Seasonal pattern of salivary cortisol secretion in the greater one-horned rhino (Rhinoceros unicornis)

A Menargues*†‡§, V Urios‡ and R Limiñana§#

Abstract

The Indian rhinoceros or greater one-horned rhino (Rhinoceros unicornis) is listed as vulnerable by the IUCN Red List of Threatened Species and, therefore, captive individuals have been subject to the European Endangered Species Programme since 1990. Enhancement of welfare is key in ensuring the breeding success of this species in captivity. Salivary cortisol has been recently used to assess welfare of captive and free-ranging animals. Nevertheless, rhythms of cortisol secretion may fluctuate throughout the year and therefore, knowledge of the circannual pattern of cortisol secretion is essential to evaluate the physiological significance of seasonal variations of cortisol levels as an indicator of stress in animals. Here, we analyse monthly differences in cortisol secretion in two Indian rhinoceros. Saliva samples of two rhinoceros were collected and analysed by radioimmunoassay for the period of one year to determine cortisol concentrations. We found a seasonal pattern of salivary cortisol secretion. The highest cortisol concentrations were found in August and decreased until reaching a nadir in January. Cortisol concentrations in these two animals showed a correlation with temperature and visitor numbers but it is not possible to draw conclusions from this study as to whether the variation in cortisol was due to these or other factors.

Keywords: animal welfare, Indian rhinoceros, salivary cortisol, seasonality, stress, zoo visitors

Introduction

There have been rhinoceros for more than 50 million years although, in the past, species tended to be much more diverse and widespread (occurring in North America and Europe, as well as Africa and Asia). Today, however, only five species of rhinoceros survive. The Indian rhinoceros or greater one-horned rhino (Rhinoceros unicornis) population, with strict protection from Indian and Nepalese wildlife authorities, has recovered from less than 200 individuals in the early 1900s to an estimated 2,575 individuals, with 375 occurring in Nepal and 2,200 in India (Talukdar et al 2008; Milliken et al 2009). However, the distribution is largely fragmented and more than 70% of the overall population are found in Kaziranga National Park. Since 1990, Indian rhinoceros living in European zoological parks have been subject to the European Endangered Species Programme (EEP) (http://www.eaza.net/activities/cp/Pages/EEPs.aspx) and assessment of welfare in these captive individuals is key to helping ensure success in breeding programmes.

When animals are exposed to a stressor, the hypothalamic pituitary-adrenal (HPA) axis is activated, inducing cortisol secretion by the adrenal cortex (Munck et al 1984; Sheriff et al 2011). Prolonged physiological stress can result in suppressed immune function (Moberg 1990; McEwen 2006; Dhabhar 2009), increased disease susceptibility, abnormal behaviour (Moberg 1990) and poor reproductive success (Carragher et al 1989; Moberg 1990; Hardy et al 2005). Salivary cortisol concentration has been used to assess captive animal welfare in several species of mammal species (Fuchs et al 1997; Pedernera-Romano et al 2006; Powell et al 2006; Menargues et al 2008). There is a strong correlation between levels of salivary glucocorticoids and levels of free-unbound serum glucocorticoids (Sheriff et al 2011) and the salivary cortisol peak in concentration occurs 20–30 min after stressor exposure (Duncko et al 2007). Hence, this is a non-invasive technique that reflects the free glucocorticoids’ concentration in blood (Kirschbaum & Hellhammer 1994; Gómez et al 2004; Gröschl 2007; Wood 2009).

Cortisol secretion exhibits fluctuations in ultradian and circadian rhythms (Ekkel et al 1996; Ruis et al 1997; de Jong et al 2000; Brown et al 2010, Menargues et al 2012b), and can change seasonally or circannually (Monfort et al 1993; Ingram et al 1999; Suzuki et al 2003; Vera et al 2011; Menargues et al 2012a). Moreover, in several species,
glucocorticoids have been shown to be influenced by temperature or inclement weather (Wingfield et al. 1983; Millspaugh et al. 2001; Huber et al. 2003; Brown et al. 2010). And, finally, the well-being of zoo animals can be affected detrimentally by visitors’ desire to observe and interact with the animals in close proximity (Fernández et al. 2009).

Knowledge of cortisol’s seasonal secretory rhythms is a necessity when the physiological significance of fluctuations is being evaluated as a stress indicator in animals. Circannual rhythms of cortisol secretion have not been described in the greater one-horned rhinoceros. The aim of this study was to determine whether any evidence existed for seasonal variation in cortisol levels from samples from two animals, using a saliva analysis method, to help interpret data of cortisol levels in welfare assessment. A further aim was to evaluate whether external factors, such as temperature or visitors’ attendance have any influence on cortisol secretion.

**Materials and methods**

**Location and study animals**

The study was conducted at Terra Natura Zoological Park, Alicante, Spain (38°32’N, 0°08’W). Daily salivary cortisol concentration was recorded for two female, non-pregnant, three- and four-year-old Indian rhinoceroses (Shiwa and Nisha, respectively), both weighing approximately 1,500 kg. Rhinoceros arrived at this zoological park in March 2003: Nisha came from Stuttgart Zoo and Shiwa from Munich Zoo. Rhinoceros were housed at night in individual cages of 20 m² and (from 0900 to 1900h in summer and 0900 to 1800h in winter) ranged freely in a 2,000 m² meadow equipped with an artificial lake. Animals were fed on a diet of oats, branches, fruit and vegetables, and provided with water ad libitum.

**Sample collection**

Saliva samples were taken each day at 0730h for a year from the start of August 2005 to the end of July 2006, prior to feeding and cleaning, in order to avoid circadian diurnal variations, given that significantly large variations in cortisol concentrations can occur during the early morning within relatively short time intervals (Brown et al. 2010). From January 2005, rhinoceros were trained and habituated to saliva sampling by keepers with whom they became familiarised, hence samples were able to be obtained within 2 min. They were collected using the Salivette® kit (Sarstedt, AG & Co, Numbrecht, Germany) and centrifuged at 2,000 rpm for 2 min at 15°C. The eluted saliva was stored at –20°C until assaying, which was carried out on a monthly basis during the sampling period (ie samples were frozen for a maximum of one month).

**Hormonal analysis**

Salivary cortisol was measured in duplicate, using a solid-phase radioimmunoassay (RIA) (Coat-A-Count®, Siemens Medical Solutions Diagnostics, Barcelona, Spain) and the tubes were counted on a Packard Cobra Auto Gamma Counter (Auto-Gamma® 5000 series, Cobra 5005, Packard Instruments Company, Meridien, CT, USA). A minimum of 0.4 ml of saliva was required for the duplicate assay (Menargues et al. 2008). Modifications were made in the form of increasing the volume of the sample to 200 μl, in the standard curve, through 1:10 dilutions of the standards and by increasing the incubation period to 24 h to increase assay sensitivity (López-Mondejar et al. 2006). This assay was previously validated (Menargues et al. 2008). Sensitivity was 0.82 nmol L⁻¹, inter- and intra-assay coefficients of variation were 6.1 and 6.2%, respectively.

**Statistical analysis**

Differences in cortisol concentrations between months and individuals (also considering the interaction between both variables) were analysed using a Generalised Linear Model (GLM), with a normal error distribution and an identity log function; pair-wise post hoc comparisons were conducted using the Games-Howell test. Pearson’s correlation coefficient was used to test whether cortisol profiles of both rhinos (mean monthly values) were correlated and also to test for correlations between mean monthly temperature and visitors’ attendance and mean monthly temperature or visitors’ attendance and cortisol concentration of both individuals. Temperature data were provided by the Villajoyosa Weather Station (located a distance of 7 km from the Terra Natura Zoological Park) from the Irrigation Technology Service, Valencian Institute of Agrarian Research. Numbers of visitors in attendance during the study period (percentage of the total number of visitors attending the park every month throughout the study period) was provided by the Terra Natura Zoological Park’s sales department. We were not supplied with actual visitor numbers each month since this was deemed to be confidential information by the zoological park. Statistical analyses were conducted using SPSS, version 15.0. All values are reported as means (± SD) and statistical significance levels were set at P < 0.05.

**Results**

Mean monthly salivary cortisol concentration ranged between 1.08 (± 0.63) (Nisha, January) and 2.76 (± 1.32) nmol L⁻¹ (Nisha, August), with concentrations of both individuals being positively correlated, showing similar values and changing similarly throughout the whole year (r = 0.940, P < 0.001). There were significant differences in mean salivary cortisol concentration between months (χ²₁ = 63.93, P < 0.001; Figure 1), due especially to significant differences between the warmest and coldest months (Table 1). Mean monthly salivary cortisol concentration increased between February and August, reaching a peak in August. From August onwards, hormone levels decreased, reaching their lowest values in January (August: Nisha 2.76 ± 1.32, Shiwa 2.43 ± 0.83 nmol L⁻¹; January: Nisha 1.08 ± 0.63, Shiwa 1.42 ± 1.05 nmol L⁻¹). The greatest numbers of visitors were seen throughout the summer months, with the peak coming in August (23% of the annual total). In contrast, attendances were lowest in winter, with January showing only 2% of the total of the annual visitors (Figure 1). On the other hand, there were neither differences between individuals (χ²₁ = 0.73, P = 0.392), nor for the interaction between individuals and months (χ²₁₁ = 5.16, P = 0.923). Additionally, mean monthly temperature was

© 2013 Universities Federation for Animal Welfare
Figure 1

Mean (± SD) monthly salivary cortisol concentration (vertical bars) of two Indian rhinoceros during the year (from August 2005 to July 2006). N-values for each individual and month appear above the errors bars. Solid line represents mean monthly temperature in this same period, with error bars representing standard deviation. Dotted line represents visitor numbers (monthly percentages of the total number of visitors during the study period).

Table 1  Games-Howell post hoc multiple comparisons test between months of mean salivary cortisol concentration of two Indian rhinoceros.

<table>
<thead>
<tr>
<th>Month</th>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>February</td>
<td>ns</td>
</tr>
<tr>
<td>March</td>
<td>ns</td>
</tr>
<tr>
<td>April</td>
<td>ns</td>
</tr>
<tr>
<td>May</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>June</td>
<td>ns</td>
</tr>
<tr>
<td>July</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>August</td>
<td>ns</td>
<td>0.05</td>
<td>ns</td>
</tr>
<tr>
<td>September</td>
<td>ns</td>
</tr>
<tr>
<td>October</td>
<td>ns</td>
</tr>
<tr>
<td>November</td>
<td>ns</td>
<td>0.05</td>
<td>*</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>December</td>
<td>ns</td>
</tr>
</tbody>
</table>

* P < 0.05;  
** P < 0.01;  
*** P < 0.001;  
ns: non-significant.
positively correlated with mean monthly cortisol concentration in both rhinos during the study period (Nisha: $r = 0.597, P = 0.04$; Shiwa: $r = 0.751, P = 0.005$), also attendance levels were also positively correlated with cortisol concentration in both individuals during the same period (Nisha: $r = 0.596, P = 0.041$; Shiwa: $r = 0.716, P = 0.009$) and temperature was positively correlated with attendance levels ($r = 0.875, P < 0.001$) (Figure 1).

**Discussion**

A number of studies in mammals have revealed a circannual pattern of cortisol secretion in different species, such as red deer (*Cervus elaphus*) (Ingram et al 1999), bottlenose nose dolphins (*Tursiops aduncus*), killer whales (*Orcinus orca*) (Suzuki et al 2003) and tuco-tuco (*Ctenomys talarum*) (Vera et al 2011). In free-living animals, hormone concentration can fluctuate in response to variables, such as ambient temperature, diet or sex (Goyman 2012). This study reveals that both Indian rhinoceros studied here show a seasonal pattern of salivary cortisol secretion, with the highest levels occurring in August and the lowest in January.

The annual pattern of cortisol concentration in these two animals showed a tendency to increase between February and August, before decreasing until January. This pattern follows annual shifts in monthly temperatures; high levels of salivary cortisol coincided with elevated annual temperatures, whereas low hormone concentrations coincided with the lower temperatures. During the study period, both individuals were maintained with the same feeding conditions and remained indoors for only one extra hour in winter due to insufficient daylight. Romero (2002) proposed that annual changes in glucocorticoid concentrations serve to modulate the priming of stress pathways during periods with different potential exposures to adverse conditions and it could be possible that hot or cold temperatures may represent adverse conditions for this species, thereby influencing cortisol secretion. High cortisol levels have been found in undisturbed red deer in the northern hemisphere in December and January, probably related to low temperatures (Huber et al 2003). There are also studies showing that inclement weather can lead to an increase in glucocorticoid levels in white-crowned sparrows (*Zonotrichia leucophrys pugetensis*) (Wingfield et al 1983) and white ground squirrels (*Urocitellus parryii*) (Sheriff et al 2012). However, studies on Asian Elephants (*Elephas maximus*) (whose individuals can reproduce throughout the year) revealed that this species demonstrated a seasonal pattern of salivary cortisol, although no correlation between temperature and annual cortisol secretion was found (Menargues et al 2012a).

On the other hand, the annual pattern of cortisol secretion of these two animals described in the present study correlated positively with higher visitor numbers. Creel et al (2002) showed that glucocorticoid levels in wolves (*Canis lupus*) and red deer at Yellowstone National Park increased when both species were exposed to snowmobile traffic. In summer, zoological parks receive greater numbers of visitors, which could impact negatively on animal welfare, increasing cortisol levels of individuals (Menargues et al 2008). A critical issue regarding exhibited zoo animals is the impact on the behaviour and well-being from visitors (Fernandez et al 2009). A number of studies suggest that zoo visitors induce stress in animals, and these effects vary relative to the species (Anderson et al 2002; Mallapur et al 2005). In Indian blackbuck (*Antelope cervicapra*), zoo visitor density was shown to affect adrenocortical secretion, with levels peaking during the busiest times (Rajagopal et al 2011). In black rhinoceros (*Diceros bicornis*), Carlstead and Brown (2005) found that corticoid concentrations were positively correlated with exposure to zoo visitors and several studies also reveal that zoo visitors are a source of stress for primates (eg Hosey 2000). The present study shows that although temperature levels were higher in July 2006 than in August 2005, the number of visitors was higher in the August, however, with our data, we cannot discard the effect of temperature or other possible influences we are yet to consider, such as endogenous mechanisms, diet or period of housing related to daylength (sunlight). Therefore, it would be of great interest to take the aforementioned variables with individuals from other zoos with free-ranging individuals to assess whether an endogenous seasonal pattern of cortisol secretion might exist or if there are other external stressors contributing which could enhance this endogenous rhythm. This would be helpful in determining whether attendance levels is actually an important factor to consider as regards the captive welfare of this endangered species. Knowledge of these circannual rhythms in cortisol secretion is essential in helping establish assessment criteria to interpret data obtained for the assessment of well-being in captive individuals of this species, through salivary cortisol.

**Animal welfare implications**

This study represents the first attempt at defining the seasonal pattern of cortisol secretion in the Indian rhinoceros. Improved knowledge of this pattern is essential in helping evaluate the physiological significance of fluctuations in cortisol concentrations as stress indicator in animals.

**Conclusion**

The two Indian rhinoceros studied here display a seasonal pattern of salivary cortisol secretion. The highest cortisol concentration was recorded in August and the lowest in January, coinciding with increased visitor numbers. The cause of this is yet to established, and factors such as attendance numbers, temperature, diet or housing could be considered in future studies to determine their effect on the seasonal pattern of cortisol secretion in these animals.

**Acknowledgements**

We are indebted to Terra Natura Foundation for funding this study. Also, we want to thank the Hormone Laboratory of the General University Hospital of Alicante for allowing us to use their analytical equipment. This manuscript was part of the PhD thesis of AM at the University of Alicante.
Seasonal pattern of cortisol in the Indian rhino 471


Hosey GR 2000 Zoo animals and their human audiences: what is the visitor effect? Animal Welfare 9: 343-357


References


doi: 10.7120/09627286.22.4.467


Wingfield JC, Moore MC and Farner DS 1983 Endocrine responses to inclement weather in naturally breeding populations of white-crowned sparrows (Zonotrichia leucophrys phyticus). The Auk 100: 56-62