White rhinoceros reproduction: Insights from the wild and semi-wild

Ron Swaisgood, Lisa Nordstrom, Shannon Chapman San Diego Zoo Global Institute for Conservation Research

Thanks to: Amerman Fund

Dr. Helen

Heller Foundation Driving question behind research: Why do captive-born female white rhinos fail to reproduce?

Testing hypotheses for Reproductive Failure of Captiveborn Females

Reproductive Suppression By the mother By other (older, dominant) wild-caught females Enclosure Size Social Group Composition Nutrition

Swaisgood RR, Dickman DM, White AM. (2006). Biological Conservation

Methods

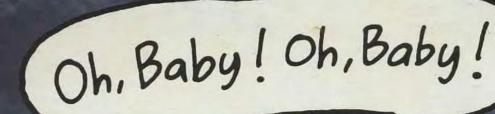
Questionnaire

INFORMATION FOR MALE GIANT PANDAS
Studbook # _____ Name ____Your institution _____
1. Is this panda **captive or wild** born?
2. If captive born, was this panda raised by mother or by humans?
3. Did this male mate in 1996? ___Yes ___No
4. If your answer is Yes, circle the number of females with which he mate
1 2 3 4 5 6 7 8
4. If your answer to Question 3 is No, please tick the reason (only one reas
below:
a. For males that were **not** paired with an estrous female:
_____He is afraid of females

____He is too aggressive with females
 ____He is not interested in mating, so doesn't do anything
 _____He is in poor health
 _____Other reason, write out______
For males that were paired with females for mating purposes:
 _____He avoided the female, stayed away from her
 _____He attacked the female
 _____He did not respond to the female, ignored her
 He tried to mate but did not mount property

_____He was rebuffed by the female (she was aggressive or avoided him

___Other reason, write ou


_Studbook number and name of this female Name of person who is to be listed as author on this repo

40 captive-born 28 wild-caught Location effect constant

Swaisgood RR, Dickman DM, White AM. (2006). Biological Conservation

RHINO

Daily observations of SDWAP rhmos 3 hours/day, 7 days/week, 4 years 5 captive-born, 6 wild-caught

Results

Wonder what's on the tube tonight...

Any deficiencies in captive-born females?

- No. About 30 graphs show normal behavioral estrus, aggression, courtship and copulation

- No differences between wild-born and captive-born

Swaisgood RR, Dickman DM, White AM. (2006). Biological Conservation

Any effects of other females on captive-born female reproduction? Results

- No evidence for female-female dominance
- Presence of mother or other (older) wildcaught females <u>increases</u> reproduction

06). Biological Conservation

F₁ = 34% F₀ = 78% p = 0.003 Control for --location, --years of opportunity --copulation

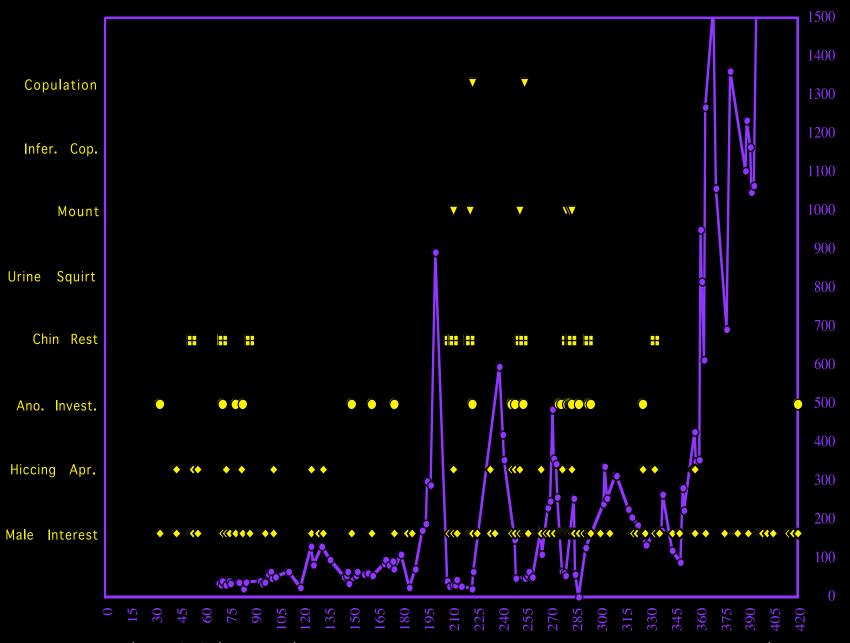
Swaisgood RR, Dickman DM, White AM. (2006). Biological Conservation

Conclusions

- Reproductive suppression is not the cause of the F1 problem.
- Weak link is postcopulatory
 It's the development

Swaisgood RR, Dickman DM, White AM. (2006). Biological Conservation

Weak Links in the Chain of Events Leading to Successful Reproduction

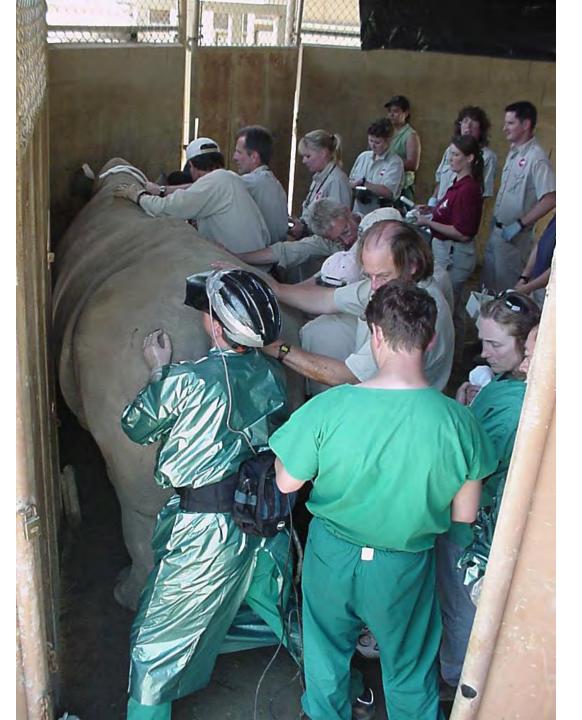


Reproductive cycles

Behavioral observations Radioimmunoassay for progesterone metabolites in feces

Patton, ML, Swaisgood, RR, Czekala, NM, White, AM, Fetter, GA, Montagne, JP & Lance, VA. 1999. Zoo Biology

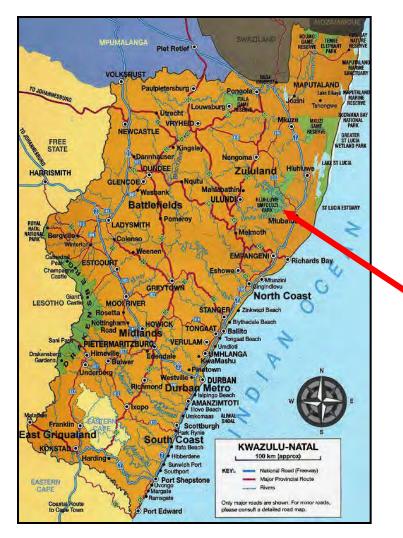
UJIMA 1997-98



Patton, ML, Swaisgood, RR, Czekala, NM, White, AM, Fetter, GA, Montagne, JP & Lance, VA. 1999. Zoo Biology

Individual cycle lengths (days)

Type I Cycles			Type II Cycles				
Animal	Interluteal	Luteal	Cycle	Animal	Interluteal	Luteal	Cycle
Dumisha	16	21 ^a	37	Dumisha	8.4 ^a	48.5 ^a	56.9
Dumisha	8.4 ^a	34 ^a	42.4	Dumisha	8	56	64
Michelin	8	25	33	Dumisha	17.5	44.5	62
Michelin	8.4 ^a	26	34.4	Sinyaa	2.5	66.5	69
Mjuba	8.4 ^a	32.5	40.9	Sinyaa	14	61	75
Sinyaa	7	25	32	Sinyaa	10.5	60.5	71
Sinyaa	4	27	31	Sinyaa	10.5	50.5	61
Ujima	18.5	19.5 ^a	38				
Ujima	9	23	32				
Ujima	5.5	23.5	29				
Average	9.3	25.7	35.0		10.2	55.1	65.6
SEM	2.1	2.1	2.1		2.2	2.9	2.5


Patton, ML, Swaisgood, RR, Czekala, NM, White, AM, Fetter, GA, Montagne, JP & Lance, VA. 1999. Zoo Biology

Ultrasound findings:

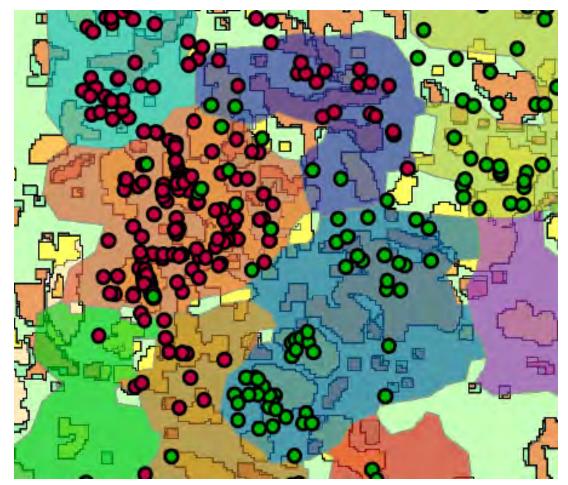
These long cycles were not always cycles...sometimes they were pregnancy and early embryonic death.
They also had chronic uterine infections. Normality must be defined: •In the field •In a reproductively healthy population

iMfololzi Game Reserve South Africa

Radiotracked 16 female rhinos for 2+ years Each female tracked 3X/week

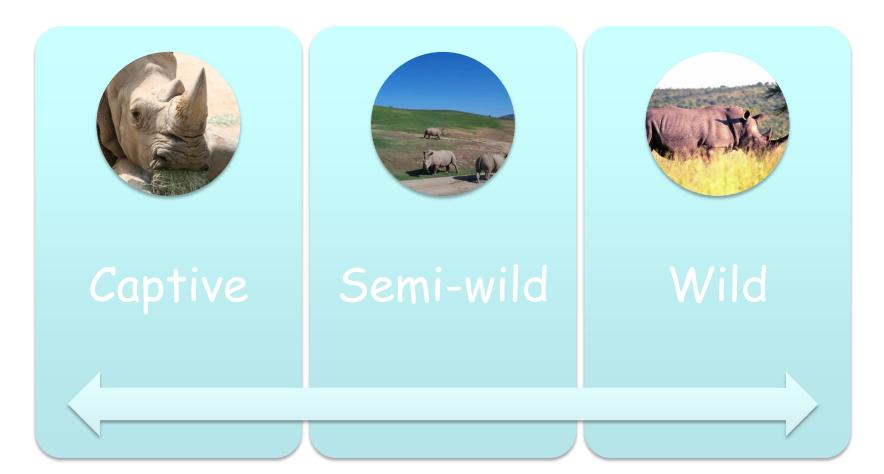
Reproductive cycles

Documented 17 cycles in 6 jemales
 All were approximately 30 days (25-


Short cycles are normal

Female ranging patterns: implications for mating strategies

White, AM. Swaisgood, RR & Czekala, NM. (2007). Animal Behaviour

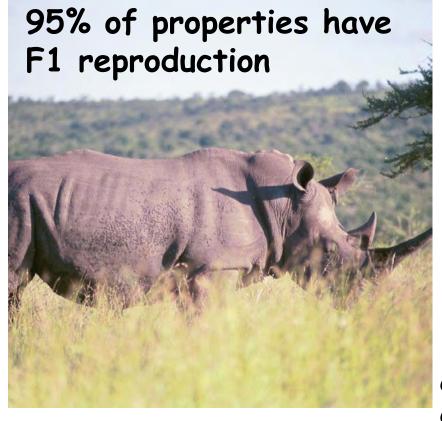

Female home range overlap with male territories

- "Passive" female mate choice
- Mate with familiar males

White, AM. Swaisgood, RR & Czekala, NM. (2007). Animal Behaviour

Where does reproductive breakdown occur on the C-W continuum?

South Africa game reserve survey


- Interviewed managers at 96 "game farms"
- 7-page questionnaire
- Data for 234 individual females on 47 properties
- Largest detailed database on rhinos on private reserves

Characteristics of game reserves

- Fenced, managed
 - Natural and exotic plant communities
 - Varying space
 - 1 to 1250 ha
 - Variable social density
 - 0.0006/ha to 2.0/ha
 - Variable pop size
 - 2-111; mean = 12
 - "Age" of rhino reserve
 - 1-40 ; mean =12
- Calves born on property
 - 0-130; mean = 8.3

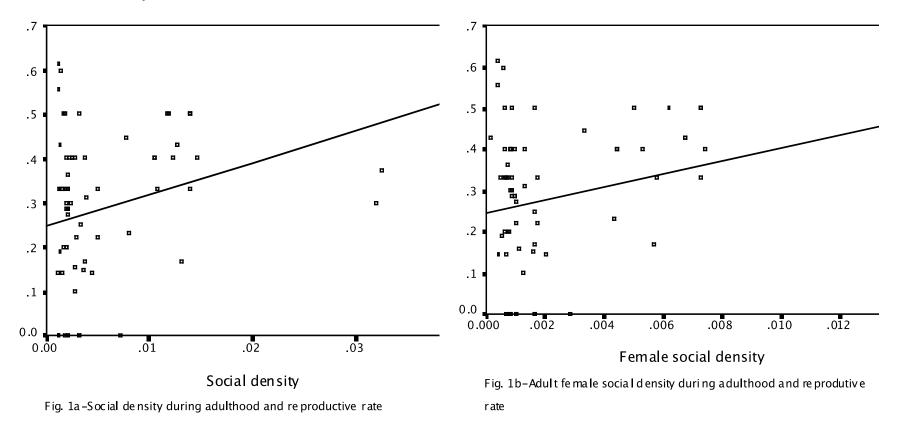
Is there a difference in reproduction between F_0 and F_1 females in semi-wild white rhinos?

No differences

	Fo	F ₁	P-value
Repro rate	0.30 <u>+</u> 0.17	0.30 <u>+</u> 0.14	0.94
IBI	32.3	30.7	0.94
% Repro	92%	98%	
Ν	113	117	

cf. F1 repro rate in NA zoos = 0.01 ca. 2008

What factors in the adult environment influence reproduction in semi-wild white rhinos?

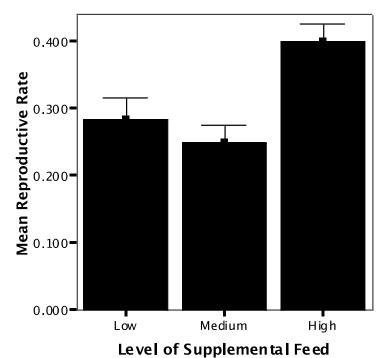

	Environmental Factor	Statistic	Significance
	Pattern of Supplemental Feeding	F _{3,79} =0.61	p=0.611
P.	Supplemental Feeding Intensity	$F_{3,75} = 1.58$	P=0.201
	Supplemental Feed Combined Scale	F _{2,71} =6.60	p=0.002
	Male Social Environment	F _{1,76} =0.00	p=0.949
A.	Female Social Environment	F _{1,76} =0.00	p=0.999
	Overall Social Density	F _{1,68} =5.26	p=0.025
Ø	Male Social Density	F _{1,81} =0.00	p=0.993
N HA	Female Social Density	F _{1,68} =5.25	p=0.025
	Rainfall	F _{1,80} =0.84	p=0.361
	Property Size	F _{1,81} =0.52	p=0.474

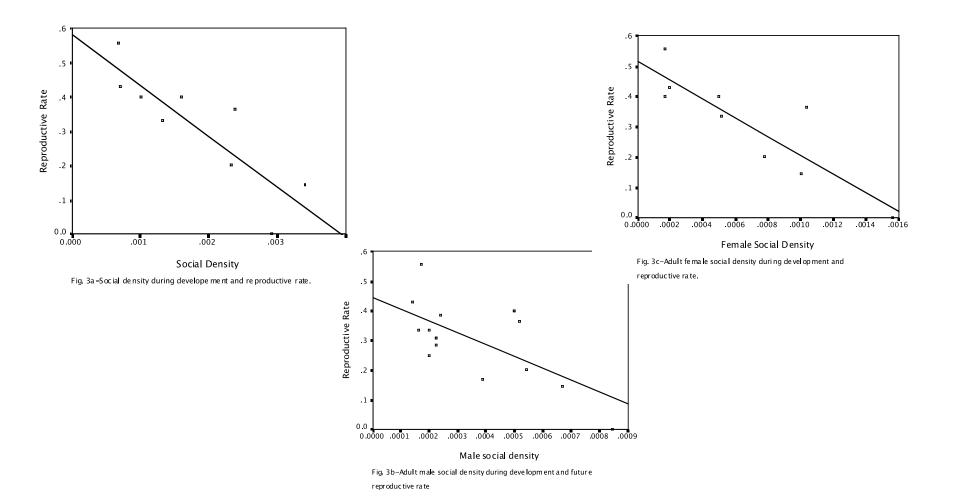
Analysis of F_1 and F_0 females combined

Relationship between social density and reproductive rate

Density of adult female rhinos

Supplemental feeding increases reproductive rate




Fig. 2- The effect of level of supplemental feed (a combined measure of feed pattern and intensity) on reproductive rate as mean reproductive rate + standard error.

What environmental factors during development influence reproduction in semi-wild white rhinos?

	Environmental Factor	Statistic	Significance
S	Supplemental Feeding Pattern ^a	F _{1,23} =3.590	p=.071
	Supplemental Feeding Intensity ^b	F _{1,22} =.304	p=.587
	Male Social Environment	F _{1,16} =.085	p=.774
	Female Social Environment	F _{1,17} =.250	p=.624
K.	Overall Social Density	F _{1,8} =19.354	p=.003
	Male Social Density	F _{1,15} =9.754	p=.007
	Female Social Density	F _{1,8} =22.604	p=.002
	Rainfall	F _{1,18} =.078	p=.783
	Property Size	F _{1,21} =1.649	p=.214

Developmental social density effects on F1 reproduction

Tentative conclusions

- Increased social density is good for adult females
- Bad for developing females
- Social environment has lasting developmental effects

- Why?
 - Nutritional limitation/competiti on
 - Social stress

Other findings

- Single-male, multifemale reserves had normal reproduction
- 1.1 (Noah's ark) did not reproduce, even with large space in native habitat
- Mean AFB = 7.5y
- Mean AF Cop = 6.0y
- Mean AF Court = 5.2y

The view from Africa...

- Normal cycle is 30 days
- No F1 problem in small game reserves
- No female reproductive suppression
- Conspecific density influences reproduction
 - In complicated ways
- Nutrition influences reproduction

The way forward...

Hey! It's the hay!

- Remaining plausible hypotheses:
 - Diet during development
 - Phytoestrogens (Tubbs et al. 2012)
 - Social interactions during development
 - Precocious copulation

More answers on the horizon...