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Abstract Identifying factors that affect demographic param-
eters and how those factors act is vital for understanding
population dynamics, especially of endangered species.
Moreover, specific ideas in the population dynamics of large
herbivores underpin the management of the critically endan-
gered black rhinoceros (Diceros bicornis). We studied an
expanding black rhinoceros population since its establishment
in 1986 in the Great Fish River Reserve, South Africa, through
2008 when managed removals interrupted natural dynamics.
During the study, only 13 animals died, of which nine were
subadults. In a linear modelling context, we used information-
theoretic methods to evaluate the influence of independent
variables expected to affect demographic parameters. For
females, age at first reproduction (AFR) increased with abun-
dance, but there was no effect of abundance on adult fecundity
as measured by inter-birth intervals (IBIs). We evaluated these
results in the theoretical context of population dynamics of
large herbivores, in particular, Eberhardt’s proposal of a

specific sequence in which demographic parameters first re-
spond to increasing density. Our observations are consistent
with Eberhardt’s prediction that immature individuals are
impacted before adults, but the relative timing and magnitude
of density effects on immature individuals was unclear.
Rainfall did not influence AFR or IBIs. Maternal age influ-
enced IBIs but much of the observed variation in IBIs was not
accounted for by structural variation. Studies of populations
more nearly approaching a stable age distribution and carrying
capacity are needed to resolve remaining uncertainties and
ambiguities in the life history of the black rhinoceros in
particular and megaherbivores in general.

Keywords Black rhinoceros . Demography . Density
dependence . Life history . Megaherbivores

Introduction

The performance of reintroduced populations, especially of
endangered species, is of particular interest (Seddon et al.
2007). The Great Fish River Reserve, Eastern Cape Province,
South Africa, is split into two sections by the Great Fish and
Kat rivers. In each section, black rhinoceros (Diceros bicornis
minor) populations were independently introduced, managed
and monitored through 2008. The population in the section
consisting of the Sam Knott and Kudu Reserve sectors (here-
after the SKKR population) is the older, larger and more
consistently monitored of the two. The other population is in
the Double Drift sector.

Since its inception in 1986, the SKKR population has been
consistently monitored by ground patrols and aerial recon-
naissance; each animal was ear-notched and births and deaths
routinely recorded (Fike 2011). The SKKR population was
effectively demographically isolated through the end of 2008.
Though five subadults were exported in 2006, had these
individuals remained in the population they could have
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contributed likely at most three offspring by the end of 2008,
all of which would have still been calves. We terminated our
study at the end of 2008 due to further planned removals.

In this paper, we report on female fecundity, specifically
age at first reproduction (AFR) and inter-birth intervals (IBIs),
and general mortality in the SKKR population for the period
1986 through 2008. We assessed the influence of a priori
chosen variables expected to affect fecundity and mortality.
In particular, we explored whether demographic parameters
were influenced by population size and examined the influ-
ence of rainfall, which is presumed to act on individual growth
and maternal condition through an effect on primary produc-
tion (Shorrocks 2007). Attributes of maternal condition were
also considered as possible influences on IBIs.

The demography of populations of large herbivores has
received considerable attention, especially as regards dy-
namics and the effects of density and environmental influ-
ences (Bonenfant et al. 2009; Owen-Smith 2010). A central
idea is the threshold logistic model in which per capita
growth rate remains (nearly) constant until declining rapidly
to zero when carrying capacity is approached rather than
declining linearly as in the logistic model (Fowler 1981,
1987; McCullough 1992).

Ultimately, one wants to understand the influences on
demographic parameters that drive changes in population
abundance. For example, Eberhardt (2002) proposed the
following sequence of responses to increasing population
density: first, decreased survival of immature individuals;
then increased AFR; then decreased reproductive rate of
adult females; and finally decreased survival of adults.
More generally, this sequence of responses might result
from any persistent effect that increases resource limitation
(Trimble et al. 2009).

These ideas have received substantial empirical support
(Bonenfant et al. 2009; Owen-Smith 2010), leading to the
application of the threshold logistic model in the manage-
ment of black rhinoceros (Diceros bicornis). The aim is to
maintain populations at secure levels below a point at which
density dependence diminishes population growth rate by
translocating the excess to establish new populations
(Emslie 2001). Eberhardt’s sequence may thus provide a
useful approach to detecting the onset and magnitude of
density dependence. For megaherbivores, however, Owen-
Smith (1988: p. 264) suggested that density would act
principally on fecundity, with little effect on mortality.
This difference might result because megaherbivores expe-
rience a stronger trade off between investment in growth and
reproduction than other large herbivores, leading to a greater
density effect on AFR than on mortality of immature indi-
viduals (Bonenfant et al. 2009: p. 339). We employed this
theoretical context to evaluate our results on reproductive
performance and mortality. We will report on population
growth rate itself elsewhere.

Few long-term studies of expanding megaherbivore pop-
ulations have been reported (but see Gough and Kerley 2006).
Reintroductions provide rare opportunities to study the growth
of megaherbivore populations (Hrabar and du Toit 2005), as
may populations recovering from severe poaching (Walpole et
al. 2001; Brodie et al. 2011), but the long-term data required to
adequately test alternative hypotheses are challenging to col-
lect, even without the poaching that threatens rhinoceros
species. Further supporting material is provided in Online
Supporting Information: page, table and figure references to
which are prefixed by ‘S’.

Methods

Study area

The SKKR study site is 220 km2, located in the Thicket
Biome as described in Lent and Fike (2003), Ganqa et al.
(2005) and Ganqa and Scogings (2007). Monthly rainfall
was recorded at three locations in SKKR: Kamadolo (1983–
2008); Retreat (1985–1986 and 1990–2008); and Botha’s
Post (1989–2002 and 2006–2007) (Fike 2011). For each
location, the mean (over years) rainfall of each calendar
month was compared to the grand mean (over all months
and years) monthly rainfall; for each location, the months
May–September, inclusive, were below average and the
remaining months above average. We therefore defined the
dry season as May through September, the wet season as
October through April and a seasonal year as a dry season
followed by a wet season. Single wet and dry seasons are
typical of southern Africa and result from the behaviour of
the Intertropical Convergence Zone (Shorrocks 2007).

Differences in rainfall between the three locations were
associated with differences in altitude and aspect (Fike
2011). For all analyses, we used the average over the loca-
tions for each month as our rainfall measure (see S1–S5 for
further justification). For the 23 seasonal years beginning in
May 1986, the mean annual precipitation was 452 mm
(range, 253–609; CV=18 %); mean monthly rainfall for
dry season months was 21 mm (range, 0–168; CV=
123 %); and for wet season months, the mean monthly
rainfall was 49 mm (range, 1–194; CV=71 %) (Table S1).

Reintroductions

The SKKR population was established through multiple
releases between June 1986 and December 1997 (Table 1,
Fike 2011). Five animals died soon after release without
contributing to the population and were excluded from the
study. In the only example of migration during the study
period, a female aged about four when imported into the
Double Drift sector in 2000 immigrated into the SKKR
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population just prior to giving birth to her first calf in
August, 2003; this female and all her offspring were includ-
ed in the SKKR population as of that date.

Data

Data sets for our analyses were always the statistical popu-
lation of interest, not samples drawn from larger populations
to which inference might be made, so for descriptive statis-
tics, we computed the population standard deviation (PSD)
for data and quote the mean (±PSD).

Each birth and death date was assigned an estimate of
uncertainty (EU) at the time of recording as follows: EU=5,
at most 1 week; EU=4, 1 week to 1 month; EU=3, 1 to
3 months; EU=2, 3 to 6 months; EU=1, 6 to 12 months; and
EU=0, more than 1 year. We analysed data based on the
nominal dates but also assessed the impact of EUs on
descriptive statistics and analyses.

Working in months (EU=5 was taken to be zero error), if x
is the maximum uncertainty in the female’s birth date, y the
maximum uncertainty in its first calf’s birth date, then z = x + y
is the net (maximum) uncertainty in AFR, i.e. the minimum
and maximum values assignable are AFR – z and AFR + z,
respectively. Similarly, with Z equal to the sum of the maxi-
mum uncertainties in the consecutive birth dates defining an
IBI, the minimum and maximum values assignable to the IBI
are IBI − Z and IBI + Z, respectively.

Life stages

Three life stages are recognised for black rhinoceros: calf,
indicating dependence upon the mother; subadult, indepen-
dent but not reproductively mature; and adult, reproductive-
ly mature. These behavioural definitions, while biologically
meaningful, are not sufficiently precise for assigning mor-
tality to the appropriate stage and to avoid inflating fertility
rates. After consulting Owen-Smith (1988), Emslie et al.
(1995) and Skinner and Chimimba (2005), we adopted the
following definitions. The calf–subadult transition occurs at
observed separation from the mother, at the birth of the

mother’s next calf, or the calf’s fourth birthday, whichever
comes first. The subadult–adult transition occurs for females
at first calving or at the seventh birthday, whichever comes
first, and for males at the eighth birthday. For rhinoceros
born in the SKKR population (natives), the mean age (in
months) that female calves became subadults was 28.0
(±5.9; n=45), that male calves became subadults 29.5
(±6.9; n=33) and that female subadults became adults 76.9
(±8.3; n=19). Gestation in the black rhinoceros is 15 months
and longevity in captivity is over 30 years (Owen-Smith
1988; Skinner and Chimimba 2005).

Analyses

No female that first calved in SKRR died of old age during
the study. Because all individual reproductive histories were
incomplete and most relatively short, we chose the collec-
tion of IBIs to assess adult female reproductive perfor-
mance. Statistical analyses were performed with Statistica
8.0 (Statsoft) or with R 2.10.1 (2009-12-14 © 2009, The R
Foundation for Statistical Computing) when indicated.

For the chosen demographic parameters, we focused on
evaluating evidence for the influence of potential explana-
tory variables. To avoid data dredging, we made a priori
choices of variables based on expected biological relevance
(Owen-Smith 1988; Walpole et al. 2001; Hrabar and du Toit
2005). We limited the number of variables we included in
the analyses to respect the size of our data sets (Burnham
and Anderson 2002: p. 245).

Lacking clear choices of rival a priori hypotheses to
explain variation in AFR and IBI, we used the model selec-
tion framework based on the Akaike Information Criterion
(AIC), specifically AICc (Burnham and Anderson 2002) to
rank all 2n linear models that can be built with n independent
variables, thereby providing a set of models that is balanced
with respect to the occurrence of the independent variables.
From this ranking, we computed the relative importance of
each variable as the sum of Akaike weights over the models
in which that variable occurs (Burnham and Anderson 2002,
§ 4.4). These quantities, together with ΔAICc and model
descriptive statistics, were used to evaluate the influence of
the independent variables on IBI and AFR (for a similar
approach to analyses, see Converse et al. 2006; Trimble et
al. 2009). Depending on the results of these analyses, we
planned to test whether including nonlinearities and/or inter-
actions improved the modelling.

To model AFR, we considered only native females, ex-
cluding imports because translocation might have delayed
their first reproduction and their birth dates were estimated
with EUs of 1 or 0. We limited the number of independent
variables to two due to data set size (16): population size
(PopSize) measured at the month of first conception and a
measure of rainfall. Hrabar and du Toit (2005) examined the

Table 1 Release history; F female, M male; crosses indicate animals
(five) that died soon after release without contributing to the population
and are not included in this study; population size is at release exclu-
ding released animals

Year Subadults Adults PopSize

1986 1 F; 0 M 1 F; 2 M(x) 0

1989 3 F(x); 3 M(xx) 0 F; 0 M 3

1990 0 F; 1 M 2 F(x); 0 M 8

1992 1 F; 0 M 0 F: 1 M 11

1997 7 F; 6 M 0 F; 0 M 26
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influence of cumulative rainfall over several consecutive
time periods leading to first conception; we compromised
with the cumulative rainfall over the 15 months ending with
the month of first conception (Rain15).

The net uncertainty Z in IBI also affects the computation
of predictor values, notably rainfall measures, in models of
IBI. We first restricted the data to the subset IBI74 of those
IBIs with Z at most 9 months (which excluded three IBIs,
leaving 74 observations). There were 26 maternal identities
in IBI74, so we included maternal identity as a random
factor (Gelman and Hill 2007: p. 276). We restricted our
choice of fixed effects to five: population size and maternal
age, each measured at the mid-point of the IBI to reduce
dependence on the net uncertainty Z; the average monthly
rainfall during the IBI (inclusive of both birth months); the
cumulative rainfall over the 6 months prior to the birth
month initiating the IBI; and the sex of the calf whose birth
initiated the IBI. We expect these variables to reflect the
principal influences operating during or just prior to an IBI.
We repeated all analyses conducted for IBI for the subset
IBI48 of IBIs for which Z≤4. As this subset contained only
48 observations, we omitted the ‘sex’ variable. We used the
R package nlme for the IBI analyses.

With ρ2 and σ2 denoting the restricted maximum likeli-
hood estimates of the variance of the random factor and
error term, respectively, in a given mixed model, the intra-
class correlation ρ2 / (ρ2+σ2) measures the correlations
between IBIs induced by the random factor (maternal iden-
tity) within the model (Gelman and Hill 2007).

Of the 15 animals that died during the study, nine were
subadults (Table S9). We constructed Cox proportional hazard
models for the 95 subadults of the study, with sex, the average
monthly rainfall during an individual’s period as a subadult,
the individual’s age and the population size as covariates; the
last two variables were measured at the time at which an
individual became a subadult. However, we concluded that
due to the small number of mortalities, the resulting models

did not provide robust explanations of subadult mortality (see
S22–S25 for details). We also compared the duration of sub-
adulthood for those individuals that, during the study, reached
adulthood versus those that died as subadults.

Results

Age at first reproduction

The 16 natives that calved during the study period gave birth
with a mean AFR of 80 (±14) months; 13 % calved before
age 5 years, 31 % before age 6, 63 % before age 7, 81 %
before age 8, 94 % before age 9 and 100 % by age 9.25.
Including the net uncertainty z, AFR ranged from 58±2 to
111±3 months. At the end of 2008, three females had not
calved by the age of 7 years and were natives aged 116±6,
88±3 and 87 ±3 months.

For the net uncertainty z of native AFRs: E(z)=2.88, so E
(AFR±z)=80.1±2; PSD(z)=1.80 and cov(AFR,z)=1.45, so
PSD(AFR)=14.3 and PSD(AFR+z)=14.5. Thus, EUs made
little difference to these descriptive statistics.

Figure 1 displays scatter plots of AFR against the two
variables chosen for the modelling. Results of the modelling
are presented in Table 2 (also Table S2). The relative impor-
tance of PopSize was 0.933 and of Rain15 was 0.161.
Replacing Rain15 with the cumulative rainfall over 27 months
leading to first conception did not change the results (Table S3).

To assess the robustness of the modelling to the net
uncertainly z in AFR, we increased smaller AFRs by their
z value and decreased larger AFR values by their z value and
repeated the entire modelling exercise. While the trend of
increasing AFR with PopSize was weaker, it nevertheless
persisted and the overall results were little changed, demon-
strating their robustness to the uncertainties in AFR (Fig. S3,
Table S4). Finally, for the AFR data, a simple nonlinear
trend of the form IBI=c+(PopSize)n (n=2, 3 or 4) was just
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Fig. 1 Scatter plots of age at
first reproduction versus
population size and cumulative
rainfall over the 15 months
ending with the month of first
conception (Rain15)
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as likely as judged by AICc as the linear trend (n=1)
(Table S5).

Inter-birth interval

IBIs were measured in months. There were 77 IBIs recorded,
with a mean of 29.0 (±7.9) and mode of 24. As E(Z)=4.51,
PSD(Z)=3.41, cov(IBI,Z)=0.84, then E(IBI±Z)=29.0±4.5
and PSD(IBI+Z)=8.7. The correlation between Z and IBI
was 0.03, too small to suggest Z varied systematically with IBI.

The longest IBI was 74, the final IBI of an imported female
that gave birth in 1992, 1994, 1997 and finally in 2003. At the
final birth, this female was estimated to be about 28 years of
age and she died in 2005; her final calf itself (unsexed) died
during 2003. The shortest IBI was a seemingly anomalous 14,
the third IBI of a native female that calved five times, in 5/00,
8/02, 11/04, 1/06 and 10/08 (uncertainties of birth dates at
most 3 months, and only 1 month for the third). Both extreme
IBIs had net uncertainty Z=4.

For each analysis, there was no substantive difference in
the results between the data sets IBI48 and IBI74, so we

only report for the latter. Figure 2 presents scatter plots of
IBI against the continuous fixed effects for the IBI74 data
(see Table S6 for descriptive statistics). The mean of IBIs
initiated by a female birth was 28.8 (±8.7; n=42) and of IBIs
initiated by a male birth 29.4 (±8.7; n=32).

Table 3 records the structural model parameters for the
global model while Table 4 displays the models within four
AICc units of the top ranked model (see Table S7 for the
complete ranking). The relative importance of maternal age
was 0.887, of population size 0.281, of average rain (during
IBI) 0.245, of rain prior to IBI 0.250 and for the birth sex
initiating the IBI 0.271. The intraclass correlation of mater-
nal identity was less than 10−7 in each model; indeed, for
each model, the deviance (−2ln(L), where L is the maxi-
mized likelihood) differed from the deviance of the model
with same fixed effects but no random factor by less
than 10−3 so that the difference in AICc between these models
was effectively due to the additional model parameter in the
mixed model. Additive models were not improvements over
the linear models and provided no compelling evidence for
nonlinearities (Fig. S4).

Table 2 Results of the linear
modelling for age at first
reproduction (K = number of
model parameters; L is the
maximised likelihood; R2

a the
adjusted R2 of the model)

Model K −2log(L) ΔAICc Akaike weight R2
a

PopSize 3 122.053 0 0.785 0.366

PopSize + Rain15 4 121.744 3.327 0.149 0.331

Null 2 130.455 5.325 0.055 0

Rain15 3 130.436 8.383 0.012 −0.070
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As maternal identity was not influential, we computed
statistics for the global model with fixed effects only
(Table S8); in particular, the adjusted R2 was only 0.027,
indicating extremely poor fit to the data. It appears that our
chosen variables explain little of the variation in the IBI74
data. As a check, we preferred a nonparametric approach.
As De’ath and Fabricius (2000) argued that regression trees
are ideally suited for modelling ecological data that may be
complex and unbalanced and involve nonlinear relation-
ships or interactions, we conducted a regression tree analy-
sis of IBI with the three variables of the highest relative
importance as predictors. This analysis revealed that mater-
nal age was influential due to the few longer IBI’s occurring
at higher maternal ages and detected no influence from the
other variables (S14–S18).

The only other direct influence on IBI we could readily
measure to account for the unexplained variation was the
prior IBI, reflecting maternal condition, but the correlation
of the 52 pairs of consecutive IBIs was only −0.01. Finally,
a post-analysis check found no evidence of an influence of
rainfall for up to 3 years prior to IBIs (S18–S19).

Mortality

The only known calf mortality was an unsexed calf, esti-
mated to have been born in April 2003 at the end of the
longest IBI and dead before the end of that year. Its mother
was about 28 years of age at the time and died in December
2005 without calving again.

Three calving sequences with unusually long IBIs raised
the issue of unobserved calf mortalities (S21). Due to the
lack of any evidence to the contrary and absence of preda-
tors, these long IBIs were best interpreted as indicating
variable female fecundity rather than calf mortality.

There were five adult deaths: three (two females, one
male, all imports) presumed to be due to old age; one native
bull euthanised (at age 13.75 years) due to injuries received
from other bulls; and one imported bull of unknown causes
almost 6 years after release (age at least 10 years).

Nine subadults died: five female and four male; two of
the females were imports; none of the other seven were first
born. Eight of these deaths occurred after 1999, four after
2004 and all male subadult mortality after 2002. The mean ±
SE duration of subadulthood for those subadults reaching
adulthood (n=44) was 50.0±1.9 months and for those sub-
adults that died 13.0±3.4 months. The t test returned p<
10−6 (even when allowing for unequal variances), a result
robust to the uncertainties arising from EUs (S25–S26).

Discussion

Rainfall has been documented to influence demographic
parameters in many populations of large herbivores though
some populations only respond to drought conditions (Owen-
Smith 2010). Gough and Kerley (2006) reported that for the
African elephant (Loxodonta africana) in the nearby Addo
Elephant National Park, birth rates, but neither AFR nor
mortality, were influenced by rainfall. For the Pilanesburg
black rhinoceros population, Hrabar and du Toit (2005)
reported a negative influence of the July–June rainfall on the
mean of IBIs for which the conception of the terminating birth
fell in the same July–June period, an association between low
rainfall and mortality in ‘juveniles’ (<3 years old), but no
impact on AFRs. We found no evidence for the influence of
rainfall on mortality, AFR or IBI in the SKKR population. The
influence of rainfall presumably depends on the quantity and
variation in both annual and seasonal rainfall and availability
of surface water and forage, especially in the dry season,
conditions that vary substantially across black rhinoceros
and elephant habitat. However, Rasmussen et al. (2006) have
argued that the normalised differential vegetation index
(NDVI), a measure of primary production, has greater explan-
atory power than rainfall in modelling the response of demo-
graphic parameters to varying resources.

Table 3 Structural model parameters for the global linear-mixed mod-
el for the IBI74 data with maternal identity as random factor and five
fixed-effect predictors: maternal age A; population size P; prior rain r
(the cumualtive monthly rain over the 6 months preceding the IBI);
average rain R (the average monthly rain during the IBI); and sex s, the
birth sex of the birth initiating the IBI. The continuous predictor values
were mean-centred and divided by twice their standard deviations to
standardise the comparison of regression coefficients including that of
the binary predictor s per Gelman and Hill (2007: pp. 56–57)

Predictor Coefficient SD Predictor Coefficient SD

Intercept 28.5 1.2 Average rain
R

0.7 1.9

Mat age A 4.6 1.9 PopSize P −1.3 1.9

Prior rain
r

0.8 1.9 Prior sex s 1.3 1.9

Table 4 Ranking of the linear models for IBI74 within four AICc units
of the top model; notation for predictor variables as in Table 3

Predictors −2log(L) K ΔAICc Akaike weights

A 511.224 4 0 0.256

A, P 511.812 5 1.890 0.100

A, s 510.852 5 1.930 0.098

A, r 511.070 5 2.148 0.088

A, R 511.157 5 2.235 0.084

A, P, s 510.342 6 3.792 0.038

Base 517.282 3 3.821 0.038

L is the maximised log-likelihood, K the number of parameters in the
model, including intercept and the two variance terms. The base model
is the model with just these three terms, i.e. no fixed-effect predictors

Eur J Wildl Res

Author's personal copy



We found a positive trend of AFR with increasing pop-
ulation size. It is less clear at what level abundance began to
act on AFR as linear and simple nonlinear trends could not
be distinguished by the data, so AFR may not have begun to
increase until population size reached 50–60 (Fig. 1). We
will address whether the increase in AFR affected popula-
tion growth rate when we report on the latter elsewhere. We
found no evidence for any trend of IBI with population size.
Hrabar and du Toit (2005) also reported a tendency for AFR
to increase with abundance and no effect on IBI.

Other than death from old age, mortality was concentrat-
ed in the subadult stage. Three of four male subadult mortal-
ities resulted from aggression by bulls and all occurred in
the last 6 years of the study while eight of the nine subadult
mortalities occurred in the last 9 years of the study, though
no robust analysis is available to support the idea that
subadult mortality increased with abundance. Subadults that
survived their first year of independence tended to reach
adulthood indicating that subadults were most vulnerable
following separation from their mother. Ferreira et al. (2011)
reported that mortality in the large black rhinoceros popula-
tion south of the Olifants River in Kruger National Park was
also largely restricted to subadults; Hrabar and du Toit
(2005) found all mortality of immature individuals to be
restricted to ‘juveniles’ (<3 years old), with no clear relation
to abundance, while Brodie et al. (2011) reported that sur-
vival was lowest for neonate calves (<1 year) in north-west
Namibia.

Hence, the expanding SKRR population conformed to the
prediction of Eberhardt’s sequence that density impacts im-
mature before mature individuals. The small number of mor-
talities of calves and subadults might be construed as evidence
for Owen-Smith’s (1988: p. 264) prediction that density will
impact megaherbivores primarily through fecundity rather
than mortality but the response of the SKKR population to
higher levels of density would be necessary to confirm this
impression. Wittemyer et al. (2007) and Trimble et al. (2009)
reported evidence for Owen-Smith’s suggestion contra
Eberhardt for the response of African elephant to variation
in forage quality (as measured by NDVI). Compared to ele-
phant and white rhinoceros (Ceratotherium simum) (an influ-
ential example in Owen-Smith’s thesis), however, the greater
asociality of black rhinoceros may increase vulnerability of
immature black rhinoceroses so that their mortality is a more
important component of demography. This issue remains
unresolved.

Density feedback is typically thought to act on large
herbivores through resource limitation, resulting in reduced
individual growth, thereby increasing pre-adult mortality,
and diversion of investment from reproduction to growth
and maintenance, and thereby delaying AFR and reducing
adult fecundity (Bonenfant et al. 2009). Our study area is
considered to be excellent black rhinoceros habitat (Ganqa

et al. 2005). Van Lieverloo et al. (2009) studied the diet
composition and preference of the SKKR population (data
collected 2004) and concluded that these black rhinoceroses
met their nutritional and energetic requirements without
selective feeding, suggesting no resource limitation at that
time, when AFR was already increasing (PopSize about 77).
Ferreira et al. (2011) argued that subadult mortality in their
study was socially driven rather than due to resource limi-
tation. It is both ecologically interesting and of importance
to management if density operates in rhinoceros populations
not only through resource limitation but also density-
dependent socially mediated cues (Bronson 1989: p. 163).

Organisms are expected to adapt to resist changes in
those demographic parameters to which fitness is most
sensitive (Pfister 1998; Gaillard and Yoccoz 2003; Rotella
et al. 2012). The characterisation of long-lived, large herbi-
vores as ‘slow’ on the ‘fast–slow continuum’ of mammalian
life histories, together with the associated pattern of demo-
graphic elasticities (Heppell et al. 2000), suggests that this
expectation may underlie the order in which demographic
parameters respond to density (Bonenfant et al. 2009: p.
338). Perhaps evolutionary canalisation of demographic
parameters does not fix the exact order of the response to
density of certain demographic parameters, such as AFR
and mortality of immature individuals, across varying hab-
itat in a species’ range. The considerable variation in habitat
over the range of black rhinoceros and elephant offers an
interesting opportunity to explore this possibility.

Because individual reproductive histories were incom-
plete, we chose individual IBIs as our unit of interest and
found maternal identity not to be influential. We found
evidence only for an influence of maternal age on IBI,
largely due to the longest IBI occurring at a maternal age
of 25 years. Owen-Smith (1988: p. 205) reported that for
black rhinoceros populations from East and southern Africa,
the percentage of adults ranged from 56 to 82. The SKKR
population was still a young population at the end of 2008,
consisting of 24 % calves, 35 % subadults and 41 % adults.
Data from a more mature population, with a more represen-
tative distribution of maternal ages, are required to elucidate
if IBI typically increases with maternal age and, if so,
whether continuously or only discontinuously towards the
end of life, a kind of incipient senescence.

Birth sex did not influence the subsequent IBI, which
accords with the results reported by White et al. (2007) for
white rhinoceros and Lee and Moss (1986) for African
elephant (interestingly, their observations on IBIs were irre-
spective of any differential suckling behaviour between
male and female calves).

The variation in IBI was largely unaccounted for struc-
turally while population size accounted for about 41 %
(unadjusted R2) of the variation in AFR (comparable to the
45 % reported by Hrabar and du Toit 2005). We hypothesise
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that the unaccounted-for variation in these parameters for
the SKKR population was indeed not structural but due to
demographic stochasticity, which has rarely been quantified
in populations of large herbivores (Owen-Smith 2010: p.
107). Reintroduced populations are by their nature initially
small, as are many extant black rhinoceros populations.
Trimble et al. (2009) appealed to demographic stochasticity
to explain why smaller elephant populations differed from
the trends they generally observed.

Even allowing for EUs, the ranges, means of and varia-
tion in AFRs and IBIs of the SKRR population are never-
theless consistent with data reported for other populations
(Owen-Smith 1988; Skinner and Chimimba 2005; Walpole
et al. 2001; Hrabar and du Toit 2005; S26–S27).
Disregarding the net uncertainty Z, the mean SKKR IBI of
29.0 months (CV 27.2 %) is shorter than that reported in
most studies, which with the mode of 24 months, indicates a
high rate of reproduction. There were eight IBIs with Z=0
(22; 23; and six of 24 months), all but one of which termi-
nated after 2004, unambiguous evidence of continuing fre-
quent reproduction. For the period 1998–2008 (after the
introductions), annual population growth averaged 10.5 %
(PSD=6.5 %); the number of calves born per adult female
per year averaged 43.0 % (PSD 18.9 %); and annual mor-
tality averaged 1.8 % (PSD=1.2 %). These statistics indicate
excellent population performance according to the criteria in
Emslie (2001). The considerable variance in the first two
statistics reflects the uneven distribution of maternal ages
still manifest from founder effects. The near absence of calf
mortality indicates that female reproductive performance for
the SKKR population could be tracked solely by AFR and
IBI. Population size roughly quadrupled during the study
period and average density reached about 0.5 rhinocer-
os/km2. Owen-Smith (1988: p. 224) reported average den-
sities for black rhinoceros as high as 1.4 rhinoceros/km2, but
most were less than 0.5. While it is unclear how closely the
SKKR population approached carrying capacity, the high
growth rate and average density achieved indicated that the
SKKR population was a good study population for our
purposes, the constraint on duration aside. The SKKR pop-
ulation was unusual only in that demographic, rather than
environmental, stochasticity appeared dominant.

Our study of the expanding SKKR population confirms
that increasing AFR provides an early warning sign of
density feedback in large herbivore, including megaherbi-
vore and especially black rhinoceros, populations and thus
provides a practical indicator for managers wishing to detect
density feedback prior to an impact on IBIs. We suggest that
fecundity will be subject to considerable demographic sto-
chasticity in expanding populations, at least prior to pro-
nounced density feedback. It remains to be determined how
sensitive mortality of immature black rhinoceroses is to
density; the class of immature individuals most susceptible

to mortality appears to vary across habitat. Even longer
studies of expanding populations of megaherbivores, espe-
cially the highly endangered and managed black rhinoceros,
that more nearly approach stable stage distributions and
carrying capacity are required to elucidate the response to
density.
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SUPPLEMENTARY INFORMATION for “Mortality and female fecundity in an 

expanding black rhinoceros (Diceros bicornis minor) population” by Law, Fike and 

Lent. European Journal of Wildlife Research. 

 Corresponding author: Peter R. Law; prldb@member.ams.org.  

METHODS 

Rainfall 

As noted in the manuscript, rainfall was recorded monthly, though with some missing 
records, at three locations (denoted Kam, Ret, and BP here) in the study area (see Fike 2011 
for full details). We employed the average across the locations for each month for a monthly 
rainfall figure for our analyses. Our motivation was that no single station is more 
representative of rainfall for the study area than any other and that the spatial average reflects 
better the rainfall regime given that rainfall local to each rhino home range was not available. 
There are perhaps two concerns that might be raised as regards the spatial average. First is 
that the three stations might experience different seasonal and/or annual patterns that the 
spatial average would obscure and that the seasonal and annual patterns in the spatial average 
may not reflect process patterns in rainfall. Spatial variation in rainfall in the study area is 
associated with variation in altitude and aspect (Fike 2011), and there is no suggestion that 
the three stations experience micro-local climatic differences that would lead to significantly 
different seasonal and/or annual patterns. In particular, the definition of wet and dry seasons 
we adopted in the manuscript was consistent for each station separately. Figure S1 displays 
the three time series of monthly rainfall together with the time series of monthly averages 
over locations. The four time series appear to conform over time. Figure S2 provides 
evidence that the three time series are indeed highly positively correlated. The exact pairwise 
correlations of monthly rainfall for all months were: 0.92 for Kam/Ret; 0.86 for Kam/BP; and 
0.89 for Ret/BP. 

 

 

 

 

Figure S1. Time series of monthly rainfall for the three stations Kam, Ret, and BP, together 
with that of their mean for each month. 

 

mailto:prldb@member.ams.org


2 

 

 



3 

 

Figure S2. var1 = monthly rainfall at Kam, var2 = monthly rainfall at Ret, and var3 = 
monthly rainfall at BP, for those months (180) for which rainfall was recorded at all three 
stations. The diagonal displays frequency histograms for each variable, the squares below the 
diagonal are pairwise correlations, and the squares above the diagonal are scatter plots with 
fitted regression lines.  

 

 

 

 



4 

 

Furthermore, variance-inflation-factors (VIFs, Zuur et al. 2007, p. 469) are 6.9 for the 
regression of Kam monthly rainfall on that of Ret and BP, 8.41 for the regression of monthly 
rainfall of Ret on that of Kam and BP, and 5.0 for the regression of monthly rainfall of BP on 
Kam and Ret (equivalently, R2 values for the regressions of one time series on the other two 
are at least 0.8).  Finally, for the three time series of monthly rainfall, both for the 180 months 
for which measurements were available at all three locations and for the entire collection of 
data (276 months, but with missing data) we conducted dynamic factor analysis (Zuur et al. 
2007, §17.4), which models each (normalised) time series in a set of n synchronized time 
series as a linear combination of k random walks (k < n) plus a Gaussian error term. The 
covariance matrix R of the k error terms and the loadings of the random walks are determined 
by maximum likelihood methods. We used the R package MARSS for this purpose. For the 
two data sets, we considered four models each. We considered k = 1 and 2, the unconstrained 
covariance matrix  in which R is not diagonal and also the constrained form in which R is 
diagonal (though not necessarily with equal diagonal entries). For both data sets, AICc 
favoured the models with R unconstrained other those with R diagonal, the latter being more 
than 80 AICc units above the former (not surprisingly given the high degree of correlation 
between the rainfall time series). For a given form of R, AICc ranked the models by 
increasing value of k. For the data set of 180 months for which all stations had a rainfall 
record, model(k=1, R unconstrained) was 4.2 AICc units lower than model(k=2, R 
unconstrained) while for the data set of all months this difference was 3.6. The model 
parameters for model(k=1, R unconstrained) for the full data set are: 

loadings for the common trend: -0.0084; 0.0018; -0.0006; 

covariance matrix: R11 = 0.99; R22 = 1.04; R33 = 0.92; R12 = 0.94; R13 = 0.81; R23 = 0.86; 

The very small loadings indicate the random walk is actually unimportant and that the three 
rainfall time series are best viewed as highly positively correlated fluctuations without any 
significant trends. This result is exactly what we would expect for the normalised rainfall 
time series. 

Altogether, these results indicate that these three time series should not be regarded as 
independent but rather highly positively correlated. Thus, we conclude that taking the average 
of monthly rainfall across the three stations has not compromised the seasonal and annual 
patterns in rainfall. 

The other concern is that the missing data in the rainfall records may compromise the 
spatial averages, especially when data were only available from one station. For the 23 years 
of the study, 1986 – 2008, data was available from all three stations for 15 years, from two 
stations for 6 years, and from only one station for just two years, 1987 – 1988, early in the 
study and thus less critical to our analyses. Rainfall was measured at Kam every month of the 
study period while the remaining stations contributed to most months. There is no actual 
instance of two different months for which rainfall was recorded from two different and no 
common station. 
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We conclude therefore that using the average across stations is a reasonable strategy 
that takes advantage of all the rainfall data available rather than relying on that of a single 
station and that seasonal and annual patterns have been preserved in the spatial average. 

To parametrize data by years, one can begin with the calendar year 1987 or with the 
dry season of 1987 (there were no births or mortalities prior to May 1987 other than failed 
imports; the prior wet season and the dry season of 1986 is designated year zero for 
convenience); the n’th seasonal year starts with May 86+n, and ends with Apr 86+n+1. 

We called a year normal (N) if the annual rainfall was within one SD of the mean, wet 
(W) if wetter than this range, and dry (D) if drier than this range. Table S1 records the results 
for both calendar and seasonal years (using their respective statistics). 

Table S1. Wet (W), Normal (N), and Dry (D) years. Each seasonal year begins in May of the 
calendar year above it in the table and ends in April of the following year. The calendar year 
2008 had normal (N) rainfall. 

 

Calendar Year 86 87 88 89 90 91 92 93 94 95 96 

 D D N N D N D W N N N 

Seasonal Year 0 1 2 3 4 5 6 7 8 9 10 

 D N N N D N D W N N N 

Calendar Year 97 98 99 00 01 02 03 04 05 06 07 

 N N N N N W D N N W N 

Seasonal Year 11 12 13 14 15 16 17 18 19 20 21 

 N N N N N W D N N W N 

 

W. L. Linklater (pers. comm. 2011) informed us that the oldest aged black rhino in 
the Rhino Management Group’s data set was 31, a female that had recently calved, and that 
the longest lived black rhino in captivity, according to the 2005 international rhino studbook, 
was 37. Linklater (2007) reported an average of 460 days for gestation in the black rhino 
based on records in the literature. Since we used month as our unit of time, we employed the 
customary figure of 15 months for black rhinoceros gestation. 

RESULTS 

Age at First Reproduction (AFR) 



6 

 

We note that the Shapiro-Wilk test returned p = 0.601 for the residuals of the global 
model, indicating, along with the Q-Q plot, that the residuals as a whole, at least, are 
consistent with a normal distribution. The correlation between PopSize and Rain15 was -0.2. 

Table S2. The ‘global’ model for AFR modelling. PopSize is population size at conception;  
Rain15 is the cumulative rainfall for the 15 month period ending with the month of first 
conception. R2

a is the adjusted R2; b denotes an estimated partial regression coefficient and β 
its standardized value. Each is followed by its SE. Also recorded are the statistics for the 
usual F-test for the regression model and for the intercept and each predictor the statistics for 
the standard t-test for the null hypothesis that the model parameter is zero. These statistics are 
quoted for descriptive purposes as an indication of model quality, not for hypothesis testing 
for model selection. 

 

      Model        R2
a          F   df     p 

PopSize+Rain15      0.331      4.704 1,14 0.029 

     β   SE     b   SE     t     p 

    Intercept      51   19 2.721 0.017 

    PopSize 0.66 0.22 0.42 0.14 3.063 0.009 

    Rain15 0.11 0.22 0.013 0.026 0.504 0.623 

 

 

Table S3. Modelling results for AFR with Rain27, the cumulative rainfall over the 27 months 
leading to first conception, in place of Rain15. 

 

Model K -2log(L) ∆AICc Akaike  

weight 

R2
a 

PopSize 3 122.053     0 0.788 0.366 

PopSize + Rain27 4 121.845 3.428 0.142 0.326 

Null 2 130.455 5.325 0.055 0 

Rain27 3 129.975 7.922 0.015 -0.040 
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The relative importance of the two predictors of PopSize is 0.930 and of Rain27 is 0.157. 

To assess the robustness of the modelling exercise to the net uncertainty z in AFR 
values, for a low AFR value, we added its z to the AFR, while for high AFR values, we 
subtracted its z from the AFR. This modification of AFR values produces the maximal 
reduction in trends in AFR that might result from uncertainty in birth dates. We repeated the 
main modelling exercise, with these modified AFR values (modAFR) replacing the nominal 
AFR values. 

 

 

Table S4. Modelling results for modAFR. 

 

Model K -2log(L) ∆AICc Akaike  

weight 

R2
a 

PopSize 3 118.717     0 0.693 0.269 

Null 2 124.838 3.044 0.151 0 

PopSize + Rain15 4 118.541 3.461 0.123 0.222 

Rain15 3 124.815 6.098 0.033 -0.070 

 

The relative importance of PopSize is 0.816 and of Rain15 is 0.156. Figure S3 presents scatter 
plots of the modified AFR data. 
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Figure S3. Scatter plots of the modified AFR (modAFR) values versus population size (P) 
and the cumulative rainfall over the 15 month period ending with the month of first 
conception (Rain15). 
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We note a further descriptive statistic. Let n|m denote that, in a specified period of 
time, n females calved before the age of 7 years and that m females reached the age of 7 years 
without calving. Then for the three five-year periods 1993 – 1998, 1999 – 2003, and 2004 – 
2008, the data are 4|1, 4|3, and 2|7 respectively, where, taking into account EUs, we have 
recorded only those females which can be unambiguously assigned to the two categories. We 
excluded from the period 1999 – 2003, 3 females that, according to nominal birth dates, 
calved before the age of 7 years and one that didn’t (all imports with EUs of 1 for their 
birthdates) while from the period 2004 – 2008 we excluded one female that calved around the 
age of 7 years (give or take a month or two). These exclusions do not appear to alter the 
impression that a greater proportion of females reached the age of 7 years without calving in 
the last 5 years than previously. 

Based on the scatter plot of AFR versus PopSize in Fig. 1, we conducted a post-
analysis exploration of departures from linearity for AFR as a function of PopSize. Models 
were of the form AFR = F(P) + e (P denoting PopSize), where the error term e is assumed to 
be from N(0,σ). The log-likelihood for this model is 

( )2
2

2

2ln
22

)ln( πσ
σ

N
e

L i
i

−−=
∑

, 
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where the summation is over the data, N is data set size, and ei = yi – F(Pi), where yi is the 
i’th observed response and Pi the corresponding population size. Maximum likelihood 
estimation of the structural parameters in F is equivalent to least squares estimation of these 
parameters. Maximum likelihood estimation of σ yields 

N
RSS

=2σ , 

where RSS denotes the estimated sum of residual squares: 

     ( )∑ −=
i

ii PFyRSS 2)( , 

with the estimated values of the structural parameters substituted into F. The resulting 
maximized log-likelihood satisfies 

N
N

RSSNL +=− )2ln()ln(2 π . 

For candidate models we considered polynomials, in particular all 15 possible linear 
combinations of P, P2, P3, P4 (together with a constant term), the polynomial with all terms 
up through degree five, and an exponential of the form:  F(P) = b0 +exp(b1 + b2P)  
(estimated using Statistica’s nonlinear estimation module with least squares as the loss 
function to determine the parameters). Table S5 records the results obtained.  

There are no surprises here. All models have very similar -2ln(L) values,  so the 
∆AICc values reflect the number of parameters in the different models (equal to the number 
of structural parameters, including intercepts, in F plus one for σ), and the models are 
grouped by AICc into subsets with models with the same numbers of parameters (the model 
exp has three structural parameters and is ranked least likely by AICc of such models). 
Within these subsets of models, AICc does not effectively discriminate between models. We 
interpret these results as suggesting that over the range of PopSize in our data, AFR is just as 
likely to be a small power of PopSize as linear, but that there is insufficient data to 
distinguish these functional forms, and the data is unlikely to support more complicated 
nonlinearities. 
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Table S5. Results of Nonlinear Modelling of AFR = F(P). 

 

Model -2ln(L) ∆AICc Model -2ln(L) ∆AICc 

M(P2) 121.8106 0 M(P2, P3) 121.8106 3.6363 

M(P3) 122.0382 0.2276 M(P3, P4) 121.9370 3.7627 

M(P) 122.0533 0.2427 exp 122.0411 3.8668 

M(P4) 122.3994 0.5888 M(P2, P3, P4) 121.4557 7.6450 

M(P, P4) 121.6873 3.5131 M(P, P3,P4) 121.4874 7.6768 

M(P, P3) 121.7419 3.5676 M(P, P2, P4) 121.5113 7.7007 

M(P, P2) 121.7974 3.6221 M(P,P2, P3) 121.5420 7.7313 

M(P2, P4) 121.8059 3.6316 M(P, P2, P3, P4) 121.4254 12.9481 

   quintic 121.0352 19.2245 

 

 

Inter-Birth Intervals (IBI) 

The shortest IBI of 14 has net uncertainty of 4 months. The calf was first seen 26 
December 2006 and assigned a birth date of January, 2006, with EU 3 (i.e., an uncertainty of 
at least a month but less than 3 months). It was ear notched on 7 May 2007 and its age then 
assessed to be consistent with the assigned birth date. The previous calf was first seen 26 
November, 2004, assigned a birth date of November, 2004, with an uncertainty of at most 
one month, and ear notched in March 2006 when its age was assessed to be consistent with 
the assigned birth date. Walpole et al. (2001) and Hrabar and du Toit (2005) reported IBIs as 
short as 20 months. The authors would be very interested to hear of any reliable records of 



11 

 

IBIs of less than 20 months. Are there records of premature births, presumably from 
captivity, for which the calf survived without management assistance? 

Table S6. Descriptive statistics for the continuous predictors in the linear modelling of the 
IBI74 data. All pairwise correlations were at most 0.2 and all variance-inflation factors at 
most 1.04, hence there was no concern regarding correlations between the continuous 
predictors. 

 

Variable Mean (±PSD) Range 

Maternal Age 150 (± 61) [76, 360] 

Population Size 63 (± 27) [9, 99] 

Average Rain 38.8 (± 3.4) [29.4, 45.4] 

Prior Rain 230 (± 77) [98, 407] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S7. Model selection results for the subset IBI74 of  IBIs satisfying Z ≤ 9, with maternal 
identity as random factor and five fixed-effect predictors: maternal age A;  population size P;  
prior rain r (the cumualtive monthly rain over the six months preceding the IBI); average rain 
R (the average monthly rain during the IBI); and sex s, the birth sex of the birth initiating the 
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IBI. K is the number of parameters in the model, including intercept and the two variance 
terms. The base model is the model with just these three terms, i.e., without fixed-effect 
predictors. 

Predictors -2log(L)  K ∆AICc Akaike 
weights 

A 511.224 4 0 0.256 
A, P 511.812 5 1.890 0.100 
A, s 510.852 5 1.930 0.098 
A, r 511.070 5 2.148 0.088 
A, R 511.157 5 2.235 0.084 

A, P, s 510.342 6 3.792 0.038 
Base 517.282 3 3.821 0.038 
A, r, s 510.636 6 4.085 0.033 
A, P, R 510.668 6 4.118 0.033 
A, P, r 510.695 6 4.145 0.032 
A, R, s 510.806 6 4.255 0.031 
A, R, r 510.989 6 4.438 0.0279 

P 516.716 4 5.491 0.016 
R 517.146 4 5.922 0.013 
r 517.179 4 5.954 0.013 

       s 517.189 4 5.964 0.013 
A, P, r, s 510.170 7 6.063 0.012 
A, P, R, s 510.275 7 6.118 0.012 
A, P, R, r 510.537 7 6.430 0.010 
A, R, r, s 510.577 7 6.470 0.010 

P, R 516.456 5 7.534 0.006 
P, s 516.559 5 7.637 0.006 
P, r 516.647 5 7.725 0.005 
R, r 517.025 5 8.104 0.004 
r, s 517.061 5 8.139 0.004 
R, s 517.066 5 8.145 0.004 

A, P, R, r, 
s 510.039 8 8.450 0.004 

P, R, s 516.318 6 9.768 0.002 
P, R, r 516.372 6 9.822 0.002 
P, r, s 516.467 6 9.917 0.002 
R, r, s 516.923 6 10.373 0.001 

P, R, r, s 516.211 7 12.104 0.001 
 

Note that the lowest ranked model is the model excluding only maternal age.  
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Additive Models 

For the IBI48 and IBI74 data, additive mixed models constructed using the R package mgcv 
yielded the same general conclusions as the linear mixed models and yielded no compelling 
evidence for nonlinearities. Additive mixed models had a negligible intraclass correlation; 
models were ranked similarly to the linear models, with some evidence for an influence of 
maternal age. Fig. S4 presents plots of mgcv-fitted additive models for IBI74 against fixed 
effects individually. The weak nonlinear behaviour of IBI versus population size and average 
rain (during the IBI) is particularly influenced by a small number of longer IBIs,  and is 
unlikely to be biologically meaningful. The regression tree analysis below also picks out this 
behaviour for population size and, as below, we argue that this nonlinearity results from over 
fitting of the data. 

Figure S4. IBI as additive models of each continuous predictor for the IBI74 data. 

100 150 200 250 300 350

20
30

40
50

60
70

Maternal Age

IB
I

20 40 60 80 100

20
30

40
50

60
70

Population Size

IB
I

100 150 200 250 300 350 400

20
30

40
50

60
70

Prior Rain

IB
I

30 35 40 45

20
30

40
50

60
70

Average Rain

IB
I

 



14 

 

 

Table S8. Descriptive statistics for the ‘global’ model for the subset IBI74 without maternal 
identity as random factor. Variable symbols as for Table S7; statistical notation as in Table 
S2. 

 

      Model              R2
a                F     df      p 

M(A, P, R, r, s)        0.027           1.379   5, 68 0.236 

      β    SE       b     SE      t     p 

    Intercept   20.27 11.31 1.792 0.078 

          A 0.28 0.12 0.037 0.015 2.432 0.0176 

          P -0.08 0.12 -0.025 0.035 -0.705 0.483 

          R 0.04 0.12 0.10 0.27 0.347 0.730 

         r 0.05 0.12 0.005 0.012 0.414 0.680 

     s (Female) -0.08 0.12 -0.64 0.95 -0.678 0.500 

 

Regression Tree Analysis 

 Because maternal identity as a random factor was not influential, we could 
supplement our analyses with a regression tree analysis with IBI as response and maternal 
age A, population size P, and the 6 months cumulative rainfall prior to the start of the IBI r as 
explanatory variables. De’ath and Fabricius (2000) argue that regression trees are ideally 
suited for modelling ecological data that may be complex and unbalanced and involve 
nonlinear relationships with interactions so we used it to check that the linear modelling (and 
additive modelling) did not overlook any influences of these variables. We used the R 
package ‘tree’ to perform the regression tree analysis. A regression tree is built by splitting 
the data into two subsets according to a criterion such as those IBIs for which A < 197 and A 
> 197 (assuming no A = 197). For each subset, the sum of squares of the response variable (in 
the usual sense of  the sum of squares of mean-centred values) is refered to as the deviance. 
The initial splitting is chosen to minimize, over all possible bifurcations of each explanatory 
variable, the sum of the two deviances. Once the intial splitting is made, the procedure is 
repeated for each of the subsets formed, and this process repeated until some stopping 
criterion is met. The various subsets of data that are not further split are called terminal nodes 
of the tree. For each terminal node the sum of squares of the response variable can be 
computed and their sum is called the total deviance of the tree. The total deviance D may be 
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viewed as the variation in the response variable unexplained by the tree. If  S denotes the sum 
of squares of the entire data set, then 

S
D

−1  

is an anlogue of R2, the coefficient of determination in linear regression. The following 
expression,where n is the data set size and p the number of terminal nodes, is the analogue of 
R2

a, and thus takes into account model complexity: 

)1/(
)1/(1

−
−−

−=
nS

pnDQ . 

The regression tree analysis for the IBI74 subset produced a tree with eight terminal 
nodes. Each terminal node is labelled with the mean of the IBI values grouped into that 
terminal node and the data set size for that terminal node, while the bifurcations are lablled 
by the splitting criterion, e.g, the criterion MaternalAge < 197 (MaternalAge =  A; PopSize = 
P; PriorRain = r; program R requires no spaces in variable names) defines the left branch of 
the first bifurcation. Note that each terminal node has rather small data set size and the 
quantity Q for this tree is 15.2%, suggesting the tree has overinterpreted the data. 
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Figure S5.Regression tree for IBI74 data. 

 

The package ‘tree’ includes an algorithm for pruning a given tree to yield smaller 
trees nested within the given tree; in particular, the algorithm attempts to produce a best tree 
of each smaller size than the given tree. In the present case, the pruning algorithm yields 
nested trees with number of terminal nodes:: 7 (Q = 15.2%), 6 (Q = 14.4%), 5 (Q = 13.0%), 3 
(Q = 8.9%) but no tree with only 4 terminal nodes. The best tree with 5 terminal nodes is 
given in Figure S6.  

 



17 

 

 

 

 

Figure S6. The tree of Fig. S5 pruned to 5 terminal nodes. 

 

The first bifurcation splits IBIs according as maternal age is less than or greater than 
197 months. The former 61 IBIs have a mean of 28, while the latter 13 IBIs have mean of 34. 
This split reflects the influence of maternal age on IBI. Consistent with the scatter plot of Fig. 
2, this influence is through a small number of observations of longer IBIs at higher maternal 
ages. Indeed, the subset of 13 IBIs with A > 197 includes the three longest IBIs of 74, 54 and 
47. We suggest a more mature population with a more representative distribution of maternal 
ages is required to clarify whether the influence of maternal age is biologically real (we 
suspect it is) and what form it takes (a functional inverse relationship of IBI on maternal age 
or a pronounced effect only at high  maternal ages, i.e., a kind of incipient senescence effect). 
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The next bifurcations are based on criteria involving population size P but in both 
cases the mean IBIs of terminal nodes are larger at lower population sizes. Hence, these 
splittings are not a density dependent effect, at least not the expected one. In the scatter plots 
of Fig. S7 there is evidence of a trend for IBI to increase with population size within node 1, 
but this trend does not continue for higher population sizes in nodes 2+3 (and disappears for 
the IBI48 data subset). 

Figure S7. Scatter plots of IBI versus population size for the tree of Fig. S6. In the top 
right panel, nodes 2 and 3 (numbered from left to right in Fig.S6) are combined.  
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 We suggest the trees are over interpreting the data, apart from identifying the 
influence of maternal age, which for the IBI74 data stems from the fact that the three longest 
IBIs occurred at high maternal age and that there were few other long IBIs. 

To test for a delayed effect of rainfall on IBI, we set Rain1 to be the cumulative 
rainfall over the 12 month period ending with the first month of the IBI, Rain2 to be the 
cumulative rainfall for the 12 month period before that, and Rain3 to be the cumulative 
rainfall for the 12 month period before that of Rain2. With maternal age and these measures 
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of rainfall as possible fixed effects and maternal identity as random factor (for consistency 
with previous results; the influence of maternal identity was again negligible), these models 
had ∆AICc values greater than ten. Plots of IBI versus each of these fixed effects using the R 
package mgcv, i.e., in which the response is fitted as an additive model, do not provide any 
evidence for an influence of delayed rainfall on IBI either. With modRain as the mean 
monthly rainfall during that part of the IBI prior to the conception resulting in the birth 
terminating the IBI, the model with maternal age and modRain as predictors had a ∆AICc of 
7.5 and thus was not competitive (nor was modRain alone, ∆AICc = 4.9). 

Figure S8. IBI as additive models of maternal age and rainfall in previous years for the IBI74 
data.

 

Mortality 
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Table S9. Mortalities. Status: I = import, with year of release; N = native; Rainfall: DS = dry 
season, WS = wet season. Stage: SA = subadult; A = adult. The final column indicates 
whether the period during which the mortality occurred (defined by how accurately the date 
of death is known) experienced less, more, or normal rainfall, determined by examining the 
rainfall records (where normal is judged to be within 1 PSD of the period mean), for rainfall 
data 1986 – 2008. There is no apparent pattern. 

 

Name 
(status) 

Sex Stage Age (y) Date Cause Rainfall 

U (N) ? calf < 1 between 
4/03 & 
12/03 

unknown normal DS;  
normal 10/03 -
12/03 

Lucy (I; 
89) 

F SA about 5 1/91 unknown dry 10 – 
12/90; normal 
1/91 

Elsa (I; 
97) 

 

F SA about 5 
– 6   

in 2000 unknown wet Jan – Apr; 
normal May - 
Dec 

Yanda 
(N) 

F SA; 
as of 
8/01 

about 3 in 2002 unknown dry Jan – Apr, 
wet DS; dry 
Oct - Dec 

Mystery 
(N) 

F SA; 
as of 
7/03 

about 4 between 
7/05 & 
12/05 

unknown normal (but 
below average 
DS) 

Chitha 
(N) 

F SA;  
as of 
8/05 

about 
3.5  

1/07 unknown normal 10/06 
– 1/07 

Celani 
(N) 

M SA; 
as of 
8/03 

about 
2.5 

8/03 killed by young bull 
shortly after separation 
from mother 

normal DS 

Owethu 
(N) 

M SA; 
as of 
9/03 

about 4 2005 unknown Wet Jan – 
Apr; normal 
DS; normal 
Oct - Dec 
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Quelea 
(N) 

M SA; 
as of 
10/08 

about 2 11/08 killed by rhino, shortly 
after separation from 
mother 

normal DS; 
normal Oct - 
Dec 

Funani 
(N) 

M SA; 
as of 
4/04 

not 
quite 3 

between 
4/04 & 
11/04; 
probably 
6/04 

probably killed by bull normal DS; 
normal Oct - 
Dec 

Ndumu 
(I) 

M A at least 
10 

between 
1/92 & 4/92 

unknown Dry Jan - Apr 

Khataza 
(I) 

F A about 36 4/98 presumed old age normal WS 
97/98 

Burdettski 
(I) 

F A about 30 12/05 presumed old age Nov very wet; 
Dec very dry 

Jumbluti 
(I) 

M A about 35 2006 presumed old age Wet DS, 
normal Jan – 
Apr, Oct - Dec 

Hlathi (N) M A 13.75 11/07 euthanized  due to 
injuries inflicted by 
bulls 

normal DS, 
normal Oct - 
Nov 

 

The three calving sequences with unusually long IBIs were, (net uncertainty Z of the IBI in 
brackets): i) 23 (1); 24(0); 25(3); 24(4), 30(4), 47(4), 24(4); ii) 32 (4); 33 (6); 54 (4); and iii) 
28 (6); 26 (9); 44 (3). 

For those years in which at least one subadult died, we computed annual subadult 
mortality rate as the number of subadult deaths during the year divided by the number of 
subadult years for the given year. The latter was computed as follows. For each subadult alive 
during the year, we computed the fraction of that year the individual was a subadult and 
summed these fractions. The sum represents the total subadult exposure to mortality for that 
year. Fig. S9 displays the results. 
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Figure S9. Annual subadult mortality rate, computed as described in the text. 

 

 

 

Cox Proportional Hazard Models for Subadult Mortality. 

There were 95 subadults during the study period, of which nine died, 44 reached 
adulthood during the study, 5 were exported (in 2006), and the remaining 37 were still alive 
and subadults at the end of 2008. To construct a Cox proportional hazard model, those 
subadults that did not die were right censored, the 44 that reached adulthood at their time of 
transition from subadult to adult, the five that were exported as of May 2006, and the 
remaining 37 at the end of 2008. For each subadult, we computed the length of time it was a 
subadult during the study. For animals imported as subadults, we used the import date as the 
beginning of their subadulthood for the Cox proportional hazard models. As covariates, we 
used an individual’s sex (female = 0; male = 1), the age at which it became a subadult, the 
population size (PopSize) at the time it became a subadult, and the average monthly rainfall 
during the time it was a subadult (AvRain). In Table S9, we indicated rainfall proximal to 
each mortality but that does not itself provide a covariate for each subadult. So we employed 
AvRain to explore any association between rainfall and mortality. Due to the presence of a 
categorical predictor (sex), we normalized the continuous predictors by mean centering and 
dividing by twice their standard deviations (Gelman and Hill 2007, pp. 56–57). We 
conducted the analyses using the package ‘survival’ in R. 

We chose as our global model the model with all six pairwise interactions of the four 
covariates. For this model, R provided the following test statistics, which are viewed here as a 
measure of model fit. 

Rsquare = 0.183   (max possible = 0.563 ) 
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Likelihood ratio test = 19.14  on 10 df,   p = 0.03847 

Wald test  = 17.47  on 10 df,   p = 0.06469 

Score (logrank) test = 25.33  on 10 df,   p = 0.00475 

Fig. S9 suggested that there might be an effect of population size after 1999 on subadult 
mortality but we had no other preconceived expectations as to which submodels might be 
plausible. There are too many submodels to consider all of them with this data set. We 
therefore applied the R function ‘step’, which eliminates one term at a time based on AIC 
values (except that we used AICc), to our global model. After this process, we checked other 
simple models not produced in this step-down procedure to make sure we had not overlooked 
other models of low AICc score. Table S10 records results of the model comparison. 

 

Table S10. Comparison of Cox proportional hazard models for subadult mortality. K is he 
number of model parameters. 

 

Model K ∆AICc Model   K AICc 

AvRain 1    0 AvRain+sex+age 3   3.17 

AvRain*PopSize+PopSize*sex 5    0.32 AvRain*PopSize+sex 4  3.74 

AvRain+age 2   1.14 AvRain+sex+PopSize 3  3.74 

AvRain*PopSize+AvRain*sex+ 

PopSize*sex 

6   1.43 AvRain*sex 3  3.97 

AvRain+sex 2   1.84 AvRain+sex*PopSize 4  3.99 

AvRain+PopSize 2   1.84 AvRain*PopSize+AvRain*sex+ 

PopSize*sex+age 

8  4.26 

AvRain*PopSize 3   2.01 AvRain+PopSize+sex+age 4 5.35 

AvRain*PopSize+AvRain*sex+ 

PopSize*sex+age 

7   2.73 null model 0  5.59 

 

The global model (K=10) has ∆IACc = 9.07. Models with K ≤ 3 but without AvRain 
were ranked beyond the null model. It is clear that AvRain is the dominant predictor but that 



24 

 

model averaging over several models that include terms might be appropriate. Statistics 
provided by R for the two top models were 

Rsquare = 0.077   (max possible = 0.563 ) 

Likelihood ratio test = 7.64  on 1 df,   p = 0.005711 

Wald test = 10.37  on 1 df,   p = 0.001279 

Score (logrank) test = 13.32  on 1 df,   p = 0.000263 

and 

Rsquare = 0.155   (max possible = 0.563 ) 

Likelihood ratio test = 15.95  on 5 df,   p = 0.006981 

Wald test = 15.72  on 5 df,   p = 0.00768 

Score (logrank) test = 17.85  on 5 df,   p = 0.003136, 

respectively, while statistics for the covariate coefficients are recorded in table S11. 

 

Table S11. Coefficients for the two top models of table S10. 

 

Variable Coefficient SE p 

Top Model    

AvRain -1.70 0.53 0.0013 

Second Model    

AvRain -2.20 0.58 0.0002 

sex -1.05 0.93 0.2615 

PopSize 0.05 0.91 0.9544 

AvRain.PopSize 4.7 2.1 0.0242 

PopSize.sex 4.0 1.8 0.0262 

 

As expected, mortality varies inversely with AvRain. Every subadult that did not die 
experienced a wet season (even those subadults right censored at the end of 2008 experienced 
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at least the final (wet-season) months of 2008) and their AvRain values tend to be averages 
over several years (the mean ± PSD for all 95 values is 37.5 ± 4.8mm; for those that did not 
die 37.8 ± 3.7mm; and for those that did die 34 ± 10mm). One might expect AvRain to be a 
useful predictor of mortality as low values should reflect either a succession of dry years or 
an individual that lived as a subadult for just a few months in a dry season. Table S1 indicates 
there was no succession of dry years in our study. On the other hand, three of the nine 
subadults that died did so within two months of becoming a subadult so their AvRain values 
depend acutely on the few months in which they happened to be subadults. In particular, the 
lowest AvRain value of 12.1mm occurred for a subadult that survived for only one month as 
a subadult during a dry season. The next lowest value of 24.5mm occurred for a subadult that 
died after just two months, also within a dry season. But the third animal, dying after just one 
month had an AvRain value of 44.1mm as it died within a wet season. Removing the 
mortality with the lowest AvRain value datum from the analysis considerably weakens the 
results. For the global model one now has the following statistics: 

Rsquare = 0.148   (max possible = 0.523 ) 

Likelihood ratio test = 15.09  on 10 df,   p = 0.1288 

Wald test  = 13.71  on 10 df,   p = 0.1865 

Score (logrank) test = 12.44  on 10 df,   p = 0.2569 

indicating a less appropriate model of the data. From the global model, the R function ‘step’ 
leads to the model AvRain*PopSize + AvRain*sex+PopSize*sex (K = 6, AICc = 69.79), 
which is more complicated than the model obtained from ‘step’ with the full data set. With 
the restricted data set, the model with AvRain as sole covariate has AICc = 70.26 while the 
null model has AICc = 69.56. Thus, removing this single datum radically weakens the 
effectiveness of AvRain  as an explanatory variable. The strong influence of this single datum 
indicates a lack of robustness in the previous modelling results. As already noted, with the 
full data set, models without AvRain were ranked beyond the null model, e.g., beginning with 
PopSize*sex+PopSize*age+age*sex and applying ‘step’ results in PopSize*sex with ∆AICc 
= 9.00. 

Since Fig. S9 also suggests a threshold effect in subadult mortality as of 2000, we also 
examined models with PopSize replaced by a simple categorical variable that distinguished 
between whether a subadult ceased to be at risk as a subadult of the population before 2000 
or after 1999. This variable actually performed worse than PopSize, as models containing it 
had AICc values larger than the corresponding models with PopSize. In particular, the result 
of applying the R function ‘step’ to the global model with the categorical variable in place of 
PopSize was the model containing AvRain only. 

 For a dataset with more mortalities AvRain (and indeed the other covariates) may 
well be a useful explanatory variable but for our data set we concluded that there are just too 
few mortalities for the Cox proportional hazard models to be robust. 
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 Q-Q plots of the durations of subadulthood for those 44 subadults achieving 
adulthood and of the nine subadults that died each suggest normality is plausible (in 
particular, the Shapiro-Wilk test returned p = 0.385 and 0.319 respectively). To assess the 
robustness of the t-test result reported in the manuscript to uncertainty arising from EUs, we 
relied on the largish number of subadults that reached adulthood to average out uncertainties 
and focused on the uncertainties in dates of death. Four of the nine mortalities had 
uncertainties in date of death. For these four data, we took the maximum uncertainty in 
months and added that to the nominal duration. The mean duration ± SE of subadulthood 
with this modified data for those subadults that died was 16.1 ± 4.3 months and for this 
modified data the t-test returned p < 10-4 (even when allowing for unequal variances). 

DISCUSSION 

Comparison of SKKR to Other Studies. 

Hrabar & du Toit (2005) did not distinguish between imports and natives and found a mean 
AFR of 7.25y, with a range from 6 to 8.92 years; 33% had calved before 7y, 83% before 8y 
and all before 9y. The SKKR population had both younger and older AFRs than the 
Pilanesberg population and a younger mean AFR but does not appear atypical compared to 
the data summarized by Owen-Smith (1988), pp. 140 – 141, who noted considerable 
variation, but with mean AFR for both wild and captive populations tending to occur in the 
sixth year. In conclusion, the AFRs of natives, despite the uncertainty due to EUs, accord 
well with other data on AFR for black rhino. 

Hitchins and Anderson (1983) reported a qualitative correlation between AFR and 
density in the Hluhluwe/Corridor/Umfolozi Game Reserve Complex. Hrabar and du Toit 
(2005) found a tendency for AFR to increase with population size but a regression analysis 
was judged to be not ‘significant’ with a p value of 0.071 (R2

a  = 0.402). 

Owen-Smith (1988), Table 10.1, quoted a mean IBI of 2.6y (31m) and minimum of 
2.1y (25m). Skinner and Chimimba (2005) reported a range for mean IBIs at different 
locations in South Africa of 2.1 (25m) – 3.4y (41m) in the late 1980s and report an IBI of 23 
months from Zimbabwe. Walpole et al. (2001) reported a mean IBI of 35m with a mode 
occurring in the range 21 – 30m, an IBI in the range 11 – 20m and another in the range 61 – 
70m; Hrabar & du Toit (2005) reported a mean IBI of 2.83y (34m) with a range of 1.67y 
(20m) – 5.17y (62m).  

Hrabar and du Toit (2005) reported a nearly ‘significant’ negative relationship 
between IBI and population size but that the most important relationship was an increase in 
IBI with decreasing annual rainfall and argued (p. 264) that ‘Periods of low rainfall must 
reduce the body condition of female black rhinos by reducing the quantity and quality of their 
food supply...’ The relationship between mean annual precipitation and primary production, 
both herbaceous and woody, upon which this argument is based, is reviewed by Shorrocks 
(2007). That no influence of rainfall on IBIs of the SKKR population was detected is 
therefore noteworthy. On a seasonal basis, B. Fike notes that there was no observed loss of 
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body condition during the dry season amongst black rhino of the SKKR population. The 
habitat of SKKR is regarded as high quality for black rhino (Ganqa et al. 2005; but especially 
van Lieverloo 2009, who concluded that black rhino in GFRR readily met their energetic and 
nutritional requirements without exhibiting detectable preferences for available browse) and 
Fike believes browse is plentiful for SKKR black rhino even during the dry season. SKKR 
black rhino also browse extensively on succulent Euphorbia species (Ganqa et al. 2005, 
Heilmann et al. 2006, and Luske et al. 2009), which are thought to be a source of water (Hall-
Martin et al. 1982, Dudley 1997), especially during the dry season. It is unknown whether 
this habit is important for satisfying water requirements of SKKR black rhino; it may be that 
surface water is adequate even during the dry season. As IBIs average over two years, 
however, the pattern in rainfall over the years may be more relevant. Table S1 indicates that 
there was no pronounced succession of dry years over the study period, particularly since 
1988, so it may be a contingent fact that annual rainfall has not been low enough, regularly 
enough, to impact IBIs of the SKKR population, especially if conditions combine to make the 
SKKR population robust to the effects of the typical dry season. Thus, a more comprehensive 
comparison between black rhino populations as regards the influence of rainfall on IBI (or 
other aspects of rhino biology) surely requires detailed information on the particular 
resources available to the different populations, the seasonal variation in these resources, and 
the actual historical record of annual rainfall. Such comparisons will also depend on how 
accurately measures of mean annual rainfall reflect local impacts of rainfall. 

W. Linklater drew our attention to Grange et al. (2009), who reported evidence that 
artificial selection for high fertility in domesticated ungulates may result in feral populations 
of ungulates (e.g., feral horses) that do not follow Eberhardt’s (2002) paradigm. Grange et al. 
reported that while adult males behaved as expected, maintaining high survival in the face of 
high density, female adults compromised their survival to maintain high fertility in the face of 
high density. It will be interesting to see whether natural selection (if allowed) will eliminate 
this ‘aberrant’ behaviour in due course. 
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