New data on the Early Villafranchian fauna from Vialette (Haute-Loire, France) based on the collection of the Crozatier Museum (Le Puy-en-Velay, Haute-Loire, France)

Frédéric Lacombata,*, Laura Abbazzib, Marco P. Ferrettib, Bienvenido Martínez-Navarroc, Pierre-Elie Moulléd, Maria-Rita Palomboc, Lorenzo Rookb, Alan Turnerf, Andrea M.-F. Vallig

aForschungsstation für Quäratopaläontologie Senckenberg, Weimar, Am Jakobskirchhof 4, D-99423 Weimar, Germany
bDipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy
cICREA. Area de Prehistoria, Universitat Rovira i Virgili-IPHES, Plaça Imperial Tarragona 1, 43005 Tarragona, Spain
dMusée de Préhistoire Régionale de Menton, Rue Lorédan Larchey, 06500 Menton, France
eDipartimento di Scienze della Terra, Università degli Studi di Roma ‘La Sapienza’, P.le Aldo Moro, 00185 Roma, Italy
fSchool of Biological and Earth Sciences, Liverpool John Moore University, Liverpool L3 3AF, UK
g78 rue du pont Guignet, 03000 Moulins, France

Available online 7 September 2007

Abstract

Vialette (3.14 Ma), like Senèze, Chilhac, Sainzelles, Ceyssagué or Soleilhac, is one of the historical sites located in Haute-Loire (France). The lacustrine sediments of Vialette are the result of a dammed lake formed by a basalt flow above Oligocene layers, and show a geological setting typical for this area, where many localities are connected with maar structures that have allowed intra-crateric lacustrine deposits to accumulate. Based on previous studies and this work, a faunal list of 17 species of large mammals has been established. Eight species, typical of this time period and well known, occur in the collection of the Crozatier Museum of Le Puy-en-Velay: \textit{Pliocrocuta perrieri}, \textit{Lynx issiodorensis}, \textit{Mammut borsoni}, \textit{Anancus arvernensis}, \textit{Stephanorhinus jeanvireti}, \textit{Tapirus arvernensis}, ‘\textit{Cervus}’ pardinensis and \textit{Croizetoceros ramosus}. The presence of \textit{Gazella} cf. \textit{G. borbonica} is newly established, in addition to which the oldest known occurrences of \textit{Canis} sp., cf. \textit{Eucladoceros} sp. and of the genus \textit{Equus} in Western Europe are also described. These are the new data which pushed back the age of the arrival of the genus \textit{Equus}, cf. \textit{Eucladoceros} and \textit{Canis} in Western Europe. Five taxa are not found in the Crozatier collection: Primates indet., \textit{Agriotherium} sp., \textit{Ursus} gr. \textit{minimus-thibetanus}, Bovidae middle-sized (?\textit{Pliotragus ardei} or ?\textit{Gallogoral meneghinii}), ?\textit{Procapreolus} cf. \textit{cusanus}.

\textcopyright{} 2007 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

Vialette is located in France near the city of Le Puy-en-Velay (Fig. 1) within the department of Haute-Loire in the large volcanic area called Velay, which has provided many Plio-Pleistocene paleontological localities such Sainzelles, Ceyssagué or Soleilhac. The site was excavated from the beginning of the 19th century by many researchers from different European institutions, and the fossil material from Vialette is therefore scattered in many museums and institutions all over the continent, but the collection stored in the Crozatier Museum was only partially included in previous works. Based on previous studies by Aymard (several short notes in the 19th century), Boule (1892), Bout (1960), Heintz (1970), Heintz et al. (1974), Guérin (1972) and this present study a faunal list of 17 species of large mammals has been established. Only the oldest items,
those resulting from the two first fossil collections of Aymard and Robert in the 19th century, are stored in the Crozatier Museum, and represent nearly 1500 specimens. In this study only the specimens undeniably coming from Vialette have been taken into account. The species known to be typical of Vialette will first be described before presentation of the new results and discussion of their implications.

2. General context

The geological setting of Vialette is quite particular for this volcanic area where many paleontological localities are connected to maar structures that have allowed the accumulation of intra-crateric lacustrine deposits. The fossiliferous lacustrine deposit of Vialette is the result of a dammed lake (Couthures, 1979) formed by the lower basaltic flow lying above Oligocene clays. The deposits were covered by the upper basaltic flow which is now partially eroded.

The fossiliferous layer is ascribed to the normal magnetised lower part of the Gauss magnetochron, confirmed by a fission track date of 3.14 ± 0.6 Ma (Biquand et al., 1981; Thouveny and Bonifay, 1984). It corresponds to the Triversa Faunal Unit (MN16a; Fig. 2) in the first half of the Early Villafranchian Land Mammal Age.

3. Typical species

Many studies on the fauna discovered in Vialette during the different excavations have been published in the 19th and 20th centuries but none of them has taken into account the whole collection of the Crozatier Museum. In many papers some species, such as Machairodus sp. and Capra sp. (Boule, 1892), Gazellospira torticornis (Guérin, 1965) and Homotherium crenatidens (Guérin, 1972) were cited without any further details and disappeared from the later faunal lists. The last complete listing was given by Heintz et al. (1974), but some of the species cited in this work are not present in the collection of Le Puy-en-Velay, and we begin with those.

3.1. Material in other collections

- The presence of ‘Dolichopithecus’ arvernensis is based on a primate molar found in the collection of the Naturhistorisches Museum, Basel (NHMB), and identified by Heintz et al. (1974). However, the attribution of this primate should be used carefully and requires a revision, since the authors admit that the molar features are very different from those seen in Paradolichopithecus arvernensis from Senèze, and we suggest allocation simply to Primates indet.
- Agriotherium sp. was described and figured by Helbing (1932) based on one upper M2 stored in the NHMB.
- One single canine stored in the collection at the NHMB (Heintz et al., 1974) has been recently attributed to Ursus gr. minimus-thibetanus (Wagner, 2006). It was previously assigned to Ursus etruscus by Heintz et al. (1974).
- Two specimens, a tooth and a calcaneus, stored respectively in the Museum national d’Histoire naturelle de Paris (MNHN) and in the University of Sciences of
Lyon (FSL) are attributed by Heintz et al. (1974) to *Pliotragus ardei* or *Galgollogus meneghini*.

- Two remains stored in the NHMB are attributed by Heintz (1967, 1970), with reservations to *Procapreolus cusamus*.

3.2. Crozatier Museum specimens

3.2.1. *Pliocrocuta perrieri*

It is represented by three specimens: a fragmented maxilla with P1 and P2 (2003-5-374-VIA), a semi-complete ulna (2003-5-545-VIA) and a complete second metacarpal (2003-5-1455-VIA). Two lower teeth are also recorded by Heintz et al. (1974) from the collections of the Guimet Museum of Lyon (MGL). The occurrence of a hyena in Vialette was reported by Depéret et al. (1823) as *Hyaena vialetti* (nomen nudum, created by Aymard) and by Guérin as *Hyaena arvernensis* (Boule, 1892; Guérin, 1972), now considered as synonyms of *P. perrieri* (discussion on the nomenclature in Werdelin and Solounias, 1991). This hyena, close to the living brown hyena (Turner, 1990), shows morphological differences (e.g. the maximal breadth of the upper P2 is distal in *P. perrieri* whereas it is in a mesial location in *Pachycrocuta brevirostris*) and is smaller and more slender than the widespread Eurasian latest Pliocene and Early Pleistocene *P. brevirostris* (Turner and Antón, 1996). The occurrence of *P. perrieri* at Vialette is one of the first occurrences of this species in Western Europe, where it held the role of large bone destroyer until being replaced by *P. brevirostris* in the Early Pleistocene (Turner, 1995).

3.2.2. *Lynx issiodorensis*

The only two remains known, so far, of this species from Vialette are a mandible with P3 and P4 (2003-5-407-VIA) and a complete second metacarpal (2003-5-406-VIA). On the lower P3 the paraconid is not well developed and the protoconid is marked and the cement is poorly developed, and the morphology and size of the teeth are well within the range of variability of the species. The remainder of the material is also fully comparable with that known from Pliocene *A. arvernensis* samples from Europe.

3.2.3. *Mammut borsomi* and *Anancus arvernensis*

Both species of ‘mastodonts’ are found together at Vialette. This is a common association of the Early Pliocene of Europe but it is much less frequent in the Middle Pliocene. This association of *M. borsomi* plus *A. arvernensis* is one of the last known, in Europe, before the extinction of *M. borsomi* at the end of the Triversa Faunal Unit, possibly linked to the climatic cooling and the withdrawal of forested habitat. *A. arvernensis*, on the other hand, survived in Europe until the end of the Pliocene (Palombo and Ferretti, 2005). The mammutid molars from Vialette are characterised by a broad crown, a high loph(id) base, and a weak pretrite central conule (crensectoid crests), all diagnostic features of *M. borsomi* (Tassy, 1985). The size of the molars is also comparable to that of specimens from the type locality. A noteworthy feature of the studied sample is the occurrence of an atlas, given that this element is poorly known in *M. borsomi*. The Vialette atlas resembles that of *M. americanum* in having a thick and dorsally convex neural arch, differing in this respect from the gomphothere *A. arvernensis* that possesses a more slender and flat arch. Two nearly complete lower third molars (2003-5-756-VIA and 2003-5-755-VIA) of *A. arvernensis* are formed by five lophids and a posterior heel. Alternation of pretrite and posttrite half-lophids is marked and the cement is poorly developed, and the morphology and size of the teeth are well within the range of variability of the species. The remainder of the material is also fully comparable with that known from Pliocene *A. arvernensis* samples from Europe.

3.2.4. *Stephanorhinus jeanvireti*

Vialette is the type locality of this species (Guérin, 1972). The holotype is stored in the Basel museum. *Stephanorhinus elatus*, created by Croizet and Jobert (1828) is also used in recent papers but without any proper and detailed clarification of the nomenclature we will use *S. jeanvireti*, species recognised by the ICZN. This species, a slender, medium- to large-sized rhinoceros, is only found, so far, in the MN16 of Europe. It shows primitive features, such as developed premolars, and could, based on morphology and proportions, be a possible relative of the Early Pleistocene *Stephanorhinus hundsheimensis* (Fortelius et al., 1993; Lacombat, 2005a).

3.2.5. *Tapirus arvernensis*

It is one of the most common species at Vialette. This is a small and slender tapir characteristic of the Ruscian and the Early Villafranchian. The species is also reported in few Late Pliocene localities such as Le Coupé (Haute-Loire, France), but without any certainty about the stratigraphic position regarding the main fossiliferous layer dated around ~2 Ma, Heintz et al. 1974) and Tegelen in the Netherlands (Guérin and Einsenmann, 1982; Azzaroli et al., 1988; Rustioni et al., 1995) but in fact the latter remains come from Maalbeek which is correlated to the Early Villafranchian (Braber et al., 1999; Kolschoten, 2001). This species is well adapted to a closed and humid environment, as shown by its typical morphology with slender long bones with broad and concave articulations. The teeth show also primitive features like...
the size of the premolars which are quite similar to the size of the molars.

3.2.6. 'Cervus' pardinensis

It is the most frequently occurring taxon in Vialette, although the generic assignation of this species, and the question of allocation to either *Pseudodama* or *Metacervoceros*, is the topic of controversy (see Azzaroli, 1992; Valli, 2001; Di Stefano and Petronio, 2002; Croitor, 2006). We will simply follow the nomenclature of Heintz (1970) and use the genus ‘Cervus’ s. l. This cervid is characterised by a three-tined antler with a basal tine near to the burr and a broad and developed cingulum that spreads all around the collar of the lower and upper teeth. All the upper premolars possess a postero-lingual wing which is, in comparison with specimens from younger localities (e.g. St Vallier [Valli, 2001] or Étouaires [Poidevin et al., 1984; Pastre, 2004]), considered as a primitive character (Valli and Lacombat, 2005) and all the lower P4 are unmolarised.

3.2.7. Croizetoceros ramosus

It is a small-sized cervid showing a circular section of its antler with a high basal tine. The cingulum of the teeth is reduced but present. The population of *Croizetoceros* from Vialette shows primitive characters such as the early stage of molarisation of the lower P4, usually completely molarised in the Middle Villafranchian populations (Valli, 2005). This species (divided into several subspecies by Heintz, 1970) occurs over the whole Early and Middle Villafranchian time span.

4. New results from the Crozatier collection

4.1. Canis sp.

Members of this genus are generally considered to make their first appearance in Europe in the Late Pliocene (Martinez-Navarro and Rook, 2003). However, Heintz et al. (1974), in their revision of the Villafranchian of France, pointed out a potential presence of *Canis* in Vialette without any description or picture of the remains and attributed the ‘probable’ canid of Vialette to *Canis aff. etruscus*. We accept that the genus *Canis* is present at Vialette and identify six remains (2003-5-401-VIA: a mandible with M1 and M2 [Fig. 3], 2003-5-402-VIA: a mandible with P3, 2003-5-403-VIA a mandible with CP1P2P3P4 [Fig. 3], 2003-5-404-VIA: a lower I2, 2003-5-405-VIA: a lower I3 and 2003-5-541-VIA: a tibia). The morphology, the size and the proportions of these remains allow us to exclude genera occurring in the Early Pliocene, such as *Eucyon* as well as the very common racoon dog *Nyctereutes* (Monguillon, 2005). This is therefore probably the earliest occurrence of the genus *Canis* in Europe, although at this stage we refrain from an allocation to species.

4.2. Equus sp.

Equus stenonis was reported at Vialette by Bout (1960), based on three specimens in the NHMB, but this was rejected by Heintz (1970) and Heintz et al. (1974). However, three equid remains (2003-5-689-VIA-a complete
second phalange; 2003-5-973-VIA-a pyramidal and 2003-5-975-VIA-a lunatum; Fig. 4) in the Crozatier Museum collection labelled in the 19th century as coming from the site were found to have the peculiar Vialette fossilisation and are attributed here to *Equus* sp. The first appearance of *Equus* in Western Europe, *Equus livenzovensis*, is quoted near 2.5 Ma (Azzaroli et al., 1988; Rustioni et al., 1995; Alberdi et al., 1998; Agusti and Oms, 2001), but it is also cited as *Equus* sp. in Eastern Europe: in Romania (Groserea and Covrigi, MN16a, Samson, 1975; Radulescu and Samson, 2001; Radulescu et al., 2003), in Lebyash’e 1 and Esekartkan (MN16a, Kazakhstan, Vislobokova et al., 2001; Vislobokova, 2005) and in France: Crouzas (Haute-Loire; MN16a, Lacombat, 2005b). We can now confirm that the genus *Equus* was present in the Early Villafranchian in Western Europe. Unfortunately, these remains are not enough to allow a specific attribution, despite the fact that the size of the second phalange (2003-5-689-VIA) is one of the largest when compared with the data on stenoid horses of Prat (1980), and is in agreement with the large size of the earliest forms of *Equus* in Europe (Alberdi et al., 1998).

4.3. *Gazella* cf. *Gazella borbonica*

An upper M3 (2003-5-1000-VIA; Fig. 5), attributed to *Gazella*, shows convergent labial and vestibular outlines. A small development of the sharp mesostyle and a rounded parastyle and the absence of an anterior fold are typical of *G. borbonica*. The small size of the specimen and its morphology, easily distinguish it from larger bovids such as the goral *G. meneghini*, *P. ardei* or *Gazellospira torticornis* (Guérin, 1965; Heintz, 1966). Even if *G. borbonica* occurs in the Ruscinian (Heintz, 1969, 1975; Aguirre and Morales, 1990; Kostopoulos and Athanassiou, 1997), this is the first citation of the species in Vialette.

4.4. *cf. Eucladoceros* sp.

The scanty large cervid remains from Vialette only allow us to attribute them to a form of *cf. Eucladoceros*. Only two specimens of large cervid from the site have been previously described in the collection of the NHMB and Natural History Museum of London (NHM) by Heintz (1967, 1970), who suggested that they might be either ‘*Cervus* perrieri’ or *Arvernoceros ardei*. The size of the large
cervid specimens from Vialette (30% bigger than ‘Cervus’ perrieri) rules out the former species and the morphology of the teeth (without any developed cingulum; Fig. 6) allow us to exclude A. ardei as well, whereas both features correspond to Eucladoceros (Valli et al., 2005). If this generic attribution is confirmed, the collection from Vialette, with 20 specimens, represents one of the earliest occurrences of the genus Eucladoceros in Europe.

5. Discussion

The material from Vialette provides the earliest known European occurrences of Canis, of the genus Equus and, possibly, of the genus Eucladoceros, and establishes the lowest appearances of two and perhaps all three of these genera in the Early Villafranchian. The Crozatier Museum collection is also now seen to contain Gazella cf. G. borbonica. These results therefore carry new biochronological and paleoecological implications.

The first occurrence of Eucladoceros in Western Europe has conventionally been taken to be in the second half of the Early Villafranchian in the Montopoli Faunal Unit (Italy; MN16b, Azzaroli et al., 1988; Gliozzi et al., 1997; Palombo, 2005) dated near 2.5 Ma. However, an earlier record of this genus is demonstrated in Kvabey (Georgia; MN16a, Vekua, 1972; Hemmer et al., 2004; Vekua et al., 2005; Vislobokova, 2005) in the Eastern part of Europe. A similar time difference in recorded appearance is true for the genus Equus, again recorded in the Montopoli Faunal Unit (Lindsay et al., 1980; Azzaroli et al., 1988; Rustioni et al., 1995; Alberdi et al., 1998; Agusti and Oms, 2001). However early occurrences of Equus sp. in Grosera and Covrigi (Romania; MN16a, Samson, 1975; Radulescu and Samson, 2001; Radulescu et al., 2003) together with M. borsoni, A. arvernensis, S. jeanvireti and C. pardinensis among others, showing a perfect correlation with Vialette, and in Lebyash’e 1 and Esekarhtkan (MN16a, Kazakhstan, Vislobokova et al., 2001; Vislobokova, 2005), have been clearly demonstrated.

The record of one of the first unequivocal Canis occurrences in Vialette (so far, in the Early Villafranchian, Canis sp. is only cited in Kvabey [Georgia; Hemmer et al., 2004] but is considered as doubtful for Spassov and Rook, 2006) is an isolated appearance of this genus in the Early Villafranchian of Europe. However, other occurrences are reported in the Middle Villafranchian and at the end of the Pliocene (Martinez-Navarro and Rook, 2003; Arribas et al., 2004; Palombo, 2005; Sardella and Palombo, 2007), confirming that the so-called ‘Wolf Event’ (Azzaroli, 1983; Azzaroli et al., 1988; Rook and Torre, 1996) was already completed before the beginning of the Pleistocene (see Sardella and Palombo, 2007, for a discussion).

The climatic degradation that reduced the ‘pre-Villafranchian’ forest (Méon-Vilain, 1972; Suc et al., 1995; Azanza et al., 2004; Palombo, 2004 and references therein), the typical biotope of some of the species recorded at Vialette such as M. borsoni and T. arvernensis (Azzaroli et al., 1988; Gliozzi et al., 1997), is underlined by the occurrence of Equus sp. and Gazella cf. G. borbonica. These two species are likely to have preferred dryer conditions and a more open landscape of the kind indicated by the aridity peak signalled at 3.2 Ma by Shackleton et al. (1984), Shackleton (1995) and Agusti et al. (2001a, b) among others.

Based on definition of the Italian Faunal Units (Azzaroli, 1977), Vialette can be correlated to the Triversa Faunal Unit (MN16a). This Unit is characterised by an important faunal turnover where survivors of the Ruscinian (Agriotherium sp., L. issiodorensis, A. arvernensis, M. borsoni, T. arvernensis) are found together with newcomers showing more advanced features (P. perrieri, C. pardinensis, S. jeanvireti; Azzaroli et al., 1988). The first appearance of Leptobos (the ‘Leptobos event’ of Azzaroli et al., 1988), Acinonyx, Megantereon and Homotherium are also a part of the definition of this Faunal Unit (Gliozzi et al., 1997). These later species are not found, so far, in Vialette. However, we have demonstrated that Canis, Equus and cf. Eucladoceros occur not only in this locality but also in several other sites in Europe and they should therefore also be included in the characterisation of the Triversa Faunal Unit.

6. Conclusion

The fauna of Vialette is a well-dated Early Villafranchian (MN16a, Triversa FU) assemblage showing a mixture of taxa inhabiting different environments. A number of species, notably forest dwellers such as M. borsoni and T. arvernensis, were present in the Early Pliocene or earlier, and some of them make among their last appearances here, presumably unable to survive the cooling of the climate and the progressive dismantling of the forest habitat that followed. Other, perhaps more tolerant species, such as A. arvernensis survived, while others such as P. perrieri, S. jeanvireti and C. pardinensis appeared at the beginning of the Early Villafranchian and are characteristic of this time slice. Among these latter taxa some newcomers, such as Canis, Equus and Eucladoceros, were previously considered to appear later in the Middle Villafranchian (MN16b, Montopoli FU) or even later. This assemblage therefore shows an almost perfect and consistent picture of the cooling of the climate that occurs during this period underlined by the presence of taxa inhabiting or preferring more or less open environments such as Equus and Gazella.

Acknowledgements

F.L. wants to thank M. Erbajeva and N. Alexeeva for the invitation and the organisation of the International INQUA Symposium of Ulan Ude, ‘Stratigraphy, palaeontology and paleoenvironment of Pliocene-Pleistocene of Transbaikalia and interregional correlations’. We are grateful to R.-D. Kahlke, D. Mol and D. Kostopoulos for the discussions, advice and literature that improved this paper. This work is supported by the Crozatier Museum, la ville du Puy-en-Velay, le Conseil Général de la Haute-Loire and DRAC Auvergne. F.L. is supported by the grants of the Alexander von Humboldt Foundation.

References

Hemmer, H., Kahlke, R.-D., Yeka, A.K., 2004. The old world puma–Puma paradoxus (Owen, 1846) (Carnivora: Felidae)—in the
Lower Villafranchian (Upper Pliocene) of Kvabebi (East Georgia, Transcaucasia) and its evolutionary and biogeographical significance. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 233 (2), 197–231.

Spassov, N., Rook, L., 2006. Eucyon marinus sp. nov. (Mammalia, Carnivora), a new canid species from the Pliocene of Mongolia, with a review of forms referable to the genus. Rivista Italiana di Paleontologia e Stratigrafia 112 (1), 123–133.

