9
Sugnes	4	AEAE	4	190	221	203.5	13.91	6.8
		AEOR	4	166	162	155.0	6.93	6.4
		AEP2	4	247	264	255.0	7.25	2.8
			4	80	95	88.75	7.0	7.9
		Bizy	4	197	235	213.0	17.86	8.3
		Lf:ET	4	56	75	66.0	8.06	12.1
		10x8	4	116	161	127.25	10.8	8.4
		M14:	4	106	146	126.5	17.38	13.9
		M3n3	6	61	93	82.75	14.9	18.0
		MGAE	4	831	164	145.5	12.36	8.5
		HXGT	4	163	186	173.5	9.88	5.6
		MXW0	4	85	114	105.0	B.60	8.1
		OCP2	4	340	369	357.25	13.2	3.6
		OXAE	6	175	184	178.0	4.08	2.2
		OXCR	4	280	290	285.5	4.20	1.6
		PORE	4	63	72	68.7	4.2	6.2
		TFLM	6	192	215	205.2	0.7	6.7
		2rHf	4	61	53	65.5	5.19	11.4
		Crim	4	129	149	140.5	9.67	6.8

Subgroup veriable M min Max Mean s.D. C.v.

Subh3s	7	agae	7	225	266	235.4	8.05	3.4
		MEDR	7	165	189	173.5	7.91	4.5
		AEP2	7	265	295	275.8	9.97	3.6
		BICN	7	95	110	100.6	5.56	5.5
		BIzY	7	237	280	261.4	13.10	5.0
		LFHT	7	37	62	52.2	8.92	17.0
		LOX日	7	139	161	148.8	7.58	5.0
		M 1 ml	7	126	151	139.4	9.19	6.5
		0×3	7	83	107	99.2	8.36	8.4
		MEAE	7	133	166	153.1	11.92	7.7
		MKGT	7	156	192	181.0	12.47	6.8
		nock	7	105	119	713.7	5.02	6.4
		0cp2	7	344	40	385.0	20.53	5.3
		OXaE	7	185	222	202.8	39.64	6.7
		OXCR	7	294	368	322.0	17.60	5.4
		PCRS	7	77	101	85.2	8. 07	9.4
		TFLM	7	206	250	227.5	16.25	7.1
		2YHT	7	44	51	50.8	6.96	13.6
		2YLN	7	153	184	167.0	11.10	6.6
TELETS	2	aEAE	2	281	288	286, 5	4.94	1.7
		AEOA	2	221	232	226.5	7.77	3.4
		AEP2	2	325	328	326.5	2.12	0.6
		BICN	2	99	224	111.5	17.67	15.8
		B1zY	2	306	320	313.0	9.89	3.1
		Lfry	2	59	70	64.5	7.77	12.0
		Lax日	2	198	211	204.5	9.19	4.4
		Him?	2	178	181	179.5	2.12	1.1
		NSN3	2	98	102	100.0	2.82	2.8
		MCAE	2	161	163	162.0	1.41	0.0
		MXGT	2	225	230	227.5	3.53	1.5
		Nocel	2	138	146	142.0	5.65	3.9
		$0 \mathrm{CP2}$	2	408	428	418.0	14.16	3.3
		DXaE	2	205	210	207.5	3.53	1.7
		OXCR	2	306	306	305.0	1.41	0.4
		PORB	2	93	116	106.5	16.26	15.5
		TFLN	2	213	217	235.0	2.82	1.3
		2YH7	2	59	76	67.5	12.02	17.8
		2YLW	2	186	206	195.0	12.72	6.5

Subgroup	*	Variable	*	Min	Max	Mean	s.o.	c.v.
TELE25	4	AEAE	4	308	347	326.5	17.09	5.2
		AEOR	4	241	276	259.7	14.45	5.5
		MEP2	4	351	374	365.5	10.60	2.8
		BICM	4	108	134	125.2	11.87	9.4
		B12Y	4	319	386	355.0	27.58	7.7
		LFHT	6	68	94	83.2	12.52	15.0
		L0x日	6	227	289	246.0	28.95	11.7
		M1M1	4	163	186	178.7	10.71	5.9
		M303	4	107	123	115.7	6.70	5.7
		MGAE	4	180	207	196.5	13.07	6.6
		MXGT	4	237	256	266.5	7.32	2.9
		mano	4	152	170	161.2	7.36	4.5
		OCP2	4	459	505	481.2	20.33	4.2
		OXAE	4	214	247	227.0	14.53	6.4
		OxCP	4	325	358	343.7	14.10	4.1
		FORS	4	84	101	90.7	7.22	7.9
		TFLM	4	236	259	245.7	9.91	6.0
		$2 \mathrm{HH1}$	4	7	96	65.0	B. 0^{6}	9.4
		2YLI	4	178	229	208.0	22.31	10.7
TELE3S	6	aEat	6	273	318	301.0	15.84	5.2
		AEOR	6	230	258	248.6	12.29	6.9
		AEP2	6	351	394	367.6	15.79	4.2
		EICN	6	111	131	122.0	8.39	6.8
		8tzy	6	265	331	309.5	23.78	7.6
		LFRT	6	80	111	96.0	10.95	17.4
		L0x8	6	198	237	216.8	14.17	6.5
		H141	6	94	194	161.0	36.03	22.3
		MSNS	6	91	130	113.8	15.43	13.5
		MEAE	6	161	196	182.6	13.98	7.6
		Marct	6	160	253	217.3	32.81	15.1
		mamo	6	131	168	149.3	11.87	7.9
		OCP2	6	471	699	485.5	9.87	2.9
		OXAE	6	209	252	230.6	18.66	7.2
		OXCR	6	313	360	341.1	16.58	4.8
		SDRE	5	59	92	82.0	12.06	14.7
		TFLM	6	222	266	242.0	16.54	6.8
		2YHT	6	73	87	79.6	4.76	6.2
		2YLM	6	200	229	210.3	11.23	5.3

Suthroun	N	Variable	N	Min	Max	Mean	\$.0.	c.v.
TELE4S	3	heae	3	294	332	315.0	19.31	6.1
		AEDR	3	256	270	264.6	7.57	2.8
		AEP2	3	397	620	409.6	11.67	2.8
		BICN	3	128	141	133.6	6.65	4.9
		Bizy	3	305	352	332.3	24.41	7.3
		LFHT	3	108	126	175.6	9.29	8.0
		toxs	3	224	236	231.3	6.42	2.7
		M4H1	3	170	213	197.0	23.51	11.9
		M3043	3	84	128	112.3	24.58	21.8
		mgat	3	168	190	182.6	12.70	6.9
		MXET	3	256	270	261.3	7.57	2.8
		H01\%	3	161	177	169.0	8.0	4.7
		OCPZ	3	519	540	526.0	12.12	2.3
		OXAE	3	228	261	236.0	7.0	2.9
		3xOR	3	345	392	364.6	18.61	5.1
		PORB	3	69	97	83.6	14.04	16.7
		TFLN	3	262	256	247.0	7.81	3.1
		2rH7	3	74	83	79.0	4.58	5.8
		2YLH	3	221	239	231.6	9.65	4.0
TELE5S	4	AEAE	4	298	370	336.5	29.71	8.8
		AEOR	4	246	294	271.5	20.72	7.6
		AEPZ	4	356	428	405.0	33.06	8.1
		EICN	6	113	145	136.0	14.49	10.8
		H12y	4	314	374	351.7	28.00	7.9
		LFHT	4	90	115	100.7	11.5	11.41
		L0x8	4	221	293	247.0	28.70	18.6
		-1m1	4	192	205	197.5	5.56	2.8
		H343	4	117	133	124.2	7.56	6.0
		Mgat	4	175	224	200.0	20.36	10.1
		nKg:	4	260	280	269.0	8.28	3.0
		H0\% ${ }^{\text {de }}$	4	173	185	180.2	5.5	3.051
		OCP2	4	491	562	539.2	32.87	6.0
		JXAE	4	207	260	237.7	22.18	9.3
		axoa	4	331	388	368.0	25.65	6.9
		PORB	4	72	106	91.2	15.73	17.2
		TFLW	4	267	282	272.5	6.85	2.5
		2YHT	4	73	92	82.7	8.42	10.1
		2YLN	4	211	268	246.2	24.55	9.9

Subgroup W Variable Win max Mean s.c. C.v.
$\begin{array}{lllllllll}\text { TRIES } & 13 & \text { AEAE } & 12 & 172 & 264 & 212.5 & 18.55 & 8.7\end{array}$ $\begin{array}{lllllll}\text { AEOR } & 12 & 135 & 183 & 164.0 & 13.70 & 8.3\end{array}$ $\begin{array}{lllllll}\text { AEP2 } & 12 & 230 & 290 & 262.8 & 17.87 & 6.8\end{array}$ $\begin{array}{lllllll}\text { BICN } & 12 & 66 & 89 & 80.4 & 7.50 & 9.3\end{array}$ $\begin{array}{lllllll}\text { Bizy } & 12 & 179 & 292 & 231.3 & 28.22 & 12.1\end{array}$ $\begin{array}{lllllll}\text { LFHT } & 12 & 41 & 69 & 58.2 & 9.37 & 16.0\end{array}$ $\begin{array}{lllllll}\text { Loxa } & 12 & 22 & 147 & 120.7 & 15.78 & 13.0\end{array}$ $\begin{array}{lllllll}\text { MIM1 } & 12 & 105 & 152 & 134.8 & 14.34 & 10.6\end{array}$ $\begin{array}{rrrrrrr}\text { MSNB } & 12 & 72 & 108 & 87.1 & 11.78 & 13.5 \\ \text { NEAE } & 12 & 130 & 188 & 149.9 & 11.44 & 7.6\end{array}$ $\begin{array}{lllllll}\text { MXGT } & 12 & 159 & 154 & 177.0 & 10.23 & 5.7\end{array}$ $\begin{array}{lllllll}12010 & 12 & 99 & 125 & 115.5 & 6.84 & 5.9\end{array}$ $\begin{array}{lllllll}\text { OCP2 } & 12 & 331 & 413 & 367.0 & 21.77 & 5.9\end{array}$ $\begin{array}{lllllll}\text { OXAE } & 12 & 160 & 253 & 188.9 & 21.66 & 11.4\end{array}$ $\begin{array}{lllllll}\text { axose } & 12 & 254 & 326 & 299.8 & 20.63 & 6.8\end{array}$ $\begin{array}{rrrrrrr}\text { PORE } & 12 & 56 & 93 & 73.0 & 10.53 & 14.4 \\ \text { TFLN } & 12 & 195 & 267 & 229.8 & 19.72 & 8.5\end{array}$ $\begin{array}{lrrrrrr}\text { ZYNT } & 12 & 33 & 65 & 50.1 & 12.14 & 22.2 \\ \text { 2YLN } & 12 & 125 & 169 & 157.4 & 14.39 & 9.5\end{array}$

MANDIBLE

Subgroup	H	variable	N	Min	Max	Mean	S.D.	C.V.
CERAM	19	ancd	19	141	177	160.5	10.18	6.3
		N(T)	19	42	64	54.4	5.87	10.6
		304R	19	55	70	61.3	3.78	6.1
		Soll	19	153	161	148.6	7.05	4.7
		soht	19	109	132	197.7	5.77	4.9
		enas	19	263	298	265.3	12.93	4.8
		LMIL	19	29	51	4.1	6.81	16.5
		LMIH	19	27	36	30.2	2.86	9.4
		MRED	19	126	153	143.7	7.09	4.9
		RUND	19	157	188	173.8	10.01	5.7
		Rakh	19	208	259	228.7	12.96	5.6
sureat	2	ANCD	2	112	113	112.5	0.70	0.6
		AnGM	2	37	38	37.5	0.70	1.8
		bodr	2	34	36	35.0	1.41	4.0
		80, 1	2	83	134	108.5	36.06	33.2
		athr	2	61	63	62.0	1.41	2.2
		CMOS	2	165	189	177.0	16.97	9.5
		LMIL	2	36	40	38.0	2.82	7.4
		LMTY	2	21	22	21.5	0.70	3.2
		MUNO	2	120	166	143.0	32.52	22.7
		RavD	2	117	166	141.5	36.64	24.4
		RAKH	2	152	166	159.0	9.89	6.2
gices	47	ances	47	106	149	130.2		7.0
		ancy	67	33	55	45.5	5.23	11.5
		gider	67	44	59	52.0	3.56	6.0
		Bicm	47	96	132	196.8	8.15	6.9
		вонt	47	73	101	86.4	6.81	7.8
		Cun3	47	167	233	201.8	14.57	7.2
		LMIL	47	39	52	45.3	3.24	7.1
		LMI	47	21	32	28.0	2.06	7.3
		Muno	47	128	155	143.0	7.28	5.0
		RNW	67	115	156	135.9	9.96	7.3
		RNKH	47	155	202	180.2	10.90	6.0

5ubgroup	H	Variable	\＃	Min	Max	mean	s．0．	C．V．
UMICM	9	ANGO	9	140	165	152.5	9.07	5.9
		ANGY	9	39	52	46.3	3.50	7.5
		日cab	9	49	56	52.6	2.50	4.7
		bual	9	108	125	116.2	6.91	4.2
		日CHT	9	83	102	91.0	7.08	7.7
		cmis	9	212	263	261.1	15.97	6.6
		LMIL	9	37	48	41.5	3.32	7.9
		CHIS	9	26	31	29.2	2.06	7.0
		Mano	9	133	155	141.6	6.83	4.8
		RNAD	9	151	173	160.4	8.06	5.0
		RAMH	9	213	251	239.6	13.33	5.5
Javan	3	Men	3	129	163	137.6	7.57	5.5
		ANEH	3	36	39	37.3	1.52	4.0
		bobr	3	61	42	41.6	0.57	1.3
		日001	3	95	101	97.3	3.21	3.3
		вонt	3	66	76	69.3	4.16	6.0
		cove	3	175	186	182.0	6.08	3.3
		EMIL	3	30	41	40.0	1.00	2.5
		cmiv	3	22	24	23.0	1.00	4.3
		mumo	3	124	129	127.0	2.64	2.0
		RAOD	3	133	164	140.3	6.35	4.5
		RAMH	3	179	186	182.0	3.60	1.9
MCER IM	2	AHCS	2	150	151	150.5	0.70	0.4
		ANGU	2	28	32	30.0	2.82	9.4
		EDER	2	62	47	44.5	3.53	7.9
		80w1	2	107	112	109.5	3.53	3.2
		80wt	2	85	87	86.0	1.41	1.6
		CNH3	2	198	206	202.0	5.65	2.8
		tM16	2	41	42	41.5	0.70	1.7
		LMIW	2	27	28	27.5	0.70	2.5
		MHHO	2	134	135	134.5	0.70	0.5
		RUD	2	131	152	141.5	16.84	10.6
		RAMM	2	187	212	204.5	10.60	5.1

Subgroup	N	Variable	*	Min	Max	Mean	s.0.	c.v.
ACER2M	2	ancd	2	152	156	156.0	2.82	1.8
		ANGU	2	36	37	36.5	0.70	1.9
		B0日R	2	41	44	42.5	2.12	6.9
		80M1	2	106	109	107.5	2.12	1.9
		80ht	2	78	87	82.5	6.36	7.7
		Smin3	2	201	218	209.5	12.02	5.7
		Lett	2	34	63	88.5	6.36	16.5
		LH74	2	24	29	26.5	3.53	13.3
		нu\%	2	112	125	118.5	9.19	7.7
		RAMD	2	150	152	151.0	1.41	0.9
		RAMH	2	220	221	220.5	0.70	0.3
APME IM	4	AMED	4	133	141	137.2	3.30	2.4
		ANGY	4	20	27	22.7	3.09	13.6
		ELBr	6	58	51	45.7	5.73	12.5
		Baw 1	4	87	111	101.0	11.19	11.0
		BOHT	4	66	91	81.2	11.44	14.0
		CNiS	4	179	209	193.7	12.25	6.3
		LMIL	4	34	37	35.7	1.25	3.5
		Lmi4	4	24	28	25.7	1.70	6.6
		mumo	4	115	126	120.7	6.03	3.3
		Rave	4	133	140	136.2	2.98	2.1
		RNOH	4	192	205	198.5	6.02	3.0
APHEZA	6	Anco	6	143	156	150.5	4.32	2.8
		ANGI	6	26	35	31.5	3.20	10.1
		BCBR	8	39	51	43.8	4.21	9.6
		SOM 1	6	107	121	112.1	5.70	5.0
		beht	6	78	105	90.6	9.81	10.8
		CNH3	6	186	234	207.8	15.99	7.6
		LMit	6	32	44	38.8	4.16	10.7
		LMELE	6	19	30	25.3	3.77	14.9
		WN\%O	6	121	335	126.3	5.42	4.2
		RAMD	6	135	152	145.1	7.16	4.9
		RAMH	6	200	229	215.0	12.13	5.6

Sutagroup	N	Variable	-	Min	Max	Hean	s.8.	C.V.
APhE3 ${ }^{\text {a }}$	4	amco	4	150	201	172.2	21.71	12.6
		AME	4	28	36	31.2	3.59	11.5
		bobr	4	55	58	56.2	1.5	2.6
		B0w	4	111	153	128.2	17.91	13.9
		EOH:	4	86	116	98.2	14.84	15.9
		CNW3	4	284	252	233.5	12.97	5.5
		LMIL	4	46	54	50.7	3.94	7.7
		LMIY	4	31	38	33.0	3.36	10.2
		M**	4	146	163	157.2	7.80	4.9
		9AND	4	154	181	170.5	12.12	7.1
		RAMH	4	226	278	261.2	26.91	20.3
APMESM	4	ANCD	4	168	190	182.0	9.93	5.4
		AHEL	4	28	36	30.7	2.75	8.9
		608\%	4	58	65	61.0	2.96	4.8
		日8M1	4	149	169	155.0	9.38	6.0
		80\%	4	115	138	123.5	10.01	8.1
		CN03	4	224	270	246.0	21.46	8.7
		LM9L	4	49	58	53.5	4.20	7.8
		LHIN	4	33	39	36.5	2.64	7.2
		MNMO	4	162	181	173.7	8.80	5.0
		RNO	4	160	191	173.0	43.40	7.7
		RANH	4	238	280	263.5	18.21	6.9

DItEIM	t	amgd	1	134	134	134.0
		AMS	1	14	14	14.0
		bisa	1	29	29	29.0
		EDH1	1	94	94	96.0
		EDH5	1	73	73	7.0
		CNM3	1	152	152	152.0
		LH1L	1	43	43	43.0
		LHIN	1	23	23	23.0
			1	136	136	136.0
		Revo	1	112	112	112.0
		RUW	1	171	171	171.0

Subgreup	N	Variable	H	Min	Max	Mesm	5.0.	C.V.
DICE24	1	amge	1	304	106	106.0		
		ANSU	1	40	40	40.0		
		bobr	1	25	25	25.0		
		Bem	1	74	71	71.0		
		80\% ${ }^{\text {c }}$	1	57	57	57.0		
		cmus	1	144	144	144.0		
		LH1L	1	23	23	23.0		
		Limis	1	18	18	18.0		
		mano	1	85	85	85.0		
		RUNO	1	88	88	88.0		
		TAMH	1	138	138	138.0		
FOens in	1	ances	1	14.	141	141.0		
		ANGU	1	18	18	18.0		
		soer	1	25	25	25.0		
		B0M 1	1	78	78	78.0		
		SOHT	1	∞	ω	66.0		
		Curb	1	145	145	145.0		
		Un12	1	32	32	32.0		
		LHM	1	22	22	22.0		
		MNH0	1	106	106	106.0		
		Rand	1	109	108	101.0		
		RAMH	1	\$53	153	153.0		
FORS24	2	amas	2	97	127	112.0	21.21	88.9
		RNGU	2	7	11	9.0	2.82	31.4
		800R	2	3	26	24.5	2.12	8.6
		BiDM	2	62	66	64.0	2.82	4.4
		вent	2	50	56	53.0	4.24	8.0
		CNH3	2	97	130	113.5	23.33	20.5
		L*1L	2	24	27	25.5	2.12	8.3
		LM14	2	15	17	16.0	1.49	8.8
		нк\%	2	80	84	82.0	2.82	3.4
		RANO	2	78	102	90.0	16.97	78.8
		RANM	2	124	137	130.5	9.19	7.0

Subgroup	*	Variable	N	Min	max	Mean	S.0.	t.v.
MYRA in	2	AMCD	2	63	80	71.5	12.02	16.8
		ANGH	2	7	11	9.0	2.82	31.6
		808R	2	15	17	16.0	1.41	8.8
		80\% 1	2	34	45	39.5	7.77	19.6
		BOHT	2	28	35	31.5	4.94	15.7
		Cmis	2	62	69	65.5	4.94	7.5
		LN1L	2	14	15	14.5	0.70	4.8
		L.N14	2	9	10	9.5	0.70	7.4
		mmic	2	44	48	46.0	2.82	6.1
		RNO	2	52	65	57.5	7.77	13.5
		s, \% ${ }^{\text {s }}$	2	73	82	77.5	6.36	8.2
HYRAZM	2	Ancts	2	92	103	97.5	7.77	7.9
		mmey	2	8	9	8.5	0.70	8.3
		B0BR	2	18	20	19.0	1.41	7.4
		80M1	2	52	60	56.0	5.65	10.1
		80n ${ }^{\text {c }}$	2	44	49	46.5	3.53	7.6
		CN13	2	70	97	88.0	12.72	14.4
		LMiL	2	19	29	20.0	1.41	7.0
		LHIV	2	14	15	16.5	0.70	4.8
		Mr* ${ }^{\text {a }}$	2	61	60	65.5	3.53	5.5
		Rud	2	66	89	77.5	16.26	20.9
		Rever	2	101	118	109.5	12.02	10.9
WYCOM	4	ANGD	4	81	90	66.2	6.11	6.7
		ANGN	4	6	7	6.2	0.50	8.0
		BCBR	4	20	23	22.0	1.41	6.4
		B0M 1	4	49	54	51.7	2.21	6.2
		bicht	4	40	42	41.2	0.95	2.3
		Coms	4	71	87	78.5	7.32	9.3
		LM12	4	17	19	18.0	0.81	4.5
		LMIU	4	12	13	12.2	0.50	4.0
		***	4	57	60	59.0	1.61	2.3
		RUPD	4	68	78	74.2	4.50	6.0
		RANH	4	98	121	106.5	10.40	9.7

Sutigroup	*	Vsriable	W	Min	Max	Mean	S.b.	c.v.
INDRH	1	Anco	1	255	255	255.0		
		Angr	τ	67	67	67.0		
		B0BR	1	79	79	79.0		
		BDF1	1	166	166	166.0		
		BDAT	1	129	129	129.0		
		Cunt	1	353	353	353.0		
		LM?	1	75	75	75.0		
		LNTL	1	53	53	53.0		
		H\%40	1	223	225	223.0		
		RAMD	1	226	226	226.0		
		RAM	1	330	330	330.0		
menotm	10	ANCD	10	92	113	101.1	6.72	6.6
		ANGW	10	24	46	35.0	7.43	21.2
		anba	10	22	31	26.3	2.58	9.8
		60W1	10	63	78	69.0	4,69	6.7
		8DHT	10	43	59	53.3	3.36	6.3
		CN*S	10	110	147	125.3	12.73	10.1
		LM12	10	24	31	26.6	2.54	9.5
		(M14	10	57	21	18.9	1.9	6.3
		WNMO	10	86	100	91.6	4.22	4.6
		RNOP	10	75	100	84.9	8.87	10.4
		RAW	10	129	148	139.0	6.12	4.4
MEnO2M	1	ANCD	1	100	100	100.0		
		ANGM	1	31	31	31.0		
		COBR	1	35	35	35.0		
		GOM 1	1	85	85	85.0		
		GOMT	1	64	64	64.0		
		Cuns	1	141	141	141.0		
		LMIL	1	31	31	31.0		
		เM14	1	22	22	22.0		
		Hino	1	116	114	144.0		
		RANO	1	92	92	92.0		
		RANH	1	158	158	158.0		

Subgroup	N	Variable	N	Min	Max	Mean	\$.0.	c.v.
fENE1M	1	amed	1	81	81	81		
		ANEM	1	10	10	10		
		EDak	1	22	22	22		
		Bomi	1	57	57	57		
		boht	1	47	47	47		
		CWer 3	;	105	105	105		
		LMIL	?	20	20	20		
		LMIV	1	13	13	13		
		Hwwo	1	70	70	70		
		RADO	i	82	82	82		
		Rant	1	175	115	115		
PERATM	3	ANCD	3	113	133	122.3	10.06	8.2
		AMGY	3	13	22	18.6	4.58	25.4
		E0日R	3	38	43	40.3	2.51	6.2
		BDW1	3	94	107	97.3	3.51	3.6
		bint	3	67	82	76.0	7.93	10.4
		CMus	3	162	180	177.6	9.07	5.2
		LMIL	3	35	42	39.3	3.78	9.6
		LMIW	3	26	29	27.3	1.52	5.5
		nikno	3	176	136	129.0	11.26	9.7
		RAKO	3	111	135	221.0	12.48	10.3
		RSHH	3	154	189	173.6	13.42	7.7
Peraza	2	AMCD	2	155	162	158.5	4.94	3.1
		ANET	2	25	26	25.5	0.70	2.7
		mobr	2	52	53	52.5	0.70	1.3
		80wt	2	115	119	117.0	2.82	2.4
		EOMT	2	87	90	88.5	2.12	2.3
		cNus	2	216	219	217.5	2.12	0.9
		LM1L	2	43	50	46.5	4.96	10.6
		LMIY	2	31	33	32.6	1.64	4.6
		Mmwo	2	16.9	167	157.5	13.43	8.5
		RAVD	2	147	163	\$55.0	\$1.37	7.2
		R.0nH	2	209	210	209.5	0.70	0.3

Subgroup	*	Variable	N	Min	Max	Mean	S.0.	c.v.
Suantin	8	Anct	8	302	126	111.6	10.78	9.6
		ARGS	B	13	21	16.2	2.96	18.2
		cobr	8	22	33	27.7	3.10	11.1
		EDin	8	65	86	73.7	7.53	10.2
		BDAT	8	S2	73	59.3	8.66	14.5
		CNTS	0	117	150	131.6	11.28	8.5
		$1 \mathrm{maf}_{1}$	8	25	36	28.6	2.72	9.5
		2mfw	B	18	25	19.8	2.47	12.4
		MNWH	8	85	110	97.0	8.69	9.1
		7ad	8	88	112	102.6	7.70	7.5
		R(4)	B	127	159	140.3	12.60	8.97
Suamn	2	anged	2	114	120	147.0	4.26	3.6
		AMGY	2	13	15	14.0	1.41	10.1
		B0日,	2	30	31	30.5	0.70	2.3
		B0* 1	2	75	76	75.5	0.70	0.9
		Ebut	2	60	63	67.5	2.12	3.4
		CN10	2	120	128	124.0	5.65	4.5
		LMit	2	27	28	27.5	0.70	2.5
		1 mty	2	20	21	20.5	0.70	3.4
		Muno	2	95	96	95.5	0.70	0.7
		fant	2	105	115	110.0	7.07	6.4
		RAHM	2	141	166	143.5	3.53	2.4
541843\%	6	Amed	6	117	133	125.1	6.009	4.8
		AMEU	6	12	25	18.1	5.41	29.8
		808R	6	36	38	4.6	4.36	12.5
		B0n3	6	71	90	78.5	6.83	8.7
		60\%t	6	58	77	62.5	7.66	12.2
		cmes	6	137	155	146.1	6.79	4.7
		Lmi6	6	27	37	32.3	3.20	9.9
		1*14	6	21	25	22.3	1.75	7.8
		Mrino	6	98	113	107.8	5.87	5.4
		Pato	6	94	125	107.0	11.52	10.7
		RanH	6	146	154	148.8	2.71	1.8

Sutaroup	*	Variable	*	Min	Max	Mean	s.b.	c.v.
TELE1*	3	ANCS	3	144	154	149.0	5.00	3.3
		ANGw	3	21	28	23.6	3.78	15.9
		a0br	3	39	45	42.0	3.00	7.1
		B0N1	3	102	108	105.3	3.05	2.9
		304T	3	72	88	79.0	8.18	10.3
		Cues	3	175	207	189.6	16.50	6.7
		LMIL	3	37	48	43.0	5.56	12.9
		LMET	3	20	30	26.6	5.77	21.6
		Meno	3	131	157	162.6	13.20	9.2
		RAMO	3	123	14*	137.6	13.05	¢. 4
		gam	3	183	189	185.0	5.46	1.8
TELEZM	6	AMES	6	147	167	151.1	9. 15	6.0
		ANGY	6	26	33	30.3	2.42	7.9
		bear	6	45	53	48.5	2.81	5.7
		70w 1	6	109	121	176.0	4.64	6.0
		B0, ${ }^{\text {ch }}$	6	13	103	93.8	7.98	8.5
		Cux 3	6	185	229	210.8	15.65	7.4
		LMAL	6	38	50	44.0	4.69	10.6
		1\%H	6	29	36	32.1	2.48	7.7
		мпно	6	138	160	\$50.5	8.73	5.8
		RAD)	6	124	172	142.5	88. 19	12.7
		8, ${ }^{\text {ant }}$	6	183	228	275.6	16.69	7.7
TELE3*	12	ANED	12	i27	166	144.6	11.73	8.1
		ANGY	12	15	41	29.0	8.05	27.6
		bobr	12	44	55	48.3	3.39	7.0
		80, 1	12	100	136	176.0	11.28	9.7
		80, ${ }^{\text {c }}$	12	69	Its	9:. 6	14.61	$\$ 5.9$
		Cuns	12	189	247	207.3	19.88	9.5
		tmit	12	40	49	45.3	3.11	6.8
		LM*W	12	23	33	27.5	2.84	11.3
		mamo	12	142	160	151.0	6.75	6.4
		RNW	12	115	162	139.9	12.62	8.8
		RAH\#	12	15	240	208.0	19.28	9.2

Sutharoup	N	Variable	N	Win	Max	Mean	5.0.	c.v.
TELE4M	4	AMCD	6	149	167	154.0	11.10	7.2
		ANGU	4	33	52	39.7	8.53	21.6
		B08R	4	45	70	56.5	10.90	19.3
		80*1	6	105	135	126.2	14.22	11.2
		math	6	90	120	108.7	12.99	11.9
		CMES	4	239	250	244.0	4.96	2.0
		LW16	4	45	54	49.0	4.96	10.1
		เx14	4	28	35	31.7	2.87	9.0
		mino	6	126	173	150.0	20.61	13.6
		Ramp	4	161	178	761.3	75.36	9.5
		rapr	4	$2 \ddagger 2$	255	232.2	22.96	9.8
TELESM	a	ANT	8	138	167	149.6	20.78	7.2
		AMCN	8	22	46	30.0	7.76	25.8
		B080	8	45	65	53.5	6.90	12.9
		80w 1	8	121	138	128.8	7.16	5.5
		BOHT	8	93	112	101.1	6.33	6.2
		CNis	8	191	264	217.0	21.67	9.9
		LH1L	8	65	59	50.3	5.12	10.1
		Ln14	8	30	33	31.7	1.12	3.6
		NMNS	8	160	181	168.5	7.03	6.6
		RAMD	8	123	162	740.3	13.01	9.2
		rawh	B	207	230	223.:	8.17	3.6
triga	13	Nacs	13	\$70	136	122.9	6.34	5.1
		ANGT	13	11	20	15.6	3.09	19.7
		80atin	13	29	40	32.7	3.03	9.2
		EDM1	13	73	89	80.6	6.53	5.6
		80, ${ }^{\text {c }}$	13	60	万	66.3	4.05	6.1
		Cwis	13	119	167	147.0	14.07	9.5
		LM1L	13	27	53	30.3	2.01	6.6
		Lniv	13	20	24	21.5	1.33	6.1
		M*N0]	13	98	115	107.9	5.37	4.9
		RAND	13	106	129	176.3	7.30	6.2
		RAMH	13	146	170	156.6	8.31	5.3

Subgroup N Variable \quad Min Maz Mean S.D. C.V.

zaisim	1	amg	1	232	232	232.0
		AMG	1	26	26	26.0
		cear	1	57	57	57.0
		8014	1	120	120	120.0
		80HT	1	87	87	87.0
		Cmats	1	200	200	200.0
		L.Mit.	1	66	46	66.0
		LMIU	1	31	31	31.0
		\%momo	1	166	166	168.0
		RAND	1	196	196	196.0
		RAMM	1	257	257	257.0
2als2m	1	Anted	1	225	225	225.0
		ANGW	1	16	16	16.0
		B6日	1	33	33	33.0
		80,4t	1	119	119	119.0
		BDit	1	98	98	98.0
		Cim3	1	202	202	202.0
		LHIL	1	52	52	52.0
		LMTV	1	32	32	32.0
		Manc	1	182	182	182.0
		Ravo	1	170	170	770.0
		RAEH	1	271	271	271.0

APPENDIX 6.

EAB-TML PROGRAME

Statistical programs written in SAs Interactive Matrix Language (SAS Institute, 1988). Program commenta are bracketed by glages and stars (/*comment*/).

PRINCIPAL COMPONENTS ANALYSIS, GENERAZIZED DISTANCES, Q-Q PLOTS, NORMALITY TESTENG, AND ANGULAR DIFFERENCES ROUTINES.

```
/* MILTIVAR.IML VER. 5-23-93 */
f* miltivariate analysis procram in sas Iml. */
```



```
    DPTIONS HDSQURCE; /^EXCLUDE PRDGRAM LINES FRON OUTPUT*/
    ligmane sasdat 't:\ZbaleS\Imput\SaS':
    libmame FLOPDAT 'B:\':
    PROC PRINTTO LOG = 'PRN'; f* SET CUTP\ST DESTINATION *'I
    PROC IML HORKSIZE = 210; /* SET SPACE FDR MATRIX OPERATIDRS */
    RESET LIMESIZE = 175 PAGESIZE = 35;
    TW{LVE = {12};
    meupage = byTE(twelve): /* PatE bremx cOwtrol cooe */
/*SET*/ TRUWCLEV = 96;
/**SET--* AXISPERC = (S); f* PERCENTAGE CUTOFF FOR PC AXES */
/*--SET--*/ PLOTTYPE = "GRPSNGB'; /* "SEX" "GRPUNRE" "GRPSYWG= NLOC" NTND" */
/*-NSET--*/ aMALYSE = "AS"; /* [AG] aLL GEmERA EASI ALL SUBGROUPS */
            f* [Sg] SOME GENERA [SS] SONE SUPGRDUPS */
    If amalyse = "AG" THEN DO;
```



```
    EMD;
    If analySE = "ag" THEN DO:
        PRIMT n-----+.---.-- AMALYSIS af ALL SUBGROMPS .....................
```



```
    END:
    If aMALYSE = "SG" | ANALYSE = "SS" THEN DO;
        OOCRPS = {NENC);
    1* DOCRPS = (UMIGN JAVAM); */
        f" DOGRPS = CTELE): *'
    f= DCORPS = {UNICM JAvaM); */
```



```
                                    WSUB YRAN); */
        F* BOGRPS = qACER DICE FDRS HYCO LOPS MEND PERA RIGO SUBM TELE */
    /* 00GRPS = CTELE1S TELE2S TELE3S TELE45 TELE5S TELE6S); */
```

```
    /* dOGRPS = CTELETM TELE2M TELEJM TELE4M
                        TELESM TELEGM TELETM TELEEM TELEMN; */
    /* dOGRPS = (BICOS TELE1S TELE2S TELE3S TElE&S telESS TELEGS); */
    f* ODGRPS = <BICON TELEIM TELEZM TELEM TELE4M
                        TELESM TELEGM TELETN TELEBM TELESM}: */
    f* BOGRPS = [BICON CERAM UNICM JAVAM SLMAN3: *f
    f* docaps = (aicos ceras untcs javas sumas); *f
    /* DOGRPS = CACERIM ACERZK APHETM APHEZOM APHESM APHE4M
                    APHESM QICEIM DICEZW DICE3M DICE4M OICESM
                    GONSTM FORSZN MTCON WYRAIM KYRAZK mENDTM
```



```
                    SLOH3M SJeHGM TELE1M TELEZM TELESM TELE4M
                    TELESM TELEGM TELETM TELE&M TEEEOM TRIGH
                    ZAISIM 2AISZM); */
    /* DOGRPS = GACERTS ACER2S ANYHS APHE1S APHERS DICE1S
                DICE2S DICE3S DICE4S DICE5S DICES5 FDRSS
                HYCOS HYRAIS hYRA2S HyRAJS mENOS PERAIS
                pERazS SNBH15 SNBH2S Sugh3S StBH45 SNGh55
                tElets TElEZS TElE3S TElEGS TElESS TEIE6S
                tRIGIS tRIG2S XAMYS): */
```



```
    DRINT DOGRPS;
```



```
    END;
/*SET*/ REPEAT = "Y"; f* GYgass "CREATE" STATMENTS [Y] es [N]O */
/*SET*/ RUN = "M"; f* [5]kull [m]andible */
                IF RUM = "S" THEN DO;
                    PCLIMITS = c28D 125, -280-1253;
            BLAMES = {" "،" "};
```



```
                END;
                IF RGN = "И" TKEN DO;
                    PCLIMITS =(100 40, -100-40);
                    BLANKS = (" "," ");
```



```
                ENO:
```



```
/*SET*/ USE SASDAT,HANOSUBS:/* CATA SET FDR AMALTSIS*/
    READ ALI INTO TEMPDATA {RONUNME=ID COIMAKE=VARHNHEJ;
    IF TFORM = YES THEM OATA = LOG(TEMPOATA)FO.43429448;
    IF TFOEM = MO THEN DATA = TENPOATA;
fREE IEMPOATA;
    CASES = YROU(DATA); /* RIMMER OF CASES */
    NVAR = MCDL(OATA); f* RUHBER OF VARTABLES */
    ROWVAR = VARMAME;; /* Colum of variable mames */
```



```
    READ ALL VAR(LOCAL) INTO LOCSEX:
    sExCOL = SUGSTR(COCSEX,2,1);
    LOCALCOL = SUBSTR(LOCSEX,1,1)
FREE LOCSEX;
If AHALYSE = "AGN | AmALYSE = "SG" THEN DO;
    mead all varcgenus) into grplagls;
EKD;
If ANALYSE = "aS" | amalySE = "SS" then do;
    IF RUN = "N" THEN OD;
        READ all var(subs) imTO gmplabls;
    END;
    IF RLN = "S" TIEN DO;
        read all varcsugg) into grplagl5;
    ENO;
EWD;
IF ANALYSE = "AG" | ANALYSE = "ASN THEN OD;
    GRPSRON = UNIDAECGRPLASLS); /'* ROW VECTOR *//* RON of Inique group names */
    GRPSCOL = GRPSROL; /* CDLUNW vECTOR */ /* unique group names */
ENO:
IF ANALYSE = "SG" | ANALYSE = "SS" THEN DO;
    GRPSROW = DOGRPS; /* ROW VECTOR */
    GRPSCOL = GRPSROW'; /* COLUNW VECTOR */
END:
NGRPIHIT = NRDU(GRPSCDL);
    Varcol = varname*; /* collown of vartabte wahes */
    PRINT "NLDMEER OF varIABLES " NVAR;
    Prift whariatle names ", varcol:
    IF ANALYSE = MAG" | ANALYSE = "5G'' THEN DO;
        Print "NumerR OF STARTING GENERA 'a NGRPINIT;
        PRIWT "GENERA NAHES ", GRPSEDL;
    EMO:
        IF AMALYSE = #AS" | AmALYSE = "S5" THEN DO;
            PRINT DNINAER DF STARTIMG SUBGRDUPS " NGRPINIT;
            PRINT "SUBGRLUP WAHES ". GRPSCOL;
        ENO:
kroois = nvar; /* nlmber of principal component roots */
PCLABD = (PC); f* PC AXIS LABELS ROUTINES */
PCLABT = REPEAT(PCLABO, 1,NRDOTS);
PCLAB2 x DO(T,HROOTS,i);
pCLABZA = CHAR(PCLAB2,Z);
    CALL CHANGE(PCLAB2A," {","1"):
    CALL CHANGESPCLABZA:"* 2","2");
    CALL CHANGE{PCLAB2A," 3",'3"):
    CALL CHANGEPPCLAG2A," 4","4"3;
    CALL CHAMGE(PCLAG2A," 5","5");
```

```
        CALL CHANGE(PCLAB2A," 6","6*):
        CALL CHANLE(PCLAB2A," 7","7");
        CALL CHANGE(PClAB2A," 8",""'");
```



```
    PCLABL = COMCAT(PCLAB1, PCLAB2A);
```



```
    CKTSKiP = {0);
    EMTERPS = {0];
    GRPWUM = (0);
OO ITERA = % 10 NGRPIMLT BY 1; /* CYCLE THROMGN GROUPS*/
    CNTCASES = (0);
    GRPNUM = GRPMUN+(1);
    GRPWAME = GRPSCOL [CRPNLIM];
```



```
        IF GRPLABLS[ITERB] = GRPNAME THEW DO; f* FINO DKTA FOM GROUP *f
        CMTCASES = CHTEASES * {9}:
        RONDAT = DATACITERB,I; /* SPECIMEA OATA *;
        IF RUN = "5" THEM 0O;
            SIZEDAT! = DATACITERG, 13];
        END;
        IF RUN = MM' THEN DO;
            S!2EgAT! = bataclterg,6];
            End;
            ROHID = IO[ITERB]; /* SPECIMEN IB */
            SEKCHAR = SEKCOLITTEREI; /* SPECJNEN SEX */
            LOCALEHAR = LOCALCDLIITERBJ; /* SPECIMEN LOCALITY */
            IF CHTCASES = I THEN DO; /* SETUP MLTS fOR THIS GRONP */
                    SUBCAT = RONOAT;
                    SizEDATZ = SIZEDAT1;
                    SUBCRPIO = GRPWAME;
                    SUBIMDID = ROUIS:
                    subsexs = sexchar;
                    SUBLDCS = LOCALCMMR;
                END;
                    IF GNTCASES > 1 THEN DD; I* ACCLM FOR thIS GRP */
                    SUBDAT = SUBDAT//RGNOAT;
                    5IZEDATZ = SIZEDATZ//SIZEDAIT;
                    SUBGRPIO = SUQTRPID//GRPKANE;
                    SUBINDIO = SUBINDIO//RONID;
                    SUESEXS = S1*5Ex5//SEXCMAR;
                    SUBLOCS = SUBLOCS//LOCALCMAR;
                END;
            END: /* GRPLABLS = GRPMNME LOCP */
        ENO: /* END ITERB */
        SUBSIZE = HROU(SUBOAT);
        PRINT I" SIZE OF GROMPN ITEAA SUBSIZE;
```

```
        If SUASIzE > | THEN DO; /* ACCUM ACROSS GRPS FOR POOLED */
    CHTGRPS = CNTGRPS+(1);
    IF ITERA = 1 THEN DO;
            GRPSKEPT = CRPMANE;
            GSIZECOL = SNASI2E;
            AECGRPID = SUMGRPID;
            ACCINDID = SuBINOSD;
            SEXIDS = SUBSEXS;
            localids = sullocs;
            sizedat3 = sIzeDatz;
        ENG;
        If ITERA > I THEN DO;
            GRPSKEPT = GRPSKEPT//CKPMNME;
            GSIzECDL = GSIzECOL//SUGSIzE;
            ACCGRP ID = ACCGRPID//SUAGRPID;
            ACCINDID = ACE\MDID//SUBINOID:
            SExI0S = SExIDS//ISIBSEXS;
            LOEALIDS = LOCALIDS//SUBLOCS;
            SIZEDATS = SI2EDAIS//SIZEDAF2:
            END;
    END: /F SUBSIZE > 1 LCOP %/
FREE RONDAT;
    IF SUBSIZE = I INEW DO; F* KEEP TRACK DF SKIPPED GROUPS */
            NANESKIP = GKPNANE||ROUID;
CNTSKIP = CWTSKIP + (1);
            IF CHTSKIP = I THEN DO;
                    SKIPMAT = WAMESKIP;
            ENO;
            IF CNTSKIP * I THEN DO; /* MORE THAM ONE SKIFPED GROUP #/
                SKIPMAT = SKTPKAT/MMAHESKIP;
            END;
        ENO;
        1F ITERA = MGRPINJT THEN BO:
            IF CNTSKIP > O THEN DO;
                PRIMT WSUNHARY OF SKIPPED 1-SPECIMEN GROUPS N;
                PRINT SKIPNAT;
            END;
        ENO;
If subsize = 1 then goto leapfrac; /* mo malysis for one specimen */
    IF PLEV = "KNKN THEN DD;
        PRINI MELPAGE:
        prtht, grpmane;
        PRINT, SURSIZE CFORKAT=2.0];
```



```
    END;
submeans = subdati:,]; /% row df wariable meaws */
```

```
    NERIMLT = REPEAT(SUBMEANS,SUBSIZE,1); /* MENN MATRIX */
    SUBDEVS = SJBDAT - mEAMMAT; I* gEVIAIICNS FROM mEAN */
    SUBSSCP = SUBDEVS* * SUBDEVS; I" SUNS-OF-SOUARES ANC CROSS-PROCUCTS */
    SUBCOV = SUBSSCP = ((SURSIZE-(t))*--9.0);/* GROMP COVARIAHCE MATRIX */
    IF PLEV = "MAN" THEN CO;
    PRINT MELPAGE;
        PRINT "COYARIANCE MATRIX FDR " GRPNGNE:
        PRINT SUBCOV[FORMAT =5.2 SOMMME = RONNAR COLMANE = VARNANE];
    EMD;
        If PLEV = "NGX" THEM DN;
            variance a vecoimg(suacov): /* columan vector of variances %/
            STGDEy = SORT(VARIAMCE);
            STOIMvRS = STadEv:*-1.0;
            STgmat = dIAG(STOINVRS):
            CORREL = STOMAT * SUBCOV * STOMAT; /* CORRELATION MATRIX FROM COVARIANCE MATRIX */
            PRINT NEWPAGE;
            PRINT CORREL IFORMGT=3.1 ROMANE = ROWNAR COLHAME = VARHAMEI:
        EMD;
FREE MEALMAT SGBMEAGS SVESSCP CORREL;
    If ITERA = 1 then DO; T* SAVE mEAN-CORRECTED DATA FOR POOLED-UITHIN PCA */
        POOLDAT = SLJBOEYS;
    EmD;
    [F ITERA = 1 THEN DO;
        POOLOAT = POOLDAT//SUGDEVS;
    END;
free fclabO fClabi pClabz pClamza;
    call EIGEn(Surgelgval, Surelgvec, subcov);
```



```
    SUEEIGS=SUBEIGVECL,q:NROOTS]; /* COLLNN OF EIGENVECTORS *I
FREE SNOElgval subEIGVES;
    If TTERA = 1 TMEN DO;
    PCS = SUBEIGS t,1]; f* accumulate PC 1'S FDR mNGLE CALCS */
```



```
EMO;
IF ITERA `= 1 THEN DO;
    PCS = PCS!|SUBEIGS{,1];
    VALSLMM = VALSINO|||SUQVALS;
END:
```



```
DERCEKT = (SUBVALS * adOvalS**-1.0) * %00; /* EIGENvaluE PERCENT OF TOTAL */
    CNTSUG = <03;
        ITVAL = WRON(SNGVALS);
        DO ITERO = I TO ITVAL;
            pgrcval = Suavals[ITvall;
                    [F PERCNAL > 1 THEN DD;
                    CMTSUS = CNTSUS * 1;
                    ENO:
        END:
```

```
    IF ITERA = 1 TMEN DO;
        PERCS = PERCENT; /* ACCINLLATE PERCENTAGES FDR SNMmARY */
        ADDSUMM = ADOVALS:
    ENa;
    IF ITERA -= THEM OD;
        PERCS = PERES|PERCENT;
        NOOSNM = ADOSNM||ADOvals;
    END;
    valmat = sL_vils||PERCENT;
    MAMECCL = (EIGENVALLE PERCENT);
fREE PERCENT;
```

```
IF PLEV = MNED" THEM DO;
    PRINT MSRClP SIZE * SJBSI2E;
    PRJNT GCROUP 15 M GRPMAME;
    PRIMT "GROUP EIGENvaluES" , Yalmat tfORMAT=7.3 ROMMAE=PELABL CDLmaME=MAMECOLI.;
    PRINT "SUM OF TME EIGENYALUES M ADDVALSTFORMAT=7.3];
    PRINT NEWPAGE;
    DRINT "GROUP EIGENVECTORS FER " GRPUAME;
    PRIMT SUGEIGSIFORMAT*6.3 ROLHAKE = ROIVAR COLMAME = PCLABL];
EMD;
vLAES1 = RONYAR; /* SORTIMG ROUTINES */
EIGSI = SWEEIGS[,1];
AGEIGS = ABS(EIGS11;
R1 = 程(abertS);
SORTPC1 = E1GS1;
                CO ITERG = 1 TO MUAR EY 1;
                    R|1 = R1[TTERO];
                    SORTPCT[RJ1,] = EIGS1[ITERG,];
                    VLABS1(R.SI.] = RONMAR[tTERO.];
                END:
```

PRIHT MEWPAGE:
PRINT USORTED EIGENWECTDRS FCR FIRST PRINCIPAL AXIS":
PR1MT VLABS1 SCRTPC1[FChMAT=4.2] ;
free andyals fehtent valmay hatecols
If SUGSIZE >2 THEN DO; ρ CORRELATIONS OF variables with PCS $\%$
DO FIRSTIT = 1 TO MyAR BY 1;
DO SECONDIT = 1 TD *RCOTS gY 1;
EIG $=$ SUREIGSTFIRSTIT, SECOWDITI;
VAL = Sugyalstsecomoit, i;
WAR = SUGCOV[FIRST[T, FIRSTITJ;
If val * 1 then
CORRPE = EIG * SORT(VALJ/SERT (VARJ;
ELSE CORRPC $=D_{\text {; }}$
If SECONDIT $=1$ TNEN DO;/* CONSTRUCT RON MATRIX */
ROUCORR $=$ CORRPC;

```
    EN0:
        IF SECOMDIT *: THEN OD;
            ROUCORR = ROMCORR||CORRPC;
        EkD;
        END; /= SECOWOIT %/
            IF firstit = i TMEN DD; /= apPEND ROWS to MatRik "/
        CORRMT = RONCORR:
    END;
    IF FIRSTIT '=1 THEN DO;
        TORRINT = CORRMAT //ROUCORR;
        EMD;
        ENO; /* FIRSTIT */
```

FREE SUQVALS SUBCCO CORAPC RONCDRR:
If PLEV = "MAX" THEN DO;
PRILT MEUPAGE;
prith "correlatiows of vartables uith princtpal conponents ":
Print conrmatiforvas $=4.3$ romman $=$ varhane colnahe $=$ pCLASLI;
END:
End: /* end variable-correlation routines -/
free corrmur:

free subdat subetgs;
free suboat subeits scorrigan scorndes;
If SUBSIZE $=2$ THEN DO;
nPLOTS $=1$;
EnD;
If SNESIZE >2 THEN DO;
1F CITSUE < 3 THEN DO:
HPLDTS $=1$;
END:
JF CNTSUB $=2$ THEN DO:
HPLOTI $=$ CMTSU8 $/ 2+3 / 4$;
MPLOTS = INTCNPLOT1);
IF RUW $=$ HW" THEK IF MPLOTS $=6$ THEW MPLOTS $=5$;
IF RUN $=$ " 5 " THEN IF NPLOTS $=10$ THEN MPLors $=9$;
ENO:
ENO; /* SUBSI2E >2 LOOP */
xax = (1);
Y YH $=$ (2);
If PLEV = IMED" THEN DD;
do titerc = 1 to mplots ay 1: ** sort scores for each plot -/
XYMAT = SLBSCDR $[$, XAX:YAX);

RS $=$ RANK(PCX);
SORTITOS = SUBTMOID:
SGRTUALS $=$ XMMT;
DD ITERE * 1 to Sulasize ay 1 ;

```
                        RJ = {S[ITERO];
                        SORTIDSTAJ,] = SURINOIO[ITERQ,J:
                        SORTVALS[RJ,] z MYMNTtITERE,];
                        EwD;
                    PRImt MELPAGE:
                PRINT "SORTED SCORES fOR PC = YAKtFORMAT=2.0] nYS" XAX[FORMAT=2.0];
                PRIMT SUGIMDID XYMATFORMAT=6.1] SORTIDS SORTVALS[FORHAT = 6.1];
                PRTMT MEIPAGE:
        IF PLOTTYPE = uSEX" THEN PLOTLABL = SEXIDS;
        If PLOTTYPE = "LOCM THEH PLOTLAGL = LOCALIDS;
        If PLOTTYPE = "GRPHANE% THEW PLOTLABL = SLGERPID;
        If PLOTTYPE = ";MD" THEN PLOTLABL = SUBINDID;
        If PLOTTYPE = "GRPSYMG" THEN DC;
            PLOYLAGL = SJBSTRCSUBERPIDS,1,11;
        ENO:
            PLOTLABL = PLOTLABL//日LANK5;
            XYMAT = XYMAT/IPCLIMITS;
```



```
        OLDXAX = xax;
        OLDVAX = YAK;
        xax = OLOYAK+(1);
        rak = DLDXAX+(3);
            EmD:
    EMD; /* PLEV LOOP */
LEAPFRCG:;
ENO: /" END ITERA */
    MGRPKEPT = CNTERP5;
    MIDS = WROUCACCINDID\;
    PRINT MGROUPS SKIPPED IN AMALYSIS " SKIPMMT;
    PRINT "MMMEER DF GROUPS REMAIMING", NGRPXEPT;
    PRINT MREMAINIMG CROUPS & SI2ES", GRPSKEPT GSIZECOL;
```



```
    IF NGRPKEPT > 1 THEN OD;
            xYMAT1 = GSIZECOL|ADDSUNW';
        IF PLEV = 'MED'" THEN DO;
            P&IMT NEWPAGE;
            CALL FGRAF(XYMATT, GGPSKEPT, 'SAMPLE SI2E', 'TOTAL VARIANCE');
        END;
    END;
FREE XYMATI:
```



```
    IF PLEV = "MED" THEN OD:
        IF MGRPKEPT % 1 THEM DO;
            PRINT NEMPAGE:
            PCivalR = valstmenc1,]:
            PCIVALC = PCIvala';
```

```
        xYMAT2 = GSIZECOL||PCTVALC;
        CALL PGRAF(XYMAT2, GRPSXEPT, 'SAMPLE SI2E', 'PEI VARIANCE'):
    END;
    END;
frEE xymat2 pCIVALR PCIvall;
```



```
    PDCLNLAM = MOOU(PGOLDAT);
    PRINI ENMHBER DF POOLED DATA CASES 口 POOLMMA:
    POOLSSCP = POOLDAT* * POOLDAT;
    POOLCOV = POOLSSCP * ((PCOLNUM-HGRPLEPT)**-1.D): /* POOLED COVAQIANCE MAIRIX=/
    f* MROOTS = MIN(NVAR,FOOLHLN-{\}); */
        NROOTS = WYAR:
        PRIMT " NUNBER OF ROOTS FOR POOLED ANALYSIS " MROOTS;
    PCLABO = {PC); /* PC AXIS LAGEL RCUTTMES */
    PCLAB1 = REPEAT(PLLAGO,1,NRCOTS);
    PCLASZ = DOC1, NROOTS,1);
    PCLAAZA = EMAR(PCLAB2,Z);
        CALL CHANGETPCLAB2A," 1"."1");
        CALL CHANGE{PCLAB2A," 2","Z");
        CALL CHANGE{PCLAERA," 3",M5");
        CALL CHANEE(PCLA日2A," 4",m4N
        CALL CHANGE(PCLAB2A." 5",*5N);
        CALL CHAHGE{PCLA日2A," 6","6");
        call chaHge(PCLA日2a," 7",M"');
        CALL CMAMGE(PCLAB2A," 8","g|");
        CALL CHANGE(PCLAB2A," 9","'"");
    PCLABL - CONCAT(PCIMB1, PCLAB2A);
FREE USSCP;
    CALL EIGEM(PCEIGVAL, PCEIGVEC, POOLCON):
    PCOLEYAL = PCEIGVAE[1:NRDOTS,];
    ABPOONAL = PCOLEVAL[*,]; f* sImOMATE EIGENVALUES */
    PGOLPERC = (POCIEVAL * ADPOCVAL**-1.0) * 100; /* EIGEHVALUE PERCENT OF TOTAL */
    CURUPERE = CISUN(POOLPERC);
    NPS = MRON(CUMJPERC];
            DO ITER = I TO NPS;
/*SET*/ IF ClmupERCLITER,I < TRUNCLEV THEN OO; /* SET TRUMCATION LEVEL*/
                    TRUNCROU = ITER;
            END;
        END:
    /= 00 ITER = 1 TO MPS MHILE{POOLEVALIITER,J > 0.00001);
                    TRUNCLEV = ITER;
            ENO:
            IF talmilev < wVAR then DO;
                    PRINT " ZERD EIGENVALUE TRUNCATION IEVEL " T&uNGLEV;
        END; */
    COUNTVAL = (0);
```



```
                IF PDOLPERC[TTERJ > MXISPERC THEN DO;
                COUNTVAL = COUMTVAL + (1):
                END:
        EMD:
    FIRSTCOL = PLEIGVEC!,i]; /* SAVE FIRST PC *f
    POOLSCOR = POOLDAT * PCEJGVEC;
    FREE PCEIGVEC;
    maxISCOR = max(PGOLSCOR(,11); f* SETUP FOR FINING AXES *f
    mIN1SCDN * mim(PDOL SCOR (, 1]);
    max2SCOR = Mux(POOLSTOR (,2]);
    MINESCOR = MIMTPOOLSCOR (,2]);
    MAXWALS = MAX1SCOR ||max2 SCOR:
    mINYALS = MIM15COR|[MI*2SCOR;
    BLaHKS = (" ", " ')
FREE mAxISCOR HIN1SCON MAXZSCOR HJNZSCDR;
    VALMAT = PCOLEVAL|POOLPERC||CUNIPERC;
    COLMAM = {EtGEmvalue poftotal OMmlative);
    PRIMT mEwpage;
    PRINT, "SLMMARY DF EIGENYALLUES FOR POOLED-HITHIN PCA H:
    PRINT VILMAT [FOANAT = 9.6 fOLMAME = PCLABL COLMONE a COLMAMI;
IF REPEAT = MN" tNEM DD; /* SAVE PDOLED SCORES IF gUM IS mOT REPEAT */
    IF RUN = "MN THEN DO:
        CREATE SASDAT.PODLSCOR WAR ( PC1 PCZ PCS PCG PCS PCS PC7 pC8 PCS PC10 PC11 ):
    EMD:
    IF RUN = "E" THEN DO;
        CREATE SASDAT,POOLSCOR VAR C PCI PC2 PG3 PCG PC5 PCS PC7 PCB PC9
                                    PCIO PC11 PCI2 PC13 PC14 PC15 PC16
                                    PC17 PC1B PCT9 );
    END:
    RPPEND FROM POOLSCOR:
    ClOSE SASOAT POONSCOR;
ERD; /* END depeat if */
free pCladli PClabl2 Pclagl3 pClabl4
        kEEpEIG pCEIGMat pCEIGVal pCEtGVEC;
    MPLOTS1 = COUNTVML/2 + 3/4;
    WFLOTS = INT(NPLOTST);
    PRINT "RLNGER OF PLOTS FOR POOLED-LITHIN PCA % MPLOTS;
        xax = {1);
        TaX = {2};
    DO ITERZ = 1 TO MPLOTS Ey 1;
        XYMAT = POCLSCOR[, XAX;YAX]:
                PCX = POOLSCOR[,XAK]; /* SDRT ON X-AXIS PCS */
                RS = RAMK(PCK);
                SORTIDS = MCCINDID;
                SORTVALS = XYMATi
```

```
            SOATSIZE = SIZEDATS;
                DO ITERQ = { TO PDOLMUM BY 1;
                    RJ = RS[ITERO];
                    SORTIOS[R.S.} = ACCIMDIO{ITERO,};
                    SDRTVALS[RJ.] = KYMAT{ITERQ,};
                    SORTSIZE[RJ.] = SIZEDRT3[ITERG,I;
                END:
            PKINT MEMPAGE;
                            PRINT MPGOLED SCORES FOR OC " YAX CFORMAT=2.01 "vg" XAXtFORMAT=2.0J;
        FRINT ACCIRDID XYMT (FORMAT = 4.1] SORTIOS SORTVALSCFORMAT = 4.11
SORTSIZE [FORMAT=3.0];
                            fRIKT MEUPAGE;
FREE SORTSIZE;
    IF PLOTTYPE = "SEX" TAEN PLOTLABL = SEXIDS;
    If PLOTTTPE = "LOC" TMEN PLOTLABL = LOCALIOS;
    IF PLOTTYPE = "GRPMNFEN TKEN PLOTLAGL = ACCGRPID;
    IF PLOTTYFE = "GSPSYMGN THEN DC;
        PLOTLABL = SUBSTR(ACCGRPLO,1,1);
    END;
    1F PLOTTYPE = "IND" THEN PLOTLABL = MCCIWDN:
    IF ITERZ = 1 THEN DO;
```



```
    END;
IF tTERZ > 1 THEN DD;
    XTFIXEDA = MYMRT//NAXYALS;
    XYFIXED = XYFIKEDA//NIMYALS;
    PLOTLABL = PLOTLABL//BLANKS;
    CMLL PGRAF[MyFIXED, PLOTLABL, PCLABLOCAX], PCLABL[YAX]);
END;
EREE PCX PCXY RS SORTIDS SONTVGLS XYMAY XYFIXEDA XYFIXED;
    OMDXAX = xax;
    g.dYax = Yax;
    XXX = OLOYAX (1);
    TAK = DLDXNX [ {3);
    END; /* PLOT LOOP */
    FREE PLOTLAGL XYFIXEDA XYFIXEO;
```



```
f*--------............-----------------------------------------***
IF NGRPKEPT > I THEN DO; I* SPLIT LAREE TABLE IMTO TLO*/
    LEFYMUM = NGRPKEPT/2;
    RITEMLM = LEFTMLN + (1);
    LEFTLABL = GRPSKEPT` t, t:LEFTNLNM;
    LPOOLAE = " POOL";
    LABLLEFT = LEFTLABL||LPGOLAB;
    RITELABL = GRPSKEPT` t,RITENLM:NGRPKEPTJ;
    PRINT NEMPAGE;
    PRIMT "Summary df SUBgROUP Etgenvalues ";
```

```
/* LEFT malves of Eigewvalue t sun-dF-EIGEmvalues matrices */
    LEFTEVAL = VALSIMCL,I:LEFTMMM,
    LFTPGOL = LEFTEVAL||POOLEVAL; /- pOOLED MPDENDED TO LEFT HALF %/
        PRINT, LFTPOOL[FDRMAT=6.4 ROWNANE = PCLABL COLHANE = LABLLEFT];
```



```
    20DPOOL = LEFTADD||ADOOVAL; /* PCOLED APPENDED TO LEFT HALF*/
        PRINT "Sum OF the EItenvalues";
        PRINT, ADDPOOLIFONMS = 6.4 COLHAME = LABLLEFT);
FREE LEFTEVAL LEFTADD ADPOGVAL;
f* right malves of eigemvalue & Sum-of-EIGenvalUES matrices */
    RITEEVAL = VILSUNWI,RITE䫀:MGRPKEPT];
        PRINT, RIYEEVAL CFORMAT=6.4 RONHMME = PCLABL COLHANE = RITELABLI;
    RITEADO = ADDSUNM {,RITENUH-MGRPKEPT};
        PRINT, RITEADOTFORMAT=6.4 COLNMNE = RITELAELI;
FREE RITEEVAL ADOSNHM RITEADD;
        DRIMT NENPGEE;
        prikt "summary of percentage cowtrigutiows of EIGEnvaluES FOR SKUL varIaELES":
    LEFTPERE = PERCSC,1:LEFTNLN]; /* LEFT HaLF OF PERCENTAGES mATRIX */
    LPERPOO = LEFTPERC||POOLPERC; / POOLED AOPEMDED TO LEFT MALF */
        PRIWT, LPERPOOTFORMAT=6.4 RONMMME = PCLAGL [DLMAME = LABLLEFTJ;
freE leFTMUN LEFTPERE LEFTLADL;
    /* right half of pergentage matrix */
    RITEPERE = PERC5I,RITENUN:KGRPKEPTJ;
        PRINT, RITEPERCIFORMAT= 6.4 ROMHNE = PCLAGL COLMANE = RITELAGLJ;
END;
free percs teftnlma qiteklm leftpere miteperc leftladl ritelasl lablleft;
```



```
    PRINT " DEGREES OF FREEDOM AD.NUSTMENT ";
    OFT = POOLNUM - {13;
    DFY = POOLNLW - HGRPKEPT;
    FACTOR = DFT/DFV;
    PRINT MTDTAL DF n. DFT;
    PRINT mPCOLED U/I DF n. DFU;
```



```
        PRINT FACTOR;
FREE DFT DFW;
f* -...- mahalamogis dISTMNcES ..... */
    PRINT " USED TRUNCATED PE SCORES & LAMBDAS FOR OSG CALCULATION";
    Priht "NLNEER OF La*BDAS RETAINED " TRUMCRON:
    LamgDIAG = DIAG(POOLEVAL):
    LAMADAS * LAMBDIAG[1:TRUNCROU,1:TRUNCROU];
    INvPCOV = INV(LAMBDAS):
    DDAT = POOLSCORT,1:TRUMCROW];
FREE lamRdIAG LambOAS POOLSCOR;
    OEE5O = 2(PGOLNLM,1); /* BEG[N O-a PLOT ROUTINE */
```

```
    DO ITERD = 1 TO POOLMUM BY 1;
        OEESQ[ITERD,] = ODAT[ITERD,\*INUPCON*OAT [ITERD.J`;/* D-SCUAREDS*/
    END;
    RCOTDSO = SORT(DEESO): /* CDLlNW OF SGUAGE RCOTS */
    MDJROOTS = RDOTDSO*FACTOR:
    RANKS = RANK(ADJRCOTS);
    LOMCDEES = CMRR(ADJROOTS):
        DIDS = accimpID;
        LABLDEES = dIDS||IONGDEES:
fREE IONCDEES;
        SORTED = LABLDEES;
        DO ITER = 1 TO PCOLNIN BY 1:
            R = RaNES[ITER,];
            SCRTEO[R,] = LABLDEES[ITER,2;
        END;
    SohTDIOS = SORTEDI, 12:
    SORTOSO = wIMTSDRTED(,2l);
            CMISO = CINV(OOK.5,POOLMUN-.5,1)/POOLRUM,TRUNCRON,0];
        ROOTCHI = SORT(CHISA);
FREE CHISO;
        CHICOL = ROOTCH]*
        DELTAS = SORTOSQ-CMICOL;
        PRINT OIDS ROOTOSO[FOMMAT=6.2% 5DNTOIDS SORTOSQ[FORMAT=4.2]
            EHICOL (FDRMAT=4.2) DELTAS[FORMAT=4.21;
FREE DIOS DELTAS;
    xYEO = SORTDSQ||FICOL;
FREE SORTDSA CHICDL;
    RDOTROUS = MRDN(XYQO1; /* SETUP FOR OD PLOT */
    AODROWS = ROOTROWS/2;
    MAXD = Max(xY90);
    H(NO = MIM(XYDG):
    INCREM = (MAXD -HIND)/RDORONS;
    ROWSEO = DD(WIND, MAKD, IMCREM);
    COLSEO = ROUSEQ;
    DOUBCOL = REPEAT(COLSEO,1,2);
        FULLXYOO = XYEO//DOUNCOL;
FREE XYOC DDUBCOL;
        SYME; = "*";
        gYMEZ = REPEAT(SYMB1, RDDROWS ,1);
freE SYMB1;
            SORTOLAE = SORTED[.t];
            SPECI = SU日STR(SORTDLAG,1,1);
            PLDT5%WG = SPECI//SYMBZ;
FREE SORTDLAB SPECI:
FRINT NEWPAGE;
    CALL PGRAF(FULLXYOO, PLO:SYW, "SORTDSG",U5DRTCHI-5O","G-Q PLOT");
Freg fullXYOQ;
            MD = NROU(ROOTDSG);
            DLAB = 1;
```

```
        OCDL = REPEAT(DLAG,AD);
        DC = OCOL||ROOTOSO;
        MC = MRON(RDOTCHI`);
        CLAB = 2;
        CCOL = REPEATKELAB,NC);
        Cc = cECL|ROOTCMI';
        GARGO = OB//CC;
fREE so Ce daplot chise;
    IF REPEAT = "HM" THEN DO;
        CREATE SASJAT.GARCOO VAR ( LABS valS );
        APPEND FRCM BARCO;
        CLOSE SASDAT.bARQO;
    Ew;
FREE BARCO PLDTMAT1 PCOLSSCP INvPCOV COPLOT;
/*--.......- m|LTIVARIATE KURTOSIS AFTER MARDIA IN MARCUS ...-.........
    AVEDSOSO = SUM(BEESO**Z)/PDOLMM:
```



```
    PROE = 1 - PROQmOAN(Z);
        PRINT "MULTIVARIATE POOLED-HITHIN KURTOSIS =m AVEOSOSO;
```



```
free oeeso avebsaso;
f*--...------ SUBGROUP VS PCOLED-HITHIN PCi AMCNARR DIFFERENCES --..-*/
If WGRPKEPT > 1 THEM DO;
    PCMAT = FIRSTCOL|PCS;
FREE FIRSTCOL PCS;
    MPLUSONE = WGRPKEPT+{1);
    dO ITERONE = 1 TO mPLUSOWE SY 1;
        BO ITERTMS = T TO NPLUSUNE GY 1:
        IF ITERONE = ITERTWO TMEN DO; /* ANGLE GITH SELF */
                ANGLE = [0];
        END;
        IF ITEROWE `= ITERTLI TMEN OO; /* AMGLES BETVEEM GROUPS */
```



```
            KOSYAE = SUM(CROSSPS);
                RADS = ARCOS(KOSYME);
                AMGLE = RADS*$7.29%;
                IF AMGLE > 90 THEN DO;
                    ANGLE = (T80) - AMGLE;
                END;
            END:
            IF ITERONE = ITERTNO THEN OD;
                ANGRON = ANGLE; /* ACCMa/LATE ANGLES */
            EMD;
            IF ITERONE `= ITERTWO THEN 65;
                    AHGRON = ANGRON||MMGLE:
                EmD;
            END: /* ENO ITERTWD %/
FREE ANGLE CROSSPS KOSYME RAOS;
```

```
            IF ITEROWE = 9 THENDD:
            ANGMT = ANGRON;
            EMO;
            If ITERONE -= { TMEN DD;
            SPACER = (0);
            REPSPAGE = REPERT(SPACER,Y,[TEGOWE-(!));
            ROWMAT = REPSPACE||AMGRON;
            ARGUT = ARGMAT//ROMAST; /* UPPER TRIAMGULAR */
            ENO:
frEE AMGHDN ROMEAT REPSPACE;
    END: /" ENO ITERONE -/
    dO ITERATE = 1 TD mplusome by 1; /* CONVERT TO SMmetric */
        RONTOCOL = ANGMATITTERATE.I':
        SUGSYM = ROMTOCOL * AMGMAT[,ITERATE];
        IF ITE&ATE = 1 THEN DO:
            SYME!T = S\&SYM;
        END;
        |F ITERATE 'e 1 PMEN DO;
            SYHMAT = STMPAT|[SLIBSTH;
        END;
    END;
    POCL = {"AMAR"};
    COLLAR = UNIOM(POOL,GRPSKEPT):
    CALL chamLE[COLLAE, "Mara", "PDOL">;
    RONLAB = CDLLAB';
        PRINT NEMPRGE;
        PRINT / "XNGULIR BIFFERENCES BETWEEN SUBGROUP PC1 & POOLEB PC1";
    FIRSTNLMM = MPLUSONE/2;
    SECONLM = FIMSTNLM *{1};
    LEFTSYMN = SYMGRT{,1:FIRSTMUN};
    RITESYMM = STRPAT[,SECONLNE:MPLUSONE]:
        LCOLLAB = COLLABT.1:FTRSTMCMI;
        RCOLLAA = COLLAB[,SECOWIME:APLUSONEJ;
        PRINT LEFTSTMEIFORMAT=3.0 ROMMAME = MONLAS COLMNHE = LCOLLABI;
        PRINT NEMPAGE;
        PRINT RITESTINIPORMAT=S.0 RONMLEE = RONLAB COLMANE = RCOLLAB];
        XYMAT = GSIZECD|||SYMAT [Z:NPLUSCME,1};
        SAMPSIZE = {"SAMPLE SIZE");
        ANTLEDIF = ("ANGJLAR BIFFERENCE HITM TDTAL"):
            PRINT HElvPAGE;
```



```
CANONICAL VARIATES, LINEAR REGRESSION, VECTOR
PROJECTION, AND SIZE RENOVAL RDUTINES
```



```
+--...---.----------------*
    GPTIONS NOSONCE; /" WO PROCRAH LINES IN OUTPUT*/
    PROC PRIMTTO LOG = 'FRN'; /*GUTPMT DESTIMATIDN*/
    PROC IML VORRSIZE = 220; /ASPACE AVAILAGLE fOR MATRIX OPERATIOMS*/
RESET LINESIZE = 165 PAGESI2E = 35;
TGELVE = {12};
WELPAGE = BYTECTMELVE): /*PACE BREAK CONTROL COOE*/
/*SET*/ USE SASOAT.mANDSURS; /* DATA SONRCE*/
/#SET*/ RUN = MKAND"; '* .-.> SKULL MND-I自E */
/*SET"/ NELPOOL = "YES"; /* CALCULATE NEU PODLED M/IN GROUP COV */
f*SET*/ INORICD = "YES": /* !MELLOE-EXCLIEE IMORICOTMERIUM */
/*SET*/ GROPTAX = MUC*; /* USE SUIBSET FON TAREET VECTOR ? */
    IF OROPTAX = "YES' THEN DO;
        IF RUN = "MAKD" THEN ELIMTAX = C"INORM" ; /* {MDRICOTHERIUM DROPPED FROM AMALYSIS*/
        IF RUH = "SKuLL" THEN ELIMTAK = ("INDRS");
    EmD:
/*SET*/ BIVARIAT = "HO'; /* IHCLLMEE bIVARIATE MEAN var-5IzE pLOTS */
/*SET*/ FINDVECT = "YES";/* FIND TARGERT VECTOR OF INTEREST*/
/*SET*/ VECTTARG = "SHAPE"; /" SIzE SHAPE *//"TARGET VECTOR TYPE*/
/*SET"/ REMOVECT = "ND"; /* HO ISO 稆 */ /"REMOVE VECTOR*/
```



```
/*SET*/ CORRSIZE = 'YM''; f* FIND CORRELATION5 AMONG SIZE varIABLES */
/*SET*/ CANSTOSD = "MC"; /* SAVE DATA TD FILE FOR 30 */
/*SET*/ PLOTTYPE = "GRPSY%BH; /* ...> GRPMNME GRPSYMB IND */
/*SET*/ PLOTSET = "ARG"; /* --.> ARB-STRARY FIMD ALL *//* * OF PLOTS*/
```



```
/"SET*/ NEIGHT = MKD"; /" ...> VES nC */f* WEIGHTED CNMONICAL VARIATES*/
/*SET*/ TFORM = "#D": /" --> YES NO "/
/*SET*/ PLEV = "#IN*; /* PRINT LEVEL RIN MED mAX *//*AMOUNT DF OUTPUT*/
/*SET*/ POOL = "ALL"; /* ...> SDNE ALL *//* PCOL HDN MANY GROUPS*/
/"SET*/ DISCRIM = "RLL"; /* .-.> SOME ALL *//*HON MABY CANOWICAL GROUPS*/
/*SET*/ MXES = MMAX'; /* ...) max AR& */ /*AXIS RANGES*/
/#SET"/ A*HLYS1S = "SUQ"; /* ---2 GEN-ERA SN0-TRONPS */
```



```
/*SET*/ IF POOL = "SONE" THEN DO; /* OEFINE SJBSET FOR POOLONG*/
        POOLGRPS = (BICO);
        POOLCOL = POCLGRPS':
        #GPGOLED = HRON(PODLGCDL);
    EmO;
/*SET*/ IF OISCRIM = 'SSOME'M THEN DO; /* DEFIME GROUPS FOR CAMONICAL ANALYSIS*/
    /* BISCGRPS = CBICOH CERAM JNVAK UMIOH XIMAM\; */
    /* OISCGRPS = {BICOS CERAS Javas UNICS XUMAS3; */
        DISCGRPS = CYRAHIN YRAHZN FORSIN FORSZM INORM HYGOM3;
    /* DISCGRFS = cfonss INDRS MYCOS}; */
    /* OISCTRPS = CDICE1S DICE2S OlCE3S FORSS LDPS1S
                                    LOPS2S mEmOS PERAIS PERAZS QACETS
                                    ancezs rlgots RIgCZS Sur#1S Suahzs
                                    SHBH3S SLIBN45 TELE1S TELE2S TELE3S
```

 TELE4S TELESS YRAM9 5 YRANZ5); *
 LOP54M

MEMOTK MEMOZM PETATM PERAZM PERABM
RICOM SNEHIM SUBH2M SU8N3M TELETM

DISCEOL $=$ OISCGRPS:
NEDISC = MROKCDISCCOL $):$
END;

/*SET* IF RUN = "MAND'S THEN DO;
IF DISCRIM = MALL" THEN RANGESKY $=(40 \text { 15, }-40-15\}_{\text {: }}^{\text {; }}$
[F DISCRIM $=$ "SCOME" THEN RAMGESXY $=\left\{\begin{array}{cc}16 & 6,-16-6\rangle ; ~\end{array}\right.$
END:
f^{\star} SET* $f \quad$ IF RUN $=$ USRJLL" THEN DO:
if DISCRIN $=$ MALL"* THEN RAMGESXY $=\{4 D 20,-40-20\}$;
IF DISCRIM = HEGOEN YWEN RANGESXY $=(2815,-28-15)$;
END:


```
PRINY * -***............- CONFICURAYIOM FOR THIS RUN
```


PRINT " "

PRENT "16:
PRINT TFGRM "ब PLOTMAK "L PLOTSET $4 W$ AXES "II QLOTTYPE W" PLEV;
PRINT str:

OREMT VECTTARG un;
PRINT

If tMERICO = "YES" TMEN OD:

IF TFDRM $=$ " ${ }^{(1)}$ O" THEN DATA $=$ TEMPDATA;
PRIMT ${ }^{\text {m- - }}$ DATA READ --n;
EHD: $/$ INDRICO $=$ YES LODP $\boldsymbol{\prime}$
IF TKBRICO $=$ मKOB THEN DO:
: F RUN $=$ "SXILt" THEN OD:
READ ALL UHERE(SUBG"="INDRS") INTO TEMPDATA [ROMLOME=\{O COLHAMESVARNAME];

IF TFORM $={ }^{\text {aman }}$ THEN DATA $=$ TEMPDATA;
PRIHT "... OATA \& SUBG READ, IKDRICD EXCLUDED …
ELD:
IF RUN $=$ MMAND" THEN DO

IF TFDRN = "YES' TMEN DATA = LOG(TEMPDATA) 0.43429468 ;
IF TFORM $={ }^{*}$ WO" THEN DATA $=$ TENPDATA;

```
    PRINT N-.. DATA & SUBS READ, INDRICO EXCLHOED ...";
    ENG;
END; /* ---3 1MDRICO = wo Loop */
FREE TEMPOATA;
CASES = NRON(OATA): f* MRMBER OF CASES */
VARCOL = VARMANE': /* Cotlen of variable nemes */
NVAR = NROUCVARCO():
```



```
    IF POOL = "MLL" | DISCRIM = "ALL" THEN DO%
If AMALYS!S = "GEM" THEN DO;
    REdD all varcgerus) INTO GRPLABLS;
EWD:
IF AMALYSIS = "SUB" TKEN DD;
IF RUN = "MGND" THEN DO;
IF INDRICO = "*ON THEN DO;
                    READ ALL VARSSUBS) WHERE(SUBS'="INDRMN) INTO GRPLABLS;
            END;
            IF twORICO = "YES" TREN DC;
                    REAO all varrsub5) inTO GRDLABLS;
            EMB:
        END: 人* *-> RUN = M <000 */
            IF RUN = "SKULL'\ INEN OO;
                IF INGRICD = "HGM THEN DD;
                READ ALL VAK(SNGG) GHERE(SJIGG"=nimDRS") INTD GRPLABLS;
            ENO:
            IF IMDRICD = nYES" THEN DD;
                READ ALL VAR(SNBG) INTO GRPLABLS;
            E:O:
        ENC; /* ...) RUN = S LOCP */
    END; /* ---> AMALYSIS = SUP */
    END; /* ...> PCOL OR DISCRIM = ALL */
    IF DISCRIM = "ALL" THEN DO;
DISCGRPS = URIOVE(GRPLABLS):
OISCCOL = DISCCRP5:
NCDISC = HRON(BISCCOL);
    EWD; /= \cdots.) ALL-ALL LOOP */
    IF POOL = "ALL" THEN OO:
PGOLGRPS = UHIOUE{GRPLABLSJ;
POOLCOL = PGOLGRPS';
NGPODLEO = HROU(POOLCOL):
    EMO;
```



```
PRINT " TOTAL CASES REND " CASES;
pRINT n NLMEER OF vARIARLES " NVAR;
PRINT " LIST DF VARIABLES ", varcor:
IF POOL "= "ALL" | DISCRIM *= "ALL" TREN DO;
    pRINT " WIDEER OF GROUPS DISCRIMINATED 4 WEDISC;
```

```
    PRIWT " LIST OF GROUPS SPECIFIED FOR OISCRIMIWATION 4, DISCCOL;
    DRIMT ne:
    PRIMT 12 WLHBER OF cROUFS PCOLED " MGPGOLED;
    PRINT " LIST OF GROIPS SPECIFIED FOR PGOLED M, pROLCOL:
END;
If PCOL = "ALL" & OISCRIM = "ALL" THEN DO:
    PRINT "NLHAER OF POOLED AND DISCRIMINATED RROUPS " MCDISC;
    PRINT " LIST DF ALL GROUPS FDR BOTH POOLED AND 自TWEEK", DISCCOL:
END;
```



```
HROOTS = MVAR; /* SET MUMBER OF gDOTS FOR CAMOWICAL varIATES*/
#-ABO = <CV); /* SETUP CAMONICAL NXIS babellimg #/
CVLABT % REPERT(CYLASO,1,MRDOIS);
CVLAG2 = CDC1,*ROOTS,1);
CVLAB2A = CHAR(CULA92,2);
    gall CMAMGE(CVLAB2A," 1",*1"):
    Call CMANGE(CVLAB2A," 2"."2");
    CALL CHANGE(CVLAB2A," 3","3");
    CALL CHANGE(CVLABZA," 4n,"4");
    CALL CHANGE(CVLAB2A," 5","5");
    CALL CHAMGECCVLAB2A," 6","6");
    CALL CMAMGE(CVLAB2A," 㑊""7"];
    CaLl CMAMGE(CYLAB2A," 8","g");
    CALL CMANGEECVLAB2A," O","9");
CVLABRON = CONCAT(CVLAB1, CVLABZA);
CVLABCDL = CVLABROW:
EMTSKIP = (0);
CNTGSPS = (0):
GRPNUM = 00]:
f*-----.--- SIZE VARIABLE ROUTIMES
```

\qquad


```
    PRINT " FIRST TLD DATM RONS FOR TESTING caldulatiows';
    SPECNAMS = GRPLABLS[1:2.):
    PRINT TESTDAT IFORMATIL.0 RONNAME = SPECHMNS COLHAKE = VRRMAMEJ:
f* SIZE1 = GREATEST LEMGTH */
PRI*T HSIZET = GREATEST LENGTM ";
IF RUM = MMANDS THEM OC;
    RAND = DATAL, 10 1;
    MIND = OATAC, 9 3;
    SIZEI = RNDD + MNMO;
EMD;
            IF RUN = "SKLLL" THEN DO;
    SIZE1 = OATA[,13]; /* OCPZ %/
        Emo;
/* SIZEZ = SQUARE ROOI Of SUMS OF SCUARES */
        PRTMT "SIZER = SOUARE ROOT OF SLM OF SNUNRES";
        SI2ERA = DATAL,**#!;
        5!ZE2 = SQRT(SIZEZA):
```

free sireja prutestit
/* SI2E3 = GEDNETRIC MEAN (NTN ROOT Of PRGOUCT) */
PRJMT "SIZES = GEGHETRIC MEAM";
SIZE3A = DATAT, ${ }^{(1)}$;
ROOT $=1 /$ WVAR;

FREE SIZE3A:
f^{*} SIZE $=$ CUBE ROOT OF VOLIME */
PRIMT "SIZE4 = CUBE RODT DF VOLLWE";
IF RUN = MMAND" THEN OO:
RAMA = DATA[, 11 J ;
EDBR = DATAT, 3 3 ; 80NT = DATAC, 4 1;
RAMO = OATAL, 10 J ;
SIZE4A = RANH \# BDRR \# SIZE1;
512E6 = 512E4a***.333333;
END ; /* RAND LOOP */
free rann gder quid mano boht ;
If RUN = "SKUSL" THEN DO:
BIZY = DATAC. 5 1: IFHT $=$ DATAC, 61 ;

ENO; /* SKULL LOOP */
FREE BITY LFHT PRKTEST4;
/* SIZES $=$ AVERAGE VARIABLE SIZE *)
SIZES = OATAS,: :];
primt astzes = average varlable sizé:
IF CORRSI2E = MYES" THEN DO;
f mactimalate size colluns into matrix *f
SIZEMAT = 512E1||SIZE2||5I2E3||5I2E4||SIZE5;
/* Comrelations betheen size variables $\% /$
/* acadSS ALL Spectmens */
5IZEMEAK = Sizemati:, J;
MEAMHAT = REPEAT (SIZEMEAN, EASES. 1):
MEAKOEVS $=$ SI2EMAT \cdot MEAMMAT;
free sizemean meankat sizemat;
SIZESSCP = WERNDEVS" * hEANDEYS:
SIZECDV $=$ SIZESSCP * ((CASES - (1)) $=4-1.0)$;
FREE MEANDEVS SIZESSCP:
SZVARTAKC $=$ VECDIAG(SI2ECOV);
SZSTDEV = SART(SZVARCAKC);

SZSTDMAT $=$ OLAGCSTDEVINV);
FREE SZSTDEV STDEVINY SZVARIANC;
SZCORREL $=$ SZSTDMAT * SIZECOV * S2STDMAT;
FREE SZSTOMAT SIZECOV:
SZCDLNAM $=$ (S1 $52 \mathbf{5 3} 54 \mathbf{5 5)}$;
SZRONNA = [ST,52,53,56,55 J:
PRIMT \#EWPAGE;
PRINT "SIRE VARIABLES CORRELATION MATRTX";

FREE SZCOLKM SZRDMHAM SZCORREL;
EnD; /* SIze variable correlations loop */
IF REMOVECT = "ISO" THEN DO;
f*-- REMONE ISCNETRIC SIZE ERGM DATA *
IF ISOSZVAR = "SIZEIN THEN 00;
TARGETSZ = MIM(SIZE1); $/ *$ ARBITRARY */
TARGCOL = REPEATITARGETSZ, CASES, 1);
RATIOS = SI ZEI*E-1.OMTARGEOL:
TARGUT = REPEAT RRATIOS.1, NVAR);
SCALEDAT = DATAETARGUT;
END; f^{*} SIZE1 REWCVAL */
free targut data targinv tarcetsz tartiddratios isoszyar:
IF RUN = MMAND" THEN DD;

TENP2 = SEALEDATC,111;
SCALEDKT = TEMP1||TEXPZ:
nyar $=$ mCDLescaledatt:
LabTEMP1 = varsane $1,1: 81$; LaBtempl = varname 1,111 :
VARNAME = LABTEMPI||LABTEMP2; VARCOL = VARGMAE '; END;
If RUM = "SXLEL" THEN DO;
TEMPI = SCALEDAT $\$, 1: 121 ;$
TEMP2 = SCMEDAT5,14:19];
SCALEDAT = TEMP1|\}TEMP2;
nVAR $=$ hCOL(SCALEDAT):
LAGTEMP1 = VARNONE[,1:12]:
LABTEMPZ $=$ VAKMAME $T, 14: 191$; VARNANE = LABTEMPI||LABTEMPZ; VARCOL $=$ VARNAME ${ }^{-}$;
END;
Free tenpt templ labtempl lastempz:
primt w specinens have leEn sealed isometrically to al akgitrary":
PRIMT " value of the size variable (sizei owly)m;
END: $f^{\prime \prime}$ RENOVE ISOMETRIC SI2E LOOP *f
/* SET SIZE VARIABLE fOR FUR!HER COWPUTATIONS */
SIZEVAR $=512 E 4 ;$
fREE SIZE1 SIZE2 SI2E3 SIZE4;
free size5 stze9?:
PRINT "SIZE VARIABLE USED FOR SIZE ROUTIHES";
SI2ETEST = SI2EVAR[1:10.1:
NAMSTEST $=$ GRPLABLSIT:10,1:
PRINT MAMSTEST SL2ETEST;
FREE SIZETEST;

PRIMT "SHAPEI ₹ ORIG. VARIGBLES DIUIDED GY SIZE";
If RUM = "MAND" THEN DO;
PRINT "SHAPE2K = REL. H7. OF MAMDIB. CONDTLE ABONE TOOTN RON"; SHAPE2M = DATA [, 4] WOATAS, TI] 制-1.0:

```
    PRINT MSHAPESN = RELATIVE MNGLE EXPANSIONM:
    SHAPE3M = DATAL,1]tDATAC,10] EE-1.0s
    PRINT 'ISHAPE4R E UGRH M1 CRONK NEIGKT';
    SHAPE4M = OATA[,5]㲅ATA[,3]登-1.D;
    PRINT *SHAPE5* = POS. CONDYLE REL. TD MS";
    DENOMSM = OATAR, Il]-DATA{,4];
    SHAPESM = DATAL,6]mDEMCM5m**-1.0;
END;
IF RLN = "SKULL" THEN DO;
    PRINT #SHAPE2S = RELATIVE OIVERGENLE OF TOOTK RON";
```



```
    PRINT "SHAPE3S = COLIOUENESS OF EXTERMGL MASSETER FIGERS":
        SHAPE3S = DATAL,5]mDATA!,9] 然-1.0;
    PRINT "SHAPE45 a RELATIVE DEPTM OF REMPORAL FOSSA";
        SHAPE45 = DATAT,5IMDAIA!, 16]*#- T.D;
    PRINT "SHAPE55 = RELATIVE DOLICHOCEPMALT":
```



```
EmO;
```



```
    IF vECTTARG = "SIZE" THEN DD;
    TargVar = Sizevar:
frge SIzEVAR:
    ENO:
    IF VECTTARG = "SHAPE" THEN DO;
TARGVAR = SHAPESN;
    END;
SORTTARG = taRGVAR; %* SORT TARGET vECTOR RONTINES */
SORTLASS = GRPLABLS;
RAMKTARE = RAMK\TAREVAR);
    DO ITERB = 1 TO CASE5 Br 1;
        RT = RANKTARGIITERBY;
        SORTTAREIRT.] = TARGVIR[ITERE,3;
        SORTLAES TRT,] = GRPLABLS{ITERG,]:
    EHD: /* ...) ITER# LOOP */
    PRINT "TARGET vECTOR OF INTEGEST* SORTLABS SORTTARG;
    fREE SORTTARG SORTLAES RAMKTARG:
```



```
IF HEUPCOL = "YESM THEN DD; /* FIND KEN HITMIN-GRONP COVARTANCE */
    OO ITERA = 1 TO MGPOOLED OY 1: /* CYCLE THROUGG CROUPS */
    CNTCASES = (0):
    GRPNLEM = GRPNUM+(1);
    GRPHANE = POOLCDL [GRP*UN];
    dO ITERE = 1 TO CASES; /* CTCLE THROUGM CASES %/
        if emplmalsc:TERG] = gRPMANE TMEN DO; /* SELECT CASES */
            CNTCASES = CMTCASES*(1):
            If REmOVECT = "Mg" | REMONECT = MGURN" THEN DD;
```

```
            RONOAT = DATA|ITERG,];
    END;
    If 䬱NNECF = "1SO" TMEN DO;
        RONAT = Scaledatllierb,j;
    END;
        RONID = IDUTERE,
        IF CWTCASES = { THEM DO;
                SUBDAT = ROMDAT;
        END;
        IF chtcases > 1 ThEN DO:
                SUBDAT = SNGDAT//RCIDAT;
            END:
        END; (* ---> gMPNMGE = GRPLABLS LOOP *I
    ENO; /* ...-> ITERG LOOP */
SUGSIZE = mROL(SUBDAT); f* SIZE OF EXT&ACTED GROUP */
```



```
MERMILAT = REPEAT (SUGMEANS,SIRSIZE.1);
SUbDEVS = SUBDAT-mERMWat: /* DEVIATIOMS FRCM GRDUP mEAN*/
        If ItERA = 1 THEN DO; /* SETUP POOLED OATA SET */
            POCLDAT = SUBOEVS;
            PDOLGNS = SUASI2E;
        END;
        IF ITERA `= 1 THEN DO;
            PGOLDAT = POOLDAT//SUBDEVS;
            POOLGNS = POOLGNS//SUSS12E;
        EMO;
    END: f* ---> ITERA LOOP */
POCLNLA = NROW(PCOLDAT);
PRIMT MNUMEER DF POOLED DATA CASES " POOLNLM;
POOLSSCP = PODLDAT' * POCLDAT; /* POCLED SLNS DF SRUARES AND CROSS PRODUCTS*/
POOLCOY = POCLSSCD * ((PDOLNUM-HGFDOLED)**-1.01; /#MEY POOLED COVARIANCE*/
    If RUM = "NuND" THEN DO; /* SAVE PDOLED COVAR1ANCE*/
    CREATE SASDAT.MPCOLCDN FROM POOLCOV;
    APPEND FROS PCOLCOV;
    CREATE SASDAT.HPOCLGNS FKOM POOLGNS;
    APPEND FRGN PGOLGNS;
    CREATE SASDAT.MPGOLCOL FROM PCOLCOL;
    APPEND FRCM PDOLCDL;
    PRINT " NEM PDOLED COVIRIANCE mATRIK CAlculated for mandible";
END; /"---> RUN = MAND *'
IF RUM = 'rgKULL" TMEN DO;
    tREAJE SASDAT.SPOOLCOV FROM POCLCOV;
    APPEND FROM PCOLCOV;
    CRERTE SASDAT.SPDOLEWS FRDM POOLGNS;
    APPEID FROM POOLCMS;
    CREATE SASORT.SPOOLCOL FROM ROOLCOL;
    APPEMD FRON POOLCOL;
    PRINT UNEN POOLED CDNARLANCE MATRIX CALCURATED FOR SKULL";
END; (*---> $UK = mAND */
```

```
END; /* -->> WEWPOCK z "YE5" */
    IF WEWPOOL = "NOM THEN DO; /* USE OLO POCLEO COVARINMCE */
    IF RUN = MMAMD" THEN DD;
        LUE SASDAT.NPOOLCOV;
        READ MLL INTD POCLCOV;
        PR!NT "POOLED LONARIANCE MATRIX READ FROM MPOCLCOV";
        USE SASDAT.MPOCLGMS;
        READ ALL INTO POOLGNS:
        USE SASDAT.MPOOLCOL:
        READ ALL VARCOLI) INTO POOLCOM;
    EWD;
        IF RUM = "SKULL" THEN DO:
            USE SASDAT.SPOCLCOV; READ ALL INTO POOLCEV;
            PRINT MPOOLED COVABIAMCE MATRTIX READ FRON SPCOLCDV';
            USE SASDAT.SPDOLGMS:
            REAO ALL INTO POOLGMS;
            USE SASDAT.SPOCLCOL:
            READ ALL YARICOLI) IMTD POOICOL;
    END;
        END: /* -..> MELPOOL = MNOH */
POOLROWS = NROH(POOLCDV);
POOLCOLS = wCOL(POOLCOV);
    FREE PGOLSSCP:
    If PLEY = "Max" THEN DO;
    PRINT MELPAGE;
        PRINT "PGOLED-HITHIN GROLPS COVARIANCE MATRIX", POOLCOVIFORMAT=6.1 RCMHMME = VARCLA
COLMAPE = YARNAME]:
    FRINT apCOLCDV MAIRIX is * MOLLROWS w-Y " PCOLCOLS;
    END;
    FREE POOLROWS POOLCOLS;
CNTSKIP = CO3;
CNTGRPS = CO);
GRPNLNN = (0);
```



```
f*---------- tROIP NEANS -----------**/
OD ITERA = 1 TO NEDISC EY 1: % CYCLE THROUGN GROUPS */
    CNTCASES = (0);
    GRPNGR = GRPWIN+[1];
    GRPANME = DISCCOL (CRPNLW);
    DD ITERB = % TO CASES; /% CYCLE THROUGH CASES*/
        IF GRPLABLS[ITERB] = CRPNAME THEM OD;
            CWTCA5ES = CMTCASES+C1);
            JF FINDVECT = "MG'" THEN OO; /* SETUP geCUIRED DATA SETS AND LABELS*/
            rgidat = onta[iterb,j;
                ENa;
                IF REMONECT = "ISO" TMEN DD;
                    ROLDAT = SCMLEOATCITERB,]:
                END;
```

```
        IF FINDYECT = "YES" & REMOVECT = "ISO" THEN DO;
            ROWDAT = DATA[ITERG;];
            tarcDAT = TARGyAR[ITERB,]:
        EMO;
            RDHID = 10[TTERB]:
        IF CNTCASES = I TMEN CO;
            SUBDAT = RONOAT;
            SUBGAPID = TRPMNME:
            SUGINOID = RONID:
            If FIMDVECT = WTES" & REWOVECT * = ISO'I THEN OD;
                    GUBTARDY = tarcoat;
                END;
    ENO:
    IF CMTCASES , 1 TKEN OD;
            SUZDAT = SUBDAT//RCMDAT;
            SUGGRPIO I SURGRPID//GRPNAME;
            SNEINDIO = SUBIMOID//RONID;
            IF FIMDVECT = "YES" & REMOVECY "= "ISO" JHEN DO;
            SUBTARDT # SUBTARDT//TARCDAT;
            END:
        E*O;
        END; /* GRPNAME = GRPLABLS LOOP */
    END; /* lTERB LCOP =/
SUBSIZE = NROU(SURDAT ];
symmeams = surgatit,J; /* group means*/
IF FINDVECT = "YES" E REMOVECT "x "ISO" THEN DD;
GPTARNEA = SUBTARDTI:.2:
ENS:
    IF 1TERA = { THEN DD;
        DISCDAT = SLIDAT;
        BETGNS = SU日SIZE;
        ALCGRPID = SUBGReIO;
        ACCINDID = SUBINDID;
        GRPMEANS = SUBMEARS;
        GSIZERON = SUBS!2E;
        IF FINDVELT = "res" & REmOVECT " = th SOM THEN OD;
        TARMEMNS % GPTARMEA:
        END:
        ERD;
        IF ITERA `= 1 THEN DO;
            DISCDAT = DISCOAT//SUBDAT;
            ALCGRPID = MCCGRPID//SUBGRPID;
            ACCIMD ID = ACCINDID//5UBINDID;
            BETGMS = BETGNS//SUBSIZE;
            GRPHEANS = GRPNEANS//SUGMEAMS:
            IF FIMDVELT = MYES" & REWONECT '= "ISO" THEN DO;
            TARMEmNS = TMRMEANS//GPTARMER;
            END:
        EHD;
```

```
END; /* ITERA LCOP */
    PRINT melpage:
    PRINT "GROUPS AND SI2ES USED IN AMALYSIS";
    PRINT POOLCDL POOLINS* "DISCCOL eETGUS;
    PRINT "GROUP mEAHS OF ORIGIMAL VARIABLES";
    PRINT GRPMEAMSTFORPMTEL.9 ROMANE = OISCCOL COLMNHE = VARHAMEI;
```



```
        DO ITERD = 1 TO wVh;;
    MEASCOL = GRPMEAMS L, ITERO!;
    HNEAWS = NROU(WEASCOL);
    LDEMEAS = LOG(MEASCOL)N0.43429448; /* GASE TEN LCCES%/
    LOGTARMS = LOG(TARWEANS)MO.43429448;
    MHEANS = NRON(MEASCOL);
    RANKlOGS = LOGTARMS:
    RANKHANS = DISECOL:
    RANKNEAS = LOCNEAS:
    RANKLS = RANKCLOGTARMS); /* SORT DATA *f
        DO JTERE = 1 TO WMEANS BY T:
            RJ1 = RANKLS[ITEAB]
            RANKLOES[RJ1_] = LOGTARNS[TTERE,];
            RAMKNAMS[HJ!,] = OISCCOLIITERB,1;
            ramLMEAS[RJ1,] = LDEmEAStITERB,1;
        awo; /* *--> ITERO LOOP */
    OU#NYA = (1); /* SETUP OLMwY varIABLE */
    DUNHY = REPEAT(DLNHYA, MNGEANS, 1);
    DUMMEX & DNWNY||RAHELOGS;
    LXXPRDO = QumXX DOUNX:
    LXYPRCD = OUNDXX`RANGNEAS;
    LXXPROIN = INV(LXXPROD);
    DARAHETR = LXXPROIM&UYYPROD;
    PREDYS = DUNJXXPARANETR; /= PREDICTED Y'S*/
    RESIDS = RANKMEAS - PREDYS; /* RESIDUALS*/
    PRINT MEUPAGE:
    PAINT RANKMAMS RANKLOGS RAMKNEAS PREDYS RESIOS;
        DO ITERN = 1 TO HOEANS BY 1; /* FIND RESIDUAL SIGMS */
            IF RESIDS[ITERG] < 0.0 TMEN 5IGN = "**
            [F RESIDS[ITERH] = 0.0 THEN SIGN = =0";
            [F RESIDS[ITER[T] > D.O THEN SIGN = "+*"
            IF ITERU = I THEN DO;
                    SIGNEOU = SICN:
            ENO;
            IF ITERW % 1 TMEN OO;
                SIGNROM = SIGNROU||SIGN;
            END;
        END; /* ITERH LCOP *)
    IF ITERQ = I THEN DO: /* ACCRNLATE RESIDUML SIGNS */
```

```
    SIGNMAT = SIGNROE:
END;
IF ITERQ `= I TMEN DO;
    SIGNMAT = SIGNMAT//SIGNROW;
END;
ABSCISSA = RANKLOCS//RAMKLDGS;
ORDIMATE = RAWKMEAS//PREBYS;
BIVARMAT = ABSCISSA||DRDIWATE;
    f* IF RUH = "KMND" THEN DO;
        xmaxymax = (2.4 2.65);
    XNIMYMIN = (1.65 0.75): SETSCALE =
храхумах//\MN|NY%IN;
    END;
    IF RUMM = "SKHLL" THEN DD;
        хенахуmах = {2.75 3.5);
    XMIMYMLN = {1.g5 1.15};
        setscale =
 XOCXYMAXI/XMINTMIN;
    EmO;
    BIVAgMAT = bivarhat//SETSCALE;
    */
PREDSYMB = "#l";
SMMGPRED = REPEAT(PREDSTKB, MMENNS, 1);
SYHECOL = SUGSTR(RANKMAMS, 1, 1);
PLOTMARK = SYMBCOL//SMMAPRED;
    NOPOIMT = " ";
    PLOTMARK = PLOTMAGK//KOPOIMT;
YLAE = VARCOL[ITERO];
    SYMBRON = SYMBCDL*;
PRINT WEMPAGE;
CALL PGRAFCGIVARMAT, PLGTMARK, "CUGE RCOT OF vOLLME", YLAB);
PRINT "SUEGROUPS" SYMEROUIFORMAT=3.01;
PRINT MRESIDUALSN SIGWROUTFORMATE3.0] ;
EMB; /* ITERG LONP %/
    PRINT NEMPAGE;
    PRINT STMERONtFORMAT= 3.0J;
    PRINT SIGWARTFCRMAT = 3.0]:
    END; f* BIVARIATE BLCCK -/
    frEE SIGMAT;
    free meascol mikeans parametr prevys;
    #REE ARSCISSA ORDIHATE BIVARHAT PREDSTNR STMGPRED PLOTMARK;
    FREE TLAE 5YNRCOL LXXPRGD LXYPkCD LXOPROIM PARANETR SIGNROU RESIDS;
    free logtaras logreas mahklogs rahrgeas ramownus;
/*--.---------............- betweEM GRDUPS COUARIAMCES
                                    */
            DISCASES = NROH(DISCDAT);
            GRMLMEAM = CRPNEANS[:,1; /* GRAMDMEANS */
            GRMDMATI = REPEAT(GRNBMEAM,BISCASES,1);
            GRNDNAT2 = REPEAT(GRNGMEAN, GRPNLN,1);
            GRNDOEVS = DISCDAT-GANDMAT1: /* DEVIATIONS OF SPECS FROM GRANO MEANS */
frEE GRmDmat1:
            HETDEVS = GRPMEANS-GRNOMATZ; /" BEvIATICMS OF GRGIP mEAHS FROM GRNAD MEANS*/
```

```
FREE GRNDMAT2;
    IF WEIGMT = MNO" THEN DO; /* UNGEIGRTED aHALTSIS */
        BSSCP = BETDEVS* #ETDEVS; /* EETUEEN GRONPS SLNS OF SDUAMES AND CROSS PRODUCTS*/
```



```
        PRINT NEUPAEE;
        PRINT "GETVEEM GRCIPS COWARIAMCE BASED ON BSSCP (UNLEIGHTEOM;
EMD;
    tF LEIGHT = MYES" yMEN DO; /* welGhTED RNALYSIS */
        GSIZEMAT = REPEAT{BETGNS,1,NVAR);
        wactoEvs = aETDEvStgsizenat:
        massce = LHETDEVS'mGETDEVS;
        日ETCOV = W8SSCP*((MGDISC-1)=*.1.0);
        PRTMT HEMPAGE;
        PRIHT "EETMEEN-GROUPS CONARIANLE GASED ON WBSSCP (WEIGRFED)";
    END;
frEe gsizemat grmomatz grhomati getDEvs;
fREE MGETDEVS WOSSCP GSSCP EETDEVS ;
    IF PLEY = "MAXH THEM DD;
    PRINT BETCDV[FORMAT=4.11;
    ENB;
```



```
Xax = {1};
YAX = (2);
CALL GENEIGCCVEIGVAL, EVEIGVEC, BETCOV, POOLCOV): /* CALCULATE EIGENYECTORS,WALUES*/
FREE POOLCOV BETCOV;
adgyals = CVEIGYal[+.];
VALPERCS = (CVEIGUAL*ADDVAL5**-1.0)*100;
CUTAPERC = CUSTMrVALPERCS);
VALSLM = CVEIGVAL|VGLPERCS||CMMOERC;
VALSLAB = <EIGENvalue pofidtal cuallatIVE);
prtmT nEMpAgE
print "Eigemvalues":
PAINT UALSUNTFORMAT=5.3 RONNNGE = CVLABCOL COLMAME = VALSLABB;
PRINT "SLM OF THE EIGENVALIES";
PRINT ADQYALS[FDRMAT = 5.2];
PRINT NELPAGE;
PRINT nEIGENVECTOAS'*:
PRINT CVEIGVEC[FORNAT=7.4 ROMNAME = VARWANE COLMAME = CVLABRON]:
CAMSCORS = GRMDDEVS*CVEIGVEC; /* SPECIMENS SCORES */
CANHEANS = (GRPMEANS-J(NCOISC,i)*GRNDMEAM)NGVEIGVEC; /* CANOWICAL MEANS */
FREE CVEIGVEC GRMODEVS GRWONEAN;
print nEMpagE;
```



```
    IF CANSTOSD = "YES" THEN DO:
If RUN = MMAND" THEN DO;
    CREATE SASDAT.MAMDCVSO FRON CANmENNS; /* FRO PRDC G3D */
```

```
    APPEND FRON CAMEEANS:
EMD;
IF dUN = "SKULL" THEN DO;
    CREATE SASOAT.SKULLCVGD FROM CAMREANS;
    APPEND FROM CANMERNS;
END;
    END; /= SAvE tO 30 t.00p %/
```



```
    /= CORREL. DF CMNONICAL MEANS TO DTHER MEAMS (OR1G.,SHAPE.ETC) */
```



```
    /* CORRELATIONS TO ORIGINAL varlables */
GLIEMEAN = GRPNEANS||CAWEAMS; /" APPEND TWO SETSA OF MESNNS %/
ENNS = NROU(GLUEMEAN);
MEAHMEAN = GLUEMEANS:.1;
    MEANMAT = rEPEAT(MEANMEAN, ENMS, 1%;
    MEANDEVS = GLUENEAN - MEAMMAT;
free gluemean meawhean meamuat:
    MEANSSCP = mEANDEVS* - mEANDEvS;
    MEAMCOY = MEAMSSCP * (rENNS - {1})** -1.0};
FREE MEANDEYS MEMMSSCP;
    MEANVARJ = VECDIAG(HEANCOV);
    MEAUSO = SQRT(WEAMYARI);
```



```
    MEANSDS = DIAG(SOINV);
```



```
    IF RUN = "MAND" THEN OD;
        LLBLOCK = HEAMCORR [WVAR + (1):WVMR*2,1:NVAR];
    END;
    [F RUN = "SKULL" THEM DO;
        LIBLOCK = nEANCORR[NVAR * (1):NVAR*2, 1;NYAR];
    END;
    IF FLEV = "MED" | PLEV = "MAX" THEN DO;
    FRINT MEMPAGE;
    priNP "CORRELATIOWS BETWEEM ORIGIMAL varIABLES AND CNMOWICAL MEAMS";
    PRINT LLBLOCK[FORMAT=4.2 ROMUNGE % CVLABCOL COLMAME = VARMAME];
    END;
    free meancov meamvart meanso mealsos soiny llblock;
    IF vEcitarg = aSIzE" & aEmOVEct *= "ISO" THEN DO;
    /* CORRELATIONS tO SHAPEI (ORIG. \ 512E) %/
        PRINT NEMPRGE;
        PRINT "SHAPE1 = ORIGImAL variable meahS DIVIDED gy size4 mEars";
        IF RUN = "MAND" THEN DO;
    SHAPERAR = REPEAT(TARMEAMS. 1, NYAK);
        END;
        if run = "skule" then mo;
    Shapebrar = repeatctarmenms. 1, hvar);
        END;
        SHAPEVAR = GRPWENNSTSHAPEGAR**-1.0;
        ST:GMENM = SHAPEVAR||CAMMEAHS; /* #PPEND SMAPE VARIABLE MEAMS TO CANONICML nEAWS */
```

```
    baRgar = STIKIEANT:,j;
    gARPAT = REPEAT(rARBAR, ENMS, 1);
    STIKOEVS = STIKMENM - bARMAT:
free Smapebar stimmeam galgar bammat;
    STIKSSCP = STIKDEVS* STINDEVS;
    STIKCOY = STIKSSCP = (<EMNS - (1))=* -1.0);
FREE STjKDEVS STIKSSCP:
    STIEVARI = VEDDIAG(STIRCDV);
    STIKSD = SORT(STIEvaRI);
    STIKINV = STIKSD *: - - 0;
    SOSTIK = DIAG(STIKINV);
    FREE STTKYARI STIKSN:
    stixconr = sostix * stixcov* sostik; f* comrelatidms of shape to cavinical means */
fReE SOSTIK STIKCOV;
    IF RUN = MMAND" THEN DO;
            LLBLOCK = sTIKCORA[12:22,1:NvAR1;
    EMD;
    IF RUN = RSKULL" THEN 00;
        LL日LOCK= 5TIKCOAR [20:38,1:MVAR1;
    END;
    FREE STIKCORR;
    PRIKT "CORRELATIOMS 畠LEEN SHAPE1 mEANS GND CANOWICAL mEANS";
    PRINT LLGLOCKIFORMAT=4.2 ROWMNME = CVLAGCOL COLHNHE = VARMNHE1;
    FREE MEANCOV MEAMVARI MEANSO SOINY LLBLOCX;
END; /* VECTTARG - RENOVECT LOOP */
    IF EINDVECT = "TES" & VECTTARG "= "SIZE" THEN DD;
```



```
    /* ---- FIND DIRECTION COSIMES OF vELTON OF IMIERESI ... */
```



```
    /* I.E., FIND maximal associatIow betweEw criterion variagle and */
    /* multiple lucORrELELatED predicton vartables (cv's) */
IF TRDPTAX = יHO" THEN DO;/* DROP SELECTED TAKA FRON VECTOR DIRESTION */
    Prim; 'M target VECTOR meaNS';
    PRINi OISCIOL SETGNS TARHEANS;
    PREOTARG = CAMMENUS||TARMEANS; /* PREDICTOR(S) = ALL CvיS */f
EkD:
IF DRCPTAX = "TES" THEN DO;
    DO ITERF = 1 TO MeDISE 暗 1;
        IF DISCLOLITTERF,I = ELIMTAX THEN ED;
            IMDEX = ITERF;
        EMD;
    END; f" JTERF LOCP * 
```



```
    MEUTARS = TARNEANS(1; IMCEX-(1),)//TARMEANSTINDEX (1):NGDISC,2;
    NENBTGNS = BETGNS[1:INDEX-(1),]//EETGUS[INOEX+(1):WCDISC,]:
    NEMACOL = DISCCOL[!:INDEX-(1),}//DISCCOL[INDEX+{1}:MGDISC,];
    pRIUY MTMRGET VECTOR MEAWS ";
```

```
    PRINT MENDCDL MEMBTINS MEWTARS (FORMAT = 6.2]:
    FREDTARG = MEWCAMS||mEMTARS; /* PREDICTOR(5) = all Ev's */
frEE NEWCANS MEMTARS NEMBIGNS :
    medISC = MCDISE - (1);
EMD; /* arOpTAX LOCP */
TNRLABL = VECTTARG;
mEURLABL = CVLABCOL//TARLABL;MEVCLABL = MEURLAGL';
NEMNVAR = WVAR+C13;
FREE TARMENNS;
COLMEANS % PREDTARG[:,I;
MEAMMAT = REPEAT(COLMEANS, HGDISC,1):
DEvSMAT = PREDTARG-mEGMAT;
frEE MEANMLT;
PTARSSCP = OEVSMAT'*BEVSMAT;
frEE dEVSMaT;
PTARGCOU = PTARSSCP*(CNGDISC-1)**-1.D); /* &REDICTOR-TARGET VARIAMCE COVMRIAMCE MATRTX*'f
FREE PTARSSCP;
PRINT NEUPGGE;
PRIMT " TARGET-p,PEBICTORS varIAMCE-COvarIAMCE MATGIXH;
NEMCLABL = MELRLAELE;
PRIMT PTARCCOVIFORMAT = 6.2 ROMWANE = NELRLABL COLMAME = HEICLAEL];
FREE GRUPROU;
TARGVAR = PTARGCONINEWNUAR, HEWNUAQ];
TARGSTO = SART(TARGVAR);
TARSDCOL = REPEATSTARGSTO,NVAR,13;
PREDVARA = PTARGCOVC1:NYAR,1:MVARJ;
PREDVARI = VECDIAGYPREDUARA); /* PREDICTDR VARIAMLES */
FREE PREDVARA;
PIARCOV = PTARGCOV[NEWNVAR,f:MVAR]:
pICOVCOL = PTARCOY: / f*TARGET-PREDICTOR CDVARIANCES */
    PTVARS = VECDIAG(PTARGCOV);
    PTARSTD = SOCT(PTVARS);
    PISTDINY = PTARSTD 誂 -1.D;
    pTSTOMAT = OIAGIPTSTDJNYI:
    PTARCDRR = PISTDMAT * PTARGCOV * PTSTDMAT; /*PREOICTOR-TARGET CORRELATIDN MATRIX*/
    fREE PTAGCOV pTVGRS PTSTGMAT PTSTDINU;
    PTCORRS = PTARCDRR (NENMAR, 1:NVIRI;
    FREE PTARCORR;
    PTCORRCOL = PTCORRS*;
fREE PICORRS;
    pTCORRSO = PTCORRCDLH##;
    REGLOEFF = PTCORRCOL | IARSACOL**-1.0 P PTARSTDI1:MVAR,I;
        SSOCOEFF = REGCOEFF[㪸];
        ROOTSSAC = SART(SSOCOEFF);
        1NVRTSSO = ROOTSSCCHE-1.0;
        DIRELCOS = REGCOEFFWINvRTSSO; /* OIRECTION COSINES */
        RADIANS = MRCOS(DIRECCOS);
        ANGLES = RADIAMSN57.295779;
PRJNT MELPAGE;
```

```
FRIKT CVLABCOL
    PREDVART[FORMAT =5.2]
    PTCOVCOL [FORMAT =5.2]
    PTCORRCOL[FDAMAT=5.2]
    DICORASO[FOMMT:5.<]
    REGCOEFF [FOMMAT=6.4]
    DIRECCOS[FORMAT=6.5]
    ARCLES [FORRAT=6.1]:
fREE PTCORRSE DTCORREDL PTARGCOV PTCORRS SSACOEFF RCOTSSOC INVRTSSA PREDVAR PTEOVEDL;
COEF[V12 = REgCOEFF[1:2.];
fREE REGCOEFF;
    sSaCV12 = COEF[V12(N#,J;
    RODICVI2 = 5ART[5SClv12):
    INYCV12 = ROOTCV12**-1.0;
    cvizcos = coercviantnvev12;
    CV13RADS = arcostcy12cos):
    CV12ANGL = CVIZRADS \ 57.2957%7;
    PRIMTMN;
    FRINT "PROJECTEO AHGLE OF TARGET VEGTCR HJTH CVI AND CVE";
    PRIMT EVI2ANGL IFORMAT=4.11;
    smallamg = Cvizamgl[1,1];
    RAOANGLE = SMALLANG © 0.017453293;
    tMETATAN = TAM(RADAMGLE); /" FIMD DUNWY MARKERS FDR PLOTTING*';
    print thetataN:
    C1 = (5);
    C2 = {10};
    HEIGHT1 = E! THETATAH;
    MEIgHt2 = C2 thEtATAM;
    POS1 = C1||HEIGHT1;
    POS2 = C2||HEIGHT2;
    POSMARKS = POS1//POS2:
    NECMARSS = - POSMARKS:
    PRINT POSMARKS MEGYgars;
    FREE SIMTEMP SINTHETA C1 t2 HYPOT1 HTPOT2 HTTGMP1 HTTENPZ NEIGMT1 HEIGNT2:
    END; f* SIZE VECTOR COSINES LOOP */
    IF PLEV = "HED" | PLEV = MHNX" TME# OD;
```



```
IF AKES = MMAX" PMEN DO;
    max15ECR = Mux(CANSCORS T, 1]);
    MIN1SCOM = H]N(CAMSCORSI,1]);
    mN\2Scor = max(camscons [,2]);
    mINZScOR = MIM(CGNSCORSL,2]);
    MAXXYS = maxiscon||max2scon:
    MINXYS = MIMISCOM||MIRZSCOR;
    RAKgESXY = maxXT5//HTMXYS;
EHD; /* ...> MXES = max */
    BLANKS = (" ". " ");
```

```
FREE MAX1SCOR MINISCOR MAXZSLOR MINZSCOR mOXIYS MIMXYS MOXREAMS MINMEANS;
    IF PLOISET = '*ARGM THEM NPLOTS = M(N(PLOTMLN);
    IF PLCTSET = mFINGO THEN BO;
    ENO;
    If PLOTSET = uALL" TMEN DD:
        pOScaHAT = (0);
        ITVAL = MROU(CVEIGVAL):
        DO ITERY = 1 To ITVAL BT 1:
            IF EVEIGVAL[ITERY] > O THEN DO;
                poscowwT = POSCDNT + {1};
            ENB;
        ENS;
        MPLOT1 = POSCOUNT/2 * 3/4;
        MPLOTS = TMT(MPLOT1);
        IF RUM = "MAND" YMEN IF MPLOTS = 6 THEN NPLOTS = 5;
        IF RUN = wSKULL" THEN IF WPLDTS = 10 THEN MPLOTS = 9;
END; /" ---> PLOTSET = ALL */
DO ITERA = { to mplats by is
MYNT = CANScORSC,xAX:YNX; f* SORT ROUTINES FDR EACR PLOT */
CVGARS = CANNEANS[,XAK:TAX];
CVX = xmut [. 11;
CVG = CVBARS [,11;
anks1 = RANK(CVX);
RMK52 = RankICVG);
SORTIDS = ACCINDIO
SDRTSCOR = MYMAT:
SORTMEAN = CVEARS;
SORTCLAB = DISCCOL
    DO ITERB = 1 TO DISCASES BY 1;
        RJ1 = RWKS1 [ITERB:;
        SORTIDS[RJI,) = ACCINOID[ITERB,I;
        50RTSCDR[RJ1.] = xumat [ITERE,]:
    ENB; /* ....) ITERB LDOP */
    DD ITERC = 1 TO MCDISC 锊 1;
        RJ2 = RHKS2[ITERC];
        SCRTGLAS[RJ2,] = OISECOL [ITERC.];
        SDRTMEAN[R.J2,] = CVBARS[ITERC,];
    END; f* ...> ITERC LOCP */
    SCORPRNT = SORISCOR;
    MEANPRNT = SORTWEAN:
FREE CHARSCOR CHARINEAN CHOPSCDR CHOPMEAN:
    PLOTSYH1 = SUBSTR(SORTIOS,1.1);
    PLOTSYRE = SUBSTRISORTGLAB, 1, 11;
    PLOTSTM1 = PLOTSYH1//ELANKS*
    PLOTSYM2 = PLDISYML//BLANWS:
    SORTSCDR = SDRTSEDR//RANGESXY;
    SORTMEAN = SORIMEAN//塊NGESXY;
    PGIMT NEWPAGE;
    PRINT "SORTED SCORES FDR " TAX "YS" MAX, SORTIBS SCORPRWT;
```

```
PRINT HEWPAGE;
    CALL PGRAFTSORTSCOR, PLOTSYM%, CVLAgCDLDMAK, cyLABCDL[YaX]];
FGINT HEUPAGE;
    PRINT MSORTED CANCMICAL MEANS FOR " TAX "YS" XAX, SORTGLAB MEANPRMT;
FRIMT NEMPAGE:
    CALL PGRAF(SORTMEAN, PLOTSYMZ, EVLAGCOLDXUXI, CVLABCDLTYAXI);
OLDKaX = MaX;
DLDYAX = YAX;
xax = 0.DYax+{1};
YaX = DLOMAX (3);
    EmD; /" --.> mplots lo0p */
EmD; /* PLEV mED max block */
IF PLEV = "miax" THEN BO;
/*-- AmONG-GROUPS GEMERALIZED DISTAHCES WITMOUT VECTOR REMOVEL--.-"/
O = J(MEDISC,MCD ISC);
DD ITERONE = 1 TO MGOISC EY 1:
    OD ITERTLO = ITERONE TO MEOISC BY 1;
    IF ITERTMO = ITEROME THEN DO;
            O[TTERCNE, ITERTMOU = CO);
    EMD;
    IF IfERTLO * = ITEROHE TKEN DO;
        DIFFS = CMMEANS[ITERCNE,\-CAMMEANS[ITERTMO,];
        SHDDSAR = SSOCD(FFS);
        D[ITERONE, ITERTLD: = SQRT(SUNOSQR);
        D[ITERTWD, ITERONE] = SQRT (SUNDSGR);
        EWD:
        ENO; /*ITERTMO*/
END: /*1TEROWE*/
    MINISUE1 = SUASTRCDISCGRPS,1,1);
    MINISUB2 = SUBSTREDISCGRPS,5,1);
    MEMCRON = CONCAT[MIMISUP1, MINISLSE2);
    MEHTCOL = HEWTRON`:
PRINT MEMPAGE:
FRIMT D[FOGMAT=3.0 RONMNE=NEMGCOL COLWAME = WEUGROLI;
END; /* PLEV BLOCK */
if REMOVECT = "BIGRNN THEN DO;
```



```
/* PaLd L = 1 - F(FEF)-1Ft WHERE F = dGRECTIOM CDSIMES IN EV sPACE */
    IOEmTMAT = I(NVAK):
    ELINvECy = DIRECCOS: /0 vector to Elimimate tS directiom CDSImES of SIzE vartable */
fREE DIRECLOS;
    ELImAT = ELINVECT* * ELINVECT;
    ELIMINY = INV(ELIMMAT;
FREE ELITMAT;
    alLVECT = ELINNECT * ELIMIWV * ELINVECT';
fREE ELININY ELINNEET;
    projmat = jdentwat - allvect;
free idemtmat allvect:
    projdat = CammEays * projmat; /* pronect canowical meams to crthogomal plane %/
```

```
FREE CAMNEANS;
BUBNLABL = SLASTR(OISCCOL, 1,1);
BLANKS ={" "," ");
CANMLABL = GNRRLLABL//GLANES;
PRINY MEWPAGE;
PRINI TTARGET VECTOR-SREE OATA GASED ON BURMGGY'S METKCO";
PRINT PROJDAT [FOMHAT=6.1 ROMUNHE = OISCLOL COLWAME = CVLAGRON];
mAXVAL x MAX(PROJDAT);
NINVAL = WJN(PROJOAT);
    prjuT MAXVAL mIWVAL;
    MAXIS = REPEAT (HNNGLL, 1, 2);
    MINIS = REPEAT (HINVAL, 1, 21:
    COLS12 = PROUDAT [, 1:21;
    PLOTt2 = COLSI2//MAKIS//MINIS;
    cols34 = provoat [,3:4];
    PLOT34 = COLS34//MAXES//NIMTS;
PRINT NEUPAGE;
CALL PGFAF(PLOT12, CAMNLABL, "SlZE-FREE CVI", "SI2E-FREE CV2");
PRINT MEwPAGE;
CALL PGRAF(PLOT34, CANILABL, "SIZE-FREE EVJ", "SIZE-FREE C\4");
```



```
PCMEANS = PRQJDAT[:, );
MEANLAT = REPEAT(PGNEANS, NGDISC,13:
PCDEYS = PROJDAT - mEAMMAT; / dEvIATIOwS OF PROJECTED dATA FRON MEANS */
FREE MEANHAT;
pcSSCP = pCDEvS* - pmDEUS;
PCECV = PCSSCP * (NGDISC-(i).**-1.0; f* COVARIANCE MATRIX OF PRDJECTED DATA */
call EIGEN(pCEIGval, scetGVEC, ptcov);
ADDVALS = PCEIGVAL[+,];
VALPERCS = (PLEIGVAL*ALOVAL5**-1.0)*100;
CIMUPERC = CUSUM(VALPERCS);
VaLSLM = PCEIGVAL||ALPERCS||Cu*UPERC;
valSlab = fEIGENvalue poftotal comalative};
PRINT NEMPADE
PRINT "EIGENUNLUES";
PRIMT VALSUMLFDRMAT=5.3 RCOMAME = CYLABCOL COLHNME = VALSLABJ;
PRINT "SIN OF THE EIGENVALUES";
PRINT ADDVALS\FDRHAT=6.1];
PRINT MEmpage:
PRINT PCEIGVAL [FORHAT=6.2];
PRINT PCE[GVEC [FDRMAT=6.4];
wOVECSt = projoat % pCEIGVEC;
scORMEAM = NOVECSCT:.];
MEAMHAT = REPEAT(SCORMEMN, MCDISC, 1]:
mOvECEEN = MOVECSC - mEANRAT; /* mean-CENTERED SCORES */
pRINT NEmpage;
```



```
MAXSCOR = MAX(MONECCEW):
MINSCOM = MIH(HOVECCEW):
```

PRINT MAXSCOR MIMSCOR:
REP PAKX = REPEAT (MAXSCOA, 1, 2);
REPMIN \pm REPEAT (mINSCDR, 1, 2);
PC1FC2 $=$ moneccen $1,1: 2] ;$
PCPLOT12 = PCJPC2//REPMAX//REPNIW:
PC3PC4 $=$ NONECCEN [.3-4]:

[^0]: FIGURE 3. Phylogeny and geochronology of the rhinocerotoid genera in this study (after Prothero, in press a). North American Land Mammal Age (NaLMA) boundarieg are approximate (after Tattergall et al., 1983).

[^1]: FIGURE 15. Pxincipal components plot of Diceros (black rhino) mandibles with Epecimens identified to regional locality based on museum tag information. Shaded areas include all apecimens from the game locality. Dota represent specimens for which locality was not detecmined. Corresponding plot of skulle is shown in Figure 10.

[^2]: 2aisanamynodon is the only representative in this gtudy of the more derived genera of the atypical family Amynodontidae. It

