Quaternary International 292 (2013) 150-167

Contents lists available at SciVerse ScienceDirect

Quaternary International

journal homepage: www.elsevier.com/locate/quaint

Biostratigraphy of the Upper Pleistocene (Upper Neopleistocene) of the Southern Urals

Anatoly Yakovlev, Guzel Danukalova*, Eugenija Osipova

Institute of Geology, Ufa Scientific Centre, Russian Academy of Sciences, K. Marx Str. 16/2, 450077 Ufa, Bashkortostan Republic, Russian Federation

ARTICLE INFO

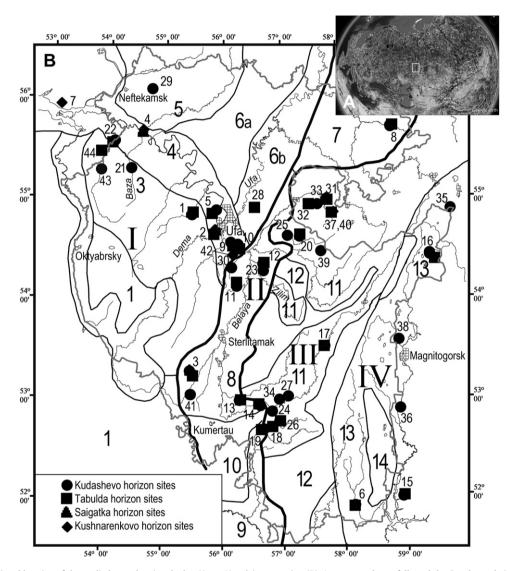
Article history: Available online 23 October 2012

ABSTRACT

This paper is a synthesis of the previously published and unpublished materials dealing with the stratigraphy of the Upper Pleistocene (Upper Neopleistocene according to the Russian stratigraphic scheme) of the Southern Urals. It is the second review about the characteristics of the Pleistocene deposits of the easternmost part of Europe. It follows a previous paper concerning the biostratigraphy of the Late Middle Pleistocene of this region. The deposits which constitue the regional stratigraphic units are characterized. The results of the mammalian, malacological and palynological investigations as well as the radiocarbon data provide the basis for the stratigraphical subdivision and the reconstruction of the palaeoenvironments. The main geological and biotical events of the Southern Urals region which took place during Late Pleistocene are characterized in the paper. Erosional processes became active at the beginning of Kushnarenkovo time when uplift took place in the Urals and when the Late Chosarian regression began on the Caspian Sea basin territory. Fluvial deposits can be observed at the base of the second terrace which developed above the floodplain. A soil was formed on the subhorizontal surfaces. Forest-steppe and steppe landscapes characterized this interval. The climate was warm and humid. The Saigatka horizon formed under cold conditions. Slope processes and solifluction were the main relief-forming processes and fluvial erosion processes became weaker. Floodplain sediments accumulated in the river valleys and formed the upper parts of the second terraces above the floodpain which were intensively eroded. The plains were covered by steppe and the mountainous areas were occupied by tundra and forest-tundra landscapes. The next erosional cycle began during the following Tabulda period, because of the lowering of base level of the erosion and increased uplift of the territory. The fluvial sediments now form the lower parts of the first terraces above the floodplain. A soil was formed on the watersheds. Sites contain Late Palaeolithic artifacts. The floral association was close to Southern Uralian flora of the present-day. The climate was moderately warm in the plains and drier and cooler in the mountains. The subsequent Kudashevo event can be correlated with the Late Glacial when the climate became colder. Loess-like sediments and floodplain deposits form the upper parts of the first terrace above the floodplain and cover the watersheds, where they contain cryogenic structures. The climate was moderately cold. Late Palaeolithic sites attributed to the Kudashevo time are known in the Southern Urals region. The stratigraphical positions of the main Upper Neopleistocene localities of the Southern Urals are discussed. The Southern Urals subdivisions are correlated with the Western European stratigraphical scheme (Eemian-Weichselian interval).

© 2012 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction


During the Late Quaternary, as well as during all the Quaternary, the Southern Urals was characterized by continental climatic conditions and by tectonic activity. The region was a non-glacial area

* Corresponding author. E-mail address: danukalova@ufaras.ru (G. Danukalova). during the cold climate periods. Fluvial deposits containing organic remains represent the main elements in the palaeogeographical reconstructions and for correlation between the various sediment units. Deposits dating from the Upper Neopleistocene (a unit of the Russian stratigraphic scheme, equivalent to the Upper Pleistocene subseries; time interval 0.27–0.01 Ma) are locally preserved. The systematic study of the Neopleistocene deposits of the Southern Urals region has been carried out for more than 50 years. Over 50 key localities, expose the Upper Neopleistocene deposits. All these

^{1040-6182/\$ –} see front matter @ 2012 Elsevier Ltd and INQUA. All rights reserved. http://dx.doi.org/10.1016/j.quaint.2012.10.041

Fig. 1. General map (A) and location of the studied area showing the key Upper Neopleistocene sites (B). A – a general map followed the Google-earth. Legend: I–IV-s: I – Southeast of the Russian platform; II – Fore-Uralian; III – Uralian; IV – Trans-Uraltau; 1–14 – regions: 1 – Bugulma–Belebei Highland, Obshyi Syrt Highland (eastern part); 2 – Ik and Dema (upstreams) Rivers Basin; 3 – high left bank of the Belaya River (Syun' and Baza Rivers); 4 – Belaya River Basin from Ufa town to the river mouth; 5 – high right bank of the Belaya River (Bui and Bystryi Tanyp Rivers); 6a – Ufa River Basin (between the Krasnoufimsk city and the river mouth); 6b – western slope of the Ufimian Plateau; 7 – Yuryuzan and Ai Rivers Basin (56°–55° N); 8 – Belaya River Basin (including high right and left banks of the river) (55°–53° N); 9 – Sakmara and Ural Rivers Basin (53°–52° 30' N); 10 – Interfluves; 11 – Belaya River Basin with tributaries (between the upstream of the Belaya River and the Nizhnebikkuzino village); 12 – Interfluves; 13 – Ui, Sakmara, Ural Rivers Basin (from the upstream of these rivers to Kuvandyk town); 14 – Interfluves. Key Upper Pleistocene sites (small Arabic numbers): 1 – Sultanaevo; 2 – Voevodskoye; 3 – Tabulda; 4 – Chui–Atasevo III; 5 – Gornovo I, II; 6 – Burybai; 7 – Krasnyi Bor; 8 – Novobelokatai; 9 – Starye Kiishki; 10 – Kabakovo; 11 – Uteimullino II; 12 – Kuznetsovka; 13 – Basurmanovka; 14 – Nizhnebikkuzino; 15 – Tanalyk I, II; 16 – Ilchino I, II; 17 – Kaga; 18 – Syuren'; 19 – Mrakovo; 20 – Zapovednaya cave; 21 – Sultino and Yantuganovo (Baza River); 22 – Kalchakovo (Syun' River); 23 – Magash; 24 – Akbuta; 25 – Kalinovka II; 26 – Bajslan-Tash cave; 27 – Shulgan-Tash (Kapova) cave; 28 – Minzitarovo; 29 – Novokudashevo; 30 – Karlaman; 31 – Ignatievskaya cave; 32 – Asha I cave; 33 – Prizhim 2 cave; 34 – Maksyutovo Grotto; 35 – Ustinovo Grotto; 36 – Syrtinskaya cave; 37 – Serpievskaya 2 cave; 38 – Smelovskaya 2 cave; 39 – Verkhnaya cave; 40 – Serpievskaya 1 cave; 41 – Zlatoustovka; 42 – Chatra; 43

sites are located in the Belaya River Basin and particularly in the terraces resting above the modern floodplain and in the caves of the mountainous part of the Southern Urals (Fig. 1).

2. Materials

Forty Upper Neopleistocene deposit localities amongst the 50 sites have been biostratigraphically investigated and described (Fig. 1). Sixteen and eighteen of these localities have yielded small (around 29,000 determinable bones) and large mammalian (more than 31,000 determinabled bones) fossils. A total of 22 localities contain mollusc shells (nearly 8000 mollusc shells or their identifiable fragments have been studied). Twenty-five localities display clear palynological characteristics.

3. Methods

The traditional methods of dispersal of sediments in water, using sieves with a mesh size of 0.8–1.0 mm), were used to recover the small-mammal, molluscan and plant remains (Zhadyn, 1952; Guslitcer, 1979; Sinitskikh, 1982; Agadjanian, 1987). Processing of the samples for the palynological analyses has been done using the standard methods described by Grichuk and Zaklinskaya (1948) and Pokrovskava (1950). Species determination was done following Likharev and Rammelmeier (1952), Zhadyn (1952), Shileyko (1978, 1984), Gromov and Baranova (1981), Shileyko and Likharev (1986), Gromov and Erbaeva (1995), Nederlandse Fauna 2 (1998) and Kerney and Cameron (1999). The palaeontological collections are kept at the Institute of Geology of the Ufimian Scientific Centre RAS (Ufa) and at the Institute of Ecology of Plants and Animals of the Uralian branch of the RAS (Ekaterinburg). Radiocarbon dates were performed by geochronological laboratories of the Geological institute (GIN) of the RAS (Moscow), the Institute of Geography of the Saint-Petersburg university (LU) and the Institute of Geology of the Siberian branch (SOAN) of the RAS (Novosibirsk).

4. Stratigraphical subdivision of the Upper Neopleistocene

Upper Neopleistocene deposits are known in alluvial and subaerial (eluvial, colluvial and deluvial) facies in various places of the Southern Fore-Urals region. Local names have been used for the stratigraphical subdivisions. They incorporate the upper part of the regional stratigraphic scheme, in which Kushnarenkovo, Saigatka, Tabulda and Kudashevo horizons have been recognized. The correlation of the Southern Urals and Eastern European stratigraphical units is shown in Table 1.

4.1. Kushnarenkovo Horizon

This horizon (Danukalova, 2010) is named after Kushnarenkovo village (Bashkortostan Republic, Russia). The horizon is characterized by lacustrine-subaerial loam, fluvial gravel and sand, including 1) the second Voevodskoye hydromorphic soil (Voevodskoye, 0.6 m thick); 2) the third Sultanaevo soil (Sultanaevo, outcrop 107, 0.2 m thick) and 3) the third Chui–Atasevo soil (Chui–Atasevo III, 1.2 m thick) formed at the interfluves. The total thickness of the deposits is 0.2–0.85 m. The deposits rest on the lacustrine loam of the Elovka Horizon (Late Middle Pleistocene) and are overlain by lacustrine and diluvial silty loess-like loam and fluvial sand of the Saigatka Horison (Karmasan Suite) or by soil of the Tabulda Horison. Erosional intervals exist between them.

Stratigraphic scheme of the Upper Neopleistocene of the Southern Urals region and correlation with schemes of other regions.	he Upper Neoplei:	stocene	of the Southe	rn Urals region a	and corre	lation with sc	themes of other n	egions.					
Global Quaternary scheme (Gibbard and		Marin isotop	Marine Stratigraphic scheme isotope of Russia (Zhamoida	uic scheme Zhamoida		Southern Urals region (Yakhemovich et al., 1)	Southern Urals region (Yakhemovich et al., 1987,	Eastern Europ (Shick	Eastern European platform Urals (Shick (Stefa	Urals (Stefanovsky, 1997)	1997)	Lower Volga region West European (Shick et al., 2004) stratigraphic di	Lower Volga region West European (Shick et al., 2004) stratigraphic divisions
Cohen, 2008)		stage: -	stages et al., 2006)	(1988; Danukalova, 2007, 2010)	ılova, 2007,	et al., 2004)					(The Netherlands) (Zagwijn, 1996)
System Series	Subseries, stages	ş	Division	Division Subdivision	Link	Link Superhorizon Horizon	Horizon	Superhorizon Horizon		Superhorizon Horizon	Horizon	Horizon	Horizon
Quaternary Pleistocene Upper	Upper	2	Pleistocene	Pleistocene Neopleistocene Upper Valdai	Upper	Valdai	Kudashevo	Valdai	Ostashkovo Northern	Northern	Polar	Khvalyn Sarpino	Weichselian Upper
										Uralian	Uralian		
		с					Tabulda		Leningrad		Nevjansky	Enotaevka	Middle
		4					Saigatka		Kalinin		Khanmeisky	Tereshkino	o Lower
							(Nurlino						
		7 4 1					(alluc					Vheese 1	
		оа—а 5е					Kushnarenkovo		Mikulino		Streletsky	Nilazar Upper	Eemian

Table 2

Upper Neopleistocene molluscs of the Southern Urals region.

Species	Horizons			
	Kushnarenkovo	Saigatka	Tabulda	Kudashevo
Succinea putris			U2 UB2 K1	U1, I
(Linnaeus, 1758)		S1		111 C2 C4
Succinella oblonga (Draparnaud, 1801)		51	U2 G5 G3 UB2 K1	U1 G2 G4 Tn R I K2 Ak
Oxyloma elegans		S1	G5 G3	Tn R Ak
(Risso, 1826)				
Succinea sp.		61	U2 K1	U1
Cochlicopa lubrica (Müller, 1774)		S1	Z	R Ak
Vallonia costata	S2	S1	U2 G5	U1 G2 B2
(Müller, 1774)			UB2 Z K1	R I K2 Ak
V. tenuilabris			U2 G3 K1	U1 I K2
(Al. Braun, 1843) V. pulchella			U2	U1 Tn I
(Müller, 1774)				
Vallonia sp.			U2 K1	U1 B2
Vertigo antivertigo				I
(Draparnaud, 1801) V. pygmaea				Tn R Ak
(Draparnaud, 1801)				
Vertigo sp.				Tn
Columella sp. Pupilla muscorum			K1 U2 G3 K1	U1 G2 B2
(Linnaeus, 1758)			02 G3 K1	Tn I K2
Vitrea contracta		S1		
(Westerlund, 1871)				
Ena sp. Discus ruderatus			G3 UB2 Z	R Ak
(Hartmann, 1821)			GJ 0D2 2	K / K
Chondrula tridens			Z	K2
(Müller, 1774)				
Perpolita hammonis (Strom, 1765)			UB2 Z	
P. petronella				Tn
(L. Pfeiffer, 1853)				
Pseudotrichia rubiginosa	S2		G3	G4, G2 I
(Rossmässler, 1838) Fruticicola fruticum				B2
(Müller, 1774)				52
Lymnaea stagnalis				11
(Linnaeus, 1758) Lymnaea (Peregriana)			N	U1 B2 R
peregra (Müller, 1774)			IN .	01 B2 K
Lymnaea sp.			K1	U1
Stagnicola palustris			G5 G3	U1 B2
(Müller, 1774) Stagnicola sp.			UB2 N	Tn R Ak I
Planorbis planorbis	С		U2 G5 G3 N	-
(Linnaeus, 1758)				
Anisus spirorbis			U2 G5 G3	U1 G2 UB2
(Linnaeus, 1758) A. vorticulus			UB3 N K1 B1	B2 Tn I
(Troschel, 1834)			21	
A. vortex				B2 Tn
(Linnaeus, 1758) Pathyomphalus			U2 G5	Tn
Bathyomphalus contortus			02 G5	111
(Linnaeus, 1758)				
Gyraulus albus		S1		B2 I
(Müller, 1774) G. laevis (Alder, 1838)			U2 G5	U1 B2 I
G. rossmaessleri			UB2	R Ak
(Auerswald, 1852)				
G. (Armiger) crista (Linnaeus, 1758)			U2 UB2 K1	U1 B2 R Ak
G. cf. gredleri			K1	U1 Tn
(Gredler, 1853)				
Gyraulus sp.			K1	Tn I Ta I
Aplexa hypnorum (Linnaeus, 1758)				Tn I
Segmentina nitida			UB2	Tn R Ak
(Müller, 1774)				_
Acroloxus lacustris				Tn
(Linnaeus, 1758)				

Table 2	(continued)
---------	-------------

Species	Horizons			
	Kushnarenkovo	Saigatka	Tabulda	Kudashevo
Ancylus fluviatilis			UB2	
(Müller, 1774)				
Borysthenia naticina				I
(Menke, 1845)				
Valvata piscinalis			G5	Tn
antiqua (Morris,				
1820)	_			
V. piscinalis	С		U2 UB2	U1 B2 Tn
(Müller, 1774)				R I Ak
V. pulchella		S1	U2 K1	U1 Tn R I
(Müller, 1774)				K2 Ak
Bithynia troscheli			U2 UB2	U1 B2
(Paasch, 1842)				
Bithynia tentaculata				I
(Linnaeus, 1758)			60	
Bithynia sp.			G3	
(operculum)	6		110 65 60	114 DO T
Pisidium amnicum	C		U2 G5 G3	U1 B2 Tn
(Müller, 1774) P nitidum			U2	R I Ak
11 mendum			02	U1 R Ak
(Jenyns, 1832) <i>Pisidium</i> sp.			K1	
1	C		U2 G3 K1	U1 Tn I
Sphaerium rivicola	L		02 G3 KI	01 111
(Lamarck, 1818)	C		Gr	B2 R Ak
Unio sp.	L		Gr	DZ K AK
Anodonta sp.			Gľ	

Ak, Akbuta, bed 6; B1, Basurmanovka, bed 10; B2, Basurmanovka, beds 6–7; C, Chatra, bed 10; G2, Gornovo I, beds 2–6; G3, Gornovo I, bed 7; G4, Gornovo II, bed 1; G5, Gornovo II, beds 2–3; Gr, Gruzdevka, beds 6–11; I, Yabalakovo, beds 2–6; II, Ilchino II, bed 2; K1, Karlaman, bed 10; K2, Karlaman, section II, beds 2–7; N, Novobelokatai, beds 3–5; R, Krasnyi Yar, section 1, bed 4; S1, Sultanaevo, excavation 2, bed 5; S2, Sultanaevo, excavation 2, bed 7; Tn, Tanalyk, section I, bed 2; U1, Uteimullino II, beds 2–9; U2, Uteimullino II, beds 6–10; UB2, Nizhnebikkuzino, excavation 1, beds 2–5; UB3, Nizhnebikkuzino, excavation 2, beds 1–15; Z, Zapovednaya cave, excavation 1, bed 3.

Deposits form the lower part of the erosional second above the floodplain river terrace (8.35 m high). Due to erosion, those deposits are rarely found in the region.

The Sultanaevo stratotype site is located at 110 m above sea level (outcrop 107, beds 4–6) (Yakhemovich et al., 1983; pp. 4–36) (Fig. 2). The key sites for the Kushnarenkovo Horison include the second Voevodskoye hydromorphic soil located in the Voevodskoye (excavation 1, bed 5, 0.6 m in thickness) (Yakhemovich et al., 1980; pp. 4–29); fluvial gravel in grey sand cement found at the Tabulda site (excavation 2, bed 7, 0.4 m in thickness) (Yakhemovich et al., 1985; pp. 39–44); the third Sultanaevo soil (excavation 2, bed 7, 0.2 m thick and excavation 3, bed 8, 0.2 m thick) and lacustrine-subaerial loam (outcrop 107, beds 4–6, 0.85 m thick) sampled in the Sultanaevo site (Yakhemovich et al., 1983; pp. 4–36); and the third Chui–Atasevo soil observed in the Chui–Atasevo III site (bed 4, 1.2 m thick) (Yakhemovich et al., 1987; pp. 6–21).

The vegetation during the deposition of this unit was characterized by *Pinus-Picea* and *Betula* forests with *Tilia*, *Alnus*, *Quercus* and *Fraxinus* admixture. Various types of herbs covered some open areas. Forest-steppe and steppe became widespread at the end of this time. The palynological data probably do not reflect the climatic optimum. The climate was warm and humid (Yakhemovich et al., 1983, 1987). The molluscan assemblage investigated at the Sultanaevo (excavation 2, bed 7) and Chatra (bed 10) localities (Fig. 1) consist of 2 terrestrial (*Vallonia costata* (Müller.), *Pseudotrichia rubiginosa* (Rossmässler)) and 5 freshwater species (*Planorbis planorbis* (Linnaeus), *Valvata piscinalis* (Müller), *Pisidium amnicum* (Müller), *Sphaerium rivicola* (Lamarck), *Unio* sp.) (Sidnev and Chepalyga, 1983; Osipova, 2009a, 2009b; Osipova and Danukalova, 2011) (Table 2).

Table 3
Upper Neopleistosene small mammals of the Southern Urals region.

Species	Horizons	.sumern U		•			
, r	Kushnarenkovo	Saigatka	Tabulda	Kudashevo			
Insectivora	lg3 FS2		lg2	Ig1 P			
Talpa sp.	Rb Rb			M, Us			
Sorex sp. Ochotona pusilla	KD			S			
Pallas, 1773							
Ochotona sp. Spermophilus	Ig3 FS2		G1 U1 Ig2 A	lg1 P M Kp FS1 SS Us Sr Us Sr S			
major Pallas, 1779							
Sp. pygmaeus Pallas, 1778				Sr S			
Sp. superciliosus Kaup, 1839	lg3 FS2		Ig2	Ig1 P FS1 SS			
<i>Spermophilus</i> sp. Mioxidae	Rb		G1	М			
Sicista sp. Allactaga major	lg3 FS2			P Sr S Ig1 M Sr S			
Kerr, 1792 Alactagulus pumilio Kerr, 1792				lg1 Sr			
Alactagulus sp.			U1				
Cricetulus migratorius Pallas, 1773	Ig3 FS2		U1 Ig2	lg1 P M Kp FS1 SS Us Sr S			
Allocricetulus eversmanni Brandt, 1859	Ig3 FS2		G1	Ig1 P M SS Sr S			
Cricetus cricetus Linnaeus, 1958	lg3 FS2 Rb		Ig2, A	SS Sr S			
Apodemus uralensis Pallas, 1781	Ig3						
A. ex gr. uralensis- agrarius	Ig3		Ig2				
A. flavicollis Melchior, 1839	lg3 FS2 Rb						
Ellobius talpinus Pallas, 1770				Us Sr S			
Ellobius sp.	I~2 EC2		G1				
Lemmini gen. Myopus schisticolor	lg3 FS2 Ig3 FS2		Ig2				
Lilljeborg, 1844 Lemmus sibiricus Kerr, 1792	Ig3 FS2		Ig2	Ig1 FS1 SS			
Lemmus sp. Dicrostonyx torquatus				Us Kp			
Pallas, 1778				кр			
D. simplicior Fejfar, 1966	lg3						
D. guilielmi Sanford, 1869			Ig2	lg1 P FS1 SS Us			
Dicrostonyx sp. Eolagurus luteus	FS2		G1 U1	Sr Ig1 P M			
Eversmann, 1840 Lagurus lagurus	Ig3 FS2		lg2 G1 U1	SS Us Sr S Ig1 P M Kp			
Pallas, 1773			Ig2	FS1 SS Us Sr S			
Clethrionomys rufocanus Sundevall, 1846	Ig3, Rb		G1 lg2	lg1 P FS1 SS			
Cl. glareolus Schreber, 1780	FS2, Rb		Ig2				
Cl. ex gr. glareolus-rutilus	Ig3 FS2		U1 lg2	Ig1 P M FS1 SS Us Sr S			
Cl. rutilus Pallas, 1779 Cl. ex gr. rutilus Pallas, 1779	FS2		lg2 G1	lg1 P SS			
Arvicola terrestris Linnaeus, 1758	lg3 FS2 Rb		G1 U1 Ig2	lg1 P FS1 SS Us Sr S			
Microtus oeconomus Pallas, 1776	Ig3 FS2		G1 U1 Ig2	Ig1 P M FS1 SS Us Sr S			
M. gregalis Pallas, 1779	Ig3 FS2		G1 U1 Ig2	Ig1 P M Kp FS1 SS Us Sr S			
<i>M. agrestis</i> Linnaeus, 1761	Ig3 FS2 Rb		Ig2	lg1 P SS S			

Table 3 (continued)
--------------------	---

Species	Horizons			
	Kushnarenkovo	Saigatka	Tabulda	Kudashevo
M. arvalis-agrestis	Ig3 FS2		Ig2	Ig1 P SS Us
M. arvalis Pallas, 1778	FS2 Rb			M Sr S
Mustela nivalis Linnaeus, 1766	Ig3			M Ig1 P SS

A, Asha I cave, beds 1–4; FS1, Serpievskaya 1 cave, bed 2; FS2, Serpievskaya 1 cave, bed 3; G1, Gornovo I M II, excavation 2, beds 11–12; Ig1, Ignatievskaya cave, excavation II, bed 2a; Ig2, Ignatievskaya cave, excavation V, bed 8; Ig3, Ignatievskaya cave, excavation V, bed 9; Kp, Shulgan-Tash (Kapova) cave, cultural layer; M, Maksyutovo Grotto, beds 2–3; P, Prizhim 2 cave, beds 1–8; Rb, Krasnyi Bor, bed 5; S, Smelovskaya 2 cave, horizons 19, 7, 9; Sr, Syrtinskaya cave, horizons 32, 28, 24, 18, 15, 13, 11; SS, Serpievskaya 2 cave, beds 2, 3; U1, Uteimullino II, beds 2–9; Us, Ustinovo Grotto, beds 2, 3.

The small mammal assemblage from the Kushnarenkovo Horison is known in the Fore-Urals and in the Urals. They were found at the Krasnvi Bor locality and are characterized by the dominance of waterside and forest biotope species such as Sorex sp., Talpa sp., Lepus sp., Apodemus flavicollis Melchior, Clethrionomys rufocanus Sunderval, Clethrionomys glareolus Schreber, Arvicola terrestris Linnaeus and Microtus agrestis Linnaeus. (Sukhov, 1972; Yakovlev, 2003, 2009) (Table 3). At the end of this interglacial, small mammals (Ignatievskaya cave, excavation 5, bed 9; Serpievskaya 1 cave, bed 3) were represented by steppe, waterside, forest and tundra biotope species such as Talpa sp., Sorex sp., Ochotona sp., Spermophilus superciliosus Kaup, Sicista sp., Cricetulus migratorius Pallas, Allocricetulus eversmanni Brandt, Cricetus cricetus Linnaeus, Apodemus uralensis Pallas, A. flavicollis Melchior, Myopus schisticolor Lilljeborg, Lemmus sibiricus Kerr, Dicrostonyx simplicior Fejfar, Lagurus lagurus Pallas, C. rufocanus, Cl. glareolus, Cl. rutilus Pallas, A. terrestris, Microtus oeconomus Pallas, Microtus gregalis Pallas and *M. agrestis.* This fauna was living in moderate climatic conditions and belongs to the southern variant of the periglacial Late Pleistocene faunas. Lemmings were represented by D. simplicior, which is characteristic of this fauna (Smirnov et al., 1990).

The large mammal assemblage identified in the caves (Ignatievskaya cave, excavation 5, bed 9) belongs to the Late Palaeolithic complex and includes *Ursus* cf. *savini rossicus* Borissiak (Smirnov et al., 1990).

4.2. Saigatka Horizon

This horizon was first defined and described by Yakhemovich in 1983. The deposits which were described were taken from the drilled stratotype sections during the Hydroproject survey (200, 203, 205, 411–413 and 1104) (Gromov, 1948; p. 281; Goretsky, 1964; fig. 48). This horizon was named after the Saigatka River on the left side at the left bank of the Kama River in the surroundings of Chaikovsky city (Northern Fore-Urals, Perm district). The Nurlino Suite represents the analog of the Saigatka Horizon in the periglacial area. This suite was named after Nurlino village (Bashkortostan Republic) by Danukalova (2010).

This suite is represented by lacustrine and diluvial loesslike loam. The total thickness of this unit is 1.2 m. The deposits overlie the lacustrine loam and the gravel of the Kushnarenkovo Horizon or the diluvial loam of the Elovka Horizon (Shemyak Suite, Middle Neopleistocene) showing erosional intervals. These deposits are, in turn, overlain by subaerial sediment or fluvial gravel of the Upper Neopleistocene (Tabulda and Kudashevo Horizons), with erosional gaps.

The deposits of the Nurlino Suite form the upper part of the erosional second above the floodplain river terrace, reaching 8.35 m

Fig. 2. Stratotype site of the Kushnarenkovo Horizon. The Sultanaevo locality (outcrop 107, beds 4–6) and the percentage diagrams for the main taxa (by Yakhemovich et al. (1983); fig. 2 with authors corrections). Legend: Horizons: A – Agidel; K – Kudashevo; T – Tabulda; Ku – Kushnarenkovo; E – Elovka; KI – Klimovka. Deposit genesis indexes: *d* – diluvial slope deposits (loam); *l* – lacustrine deposits (clay); *ld* – lacustrine–deluvium deposits; *a* – alluvium; *a*(*rf*), *a*(*pt*) – alluvium (coarse grain stream deposits); *a*(*pr*) – alluvium (fine grain floodplain deposits); *pgl* – periglacial deposits; *pd* – soil (loam); *pdl* – hydromorphic soil (?). General composition: 1 – trees and bushes, 2 – grass, 3 – sporophytes. +, places of single spore and pollen finds. Botanical data: Abies – Abies sp.; Acer – Acer sp.; Al. – Alisma sp.; At.f.-f., A.f.-f. – Athyrium filix-femina (Linnaeus) Roth; Atriplex hastata – Atriplex hastate Linnaeus; B.l. – Botrychium lunaria (Linnaeus) Swartz; C.s., Cal.s., C. sepium – Calystegia sepium; Carp. – Carpinus sp.; Ch. album – Chenopodium album Linnaeus; Cor. – Corylus sp.; Dipsac. – Dipsacaceae; Ech. r., Ech. ritro, Echinops ritro – Echinops ritro, Eurotia ceratoides – Eurotia ceratoides (Linnaeus) CA. Mey; Frax. – Fraxinus sp. K. prost. – Kochia prostrata (Linnaeus) Schrader; K. scoparia, Kochia scoparia (Linnaeus) Schrader; Kochia laniflora – Kochia laniflora – Kochia laniflora – Kochia laniflora – Kochia neus; Lap. – Lycopodium alpinum Linnaeus; Lap. – Lycopodium appressum (Chapman) F.E. Lloyd & Underwood; L.c. – Lycopodium clavatum; L.s. – Lycopodium selado Linnaeus; Plumbag. – Plumbaginaceae; Salicornia herbacea – Salicornia herbacea Linnaeus; Salsola foliosa – Scabiosa sp.; Sph. – Sphagnum sp.; T. – Typha sp.; Tilia – Tilia sp.; Tsuga – Tsuga sp.; Ulmus – Ulmus sp.; Valeriana – Valeriana sp.

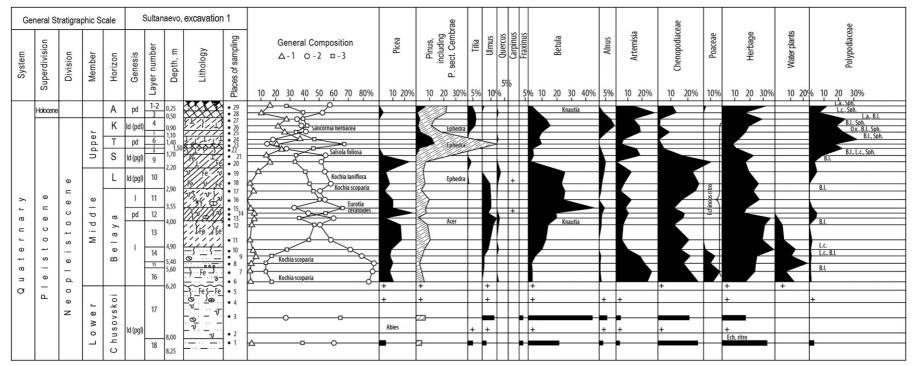


Fig. 3. The stratotype site of the Nurlino Suite. The Sultanaevo locality (excavation 1, beds 8–9) and the percentage diagrams for the main taxa (Yakhemovich et al., 1983; fig. 12 with authors' corrections). Horizons: A – Agidel; K – Kudashevo; T – Tabulda; S – Saigatka; L – Larevka. See Fig. 2 for the legend.

in thickness. They have been intensively eroded and are known only within the Belaya river valley.

The stratotype site is located in Sultanaevo (excavation 1, beds 8–9 and borehole 1, beds 4–5) (Yakhemovich et al., 1983; pp. 4–36) (Fig. 3). The parastratotype site is in Tabulda village (excavation 2, beds 4–6 and excavation 1, bed 13) located at 205 m above sea level (Yakhemovich et al., 1985; pp. 39–44). The key sites for this unit are situated in the Southern Fore-Urals where they show loesslike loam at Voevodskoye (excavation 1, bed 4, 10 m thick) (Yakhemovich et al., 1980; pp.4–29); lacustrine and diluvial loam at the site of Sultanaevo (excavation 1, beds 8–9, 0.8 m thick; borehole 1, beds 4–5, 0.9 m thick; excavation 2, beds 5–6, 0.35 m thick; excavation 3, bed 7, 0.3 m thick) (Yakhemovich et al., 1983; pp. 4–36); loam at the Tabulda site (excavation 2, beds 4–6, 0.95 m thick; excavation 1, bed 13, 0.66 m thick) (Yakhemovich et al., 1985; pp. 39–44); and the loam at the Chui–Atasevo III site (bed 3, 1.2 m thick) (Yakhemovich et al., 1987; pp. 6–21).

Spore and pollen remnants are not numerous and are represented by *Pinus, Picea, Betula, Tilia,* Chenopodiaceae, *Artemisia,* herbage, *Ephedra* sp. and *Salsola foliosa* (Linnaeus) Schrader. *S. foliosa* is characteristic of salty steppe biotopes. Steppe vegetation covered the plains. Tundra and forest-tundra landscapes dominated in mountains (Yakhemovich et al., 1970). Trees existed on the mountain valley slopes. The climate was cool.

The molluscan assemblage from the Nurlino Suite is known from the Sultanaevo site (excavation 2, bed 5) (Fig. 1) and consist of 5 terrestrial (*Succinella oblonga* (Draparnaud), *Oxyloma elegans* (Risso), *Cochlicopa lubrica* (Müller), *V. costata*, *Vitrea contracta* (Westerlund)) and 2 freshwater taxa (*Gyraulus albus* (Müller), *Valvata pulchella* Studer (Sidnev and Chepalyga, 1983; Osipova, 2009b; Osipova and Danukalova, 2011) (Table 2).

4.3. Tabulda Horison

This horizon was first distinguished and described by Yakhemovich in 1983. It is named after Tabulda village (Bashkortostan Republic, Russia).

Here, the deposits form the lower part of the first river terrace (up to 15.4 m high), above the floodplain, and are consist in lacustrine subaerial loam, fluvial gravels and sand. The palaeosols from that time are the third Voevodskoye soil (Voevodskoye, 0.4 m thick), the forth Sultanaevo soil (Sultanaevo, excavation 1, 0.4 m thick) and the second Minzitarovo soil (Minzitarovo, 0.7 m thick). The total thickness is up to 0.1–3.5 m. The deposits rest on the eroded surfaces of the underlying lacustrine and diluvial loam of the Saigatka Horizon of the Upper Neopleistocene or Elovka, Klimovka or Belaya Horizons (Middle Neopleistocene) (Danukalova et al., 2007a) and are overlain by loam of the Kudashevo Horizon. The stratotype site is the Tabulda locality (excavation 2, bed 3 and excavation 1, bed 12) (Yakhemovich et al., 1985; pp. 39-44) (Fig. 4) and the parastratotype site is Gornovo II, beds 2 and 3, with a better exposure of the deposits than in the stratotype site (Yakhemovich et al., 1981, 1987; pp. 25–27; Danukalova et al., 2002a) (Fig. 5).

The key sites for the Tabulda Horizon are fluvial pebble gravel, located in the Tabulda site (excavation 1, bed 12, 0.1 m thick, excavation 2, bed 3, 0.15 m thick) (Yakhemovich et al., 1985; pp. 39–44); clayish silt in the erosional pockets at the Gornovo IIa site and the Gornovo II (beds 2, 3) (Yakhemovich et al., 1987; pp. 22–50; Danukalova et al., 2002a, pp. 27–48; Danukalova and Yakovlev, 2006; pp. 37–43); the third Voevodskoye soil of the Voevodskoye site (excavation 1, bed 3, 0.4 m thick) (Yakhemovich et al., 1980; pp. 4–29); the second Minzitarovo soil of the Minzitarovo site (bed 2, 0.7 m thick) (Yakhemovich et al., 1985; pp. 5–9); lacustrine loam and fluvial pebble at the Burybai site (beds 5–7, 3.5 m thick)

(Yakhemovich et al., 1985; pp. 65–66); the fourth Sultanaevo soil of the Sultanaevo site (excavation 1, beds 6–7, 0.4 m thick) (Yakhemovich et al., 1983; pp. 4–36); diluvial loam at the Kipchakovo site (beds 5–6, 1.32 m thick) and also observed in the Novobelokatai site (Danukalova and Yakovlev, 2006; pp. 37–43); in the Uteimullino II site (Danukalova et al., 2007b; pp. 40–54); in the Kuznetsovka site and Zapovednaya cave (Danukalova et al., 2008; pp. 38–57); in the Nizhnebikkuzino site (Danukalova et al., 2011; pp. 23–43); in the Tanalyk I and II sites (Kosintsev et al., in press); and in new sites for the Tabulda Horizon which include Starye Kiishki, Kabakovo, Basurmanovka, Ilchino I and II, Kaga, Syuren' and Mrakovo. 14 C dates were obtained (Table 5).

Spore and pollen remains are common in these deposits. They include *Pinus* sect. *Cembrae*, *Pinus* sp., *Picea exelsa* Link., *Betula* sp., *Ephedra* sp., *Ulmus* sp., Asteraceae (Crepis and Aster), *Artemisia* sp., Chenopodiaceae, Caryophyllaceae, Brassicaceae, *Calystegia sepium* (Linnaeus) R. Brown, Polygonaceae, Poaceae and *Lycopodium clavatum* Linnaeus. Fragments of *Picea* stumps and trunks were found in the Gornovo site. Fir grew along the banks of the rivers and lakes. The climate was moderately warm during this period (Yakhemovich et al., 1987; Danukalova et al., 2002b).

Molluscs were found in the Gornovo I (bed 7), Gornovo II (beds 2–3), Novobelokatai (beds 3–5), Uteimullino II (beds 6–10), Basurmanovka (bed 10), Nizhnebikkuzino II (bed 3), Karlaman (bed 10), Kabakovo (bed 4) and Zapovednaya cave (excavation 1, bed 3) sites (Fig. 1). The molluscan assemblage (3081 determined specimens) consists of 13 species and 11 genera of terrestrial molluscs (*Succinea, Succinela, Oxyloma, Cochlicopa, Pupilla, Columella, Vallonia, Discus, Perpolita, Chondrula and Pseudotrichia*) preferred wet habitats and 21 species and 13 genera of freshwater molluscs such as *Lymnaea, Anisus, Planorbis, Gyraulus, Segmentina, Bathyomphalus, Ancylus, Valvata, Bithynia, Sphaerium, Pisidium, Unio* and Anodonta were also found, they inhabited lakes and rivers characterized by slow streams (Osipova, 2009a, 2009b; Danukalova et al., 2002a, 2011; Osipova and Danukalova, 2011) (Table 2).

Small mammals were investigated in several sites: Gornovo I and II; Uteimullino II and Ignatievskaya cave. In the Southern Fore-Urals the steppe species dominated in the small mammal fauna during the Tabulda phase (Gornovo I and II). In this formation, M. gregalis, Lagurus lagurus, Ochotona sp., A. eversmanni, Eolagurus luteus Eversmann and Ellobius sp. were found. The nearwater and forest biotope species such as A. terrestris, M. oeconomus and Clethrionomys sp. were less numerous (Yakhemovich et al., 1987; Danukalova et al., 2007b; Yakovlev, 2009) (Table 3). The steppe small mammal species (C. migratorius, Lagurus lagurus and *M. gregalis*) are also dominated during this phase in the mountains of the Southern Urals (Ignatievskaya cave). The forest species (A. flavicollis, A. uralensis, C. rufocanus, Cl. rutilus and M. agrestis) the same as nearwater (A. terrestris and M. oeconomus) and tundra species (Dicrostonvx guilielmi Sanford and L. sibiricus) occur associated with the small mammal assemblage of the Tabulda Horizon. This small mammal fauna belongs to the Late Pleistocene periglacial fauna with steppe and forest species dominance and rare tundra taxa. Lemmings were represented by D. guilielmi (Smirnov et al., 1990).

Large mammals were also investigated in the archaeological sites and caves (Gornovo I and II; Tabulda; Zapovednaya cave; Ignatievskaya cave; Asha I cave). They belong to the Late Palaeolithic complex. *Mammuthus primigenius* Blumenbach, *Megaloceros giganteus* Blumenbach, *Bison priscus* Bojanus, *Bos primigenius* Bojanus, *Coelodonta antiquitatis* Blumenbach, *Lepus tanaiticus* Gureev, *Ursus spelaeus* Rosenmüller et Heinroth, *Crocuta spelaea* Goldfuss and *Pantera spelaea* Goldfuss were found (Yakhemovich et al., 1985, 1987; Smirnov et al., 1990) (Table 4).

Table 4

Upper Neopleistosene large mammals of the Southern Urals region.

Species	Horizons			
	Kushnarenkovo	Saigatka	Tabulda	Kudashevo
Lepus tanaiticus Gureev, 1964			Z Ig2	CU B M Ig1 P FS1 SS Us
Lepus sp.	Ig3 Rb		Ig2 A	Ig1 P FS1 SS Kp Us
Marmota bobak Muller, 1776	Ig3		Z Ig2 A	Kp CU M B Ig1 P FS1 SS Us
Castor fiber Linnaeus, 1758	-		-	
Canis lupus Linnaeus, 1758	Ig3		Z Ig2 A	M B Ig1 P FS1 SS Us
Canis sp.	Ig3		_	-
Alopex lagopus Linnaeus, 1758	Ig3		Ig2	M Ig1 P FS1 SS Kp Us
Vulpes vulpes Linnaeus, 1758	Ig3		Z Ig2 A	M B Ig1 P FS1 SS Kp Us
Ursus cf. rossicus Borissiak, 1930	Ig3		0	0 1
Ursus spelaeus Rosenmüller et Heinroth, 1794	e		Z Ig2 A	CU Ig1 SS Kp
Ursus arctos Linnaeus, 1758			0	M P
Martes martes Linnaeus, 1758				M B
Martes sp.	Ig3		Ig2	FS1 SS
Gulo gulo Linnaeus, 1758	Ig3		lg2	
Mustela erminea Linnaeus, 1758	Ig3		Ig2 A	M B Ig1 P SS
Mustela eversmanni Lesson, 1827	5		Z	M
Mustela sp.	Ig3			
Putorius sp.	Ig3		Ig2	Ig1 SS
Crocuta spelaea Goldfuss, 1823	0		Ig2 A	Ig1
Lynx lynx Linnaeus, 1758			lg2	0
Pantera spelaea Goldfuss, 1810			ZA	M SS
Mammuthus primigenius Blumenbach, 1799			Ig2 T	FS1
Cervus elaphus Linnaeus, 1758	Ig3		Ig2 A	M SS
Megaloceros giganteus Blumenbach, 1803	e		A G1	
Alces alces Linnaeus, 1758			G1	
Rangifer tarandus Linnaeus, 1758	Ig3		lg2	CU M B Ig1 P FS1 Us
Bison priscus Bojanus, 1827	Ig3		Z Ig2 A G1	CU FS1 Us
Bos primigenius Bojanus, 1827	0		G1	
Bison priscus gigas Flerov, 1969			G1	
Bison priscus mediator Hilzheimer, 1918			G1	
Bison sp.			Т	
Bos et Bison			Ig2	Ig1
Ovis cf. ammon			G1	0
Saiga tatarica Linnaeus, 1758			lg2	M Ig1 P Us
Equus caballus fossilis			G1	0
Equus cf. hemionus Pallas, 1775			G1	
Equus uralensis Kuzmina, 1975				FS1
Equus latipes V. Gromova, 1949				UB1
Equus sp.			Z Ig2 T	M B Ig1 P SS
Coelodonta antiquitatis Blumenbach, 1799	Ig3		Ig2 A T	M FS1 SS ZI

A, Asha I cave, beds 1–4; B, Bajslan-Tash cave, lower part of the layer 4; CU, Verkhnaya cave, bed 1; FS1, Serpievskaya 1 cave, bed 2; G1, Gornovo I // II, excavation 2, beds 11–12; Ig1, Ignatievskaya cave, excavation II, bed 2a; Ig2, Ignatievskaya cave, excavation V, bed 8; Ig3, Ignatievskaya cave, excavation V, bed 9; Kp, Shulgan-Tash (Kapova) cave, cultural layer; M, Maksyutovo Grotto, beds 2–3; P, Prizhim 2 cave, beds 1–8; Rb, Krasnyi Bor, bed 5; SS, Serpievskaya 2 cave, beds 2, 3; T, Tabulda, excavation 2, bed 3; UB1, Nizhnebikkuzino, excavation 1, bed 6; Us, Ustinovo Grotto, beds 2, 3; Z, Zapovednaya cave, excavation 1, bed 3; Zl, Zlatoustovka.

Table 5Radiocarbon dating results from the Tabulda horizon deposits.

Radiocarbon dating results	Age in yr BP	Reference of specimen	Material
Aktanyshbash	$\textbf{27,570} \pm \textbf{480}$	BashGI-33	Wood
Gornovo II	$\textbf{26,950} \pm \textbf{560}$	LU-3711	Wood
	$\textbf{28,800} \pm \textbf{124}$	BashGI-36	
	$\textbf{29,700} \pm \textbf{1250}$	H 1856/1287	
	$\textbf{26,990} \pm \textbf{150}$	LU-3712	
	33,670	LU-4153	
Novobelokatai	>50,000	BashGI-60	Wood coal
	$\textbf{41,070} \pm \textbf{1570}$	LU-4149	
Tabulda	34,900	LU-1377A	Bones of Mammuthus
	$\textbf{31,360} \pm \textbf{250}$	LE-2153	primigenius
	$\textbf{34,910} \pm \textbf{300}$	LE-2154	
Nizhnebikkuzino	$\textbf{30,700} \pm \textbf{800}$	GIN-10856	Bone of Equus latipes
Zapovednaya cave	$\textbf{28,700} \pm \textbf{1050}$	LU-3715	Bones of Ursus spelaeus
	37,250	LU-3876	
Bajslan-Tash cave	>38,100	GIN-10855	Bone of Equus sp.
Burybai	36,000	LU-1380A	Tusk of Mammuthus primigenius

4.4. Kudashevo Horizon

This horizon was distinguished and described for the first time by Yakhemovich in 1983. It is named after Novokudashevo village (Bashkortostan Republic, Russia).

The deposits of this horizon form the upper part of the first terrace above the floodplain (15.4 m high) and incorporate lacustrine and diluvial loam and fluvial sand and pebble. They are 14.4 m thick. The deposits lie on the eroded surfaces of the alluvium (floodplain facies) and lacustrine loam of the Tabulda Horizon or on the eroded surfaces of the loam of the Klimovka Horizon (Middle Neopleistocene). The Kudashevo Horizon is overlain by Holocene floodplain clay or soil.

The stratotype site is located in Novokudashevo, outcrop 89, beds 3-11 (110 m above sea level) (Yakhemovich et al., 1988; pp. 23-24) (Fig. 6). The parastratotype site is known in the Gornovo I locality, beds 2-6 (Yakhemovich et al., 1987; pp. 22-50;

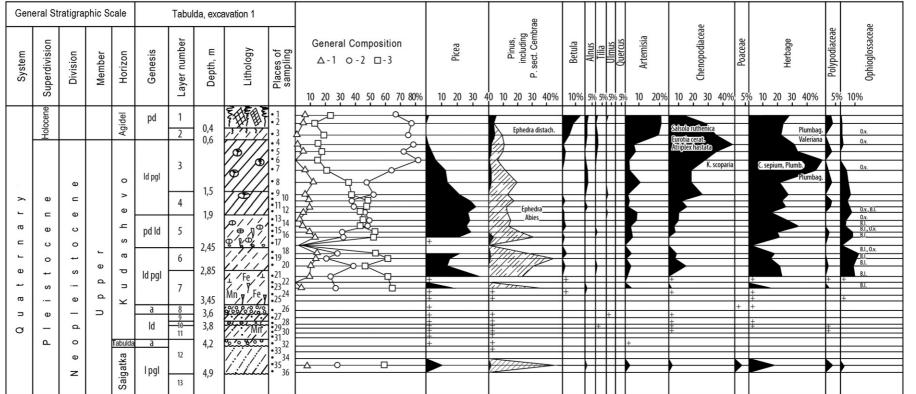


Fig. 4. The parastratotype site of the Tabulda Horizon. The Tabulda locality (excavation 1, bed 12) and the percentage diagrams for the main taxa (Yakhemovich et al., 1985, fig. 28 with authors' corrections). See Fig. 2 for the legend.

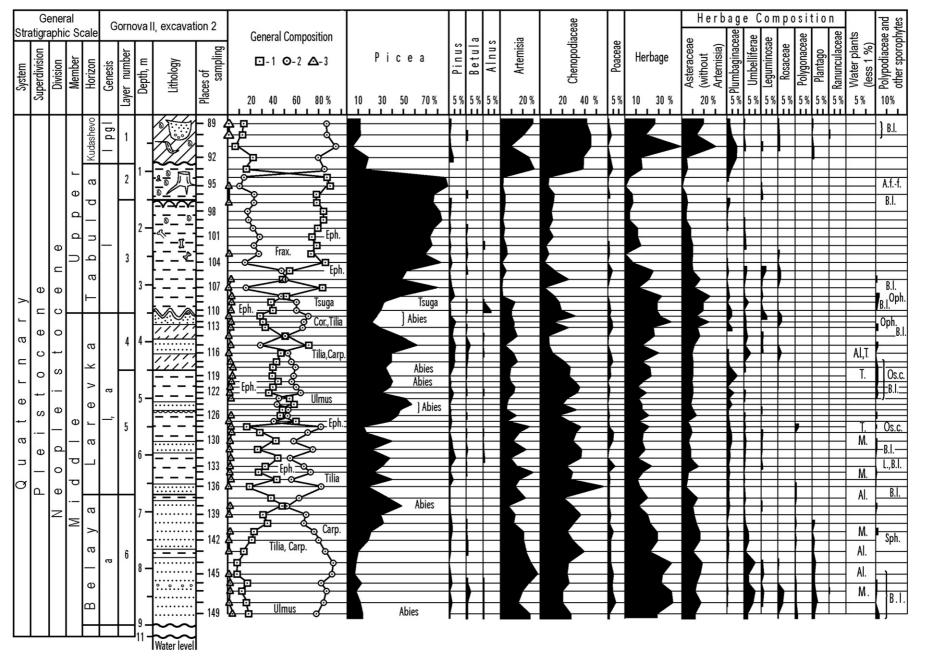


Fig. 5. The parastratotype site of the Tabulda Horizon. The Gornovo locality (excavation 2, beds 2 and 3) and the percentage diagrams for the main taxa (by Yakhemovich et al. (1987) with authors' corrections). See Fig. 2 for the legend.

Gene	eral Str	atigrap	hic Sc	ale	Nov	/okuda	ashev	vo, outcrop	89		_ 0							e a e	e l		sia)			5
System	Superdivision	Division	Member	Horizon	Genesis	Layer number	Depth, m		Places of sampling	General Composition ∆-1 O-2 □-3	Pinus, including P. sect. Cembrae	Picea	Betula	Tilia	Ulmus Quercus Ephedra	Poaceae	Thalictrum	Chenopodiaceae	Umbelliferae Plumbaginaceae	Cyperaceae	Asteraceae (without Artemisia)	Artemisia	Polypodiaceae	S p h a g n u m
	le			l	pd	1		3 // 3 // 3 // 3 //	201															
	Holocene			Agidel	a (pr)	2		\ ()	301 300	10 20 30 40 50 60 70 80%	10 2	10 20% 0 30 40 509	5 10%	6 59	%	10)% 5%	10 20 30 40%	5% 5	5% 10 20	0% 10 20	0% 10 209	5% 5%	5% 5%
					I	3	2,2		281				-		∙┼┾	-	┝┝	Cal.s.		-	-	•	╞╺═┥╴	•
~	е	пе		hevo	I	4		7 <u> </u>	284 283 282									Cal.s.				N.I.		
Quaternary	Pleistocen	Neopleistoce	U p p e r	abulda Kudash	a		4,8		275 251 274 252 253 273 254 255 257 258 258 259	Larix Larix 18315±300(Bash Gl-41)	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + +	Cor.			+				Dipsac.	+ + + + + + + + + + + + + + + + + + +	+ + +		0s.
			Middle	Belaya T a	a (rf)		12,1		260 261 262 263 264 265 266 267 272 271 270 269	Abies	+	+	Fraxi	nus			+		+	Scabiosa	Lin. +	Ech.r. Ech.r. + Ech.r.		L.ann. L.s. L.s.

Fig. 6. Stratotype site of the Kudashevo Horizon. The Novokudashevo locality (outcrop 89, beds 3–11) and the percentage diagrams for the main taxa (by Nemkova (1976); fig. 6 with authors' corrections). See Fig. 2 for the legend.

Danukalova et al., 2002a, pp. 27–48). The key sites in which the unit is found include lacustrine and diluvial loam of the Gornovo I site (beds 2-6, 14.4 m thick) (Yakhemovich et al., 1987; pp. 22-50; Danukalova et al., 2002a, pp. 27-48; Danukalova and Yakovlev, 2006; pp. 37-43; Yakovlev et al., 2006; pp. 115-121); loam at the Voevodskoye site (excavation 1, bed 2, 0.15 m thick) (Yakhemovich et al., 1980; pp. 4-29); lacustrine and diluvial loam in the Tabulda site (excavation 1, beds 3–11, 3.4 m thick: excavation 2, beds 1–2, 1.2 m thick) (Yakhemovich et al., 1985; pp. 39-44); lacustrine and diluvial loam in the Burybai site (beds 3-4, 2.6 m thick) (Yakhemovich et al., 1985; pp. 65–66); lacustrine and diluvial loam in the Sultanaevo site (excavation 1, beds 4-5, 1.1 m thick) (Yakhemovich et al., 1983; pp. 4-36); lacustrine loam and fluvial sand and pebble gravel at the Novokudashevo site (beds 3-11, 5.8 m thick) (Yakhemovich et al., 1988; pp. 23–24); diluvial and fluvial sandy loam, loam and pebble gravel in the Sultino-Yantuganovo site at the Baza River (beds 3-7, 2.4 m thick, new data); diluvial loam at the Kipchakovo site close to the Syun' River (beds 3–4, 1.8 m thick, new data); diluvial loam was described in several additional sites such as Novobelokatai (Danukalova and Yakovlev, 2006; pp. 37-43); Uteimullino II (Danukalova et al., 2007b; pp. 40-54); Magash, Kuznetsovka, Kalinovka II and Zapovednaya cave (Danukalova et al., 2008; pp. 38-57); Nizhnebikkuzino and Akbuta (Danukalova et al., 2011); Tanalyk I and II (Kosintsev et al., in press); Bajslan-Tash cave (Yakovlev et al., 2006; pp. 115–121); Starye Kiishki; Kabakovo; Karlaman; Basurmanovka; Ilchino II and III; Kaga; Syuren'; Mrakovo and in the Shulgan-Tash (Kapova) cave. ¹⁴C dates were obtained (Table 6).

Table 6

Radiocarbon dating results from the H	Kudashevo horizon deposits.
---------------------------------------	-----------------------------

=			-
Radiocarbon dating results	Age in yr BP	Reference of specimen	Material
Novokudashevo	$11{,}270\pm55$	BashGI-42	Wood
	$11{,}680\pm55$	BashGI-43	
	$\textbf{18,315} \pm \textbf{300}$	BashGI-41	
Syun' I	$17{,}000\pm100$	BashGI-78	Wood
	$17{,}200\pm170$	BashGI-79	
Gornovo I	$\textbf{21,}\textbf{280} \pm \textbf{550}$	LE-145	Wood
	$\textbf{22,660} \pm \textbf{125}$	BashGI-35	
Zlatoustovka	12,330 ± 120	LU-1668	Tooth of Coelodonta
			antiquitatis
Bajslan-Tash cave	$13{,}560\pm250$	GIN-10853	Bones of small mammal
Verkhnaya cave	$\textbf{22,750} \pm \textbf{1210}$	LU-3714	Bones of Ursus spelaeus
Shulgan-Tash	$14{,}680\pm150$	LE-2443	Wood coal
(Kapova) cave	$\textbf{13,930} \pm \textbf{300}$	GIN-4853	

Palynological remains are not numerous. Pollens are dominated by herbs, Chenopodiaceae and Artemisia. Pollen of Picea, Betula and Pinus trees also occur but pollen of broadleaved taxa such as Tilia cordata, Fraxinus, and Corylus are rare. Herb – Artemisia – Chenopodiaceae meadow–steppe associations covered the main part of the investigated area during the Kudashevo phase. Picea-Betula forests grew in the river valleys and humid depressions. The climate was cool (Nemkova, 1976; Danukalova et al., 2002a; 2002b).

The mollusc assemblages were found in the Gornovo I site (beds 2–6); Gornovo II site (bed 1); Uteimullino II site (beds 2–4); Basurmanovka site (beds 6–7); Nizhnebikkuzino I site (bed 5); Tanalyk I site (bed 2); Akbuta site (bed 6); Yabalakovo site (beds 2–6) (Fig. 1). Mollusc associations (4870 determined shells) consist of 16 species and 12 genera of terrestrial species like *Succinea, Succinella, Oxyloma, Cochlicopa, Vertigo, Pupilla, Vallonia, Chondrula, Discus, Perpolita, Pseudotrichia, and Bradybaena* and 25 species and 15 genera of freshwater (*Lymnaea, Stagnicola, Planorbis, Anisus, Stagnicola, Planorbis,*

Gyraulus, Segmentina, Bathyomphalus, Acroloxus, Aplexa, Borystenia, Valvata, Bithynia, Pisidium, Sphaerium, Unio) molluscs (Danukalova et al., 2002a, 2011; Osipova, 2009a, 2009b; Osipova and Danukalova, 2011) (Table 2).

Mixed small mammal assemblages were also found at the Southern Urals (Ignatievskava cave, excavation II, bed 2a; Serpievskava 1 cave. bed 2: Prizhim 2 cave: Maksvutovo Grotto. beds 2–3: Shulgan-Tash (Kapova) cave, cultural bed: Serpievskava 2 cave, beds 2 and 3; Ustinovo Grotto, beds 2 and 3; Bajslan-Tash cave, lower part of the bed 4) (Table 3) and are characterized by steppe biotope species including *M. gregalis*, *Lagurus lagurus*, C. migratorius, Ochotona pusilla and Allactaga major Kerr. In these assemblages the tundra taxa were presented by D. guilielmi, Dicrostonyx torquatus and L. sibiricus; forest species were represented by C. rufocanus, Cl. ex gr. glareolus-rutilus, Cl. rutilus and M. agrestis. The climate indicated by these taxa was cold (Smirnov et al., 1990; Kuzmina and Abramson, 1997; Danukalova et al., 2011). The composition of the small mammal species of the Southern Trans-Urals (Syrtinskaya cave, horizons 32, 28, 24, 18, 15 and 11; Smelovskaya 2 cave, horizons 19, 9 and 7) was similar to the faunas of the mountainous part of the Urals but with a steppe and semi-desert species dominance (Kuzmina, 2009).

Large mammal assemblages of the Kudashevo Horizon were found in the deposits of the river terraces (Zlatoustovka) and cave sites of the Southern Urals (Ignatievskaya cave, excavation II, bed 2a; Serpievskaya 1 cave, bed 2; Prizhim 2 cave; Maksyutovo Grotto, beds 2–3; Shulgan-Tash (Kapova) cave, cultural bed; Serpievskaya 2 cave, beds 2, 3; Ustinovo Grotto, beds 2 and 3; Verkhnaya cave; Bajslan-Tash cave, lower part of the bed 4). The large mammal fauna belongs to the Late Palaeolithic mammal complex (Smirnov et al., 1990; Danukalova et al., 2008, 2011) (Table 4) and had some features such as *C. spelaea* that disappeared from this association at the beginning of the Kudashevo phase. *U. spelaeus* disappeared in the middle of this period (Kosintsev, 2003).

5. Discussion

The malacofauna of the Late Neopleistocene of the Southern Urals region is represented by freshwater and terrestrial Holarctic and widespread molluscs. Terrestrial molluscs (*Succinella, Succinea, Oxyloma, Cochlicopa, Pupilla, Vertigo, Columella, Vallonia, Vitrea, Discus, Perpolita, Chondrula, Pseudotrichia, Bradybaena*) inhabitated forest biotopes in plains and mountains and lived under fallen leaves, in bushes, grass or under old tree bark. Freshwater molluscs (*Lymnaea, Stagnicola, Anisus, Planorbis, Gyraulus, Segmentina, Bathyomphalus, Ancylus, Acroloxus, Aplexa, Borysthenia, Valvata, Bithynia, Sphaerium, Pisidium, Anodonta,* and *Unio*) inhabited mainly water reservoirs without current with growing water plants and muddy bottoms, or rivers with slow currents.

In the Russian Plain the Late Neopleistocene deposits containing mollusc shells were described by Danilovskyi (1955), Shevyrev and Alexeeva (1979) and Moskvitin (1976). The composition of the species of these faunas is similar to the Uralian faunas except for *Iphigena, Melanopsis, Lithoglyphus* and *Theodoxus* which were probably redeposited from the underlying deposits. Stefanovsky (2006) gave a list of the mollusc species for the Urals and Trans-Urals, with similar assemblages to the investigated faunas.

In the Ukraine region, Gozhik (1965), Veklich and Sirenko (1972), Kunitsa (1974), show that during the Late Pleistocene, terrestrial molluscs were numerous. Among them, different Helicoidea species and *Arianta* existed. The list of water molluscs contains mainly freshwater but also brackish water species (Hydrobiidae and Cardiidae). A rich variety of molluscs was described by Alexandrowicz and Alexandrowicz (2010) from the Lower Weichselian of Poland, where Alp-Carpatian species (*Acicula, Aegopis, Aegopinella*, Ruthenica, Macrogastra, Clausilia, Bulgarica, Orcula, Perforatella, Pagodulina, Tricha, Helicodonta, Arianta, Chilostoma, Cepaea, and Helix) existed together with more widespread molluscs.

Malacalogical data from the Irig and Batajnica sites (Serbia) show the existence of malacological assemblages with European and Alp–Carpatian similarities (*Helicopsis, Aegopinella, Oxychilus, Cepaea, Arianta, Clausilia, Granaria, Orcula, Vestia, Semilimax, Cecilioides, Trichia,* and Cochlodina) (Ložek, 2000; Sümegi and Krolopp, 2002; Marković et al., 2004, 2008, 2007).

In the Weichselian deposits of Germany (Nussloch site, Rhine valley) (Moine et al., 2005), France and England (Martin et al., 2005; Moine, 2008) molluscs associations are of Holarctic origin but also include the species identical to the Uralian faunas with admixture or sometimes with dominance of European and Alpian species such as *Helicopsis, Trichia, Arianta, Trochoidea, Clausilia, Candidula, Neostyriaca, Orcula, Abida, Jaminia, Arianta, Pomatis, Cepaea, Testacella, Aegopinella, Eucobresa, Monacha, Cochlicella, Oxychilus, Ferussacia, Cernuella, Theba, Deroceras, and Helicodiscus. In summary, comparison with the European malacofaunas shows that European and Alp–Carpatian species did not exist in the Uralian area, mainly because it was more continental.*

The variety of the small mammals of the Kushnarenkovsky Horizon sampled in the Southern Uralian area is almost the same as that of the Central Europe (Eemian), England (Ipswichian), Russian Plain (Mikulino) and Siberia (Kazancevsky) and consist of *A. terrestris, Cl. glareolus, M. agrestis, M. arvalis, M. oeconomus,* Soricidae and *Desmana* sp. In the southern parts of the Russian Plain steppe (*Lagurus lagurus* and *M. gregalis*) and semi-desertic (*E. luteus*) species represent a significant part of these faunas (Markova, 1982, 1985; Agadjanian, 2009).

Small mammal faunas of the Last Glacial of the Norhtern Eurasia are common and well studied. The Western, Central and Eastern Europe, Russian Plain and Western Siberia (Chaline, 1972; Sutcliffe and Kowalski, 1976; Zazhigin, 1980; Maleeva, 1982; Markova, 1982; Smirnov et al., 1986; Rekovets, 1994; Agadjanian, 2009) show the dominant presence of *D. guilielm*; *L. sibiricus, M. gregalis* and *Lagurus lagurus* are less abundant. Late Glacial faunas are only different in their species composition.

Late Neopleistocene large mammal faunas have been well investigated in the Uralian region. *Hystrix vinogradovi* Argyropulo and *Ursus thibetanus* G. Cuvier are known inside the Kushnarenkovo deposits of the Machnevskaya cave (Middle Urals). These species did not exist in the latest large mammal assemblages. Large mammals of the Tabulda period from the Middle and Northern Urals are typical for the Late Palaeolithic Mammal Complex.

In the Northern Urals at the beginning of the Late Glacial, *E. cf. latipes* V. Gromova and small cave bear disappeared. *U. spelaeus* also disappeared in different parts of the Urals in the middle of the Late Glacial epoch (Kosintsev, 2003).

6. Conclusions

Erosional processes started to become active at the beginning of Kushnarenkovo time when uplift took place in the Urals and when the Late Chosarian regression began in the Caspian Sea basin (Yakhemovich et al., 1981; Yanina, 2009, Tables 1 and 7).

Fluvial deposits can be observed at the base of the second terrace which developed above the floodplain. They were almost completely eroded during the variations of the water level of the Caspian basin (base of the erosion) and under the influence of the tectonic uplift of the Urals (Yakhemovich et al., 1985). A soil was formed on the subhorizontal surfaces (e.g. the third Sultanaevo soil, the second Voevodskoe soil, and the third Chui–Atasevo soil) (Yakhemovich et al., 1981, 1983; Danukalova et al., 2002b).

Meadows covered the open areas; forest—steppe and steppe landscapes became widespread at the end of the Kushnarenkovo phase (which can be probably correlated with the beginning of the Weichselian, MIS 5a–d).

The subsequent Saigatka cold period is correlated with the beginning of Valdai period known in the Russian Plain (it can be correlated with MIS 4). The Early Valdai ice sheet occupied Fennoscandia but its eastern boundary was located close to the modern Volga and Kama river valleys (Velichko, 1982). The region was unglaciated during Valdai time (Saigatka and Kudashevo phases) although small cirque glaciers formed in mountains. Mountains altitudes were close to the present day values. Slope processes and solifluction were the main relief-forming processes (Rozhdestvensky, 1971) and fluvial erosion processes became weaker. Floodplain sediments accumulated in the river valleys and formed the upper parts of the second terraces above the floodpain which were intensively eroded (Yakhemovich et al., 1981, 1983, 1985). The plains were covered by steppe and the mountainous areas were occupied by tundra and forest-tundra landscapes (Yakhemovich et al., 1970). Trees grew on the slopes of the interfluves.

The next erosional cycle began during the following Tabulda period because of the lowering of base level of the erosion and increased uplift of the territory. The incision of the valleys with time was replaced by lateral erosion when the second river terrace was destroyed. The fluvial sediments now form the lower parts of the first terraces above the floodplain. Lacustrine deposits accumulated in the small freshwater basins which contain organic material (wood and algie, bones) (Yakhemovich et al., 1985; Danukalova et al., 2002a; Danukalova and Yakovlev, 2006). A soil was formed on the watersheds (fourth Sultanaevo soil, the third Voevodskoe soil, and the second Minzitarovo soil) (Yakhemovich et al., 1981, 1983, 1985). The Gornova and Tabulda sites contain artifacts (Yakhemovich et al., 1985, 1987) from the Late Palaeolithic, which is correlated with the last middle Valdai optimum (Velichko and Ivanova, 1969; Rogachev and Anikovich, 1984). The Tabulda Horizon is correlated with the middle part of Valdai megainterstadial. In some areas, including the South Urals, the Tabulda period corresponds with the phase of warming (short interval of interglacial, MIS 3): the floral association was close to that of the present-day. The climate was moderately warm in the plains and drier and cooler in the mountains where vertical climatic zoning formed.

The subsequent Kudashevo event can be correlated with the late Valdai period (Ostashkovo glaciation) and the Late Glacial when the climate became colder. The Valdai ice of the maximal stage covered areas which existed to the northwest of the present-day Volga, Vyatka, and Kama river valleys (Velichko, 1982). Seasonal frost penetration was widespread in the Southern Fore-Urals region (Velichko, 2002). Loess-like sediments and floodplain deposits form the upper parts of the first terrace above the floodplain and cover the watersheds, where they contain cryogenic structures (Yakhemovich et al., 1981, 1983, 1985, 1988; Danukalova et al., 2000; Danukalova and Yakovlev, 2004, 2006; Danukalova and Eremeev, 2006). The climate was moderately cold. Late Palaeolithic sites attributed to the Kudashevo time are known in the Southern Urals region. They are located in Shulgan-Tash (Kapova), Zapovednaya and Bajslan-Tash caves, Syun' I site, and others (Danukalova and Yakovlev, 2006).

Taken as a whole, the studied palaeontological materials allowed the reconstruction of the main environmental characteristics of the area and differentiation of the Late Pleistocene Horizons of the South Urals. Future studies will solve some questions concerning the precise age of the horizons in the easternmost part of Europe.

Table 7

Correlation of the Upper Neo	onleistocene denosits fro	om the different regions of t	he Southern Urals	(C Danukalova)
conclation of the opper nee	spicistoccne acposits no	in the unicient regions of t	ic Southern Orals	(G.Danukaiova)

s						1.8	Sou	uth-East of the Ru	ssia	an p	latfo	om	stru	uct	ural-facies zone											
Horizons	Bugulma-	Bel	lebei Highland, /rt Highland				_			Bel	aya	Riv	/er E	Ba	ssin						Ufimian	Plateau				
Hori	Obshy (ea	i Sy aste	vrt Highland em part)			a Rivers ams)	H	High left bank of belaya River val he Belaya River to the riv					alle ive	y from Ufa town r mouth	High right bank of the Belava River		Ufa River Bassin		Wes slo	tern pe						
Holo- cene		2	1		2		1	3						4			5			6	a	6				
Kudashevo	brown sandy clay, loam with rock debris on e fragments in the sandy clay cement, ignents on the base of fatarian deposits. and Lower Neopleistocene deposits.	a fragments in the sandy ran, nour win routed webus on the mark in the sandy rang rement, and Lower Neopleistocene deposits.				slopes. Total thickness is 5-10 m.	Wate light- gray sand Key bore Absa Kyzy Nikiti Uruş Aitov Novo Russ	sites hole lyar Bay sarov o, Cotroisky	t part) ope syn loam -grainec s: novo, rovo, ly, Luimazy o, hekan, skoye, Shugan. .5 m	- γ X0-1-10002E	Loam (Syun I) <u>3 m SP A</u> I aft (upper part) Vater-slope loam <i>i</i> th sand and ebble layers. ey sites: yun I, Berdasla, yur I, Berdasla, Se SP SP	b KGI B V	Vate row Gruz Bruz Siktir Voev	n lo site: dev a III miro ods	s: ka, I-IV skoy m	l.		Water-slope orown loess-like oam with dense clay. in the lower oart. Key-sites: Gornovo I-II, Starye Kiishki II, Kabakovo. 3.2 m SP P M ¹⁴ C	Laculight with and Key Nov 2.8 I	okudasl	oam and layers. hevo.	Fluvia pebb Wate loam with s & roo Key s Karai	ile, gr sr-slop grave k frac sites: idel, u m of rivers sh-Bu	part) vish sand avel. be sandy vn clay «I, pebble gments. upper the Bir', s; Ar,	at the foot of the slopes.	cks
Tabulda	underlying der er Kazan dep nd and sandy y on the base	river valley and ravine	Soils: IV Sultanaevo soil 0.4 m II Minzitarovo soil 0.7 m III Voevodskoye soil 0.2-0.6 m	Lacu and Fluvi and Key bore Absa Tuim	istrii clay ial p san site: hole alyan azy l-Ya	bart) ne loam ebble d. s and s: movo,		Lacustrine dark grey loam Key sites: Syun' I, Nur, Aktanyshbash. 2-3 m SP ¹⁴ C							I aft (lower part) .acustrine loam, luvial deposits Key sites: Gornovo II, Starye Kiishki II, Kabakovo, Vaityakovo, Karatamak 8.3-12m LM SM M O In SP P 14C	with bas Key bor Var Van Vait Kar 4.8	sites a cokudas vokudas ysh, yakovo atamał	at it's and shevo, o, K.	(low Fluv and sand Key Ups of th Baik Deu	grav d. sites tream trea	art) ebble rel, s: ns a, Bir', ers, uz, -Eche	interfluve surfaces, valley slopes and t	brown loam and sandy clay with debris of Upper Permian rocks			
Saigatka	on the subhorizontal surfaces. The composition di s. 2. Grey sand and sandy loam or clay on th the base of Upper Permian deposits. 4. Red the base of Neogene deposits. 6. Loam, sand	n loam and sandy clay with rock fragments on steep						II aft (upper part) Nurlino Suite. Lacustrine- deluvial loess-like loam Key sites: Chui-Atasevo III, Sultanaevo. 0-1.2 m SM O SP							II aft (upper part) Nurlino Suite. acustrine deluvium oess-like loam (ey sites: Gornovo II, Joevodskoye)-1.2 m M O SP							luvium (0.1-5-7 m) deposits occur at the interfluve surfaces, valley slopes and talus ants.	ial (Solifluction)			
Kushnarenkovo	eathering c ed deposits debris on ebble on th	um (Solifluction)	Soils: III Sultanaevo soil 0.2 m III Chui-Atasevo soil 1.2 m II Voevodskoye soil 0.6 m					II aft (lower part) Lacustrine loam. Key site: Sultanaevo. 0.65 m M														Fluvial (1-1.5, up to 5 m), eluvial-del Loam, sandy loam with rock fragmer	Deluv			
	Unde	erly	ving deposits:	Mid Nec Upp	pleis	stocene. ermian		Middle-Lower Neopleistocene. Eopleistocene. Upper Permian	·	E	ople	eisto	owe cen ermi	ne.	leopleistocene. Neogene	Ne Ne	ddle opleista ogene. per Pei			Plioc	ene? Up	per Pern	nian			

Legend: SP - spore and pollen; A - archaeological artefacts; ¹⁴C - radiocarbon data; P - palaeocarpological remains; O - Ostracoda finds; M - mollusc shells; SM - small mammal data; LM - large mammal finds; In - finds of insects. I aft - first above floodplain river terrace, II aft - second above floodplain river terrace, III aft - third above floodplain river terrace. PZ - Palaeozoic; PT - Proterozoic.

	I. Fore-Uralian structural-facies zone			III. Uralian struct	ural-facies zone	IV. Trans-Ural structural-facies	tau zone
Yuryuzan and Ai Rivers Bassin (56° – 55° N)	Belaya River Bassin (including high right and left banks of the river) (55° – 53° N);	Sakmara and Ural Rivers Bassin (53° – 52° 30' N)	Interfluves	Belaya River Bassin with tributaries	Interfluves	Ui, Sakmara, Ural Rivers Bassins	Interfluxes
7	8	9	10	11	12	13	14
I aft (upper part) Water-skope brown loam with sandy loam layers at its base. Key sites: Ai river valley, Alegazovo, Karanaevo, Semerikovka, Ik river, Novobelokatai 10-13.6 m SP I aft (lower part) Lacustrine loam with boulders; fossil soil. Key site: Novobelokatai 0.4 m LM M SP P A ¹⁴ C II aft (upper part) Fluvial deposits. 10 m Middle-Lower Neopleistocene.	III aft (upper part) Water- slope dark brown bess-like loam with pebble layer at its base. Key site: Vasilyevka, Krasny Yar II, Wagash, Uternulino II, Jabilda, Zatoustovka, Karla- man II, III, Kuznetsovka, II, Magash, Uternulino II, acustine com. Key site: Kimovka II, III. 1.7-2.7 m SP I aft (lower part) Fluvial & lacustrine deposits (loam, pebble, sand). Key sites: Uteimulino II, Tabulda, Ira, Magash, Vasylyevka, Karlaman II-III. 2.3-7 m LM SM M SP P ¹⁴ C Fluvial deposits. Key site: Tabulda 0-1 m Fluvial pebble in sandy cement Key site: Tabulda. 0.4 m Fluvial pebble pebble in sandy cement Key site: Tabulda. 0.4 m Fluvial pebble Pleistocene. Neogene.	Il aft (upper part). Water- slope deposits	Nope deposite, deluvium, protuvial loam and sandy loam with rock fragments. Slopes of the Sakmara, Ural and Ik river valleys. 8 m No Loess & eluvial loam (left bank of the Sakmara river). 10-30 m. Eluvium (Crust of weathering) (Buuue). 2-2.5 m	I aft (upper part) Water-slope brown bam with pebble. Nizhnebikku- zino, Akbuta, Kagia Basur- manovka, Kaginovka II. 4-6 m I aft (lower part) Lacustrine and fluvial deposits Nizhnebik- kuzino, Staro- subkhangu- lovo, Basur- manovka. 2.7-3.3 m SP aft (lower part) Lacustrine and fluvial deposits Nizhnebik- kuzino, Kalinovka II 4.5 m SP M LM **C II aft (lower part) Water- slope loam. 4-6 m	Eluvial-deluvium unconsolidated cave deposits (loam with rock fragments). Sities: Bajslan-Tash, Sikiyaz-Tamak, Verkinaya, sikiyaz-Tamak, Uerkinaya, Verkinaya, Nuradymovskaya, Prizhim 2, Kullyurt-Tamak. 0.8 m LM SM M SP "C A Eluvial-deluvium So Luvial-deluvium	Vial Tate slope light brown loam. Vial Ite key slie. lighnoll Main Ite key slie. lighnoll Biown clay with sand lences. Biown loam. Image Biown clay with sand lences. Image Biown clay with sand lences. Image Biown clay with sand lences.	Deluvial-proluvial deposits are covering slopes and foothills (Rock fragments with clay cement). Total thickness is up to 5 m. Eluvial-deluvium deposits which are covering slopes of the valleys and first and second above floodplain terraces (brown and reddish-brown sandy clay and loam). Slope, deluvial and proluvial loam and sandy loam are developping at the upper river valley. Total thickness is up to 8 m.
Neogene? Palaeozoic	Palaeozoic	Neogene. Palaeozoic	PT	Palaeozoic	Proterozoic	Palaeozoic	
Legend:	- Surface of erosion;	- No deposits	-	Boun	daries between the s	sediments	

Acknowledgements

The authors would like to thank Professor Jean-Pierre Lefort (Rennes 1 University, France) for the help with the English translation; Mr. Vladislav Osipov and Mrs. Natalya Bogatyreva for the help during preparation of the figures. The authors thank the reviewers of this paper for their comments and corrections and the editorial board of *Quaternary International* for the help and the improvement of the original English text.

References

- Agadjanian, A.K., 1987. Collection and study of small mammals remains. In: Kaplin, P.A. (Ed.), The Investigations of the Complex Biostratigraphy. Moscow State University Press, Moscow, pp. 27–58 (in Russian).
- Agadjanian, A.K., 2009. Pliocene–Pleistocene Small Mammals of the Russian Plain. Nauka Press, Moscow. 676 (Transactions of the Palaeonlogical institute, Issue 289) (in Russian).
- Alexandrowicz, S., Alexandrowicz, W., 2010. Molluscs of the Eemian interglacial in Poland. Annales Societatis Geologorum Poloniae 80, 69–87.
- Chaline, J., 1972. Les rongeurs du Pléistocène moyen et supérieur de France. Cahiers de Paléontologie. CNRS, Paris.
- Danukalova, G.A., 2007. Stratigraphy of Quaternary of the Fore-Urals. In: Gladenkov, Yu.B. (Ed.), Geological Events of the Neogene and Quaternary of Russia: Modern Condition of the Stratigraphical Schemes and Palaeogeographical Reconstructions. Materials of V All-Russian Quaternary Conference. GEOS Press, Moscow, pp. 40–43 (in Russian).
- Danukalova, G.A., 2010. The refined Quaternary stratigraphic scale of the Cisuralian region and main events in the South Urals. Stratigraphy and Geological Correlation 18 (3), 331–348.
- Danukalova, G., Eremeev, A., 2006. Quaternary loess-like deposits of the Southern Urals. Quaternary International 152–153, 31–36.
- Danukalova, G.A., Yakovlev, A.G., 2004. New stratigraphical data on the Middle Neopleistocene deposits of the Southern Urals region. In: Geology and Mineral Resources of the European North-east of Russia. Materials of the XIV Geological Congress of the Komi Republic, 2004, vol. 3. Geoprint Press, Syktyvkar, pp. 232– 235 (in Russian).
- Danukalova, G., Yakovlev, A., 2006. A review of biostratigraphical investigations of Palaeolithic localities in the Southern Urals region. Quaternary International 149 (1), 37–43.
- Danukalova, G.A., Yakovlev, A.G., Kotov, V.G., 2000. Age, biostratigraphy and archaeology of the lacustrine deposits of the second above floodplain terraces of the Southern Fore-Urals rivers. In: Puchkov, V.N. (Ed.), Geological Collection, 1. Informational materials, pp. 69–72 (in Russian).
- Danukalova, G.A., Yakovlev, A.G., Puchkov, V.N., Danukalov, K.N., Agadjanian, A.K., Van Kolfschoten, Th., Morozova, E.M., Eremeev, A.A., 2002a. Excursion Guide of the INQUA SEQS – 2002 Conference, 30 June – 7 July, 2002, Ufa, Russia (INQUA SEQS – 2002 Conference "The Upper Pliocene – Pleistocene of the Southern Urals Region and Its Significance for Correlation of Eastern and Western Parts of Europe"). Dauria Press. Ufa.
- Danukalova, G.A., Yakovlev, A.G., Alimbekova, L.I., Kosintsev, P.A., Morozova, E.M., Eremeev, A.A., 2002b. Biostratigraphy of the Quaternary deposits of the caves and river terraces from the latitudinal current of the Belaya River valley. In: Gareev, E.Z. (Ed.), Ecological Aspects of the Yumaguzino Water Reseourvar. Gilem Press, Ufa, pp. 32–57 (in Russian).
- Danukalova, G.A., Yakovlev, A.G., Morozova, E.M., Alimbekova, L.I., 2007a. Biostratigraphy of the Late Middle Pleistocene (Middle Neopleistocene) of the southern Urals region. Quaternary International 160, 17–29.
- Danukalova, G.A., Yakovlev, A.G., Alimbekova, L.I., Morozova, E.M., 2007b. New Quaternary sites of the southern Fore-Urals (Uteimullino I, II and III). In: Puchkov, V.N. (Ed.), Geological Collection, 6. Informational materials, pp. 40–54 (in Russian).
- (In Russien), Danukalova, G., Yakovlev, A., Alimbekova, L., Yakovleva, T., Morozova, E., Eremeev, A., Kosintsev, P., 2008. Biostratigraphy of the Upper Pleistocene (Upper Neopleistocene) – Holocene deposits of the Lemeza River valley of the Southern Urals region (Russia). Quaternary International 190, 38–57.
- Danukalova, G., Yakovlev, A., Osipova, E., Yakovleva, T., Kosintsev, P., 2011. Biostratigraphy of the Upper Pleistocene (Upper Neopleistocene) – Holocene deposits of the latitude current of the Belaya river valley of the Southern Urals region (Russia). Quaternary International 231, 23–43.
- Danilovskyi, I.V., 1955. Scandinavian Glaciation Deposits Key Site of the Russian Plain and Quaternary Molluscs. Gosgeoltekh Press, Moscow (Transactions of the VSEGEI, V. 9) (in Russian).
- Gibbard, P.L., Cohen, K.M., 2008. Global Chronostratigraphical correlation table for the last 2.7 million years. Episodes 31 (2), 243–247.
- Goretsky, G.I., 1964. Alluvium of the Great Antropogenic Pra-Rivers of the Russian Plain. Nauka Press, Moscow (in Russian).
- Gozhik, P.F., 1965. Quaternary (Anthropogene) Molluscs of the Prut River Terraces. Materials on the Quaternary Period of Ukraine. Naukova Dumka Press, Kiev, 332 pp. (in Russian).

Grichuk, V.P., Zaklinskaya, E.D., 1948. The Analysis of Fossil Pollen and Spore and Using These Data in Paleogeography. GeographGIZ Press, Moscow (in Russian).

- Gromov, V.I., 1948. Palaeontological and Archaeological Substantiation of the Stratigraphy of the Quaternary Terrestrial Sediments in the USSR Territory. Academy of sciences of the USSR Press, Moscow (in Russian).
- Gromov, V.I., Baranova, G.I., 1981. Catalogue of Mammals of the USSR (Pliocenerecent). Nauka Press, Leningrad (in Russian).
- Gromov, V.I., Erbaeva, M.A., 1995. The Mammals of Russia and Adjacent Territories. Lagomorphs and Rodents. Zoological Institute Russian Academy of Sciences Press, Sankt Petersburg (Transactions of the Zoological institute, Issue 167) (in Russian).
- Guslitcer, B.I., 1979. Search for a Fossil Small Mammals Remains. Komi branch of the Academy of sciences of the USSR Press, Syktyvkar, 39 pp. (in Russian).
- Kerney, M.P., Cameron, R.A.D., 1999. Guide des Escargots et limaces d'Europe. Delachaux et Niestle S.A, Lausanne.
- Kosintsev, P.A., 2003. Late Pleistocene and Holocene mega-mammals of the Urals. In: Smirnov, N.G. (Ed.), Quaternary Paleozoology in the Urals. Uralskiy Universitet, Ekaterinburg, pp. 55–72 (in Russian).
- versitet, Ekaterinburg, pp. 55–72 (in Russian).
 Kosintsev, P., Danukalova, G., Osipova, E., Yakovlev, A., Alimbekova, L., Popova-Lvova, M., 2013. Palaeoenvironment of the Late Pleistocene–Holocene interval in the Tanalyk river valley of the Southern Trans-Ural region (Russia). Quaternary International 284, 74–84.
- Kunitsa, N.A., 1974. Late Pleistocene Molluscs of the Voluno-Podoliya. Materials to the Quaternary Period of Ukraine. Naukova Dumka Press, Kiev (in Russian).
- Kuzmina, E.A., 2009. Late Pleistocene and Holocene small mammal faunas from the South Trans-Urals. Quaternary International 201, 25–30.
 Kuzmina, I.E., Abramson, N.I., 1997. Small mammal remains from the Kapova cave of
- Kuzmina, I.E., Abramson, N.I., 1997. Small mammal remains from the Kapova cave of the Southern Urals. In: Cave Palaeolitic of the Urals, Vaterials of the International Conference. Print press, Ufa, pp. 124–127 (in Russian).
- Likharev, I.M., Rammelmeier, E.S., 1952. Land Molluscs of the Fauna of the USSR. Academy of Sciences of USSR Press, Leningrad, Moscow (Determinative tables of the USSR fauna. Proceedings of the Zoological Institute of the USSR Academy of Sciences, vol. 43) (in Russian).
- Ložek, V., 2000. Holocene of the Bohemian Karst. GeoLine 11, 101-103.
- Maleeva, A.G., 1982. Small mammals of upper Alabuga fauna, southern Trans-Urals. In: Papulov, G.N. (Ed.), Pliocene and Pleistocene of Urals. Part 2. Urals Branch of the USSR Academy of Sciences Press, Sverdlovsk, pp. 9–38 (in Russian).
- Markova, A.K., 1982. Quaternary Rodents of the Russian Plain Their Significance for the Palaeogeography and Stratigraphy. Nauka Press, Moscow (in Russian).
- Markova, A.K., 1985. Microteriofauna of the Mikulino interstadial in accordance with the materials from the Russian plain. Doklady Akademii Nauk of the USSR 284 (3), 718–721 (in Russian).
- Marković, S.B., Oches, E.A., Gaudenyi, T., 2004. Palaeoclimate record in the Late Pleistocene loess-paleosol sequence at Miseluk (Vojvodina, Serbia). Quaternaire 15 (4), 361–368.
- Marković, S.B., Bokhorst, M.P., Vandenberghe, J., McCoy, W.D., Oches, E.A., Zöller, L., Hambach, U., Gaudenyi, T., Jovanović, M., Stevens, T., Machalett, B., 2008. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science 23, 73–84.
- Marković, S.B., Oches, E.A., McCoy, W.D., Frechen, M., Gaudenyi, T., 2007. Malacological and sedimentological evidens for "warm" glacial climate from the Irig loess sequence, Vojvodina, Serbia. Geochemistry, Geophysics, Geosystems 8 (9), 1–12.
- Martin, S., Magnin, F., Chevillot, P., 2005. Mise en évidence des discontinuités spatiales et temporelles dans l'anthropisation de la plaine de la Vistrenque à nîmes (Gard) durant L'Holocène apport de l'analyse malacologique. Quaternaire 16 (4), 339–353.
- Moine, O., 2008. West-European malacofauna from loess deposits of the Weichselian Upper Pleniglacial: compilation and preliminary analysis of the database. Quaternare 19 (1), 11–29.
- Moine, O., Rousseau, D.-D., Antoine, P., 2005. Terrestrial molluscan records of Weichselian Lower to Middle Pleniglacial climatic changes from the Nussloch loess series (Rhine Valley, Germany): the impact of local factors. Boreas 34, 363–380.
- Moskvitin, A.I., 1976. The Pleistocene Key Sites of the Russian Plain. Nauka Press, Moscow (in Russian).
- Nemkova, V.K., 1976. History of the vegetation of the Fore-Urals during Late and Past Glacial time. In: Vinogradov, A.P. (Ed.), Actual Questions of the Modern Geochronology. Nauka Press, Moscow, pp. 259–275 (in Russian).
- Nederlandse Fauna 2, 1998. In: Gittenberger, E., Janssen, A.W. (Eds.), De Nederlandse Zoetwatermollusken. Recente en fossiele weekdieren uit zoet en brak water. Nationaal Natuurhistorisch museum Naturalis KNNV uitgeverij, European Invertebrate Survey, Nederland.
- Osipova, E.M., 2009a. Characteristic of the Late Neopleistocene–Holocene molluscs of the Southern Urals region. In: Puchkov, V.N. (Ed.), Geological Collection, 8. Informational materials, pp. 49–54 (in Russian).
- Osipova, E.M., 2009b. Development stages of the Quaternary molluscan fauna in the South Urals region. Stratigraphy and Geological Correlation 17 (6), 109–112.
- Osipova, E., Danukalova, G., 2011. Successions of Quaternary mollusc fauna in the easternmost continental Europe (the southern Urals, Russia). Quaternary International 231, 44–49.
- Pokrovskaya, I.M., 1950. Palynologic Analysis. Geologic Literature Press, Moscow (in Russian).
- Rekovets, L.I., 1994. Anthropogene Small Mammals of the South Eastern Europe. Naukova Dumka Press, Kiev (in Russian).
- Rogachev, A.N., Anikovich, M.V., 1984. Late Palaeolithic of the Russian Plain and Crimea. In: Boriskovskyi, P.I. (Ed.), Archaeology of the USSR. Palaeolithic of the USSR, vol. 1. Nauka Press, Moscow, pp. 162–271 (in Russian).

- Rozhdestvensky, A.P., 1971. Neotectonics and Relief Development of the Southern Fore-Urals. Nauka Press, Moscow (in Russian).
- Shevyrev, L.T., Alexeeva, L.I., 1979. Problems of the futher investigation of the Shkurlatovo locality of the Mikulino fauna. In: Raskatov, G.I. (Ed.), Anthropogene Problems of the Central Regions of the Russian Platform. Voronezh State University Press, Voronezh, p. 176 (in Russian).
- Shick, S.M., Borisov, B.A., Zarrina, E.P., 2004. Project of the regional stratigraphic Neopleistocene scheme of the European Russia. Bulletin of the Quaternary Period Commission 65, 102–114 (in Russian).
- Shileyko, A.A., 1978. Land Molluscs of the Helicoidea. Nauka Press, Leningrad (Fauna of the USSR. Mollusca, vol. 3, Issue 6) (in Russian).
- Shileyko, A.A., 1984. Land Molluscs of the Pupillina (Gastropoda, Pulmonata, Geophila). Nauka Press, Leningrad (Fauna of the USSR. Mollusca, vol. 3, Issue 3) (in Russian).
- Shileyko, A.A., Likharev, I.M., 1986. Land molluscs of the family Succineidae of the fauna of the USSR. In: Archives of Zoological Museum of Moscow State University. Fauna, Systematics and Phylogeny of the Invertebrated Animals, vol. XXIV, pp. 198–238 (in Russian).
- Sidnev, A.V., Chepalyga, A.L., 1983. Molluscs of the Sultanaevo and Yulushevo sites. In: Yusupov, B.M., Yakhemovich, V.L. (Eds.), Pliocene and Pleistocene Fauna and Flora (Sultanaevo and Yulushevo Key Sites). Nauka Press, Moscow, pp. 54–94 (in Russian).
- Sinitskikh, E.S., 1982. Experience of the Water Collection of the Fauna and Flora Remains from the Pliocene and Quaternary Deposits of the Urals. Part 2. In: . Urals Branch of the USSR Academy of Sciences Press, Sverdlovsk, pp. 39–43 (in Russian).
- Smirnov, N.G., Bolshakov, V.N., Kosintcev, P.A., Panova, N.K., Korobeinikov, Yu.I., Olshvang, V.N., Erokhin, N.G., Bykova, G.V., 1990. Historical Ecology of Animals of the Southern Urals. Urals Branch of the USSR Academy of Sciences Press, Sverdlovsk (in Russian).
- Smirnov, N.G., Bolshakov, V.N., Borodin, A.V., 1986. The Pleistocene Rodents of the North Western Siberia. Nauka Press, Moscow (in Russian).
- Stefanovsky, V.V., 1997. Explanatory notes to the stratigraphic scheme of Quaternary deposits of Urals. In: Explanatory Notes to the Stratigraphic Schemes of Urals. Regional Stratigraphic Commission Press, Ekaterinburg, pp. 97–139 (in Russian).
- Stefanovsky, V.V., 2006. Pliocene and Quaternary of the Eastern Slope of the Urals and Trans-Urals. Ekaterinburg (in Russian).
- Sukhov, V.P., 1972. About find of the Middle Pleistocene small mammals remnants in surroundings of the Krasnyi Bor village on the bank of the Kama River. In: Yakhemovich, V.L. (Ed.), Questions of Stratigraphy and Correlation of the Pliocene and Pleistocene Deposits of the Northern and Southern Parts of the Fore-Urals. Issue 1. Bashkirian Branch of the USSR Academy of Sciences Press, Ufa, pp. 133–136 (in Russian).
- Sümegi, P., Krolopp, E., 2002. Quatermalakological analyses for modeling of the Upper Weichselian palaeoenvironmental changes in the Carpathian Basin. Quaternary International 91, 55–63.
- Sutcliffe, A.J., Kowalski, K., 1976. Pleistocene rodents of the British Isles. Bulletin, British Museum of Natural History and Geology 27 (2), 35–147.
- Veklich, M.F., Sirenko, N.A., 1972. Anthropogene Geological Key Sites of Ukraine. Part 3. Naukova Dumka Press, Kiev (in Russian).
- Velichko, A.A., Ivanova, I.K., 1969. General conclusion about the geological age of the Palaeolithic. In: Gerasimov, I.P. (Ed.), Nature and Development of the Palaeolithic Society on the European Part of the USSR. Nauka Press, Moscow, pp. 37– 41 (in Russian).
- Velichko, A.A. (Ed.), 1982. Palaeogeography of the Europe for the Last 100 Thousands Years (Atlas-monograph). Nauka Press, Moscow (in Russian).
- Velichko, A.A. (Ed.), 2002. Dynamics of the Terrestrial Landscape Components and Inner Marine Basins of the Northern Eurasia During the Last 130,000 Years

(Atlas-monograph). Issue 2. General Palaeogeography. GEOS Press, Moscow, p. 232 (in Russian).

- Yakhemovich, V.L., Nemkova, V.K., Verbitskaya, N.P., Sukhov, V.P., Popov, G.I., 1970. Stages of the geological development of the Bashkirian Fore-Urals during Cenozoic. In: Yakhemovich, V.L. (Ed.), Cenozoic of the Bashkirian Fore-Urals. Part 3, vol. 2. Nauka Press, Moscow (in Russian).
- Yakhemovich, V.L., Nemkova, V.K., Bezzubova, E.I., 1980. Description of the Pliocene and Pleistocene deposits investigated in the quarry in surroundings of the Voevodskoye village in Bashkiria. In: Kamaletdinov, M.A., Yakhemovich, V.L. (Eds.), Fauna and Flora of the Voevodskoye Key Site. Bashkirian Branch of the USSR Academy of sciences Press, Ufa, pp. 4–29 (in Russian).
- Yakhemovich, V.L., Nemkova, V.K., Suleimanova, F.I., 1981. Pliocene and Pleistocene of the Volga-Urals Region. Nauka Press, Moscow (in Russian).
- Yakhemovich, V.L., Nemkova, V.K., Suleimanova, F.I., Popova-Lvova, M.G., Sidnev, A.V., Chepalyga, A.L., Petrenko, A.G., Akhlestina, E.F., Molotkova, L.G., Zigangirov, Z.S., Alimbekova, L.I., Koblov, V.A., 1983. Pliocene and Pleistocene Fauna and Flora (Sultanaevo and Yulushevo Key Sites). Nauka Press, Moscow (in Russian).
- Yakhemovićh, V.L., Nemkova, V.K., Alimbekova, L.I., Popova-Lvova, M.G., Garutt, V.E., Suleimanova, F.I., Akhlestina, E.F., Molotkova, L.G., Arslanov, Kh.A., Latypova, E.K., Urbanas, E.V., Tertychnaya, T.V., Sherbakova, T.I., 1985. Results of the Investigation of the Pleistocene Sites of Bashkiria with Elephantidae Remnants. Bashkirian Branch of the USSR Academy of sciences Press, Ufa (in Russian).
- Yakhemovich, V.L., Nemkova, V.K., Sidnev, A.V., Suleimanova, F.I., Khabibullina, G.A., Sherbakova, T.I., Yakovlev, A.G., 1987. Pleistocene of the Fore-Urals. Nauka Press, Moscow (in Russian).
- Yakhemovich, V.L., Nemkova, V.K., Yakovlev, A.G., 1988. Regional Subdivisions of the New Pleistocene Stratigraphic Scheme of the Fore-Urals and Some Key Sites. Bashkirian Scientific Centre Press, Ufa (in Russian).
- Yakovlev, A.G., 2003. Studies of fossil micromammals of the Neopleistocene and Holocene time in the Fore-Urals and western slope of the Southern Urals. In: Smirnov, N.G. (Ed.), Quaternary Paleozoology in the Urals. Uralskiy Universitet, Ekaterinburg, pp. 116–122 (in Russian).
- Yakovlev, A.G., 2009. Late Neopleistocene and Holocene small mammals of the Southern Urals region. In: Puchkov, V.N. (Ed.), Geological Collection, 8. Informational materials, pp. 54–59 (in Russian).
- Yakovlev, A., Danukalova, G., Kosintcev, P., Alimbekova, L., Morozova, E., 2006. Biostratigraphy of the Late Palaeolithic site of "Bajslan-Tash cave" (the southern Urals). Quaternary International 149, 115–121.
- Yanina, T.A., 2009. Palaeogeography of the Ponto-Caspian Basins During Pleistocene According to the Malacofaunistical Analysis. Extended Abstract of Doctorant thesis in Geography. Moscow State University, Moscow (in Russian).
- Zagwijn, W.H., 1996. Borders and boundaries: a century of stratigraphical research in the Tegelen–Reuver area of Limburg (The Netherlands). 16-21 June, 1996. In: Volume of Abstracts of the INQUA-SEQS conference "The dawn of the Quaternary", pp. 2–9.
- Zazhigin, V.S., 1980. Late Pliocene and Anthropogene Rodents of the South Western Siberia. Nauka Press, Moscow (Transactions of the Geological institute, Issue 339) (in Russian).
- Zhadyn, V.I., 1952. Molluscs of Freshwaters of USSR. Publishing House Academy of Sciences of USSR Press, Moscow, Leningrad (Determination tables of the USSR fauna. Transactions of the Zoological Institute of the USSR Academy of Sciences, vol. 46) (in Russian).
- Zhamoida, A.I., Girshgorn, L.C.H., Kovalevsky, O.P., Oleynikov, A.N., Prozorovskaya, E.L., Margulis, L.S., Khramov, A.N., Shkatova, V.K., 2006. Stratigraphic Code of Russia, third ed. VSEGEI Press, Sankt Petersburg (Interdeparamental Stratigraphic Committee) (in Russian).