48. On the Facial Vibrisse of Mammalia. By R. I. Рососк, F.R.S., F.L.S., F.Z.S., Curator of Mammals.

[Received May 19, 1914; Read June 9, 1914.]
(Text-figures 1-13.)

Index.			
	Page		Page
Introduction	889	Carnivara	901
Monotremata	891	Rodentia	901
Marsupialia	891	Hyracoidea	906
Edentata	895	Proboscidea	906
Insectivora	895	Perissodactyla	906
Chiroptera	897	Artioductyla	908
Primates	898	Conclusion	911

Introdection.

The facts recorded in this and the following paper are some of the results of several years' work, done as time and opportunity permitted, in the Society's Prosectorium.

The features chosen for investigation were external cutaneous structures, which are often cut away or spoilt by shrinkage in dried skins, and which consequently can only be studied satisfactorily upon fresh or spirit-preserved material.

Work done in this way, however, upon specimens which in many cases cannot be preserved for want of storage space, has the great disadvantage of not being comparative in the proper sense of the word. Kelated animals die at iutervals, often of long duration, and the specimens themselves cannot be set side by side and carefully compared from exactly the same point of view. The features presented by the organs under investigation can only be checked by notes or sketches taken from previous specimens, and where discrepancies, or apparent discrepancies, are detected, there is no possibility of referring to the example previously examined to ascertain the meaning or mature of the variation.

As a concrete illustration of the limitations imposed by piecemeal work of this description may be cited the rhinaria of mammals which, when viewed from the front, vary in shape according to the position in which the head is held, and it is not possible to be sure that the standpoint of the investigator is precisely the same in two or more consecutive cases. Hence the importance of verifying results originally obtained by the examination of additional specimens, a proceeding often impossible when the specimens belong to species that are seldom imported alive. Even in the case of common species opportunities of verification are frequently few and far between, and waiting for such chances entails long delay in the publication of results. Making allowance, howerer, for the circumstance that the
observations are based in a great measure upon single individuals, I believe the facts recorded to be of considerable systematic value and sufficiently interesting and important to stimulate extended inquiry along similar lines with profitable results.

The general arrangement of the facial vibrisse in Mammalia may be well-known to some mammalogists; but it does not appear that these tactile hairs have ever been carefully studied throughout the Orders from the comparative point of view, nor can I find that systematists have mode material, much less consistent, use of them in the diserimination of families, genera, and species. One would expect to find these vibrisse deseribed, if anywhere, in the British Museum Catalogues, where particular stress is laid upon external characters; but excopt for a casual reference to them in special cases, as in Chironectes minimus by Mr. Thomas in the Catalogue of Marsupials, authors of these catalogues have practically ignored them. Nevertheless, I believe they will prove to be of value to the systematic worker. But their main interest is perhaps bionomical.

The following account is not intended to be more than an introduction to the study of this subject. It is based mainly upon specimens that have dierl in the Zoological Gardens, and very little attempt has been made to cary investigation beyond the limits of orlinary menagerie suecies. These, however, comprise representatives of most of the orders and suborders of terrestrial mammals: and the types examined are sufficient to establish certain general principles as to the constancy or inconstancy of the occurrence of the tufts of tactile facial vibrisse within the limits of major groups; but far more extensive investigations than it has been possible for me to undertake will be required to set⿱lle the range of their variation within groups of family or generic rank.

According to their position on the head the vibrisse may be referred to the following categories:---

1. Buccal, comprising (a) those on the muzzle and upper lip, or mystacial, the chief of which are usually arranged in definite longitudinal lines, and (b) those on the chin and lower lip, the submental, of which there are generally two distinct rows in addition to some smaller ones less regularly arranged. Of these the mystacials are, as a rule, much the more important.

In the sketches illustrating this paper no attempt has been made to show exactly the numbers and position of these vibrisse, The mystacials have purposely been represented in most cases as fewer and shorter than they are in reality, so as not to interfere with the genals and interramals.
2. Interramal, consisting of an unpaired tuft of bristles, often symmetrically arranged, projecting from the interramal area alway behind the mandibular symphysis (chin).
3. Genal, consisting of one or two tufts, or isolated bristles on the triangular area of the cheek circunsoribed by imaginary lines passing from the posterior canthus of the eye, the posterior angle of the mouth and the base of the ear.
4. Superciliary: the tuft over the eye, genermlly over its anterior portion but sometimes further back.
5. Subocular: those beneath the eye, present mainly in large herbivora.

The superciliaries and suboculars must not be confounded with the eye-lashes which, when present, form fringes on the upper and lower eyelids.

In many instances my observations are hased upon single specimens. Where additional examples have been available, a certain amount of variation in the number and length of the vibrisse has sometimes been observed. This is perhaps individual and perhaps seasonal as well. No doubt the vibrisse are monlted and new ones half up are naturally shorter than those of full length, and if one or two are shed simultaneonsly out of a small tuft of, say four, the tuft will lack for the time being its full complement. But I believe the position of the tufts will be found to be constant at all events within specific, if not within generic limits.

My ohservations also tend to show that the vibrisse are often better developer in the matter of length in younger than in older imfividuals. Possibly, in the latter, the power to reprorluce them ultimately fails, and the older bristles get gradually worn down or chipped off at the ent.

Order MONOTREMATA.

Echidnu hystrix.-Vibrisse aborted, as in all highly specialised Anteaters.

Ornithorhymchus.-No vibrisse detectable on dried skins in the British Museum.

Order MARSUPIALIA.
 Polyprotodontia.

Thylacinus cynocephulus (text-fig. 2), Sarcophilus harvisi (textfig. 1, B), Dasyuras viverrinus, Didelphys azarce (text-fig. l, A), Ihilander laniger, and Marmosa elegans.-The full complement of vibrissae retained mostly in a high state of development. Genal tuft single and large, and situated nearly midway between the base of the ear and the corner of the mouth and well below the level of the eye, set a little lower in Dasyurus than in the others. Interramal tuft beneath the corner of the mouth, except in Didelphys azarce, where it is pliced nearer the chin. In Thylacinus (textfig. 2) the vibrisse are much shorter, finer and fewer than in the other types examined.

Proc. Zool. Soc.-1914, No. LX.

J) IPROTODONTIA.

Full complement of vibrissa generally retained, but the bristles usually shorter and less numerous than in the Polyprotodontia, the genals especially reduced and the interramals sometimes absent, notably in the Macropodidee.

Vibrisse of Polyprotodont Marsupials.
A. Didelphys azare, the Azara Opossum.
B. Sareophilus harrisi, the 'Tasmanian Devil.

Trichosurats valpecult fuliginosus (text-tig. 3, A).-All the vibrisse retained and well developed. Gemals four or five in number, forming a single cluster about half way between the base of the ear and the corner of the month, and only slightly above the posterior angle of the latter, as in Dasyurus. Interramals farther back than in the Polyprototontia, behind the mouth and beneath the eye.

Text-figure 2.

Vibrisse of Polyprotodont Marsupial.
Thylacinus cynocephalus, the Tasmanian Wolf (old female).

Pseudochirus peregrinus.-- Differs from Trichosurus in the lesser development of the interramals and in having the genal tufts set higher up the cheek above the line of the mouth (one specimen).

Epyprymnus rufescens (text-fig. 3, B).--All the vibrisste retained but shorter, especially the buccals, than in the Phalangerine genera mentioned, and the genals set high up in a horizontal line with the base of the ear and only a little below the posterior canthus of the eye.

Macropus billardieri.-Only one genal bristle in the same position as in Apyprymure, anl two short and fine interramals.

Text-figure 3.

Vibrisge of Diprotolont Marsupials.
A. Trichosurus enlpecula futiginosus, the Sooty Phalanger.
B. Apyprymnus rufescens, the Kufous Kangaroo Rat.
(. Dendrolagus ursinus, the Ursine Tree-Kangaroo.

Macropus bennetti.-One interramal bristle; genals forming a strong tuft near the middle of the cheek some distance below and hehind the posterior canthus of the eye.

Petrogale penicillata.--A pair of genals high up, in almost the same position as in Epyprymmus. Interramals absent.

Dendrolagus ursinus (old) (text-fig. 3, C).--Vibrisse all very much reduced in number and length. A single genal bristle in nearly the same position as in Epyprymnus; interramals absent*.

Order EDENTATA (incl. Pholidota).

Euphractus villosus (text-fig. 4, C).-Buccal vibrissæ well developed especially the mystacials, which are longish and scattered. Genal vilrissae represented by a large scattered tuft set on an eminence just below the eye. Superciliary vibrissee absent. Interramal tuft well developed, on a small swelling just behind the line of the posterior angle of the mouth.

Tamandua tetradactyla.-Vibrissw scarcely distinguishable, as appears to be the case in all the specialised Anteaters (? Orycteropus).

Bradypus tridactylus.-Only a few insignificant buccal vibrissæ retained.

Considering the relationship between the Sloths and Anteaters, coupled with their totally different manner of life, the deterioration of the vibrisse in the two families is worth bearing in unind.

Manis tricuspis (text-fig. 4, D).-Vibrissæ aborted.

Order INSECTIVORA.

Centetes ecaudatus (text-fig. 4, B).-Mystacial vibrissa numerous, divergent, and moderately long, arising some little distance behind the extremity of the elongated snout. A pair of longish superciliary vibrisse set high above the eye. Three to four genal vibrisse arranged in a vertical line midway between the eye and the ear, the uppermost between the level of the posterior canthus of the eye. Submental vibrissee consisting mainly of four pairs extending along the sides of the chin, not upon its extremity. A single pair of interramals nearly in a line with the anterior canthus of the eye and the corner of the mouth.

Potamogale velox (dried skin in Brit. Mus.).-Differs mainly from Centetes in that the mystacials are more numerous and much stiffer and longer, with some shorter ones on each side of the extremity of the blunted muzzle; the superciliaries are represented by one long vibrissa on each side rising close above the eye, and the interramals by a single pair rising far back on the throat on a line nearly midway between the eye and the ear.

Erinaceus europaus (text-fig. 4, A).-Differs from Centetes

[^0]in several particnlarr. The supercilitury vibrissse short and representeal by a tuft a little alove the anterion canthos of the eye. Genal vilnisse mixed with the coamse hair of the cheek and not easy to detect, reduced to two, the lower behind the cormer of the mouth, ine upper near the centre of the cheek some way below the eye. The submental only a little below the month :und set farther back. 'I'he interramals, three in number, arising from a slight cutaneous eminence some distance behind the gitme and in a line with the posterior canthus of the eye.

'Iext-figure 4.

Vibrisse of Insectivora and Bidentata, including Ploplidota.
A. Erinaceias curopana, the Common Herlgehog.
13. Centetes ecaulatus, the 'Jerrec.
((. Euphractus villnsus, the Hairy Armadillo.
I). Manis tricuspis, showing the absence of vibrissio characteristic of most specialised Anteaters.

Sorex araneus.-Numerous mystacial and submental vibrisse well behind the extremity of the smout. The siperciliary, genal, and interramal vibrisse apparently alorted.

Order OHIROPTERA.

Pteropus medius (text-fig. 5, B).-Mystacials and submentals comparatively short and delicate. A few superciliaries; a pair of genals near the middle of the cheek some distance below the posterior canthus of the eye. These are buried in the fur and

Text-figure 5.

A. Rhinopoma microphyllum, one of the Microchiroptera.
B. Pteropus medius, one of the Meguchiroptera.
are difficult to distinguish amongst the conser hairs intermixed with the fur of the cheek. Intermmals absent.

Mhinopoma microphyllum (text-firg. 5, A).-A few long scattered mystanial bristles on the anterior portion of the snout and some shorter ones along the erge of the lip above the gape of the mouth. T'wo superciliaries and two genals nearly midway bexween the angle of the month and the base of the ear. Interramals absent.

Order PRIMATES.

Lemuroidea.

All the tufts of vibrisse sometimes present, but the intermamal usially and the gemal occasionally absent.

Lemur varias (text-fig. 6, 0).—Bucal, superciliary, interramal, amd genal vibrissa moderately developed, the genal set low down on the cheek well hehind the comer of the mouth.
L. catta, L. mongos, and L. fulvas resemble L. varius, but the intermanal tuft is absent in all specimens examined.

Daubentoria (Chiromys) malagascuriensis (text-fig. 6, E)..Vibrisse as in Lemur varius, the intermanal tuft represented hy a single seta in the example examined.

Gcalago crassicaudata (from Mombasa and Zanzibar) (text-fig. (i, A).-Vibrisse shorter, finer, and less numerous than in Lemur. and Dambentomia, the interramal tuft absent and the genal tuft set high up on the cheek behind, and only a little lower than, the posterior cunthus of the eye.

P'erodicticus potto.-Vibrisse to all intents and purposes the sime as in Galago, but the genals indistinguishable in the specimen examined.

Antitropoldea.

Apart from the interramal tuft, which is always apparently alsent, the normad vibrisse are occasiomally present, but the gremals are usually absent as well as the interramals, and in the higher forms at least the buccals and superciliaries, if retained, neem to lose their tactile function.

Leontocehus leoninus (text-fig. 6, 13) and Callithrix jacchus.Buccal and superciliary vibrissa short and thin. Genal tuft representer by one or two slender seta set low down on the cheek as in Lemur and Darbentonia, not high up as in Galago orassicaudata.

Nyctipithecus trivirgutus (text-fig. 6, 1)). - Vibrissee as in Leomtocebus and Callithrix, but conser and more munerous.

Lagothrix lagotricha.-Only the buccal and superciliary vibrissar.
Cercopithecus and other Old-World Monkeys.-Vibrissa as in Lagothrix.

The deterjoration of the vibrisse passing upwards from the lowly organised lemurs to the more highly organised monkeys and apes is probably correlated with the gradual perfection of the hands, carrying with it increased sensitiveness of touch.

Text-figure 6.

Vibrisse of primitive Primates.
A. Gelago crassicaulata.
13. Seonocehus leominus, Liom Mamoset.
C. Lemur varias, the Ruffix Lemur.
1). Netctipithecus trivirgutus, one of the Celides.
E. Daubentonia madagascariensis, the Aye-Aye.

Text-figure 7.

A. Canis mesomelas, to show the full complemmen of vibrissae typically retained in Fissiped Carnivora, the genal tufts being two in number.
13. Cystophora cristata (young), showing the tufts of vibrissw characteristic of Pimniped Carnivora, the genal and interramal being absent.

Momm GARNIVORA.

Fissil: EDJA.

 of tufte is retainod, exeept in lime lodidar, where the interomanal is always abse:nt. 'The genal tofli, is always cloulle (text-tis. 7, A)*.
 of the variations in the ilevelopment and ariangement. of the tufts in this sulrorder.

Pinntrbigia.

Only the mystacial and supereiliany tufts of vibuisse retained and irpursentesl by still buisthes; life myshacials expeciadly coppons: the supweilianines alse sometimes abumbant anm long, somptimes faw and very shom pexibly an variation due to age.

 :ipuecies of Otariidae tho sumereiliaries are shord ans few ; in the Phoeilar they are well devilopeal. 'Lhe Elephant Seal (Ifiromayra) is pernliar in having a pabof the mystanials rising from a erease of skin (oll the summit, of the man\%e, hetween the eyesand snome; lond it, is interesting tor mote that in its northern ally, (lystophonre cristutre, there is :1 similiu lair of beisiles rising vertically from the top of the morole, lint, set, fiarther abail, and mot loiger in it (rease of the skin (bext-fig. 7, 13).

Oriler RODOFN'IA.

'I'he mormal linftis : the mystacials especially long.

Subowler Myomorrira.

Epiomys mormegicte (texl fig. K, B.) and Mus macsculus.--Intercamal tonfl present sumb representerl hy almout three luistles on
 Peresented hy a conple of hastles mearly in a line with the corner of the month inme : little distance behind it, and of ome long bristle alouti half way between the ear and the eys and " litalle below the level of the latter. At least two moderately long supureiliaries; mystacials copious and long.

Jromys bruijnii (Papma) (text-lig. 8, A).-As in Ejrimus aml Mins, but the specimen examined han only one very long sumerciliany bristle and one short genal hristle behint the comer of the mouth.

[^1]

 in frond of the line of the superior gemal.
 mane the middle of the aheek; indermanal buft, simall, immendiately lehenel the chin.

Thext-figure 8.

13. Eipimigs norbrogiems, the connmon krown liat.
('. Gitis glix, the Neptirtel-tatiled Iormonse.
1). Rentufa indien, the large Indian $S_{\text {guirrel }}$

Glis glis (text-fig. 8, O).--Viluisse as in kpimys and Mrus, hut interramal tuft smialler and set a little further forwards, the grenal tuft single and represented by a couple of vilurisse high up in fronti of the eur.

Muscardinas avellanarius.- As in Glis glis, hat the intermanal tuft not detectalle in the sperimens examined.
. Truculas oriemalis. - Interramal tuft ahsent; genal represented by a single luistle high up just beneath aml below tho corner of
the eye; three superciliaries; mystacials very numerous, varying in length, two of the posterior exceedingly long.

Jaculus jaculus? (a darker form from the Sudan).--Resembing the preceding, but the genal vibrisse absent, and only one oxceedingly long mystacial.

Suborder Scideomorpifa.

Ralafa indica (text-fig. 8, 13). -Mystacials, interramals, and genals very well developed, the genals represented by a large tuft, near the middle of the cheek above the line of the mouth and behind a vertical line passing from the posterior canthus of the oye; above the main tuft an isolated bristle.

Sciurus vulgaris and prevosti.-As in Ratufa indica, but without the isolated superior genal bristle.

Pteromys sp.-As in Ratufu, but interramal tuft alssont.
Butamias quadrivittatus.--Vibrisse less well developed than in the preceding squirrels, the intermmals absent, and the genals represented by a pair of tine bristles far back in a line with the mouth, as in Epimys.

Suborder IIystricomorpita.

Atherura africana (text-fig. 9, B). -- Mystacials mostly of immense length, three or four superciliaries, one being exceedingly long; genals represented by a pair of very long bristles set high up in front of the ears and a little below the level of the eye; intermanal tuft well developed.

Species of /Iystria, judging from living animals, resemble Atherura.

Coendu prehemsilis and Erethizon dorsatum (text-fig. 10, A).-Vibrisse abl shorter and less numerous than in the Ground Porcupines; the interramals absent and the genals represented by a single bristle in front of the ear, occupying the same position in Crethizom as in Atherura, but lower down with regard to the eye in Coendu.

Octodon degus.-Mystacials long; superciliaries moderately long; genal represented by a tuft of about three high up, a little behind the corner of the eye ; interxamals absent.

Chinachilla lanigera.-Practically as in Octodon.
Lagostomus trichodactylus.-As in Chinchilla and Octodon, hut the vibrisse longer, coarser, and more abundant.

Dolichotis salinicolu. - As in Lagostomas, but bristles finer.
Dasyprocta columbiana.--Bristles disposel as in the preceding genera, but shorter than in Dolichotis and Lagostomous, and the interramal tuft present and well developed.

Cologenys paca.--As in Dasyprocta.
Comia rujescens of (text-fig. 10, B, (). - Mystacial, superciliary, and gemal tufts as in other Hystricomorphs, lat the intermamal tuft peculiar, consisting of two pairs of long, widely scpanated bristles set in a curved line along the posterior border of a broad,
mearly smooth ghanlular area similare to that of the Malaysian Monse-deer. (I'ruyulus).

A. Herlroshorws hydrocharus, the ('inghinata or l'arpincho.
B. Alherwra africana, the Afrivan Brush-taileal lorenpine.

IIydrocharms hydrocherms (text lig. 9, A)... Huceal, supereiliay, and subuculat vilerissat short; intervamal tuft, alsent ; genal con sisting of a pair of biostles slightly lehimet the cormer of the eye, and considerably lower than a line passing from the eye to the hase of the ear.
'Tivo puints maly be noted in eomection with the vibrissse of the llystoromorphs examined? first the constant prosition of the
genal tuft high up above the base of the ear and belind and only a little below the cye*, and second the presence of the intermanal tuft in Atherora, Ifystrix, Dasyprocta, ('mlogenys, and r'avia, and its absence in the other genera with such widely different habits as Coemlu, Holichotis, and IIydrochorus.

Vibrisse of Hystricomorphous and Lagomorphons Rodents.
A. Wrethizon dorsatum, an arborcal Porcupine.
B. Cuma rufescons, side view of head.
(. The same from below, slowing the interramal vibrisse arranged as in Traguline Runinants.
D. Sylvilagus superciliaris, a small Rabbit from Colombia.

Suborler Lagomorpila.

Syluriagus superciliaris (youms) (text-fig. 10, 1)). All the vibrisas short. Interramals absent ; genals represented by a pair of bristles well below the eye and in fiont of a vertical line from its posterior canthus.

Oryctolagus cumiculus.-Vibrisse disposed as in the foregoing, but longer.

* Fixcept in Mydrochorus; but in this genus the hish setting of the ears in conformity with aquatic life emphasises in appearance the actual low position of this tuft on the cheek.

Order HYRACOIDEA.

I'rocrvia capersis (text-fig. 11, A).-Mystacial, superciliary, genal, and intertamal tufts copious and long. Interramal unusually large, consisting of about half a dozen long vibrissie set just tehind the chin. Genal composed of from two to four vibrisse set just hehind a vertical line from the posterior canthus of the eye and well hehind and a little higher than the corner of the montl. Submental hairs fine, fow and short. Short eyelashes on upper lid of eye, but no suloculat vibrissio.

Demalrohyrai: dorsalis.-Vibrissic retainell as in the preceling species, lut the anterior mystacials longer and coanser, the interramak and gemals fewer-one of the latier and two of the former in the specimen examinel.

Order PROBOSCIDEA.

None of the tufts definitely recognizable as such, but the mystacial and summental possibly represented liy the haits on the tromk and lower jaw and, prolually in my opinion, the genal tuft by the glamhlar sace leetween thase eye and the car, which in young Elephants is filled with haits the apices of which protrule from the orifice. Lashes on upper hid of eye well developerl, often exceerlingly lomg.

In the Sirenians, which are remotely relatel to the Proboscidenn stock, the vibissa, apart from the buccals which are short, also appar to le absent, judging from Murie's and Garrol's figures of the Manatee *. This may indiate their divergence from the Proboscilean stem after the atrophy of the vibissa in those :mimals. At all events, the Sirenians differ markenly in the absence of the vibrisse from other freshwater mammals (exc: Orvithorhynchus), most of which have the vibrisse extraortinarily well developel brith in quantity and thickness. It must be remembered, however, that the latter feed upon apatic animals, whereas the Manatee feeds on water-weeds; and in this connection it may le noted that the Capybara has short, slemier vilrissa.

Order PhiRISSODACIYLA.

T'apiridu' (text-fig. 11, 13).—Buccal, superciliary, gemal, and interrambil tuftes present, lnt neither copions nor coarse; the single gemal tuft set low hemeath the eye ne:u the midile of the cheek. Subocular vibrissa also present. Fye-lashes on upper lid of eye (olserved on living animal).

Efquider. - Buceal vibrisse numerons, morleately long and fine. Superciliaides ant sulmeobas also present, lint genal and interrambal tufter absent. Bye-tashes on upper lid of eyp.

[^2]Text-figure 11.

A. Procavia capensis, a primitive member of the Proboscidean stock.
B. Topirus indicus, a primitive Perissodactyl.

Proc. Zool. Soc.-1914, No. LXI.

Rhimocerotidu.-All vibrisse absent. Eye-lashes on upper lid of eye.

Although the vibrissie in the Tapirs are too short to be of very much service, their retention marks off this family as the most primitive of existing Perissodactyles, the Rhinoceros, by the same standard, being the most specialised. Another primitive facial character of the Tapirs, in my opinion, is the presence of a well-defined rhinariom of moist glandular skin.

Order ARTTODACIYLA.

Non-Ruminantia.
Tayassu (Dicotyles) tajaçu (text-fig. 12, A).-The full complement of vibrisser retained. Mystacials molerately long, not spreading on to the area of the snout that projects beyond the lower lip. Submentals represented by a definite row on the posterior half of the lower lip close to the mouth. Superciliaries and suboculars well developed. Genal tuft divided, represented by one or two long bristles in a line with the mouth and some distance behind it, and by one or two a little higher. up and set farther back. Interramals forming a large tuft of about half a dozen longish bristles just behind a vertical line passing from the corner of the mouth.

Hippopotamus amphibius and Choropotamus.-Vibrisse aborted, except the buccals, which are short and scattered (on living animal).

Ruminaxtia.

Tribe Tragulina.

Tragulus Kanchil (text-fig. 13, B).-Fnll complement of vibrissw retained as in the Peccary (Tayassu tajaçu), but much less well developed except the interramals, which form a tuft of five or six set at the posterior extremity of the interramal glandular area. Submentals forming for the most part two definite rows on the chin. Genal tuft divided, represented by one bristle in a line with the comer of the month, but some distance behind it, and by two or three considerably higher up and only a little behind and slightly below the level of the suboculars. Superciliaries forming a moderately well-developed tuft of three or four.

'l'ribe Pecora.

The buccal, superciliary, and subocular vibrissa always retained apparently as in the equine Perissodactyla, but the genals and interramals much less constant though sometimes retained.

Mazama tema? (Guatemala).-Interramals represented by a small tuft of about three fine bristles just behind the chin; genals by a pair of fine and short bristles set far buck on the cheek in a line with the mouth.

Axis axis (fcetus) (text-fig. 12, B).—Skin naked, but the full complement of facial vibrissæ present. Interramal tuft small, about midway between the chin and the throat. Genal tuft represented by two short bristles set a little higher than in the Guatemalan Mazama, just behind a vertical line passing from the posterior canthus of the eye.

Text-figure 12.

Vibrisse of Artiodactyla.
A. Tayassu tajacu, a primitive non-ruminant Artiodactyl.
B. Axis axis, a hairless foetus showing the early development of the vibrissse.

Cervus eldi (old female).--Interramal tuft absent. Genals represented by two long bristles, one in a line with the mouth,
and beneath the anterior canthus of the eye, the other a little higher up and more posteriorly.

Cervus elaphus.--Interramals represented by one or two long bristles a little behind the chin. A pair of genals about midway

Text-figure 13.

Vibrisse of Artiodactyla.
A. Cephalophus coronatus, a small Pecorine Artiodactyl.
B. Tragulus kanchil, a primitive ruminant Artiodactyl.
between the line of the mouth and of the eye and a little behind a vertical line touching the posterior canthus of the eye, in almost the same position as those of Axis axis.

Dama dama.-The normal vibrissa present and long, but the
two genal and interramal tufts apparently represented by a single bristle each (on living animal).

Cephalophus coronatus (text-fig. 13, A).-Full complement of vibrisse retained. Interramal tuft small and situater a little behind the chin. Genal tuft double, two bristles a little distance behind the corner of the mouth and beneath the anterior canthus of the eye, and two bristles higher up almost beneath the posterior canthus of the eye, but some distance below it.

Boselaphus tragocamelus.--Genal and interramal bristles retained, but few in number; the genals arising from the white " tragelaphine" cheek-spots.

Nenotragus pygmaus.-A small interramal tuft just behind the chin. Genals absent.

Nototragus melanotis.-Interramals and genals absent.
Ammotragus lervia, Antilope cervicapra and other small caprine and gazelline species.- Interramals and genals absent.

Bos frontalis.-Genals absent; interramals represented by a single long bristle (one specimen).

Tribe Tyropoda.

Judging from living animals the genal and interramal tufts are absent in Camelus bactrianus and dromedarius and in Lama vicugna and huanacos.

Concluston.

The foregoing enumeration shows that in all the principal orders of terrestrial mammals some, at all events, of the species possess facial vibrissie arranged upon a definite plan. Moreover, in a great many cases, within the limits of a single order, the species which are defective in the matter of vibrissæ are the higher derivative types, whereas those in which all or most of them are present are more generalised types. This may be seen by comparing: in the Marsupials, Trichosurus with Dendrolagus, the former being a primitive, and the latter a highly specialised Diprotodont; in the Edentates, Dasypus with Tamandua and Bradypus; in the Insectivores, Centetes with Sorex; in the Rodentia Atherura with Erethizon ; in the Primates, the Lemurs with the Monkeys ; in the Carnivores, the Procyonidre or Canidæ with the Ursidre, and the Viverridæ with the Felidæ; in the Proboscidean stock the Hyracoidea with the Sirenia and the Elephant : in the Artiodactyla, the Peccary (Tayassu) with the Hippopotamus, the Tragulina with the Pecora; in the Perissodactyla, the Tapirs with the Horses and Rhinoceroses.

Facts such as these justify the conclusion that vibrisse arranged on the plan above described are a primitive mammalian character *. This at all events appears to me to be the most plausible explanation of the facts, and the same line of reasoning may be applied to the carpal vibrissæ described by Mr. Beddard.

* I think the suboculars should perhaps be eliminated from this category.

It is well known that the hairs of Mammals frequently grow in tufts, especially where they are associated with scales; and this is probably a very primitive character. No doubt the facial vibrissæ are primitive tufts enlarged for tactile purposes. I suspect they date back to a very early post-Cynodont stage of mammalian evolution, and that their absence in the existing Monotremes is a derivative feature associated with the profound modifications of the jaws in the surviving members of that order.

That development and deficiency of the vibrisse are intimately connected with mode of life is probable. But on this head much has yet to be learnt, and before any satisfactory conclusions can be established, far more olservations than have as yet been made will have to be recorded. Attention, however, may be drawn to one or two features:-(1) The deficiency or complete absence of the vibrisse in all the Anteaters, like Echidna, Tamandua, and Manis, quite unrelated genera. (2) Their high development in the matter of thickness and length in piscivorous or insectivorous aquatic or semi-aquatic genera like Chironectes, Potamogale, Lutra, and Cynogale, and their comparative feebleness or deficiency in aquatic herbivora, like the Sirenians, Hippopotamus and Hydrocherrus*. (3) Their gradual failure in the Primates passing from the lower to the higher types-a failure probably, 1 think, correlated with gradual perfection in the use and sensitiveness of the hand. (4) Their high development in active arboreal species like Squirrels, and their reduction in size and quantity in slow climbers like Sloths (Bradypus), Pottos (Perodicticus), and the Tree-Kangaroo (Dendrolayus ursinus). (5) Their general prevalence in the smaller burrowing, bush-frequenting or forest species amongst Rodents, Carnivores and others, and their decadence in larger forms like the Ungulates.

[^3]
[^0]: * Sharply contrasted in this respect with Dorcopsis luctuosus which, according to (iarrod (P.Z.S. 1875, p. 51, pl. viii.), has four very large interramal hair follicles recalling those of the Traguline Ruminants.

[^1]: [Note added July $2 \times$, 1:914.]

[^2]: * Trans. Zoul. Sue vols. viii. \& x.

[^3]: * The Polar Bear is excentional amongst predatory aquatic carnivores for the poor development of the vibrisse. It must be remembered, however, that it is probably derived from some bear akin to the typical Ursus group, in which the vibrisso were already defective, and that it feeds mainly upon seals caught at their blowholes or lying on the ice-floes.

