situation with a greater amount of pene-contemporaneous erosion is suggested by the superimposition Maboko Island near Kisumu. At Tinderet, the later outwellings of phonolitic nephelinites, nephelinites, through Kenya-type phonolites to basanites and tephrites as described by Binge ${ }^{11}$, are probably all of post-Miocene age.

Fauna

At each locality every fossil fragment seen was collected, whether identifiable or not. The results of the 1961 collections are recorded in Tables . and 2 , and in Table 1 are compared with the figures Napak I 1958. (1) There are two distinct types of preservation and assemblage represented. In Table 1 are included only those sites where fossils were stratified beneath a mantle of calcareous sub-aerial pyroclastic material. In this group it is notable that skulls, teeth and jaws comprise $12-25$ per cent of the total finds. The 'Better' bones, that is, post-cranial bones preserving recognizable facets and form, show shalls, teeth and jaw The fact that far too many skulls, teeltion to the number of bones, would seem to imply selective preservation. This presumably reflects the scaveng ing activities of carnivores and rodents in removing a large proportion of the more edible bones from the debris which lay on the temporary land surfaces This is supported by the fact that many of the bone ragments retain signs of gnawing an-mammalian rom the Table soods, fruits and land gastropods.
(2) The sites included in Table 2 are situated at the base of the main volcanic series, and the fossils occur in calcareous sands and grits resting unconformably on the basement complex and consisting largely of quartzose fragments derived from these rocks. The very different percentage of skulls, teeth and jaws, ranging from 1-6 per cent, reflects in part more oup the much poorer preservation fragments, resulting in
The contrast in lithology between the two groups of sites is seen also in the non-mammalian fauna. These basal grits characteristically yield fossils of crocodile and chelonia. At Ombo, fish were represented in the form of jaws of Protopterus, and at two of the Napak sites valves of an oyster were found. Also, at Ombo and These are all and of a fluviatile origin for the basal deposits.

Table		$\begin{gathered} \text { RIT DEP } \\ \text { Napalk } \end{gathered}$	$\begin{aligned} & \text { osirs os os } \\ & 1961 \end{aligned}$	Basem	Moro		1961
	$\underset{\text { II }}{\text { Napak }}$	$\underset{\text { VI }}{\substack{\text { Napalk }}}$	$\begin{gathered} \text { Napak } \\ \substack{\text { VIII }} \end{gathered}$	Notal basal levels	${ }_{\text {Mforoto }}^{\text {I }}$	$\begin{gathered} \text { Moroto } \\ \text { II } \end{gathered}$	$\begin{gathered} \text { Ombo } \\ \text { Mariwa } \\ \text { Mariw } \end{gathered}$
Unidentifiable	103	696	647	1,44	818	286	82
					733		72
'Retter' bones	${ }_{6}$	${ }_{2}$	38	46	69	17	
$\underbrace{\text { a }}_{\substack{\text { Skulls, teeth } \\ \text { nud jaws }}}$		9	9	24	16	9	10
		,	kuls	a			
			,	寺		6	6
Mastodon Rhinocerotid Primate							-
		-	5	6	5	1	4

	64.4 $20 \cdot 3$	${ }_{31}^{43 \cdot 3}$	\times	${ }^{x}$	${ }_{27}^{97.0}$	79.7
and jawsTotal number $15 \cdot 3 \quad 25 \cdot 0 \quad x \quad x$						
Percentages of skuls, teeth and jaws						
Rodent		$82 \cdot 5$	86.5		50.0	$64 \cdot 0$
Mastodon	${ }_{7}^{29.5}$	10.0	0.5	$14 \cdot 5$		
Rumimate	5.8	2.5	$4 \cdot 3$	${ }^{3.0}$		12.0
${ }_{\text {Carnivore }}$	3.5	0.8	2.4	3.0 2.0		
Suid	${ }_{9}^{2 \cdot 3}$	${ }_{3} \cdot 3$	2.9	$8 \cdot 6$	$50 \cdot 0$	

*At another site near Koru several specimens

(3) Table 1 records the characteristic high percentage of rodents preserved in all the sub-aerial tuff environments. In Table 3, percentages of the main mammalian groups in the assemblages of skulls, teeth and jaws at Napak and Songhor are compared with similar figures for (based on collections mant of Palæontology, British Museum (Natural History)). The proportions of the Museum (Naps reveal a remarkably constant picture at the four sites, and contrast sharply with the figures for the more sparse basal assemblages at Napak and Moroto where the small fauna is completely absent.
(4) That collection failure is also a factor to be considered, is shown in Table 1. Practically all the easily seen mastodont fragments from Napakht fragcollected in 10 ments were found on return in 1961. By contrast, ments were $\begin{gathered}\text { only onefifth of the } 1958 \text { finds were small rodents }\end{gathered}$ although they represent three-fifths of the 1961 total, and were often represented by isolated incisors. (5) The fossils from Napak I, IV and V are from identical lithologies on the same stratigraphical horizon and are virtually contemporaneous. They must represent very similar environments within mile of each other on the slopes of the perifferences active volcano. Yet there are significan must imply local ecological changes. Rodents form 80 per cen of the fauna at Napak IV but only 30 per cent at Napalk I. Ruminants account for almost 30 per cen of the total at Napak V but only 2 and 4 per cent a Napak I and IV. Primates are most numerous a Napak V where they represent almost 15 per cent o the total.
In assessing the abundance of different groups, it has been assumed that each find represents one ndividual. Only in the case of the prom Napak V Moroto it seem probable that several finds represen only one individual.
(6) At Songhor, it is more difficult to give full weight to the percentages shown in Table 3, as a great deal of collecting has been already mener However, the broad similarity both in actual go the and species and in the relative propore finds from different family ${ }^{\text {from Napa }}$ Koru and Mfwanganu. is very striking.
is very striking.
(7) At one locality in the main Songhor I expo(7) At one locality in the main Songhor reddish
sure, from an isolated area of fine-grained red
tuffs known as the 'Red Outlier', which measures only some 10 ft . in diameter, 97 mammalian fossils were collected during September 1961. These included ones, and 29 skulls, teeth and jaws. This was the richest deposit which we studied, although the out crop at Songhor II (Table 1) suggested a similar local fossiliferous patch within the tuff. At these sites again too many skulls, teeth and jaws (30 and 25 per with too few post-cranial bones. The Red Outlie assemblage showed the usual domination by rodents with 23 out of the 29 cranial fragments.
These fossiliferous patches within the tuffs recall on a small scale the local concentrations of fossils a Napak I, IV and V. These three areas, each with a maximum diameter of less than 50 yards, yielded the vast bulk of the fauna from the Napak upper level
although there was well over a mile of good exposure in beds which appeared to be of identical lithology (8) The Napak sites I, IV and V have no yielded a faunal list of at least 29 genera or species s follows: primates 6, insectivores 1 , rodents 6 carnivores 6 , anthracotheres 1, artiodactyls 4, perisso lactyls 3 , proboscideans 1, hyraxes 1. The majority of the genera and species is also recorded from the ther Lower Miocene (Burdigalian ?) assemblages at Rusinga, Mfwanganu, Songhor and Koru, but these It therefore seemed desirable to collect where possible pecimens of potassium-bearing volcanics associated with the various fossiliferous horizons, with the view of potassium-40/argon-40 dating. The specimens are being dated by Drs. J. F. Evernden and G. H. Curtis of the Department of Geology, University of Cal ornia, Berkeley, and Dr. P. Damon, University of Tucson, Arizona, to whom we are indebted.
It is hoped that the association of the dates with the reliability of these techniques when applied to Tertiary volcanic deposits. Also, as more absolute ges become available it may be possible to review the palæontological data for the various localities ti seems desirable to record differences in abundance, ss in Tables 1-3, in addition to identifying lists of pecies. This is essential if the faunas are to yiel
vidence on rates of evolutionary change and on the elative importance of ecological differences between Uganda included 13 primate specimens from Napak and 3 from Moroto. This brings the total of primate finds from the Napak upper level to 18, of which at least 9 represent the genus Proconsul. The two finds from the new
Moroto II site included the left maxilla of a large Moroto II site included the left maxilla of a large
Proconsul. A further expedition to this locality in December 1961 by Prof. D. B. Allbrook and other members of the Department of Anatomy, University College, Makerere, yielded several more Proconsul fragments, including the right maxilla of the original individual. These primate specimens, together with those from Napal,, will form the subject of a further publication shortly
The work was financed by a scientific grant-in-aid from the Royal Society. We also thank the Directors of the Uganda and Kenya Geological Surveys, the
Trustees of the Uganda Museum (for valuable assistance with equipment and personnel), Dr. and Mrs. M. Posnansky of Kampala, Mr. and Mrs. R. O. Doenhoff and Mr. and Mrs. J. McLeod of Songhor, Mr. F. Wicker of Fort Ternan, and Mr. and Mrs. S. Stevenson of Trire, Karamoja, for much personal kindness. Finally, we thank Prof. T. Neville George for his critical reading of the text, and the numerous people
who helped in various ways or who are at present Who helped in various ways or who are at presen preparation for the full report on the work.
${ }^{1}$ For distribution of localities, see Maps (Fig. 1) in Bishop (refs. 3
² Bishop, W. W., Nature, 182, 1480 (1958).
3 Bisho, W., W., Rec. Geol. Survey Uganda, $1957-58$ (1962).
4 Mr. Wilson's finds from Moroto I will be described together
' Mr. Wilson's finds from Moroto I will be described together with the
new material in a forthcoming Occ. Paper Uganda Museum. new material in a forthcoming Occ. Paper Oganda
'Lekey, L. S. . ., Ann. Mag. Nat. Hist., 4, 689 (1962). ${ }^{\circ}$ Various publications. Fossil Mammals of Africu (Brit. Mus. (Nat, ${ }^{7}$ Kent, Pe. E., Quart. JuGeol. Soo. Lond., 100, 85 (1944).
:Shaclleton, R. M., Quart. J. Geol. Soc. Lond., 106, 345 (1951).

- McCall, G. J. H., Rep. No. 45, Geol. Survey Renya (1958).
${ }^{\prime}$ Saggerson, E. P., Rep. No. 21, Geol. Survey Kenya (1952).
${ }^{10}$ Saggerson, E. P., Rep. No. 21, Geol. Survey Kenya (1952)
${ }^{11}$ Binge, F. W., Rep. No. 50 , Geol. Survey Kenya (1962).
12 Trendall A. Fi, Geology of Sheet 35 (Napak), Rep. Geol. Survey
Iganda (in the press).
${ }^{13}$ Curtis, G. H., and Evernden, J. F., Nature, 194, 611 (1962).
${ }^{14}$ Whitworth, T., Overseas Geol, and Min. Res., 8, 150 (1961).

MOLECULAR ORIENTATION OF SOME KERATINS

By Dr. C. EARLAND, P. R. BLAKEY and J G P STEL

Department of Textile Industries, Institute of Technology, Bradford

WOOL and related hairs (α-keratin) show no birefringence in transverse section, and it is ust lie in the direction of the fibre axis. In the ase of feather however, which is substantially in configuration, Astbury and Bell ${ }^{1}$ observed more han twenty years ago that the molecular orientation If a thin outer layer of quill was at right angles to he feather axis. Recently, we have ${ }^{2}$, using the olarizing microscope, found that in the case o goosewing quill, the region showing transverse orienta the represented approximately the exterior third of it the rachis, Preliminary X-ray diffraction work lso indicated that the pattern of calamus is in fact
composite and arises from two structures at righ angles to each other
tiger, exhibit whiskers, such as those of lion and tiger, exhibit Maltese-cross inefringence when a
transverse section is viewed in polarized light, and it has been concluded that in these structures it is the interior region surrounding the medulla that possesses tangential orientation at right angles to the axis ${ }^{2}$.
In the present investigation an examination ha been made by X-ray diffraction and polarizing micro scopy of a number of keratinous materials to determ ine the extent to which molecular orientation at right angles to the longitudinal axis is general in thes cattle horn and mammalian quills as these are repre
sentative of a wide range of keratinous structures Baleen plate of whale (whalebone) and rhinocero interesting in that their complex structures may be regarded as intermediate between normal horn and hair. Some further observations on tactile whiskers and feather calamus are included in the present communication as they have confirmed the conclusions put forward previously regarding the molecular orientation of these structures.
The calamus was isolated from white goose feathers with scissors. Shavings of rhinoceros horn were museum specimens. Strips of commercial 'whale museum specimens. strips of commercial whaleAlthough it has been suggested that hydroxyapatite may be present in the whalebone fringe fibres of the fin whale ${ }^{3}$, it was found that the calcium phosphate content of the baleen used in this work was 1.0 per cent only. Prior to examination, all materials were degreased by Soxhlet extraction with alcohol and then with ether.
ing with a razor blade or by the use of a microctome ing with a razor blade or by the use of a microtome ordinary and convergent polarized light. Examination at elevated temperature was made by enclosing the specimen in an electrically heated aluminium block, the apparatus being similar to that used for observing the shrinkage temperature of collagen. Although the transverse sections of whisker were of
uniform thickness, the birefringent region exhibited uniform thickness, the birefringent region exhibited
very marked multicolouring when viewed in white light, indicative of optical heterogeneity. In these circumstances no quantitative measurements of birefringence could be made, although the insertion of a quarter wave plate showed that in all cases the birefringence was negative.
X-ray diffraction photographs were obtained using a flat plate camera and copper $K \alpha$-radiation from a Raymax rotating anode crystallographic unit operat-
ing at $40 \mathrm{~m} . \mathrm{mp}$ and 40 kV , with the beam parallel, radial or tangential to the axis. Where comparison photographs were required a quadrant type cassette was used.
(a) Feather calamus. It had been shown previously that the regions exhibiting differing birefringence were separated by a sharp boundary line ${ }^{2}$, and there was no evidence for the two structures merging into each other. This suggested that it should be possible to separate the two phases mechanically and this was, of calamus was mounted in a stretching frame in of calamus was mounted in a stretching frame in
such a manner that tension could be applied tangentially in the plane perpendicular to the feather axis. The specimen was steamed for about 2 min in this state, when it split spontaneously into its two components. These components were then mounted in the X-ray camera with the direction of the quill axis vertical. X-ray diffraction photographs showed that although the molecules of the two regions possess the same configuration, in the case of the inner region the case of the outer region it is perpendicular to this axis. Tactile whiskers. It has been reported previ ously ${ }^{2}$ that the interior regions of transverse sections of whiskers of lion and tiger exhibit Maltese-cross birefringence in polarized light. Myelin sheaths however, also exhibit the same phenomenon and it
has been concluded that this form of birefringence

may arise from two materials within the sheath, the protein molecules which lie tangentially and incrusted lipoid materials with the molecules orientated radially ${ }^{4}$. Since the latter birefringence is reduced by solvent extraction ${ }^{5}$, it was concluded that the Maltesecross birefringence of whiskers was due solely to tangential orientation of protein molecules since the Howerials used had been the region showing this phenomenon is However, the region showing this phenomenon
always in the vicinity of the medulla where lipoid materials are very probably present, and therefore the birefringence of these materials was examined at elevated temperatures, since it is known that the birefringence due to lipoids disappears at $100^{\circ} \mathrm{C}$ (ref. 5). It was shown that a transverse section of lion whiskers viewed in polarized light with the specimen heated to $115^{\circ} \mathrm{C}$ gave a Maltese cross as sharp as that the original views regarding the cause of this birefringence are correct.
(c) Miscellaneous animal hairs. In view of the fact that the very extensive literature on the fine structure of it was seat mare bas found in this investigation. The literature on heavily medullated wools and kemp, which are more akin to the tactile whiskers than the finer wools where medulla is completely absent, however, is less comprehensive and these materials were, therefore, carefully examined but again no birefringence was observed
Although it was not possible to make a complete survey, a very large number of other animal hairs was also examined, but only one example of Maltese-
cross birefringence was found. This was in mon ster horse hair, and a transverse section taken near the root is shown viewed in polarized light in Fig. 1.
(d) Cattle horn. X-ray diffraction showed that in the case of horn, which consists of about ten concentric laminates which may be separated readily
mechanically, the outer layer has very good orientamechanically, the outer layer has very good orientaaxis and tangentially. The inner layers, generally, did not show such good orientation, but the orientation showed a tendency to be parallel to the horn axis, although occasionally a region could be found with molecular orientation similar to that in the outer layer. No evidence could be found for a β-configuration.
A transverse section of horn, about 0.001 in. thick, obtained by using a shaping machine, was mounted
in xylene and viewed in polarized light. The outer layer, which amounted to about one-third of the thickness of the horn, was highly birefringent whereas the remainder was birefringent to a lesser degree. Thus the molecular orientation as shown optically was consistent with the results obtained from X-ray diffraction.
(e) Baleen plate ('whalebone'). Whalebone, after extraction with alcohol and ether to remove grease, Aave a normal α-keratin X-ray diffraction pattern. light is shown in Fig. 2, top. In the lower portion the fibres can be seen set in the matrix, and the upper portion consists solely of layers of horny embedding material. The laminated nature of the latter may be seen clearly and it is thus very similar to cattle horn. The same section viewed in polarized light (Fig. 2, bottom) shows that each embedded fibre exhibits a Maltese cross and is very similar to the hiskers of lion and tiger. The fringe fibres which ernerge from baleen also show the same effect.
fusion in the literature regarding the structure of thinoceros horn and an attempt to clarify the position has been made recently by Ryder ${ }^{6}$. There is no doubt hat, whereas cattle horn is composed of sheets of keratinous material, rhinoceros horn consists of longitudinal filaments. These tend to separate, particularly at the proximal end, which, no doubt, horn is composed of matted hairr,8. Although the atter is untrue, it has been shown ${ }^{6}$ that the inter filamentous horn is much sparser than, for example in the case of baleen plate (Fig. 2, top), and the filaments are packed so tightly together that they are often multi-sided rather than circular. Morphoogically, it is probably not incorrect to regard both between hair and cattle horn.

$\left.\underset{\text { Fig. }{ }^{2} \text {. Top, transverse section of baleen plate viewed in normal }}{\text { light }} \times(\times 60) ; \begin{array}{c}\text { bottom, } \\ \text { similar section } \\ (\times 60)\end{array}\right)$ viewed in polarized light
Concurrently with the publication of the discovery of transverse orientation in whiskers of the cat transverse sections of the individual filaments com prising rhinoceros horn. The latter showed clearly longitudinal cell structures orientated tangentially in the plane of the section and were, in fact, very

similar to sections of whisker. It was therefore anticipated that these sections would exhibit Maltese-
cross birefringence in polarized light. In Fig. 3 is cross birefringence in polarized light. In Fig. 3 is
shown a transverse section of a filament from the shown a transverse section of a filament from the
horn of the black A.frican rhinoceros (Diceros bicornis)
viewed in polarized light and a similar section taken from the horn of the Indian rhinoceros (R. unicornis) in polarized light is shown in Fig. 4 .
of four were available for examination, the the homs being the Sumatran rhinoceros (R. sumatrensis) A comparative investigation of these four keratins was therefore made, and the results are summarized in Table 1.
Although Table 1 suggests that the Asian rhino ceroses have horns superficially more resembling

Fig. 4. Top, Transverse section of the horn of the Indian
rhininoceros viewed in polarized light $(\times 50)$; bottom, transerse rhinoeros viewed in polarized light ($\times 50$); bottom trasserste
section of a portion of a filimentof the thon of the white Aricail
rhinoceros viewed in normal light $(\times 400)$

No.486, December 29,1962 N A TURE

Species*	Macro structure	Appearance in polarized transverse section	$\begin{gathered} \substack{\text { X-ray } \\ \text { diffraction } \\ \text { pattern }} \end{gathered}$
Indian (2) (R. unucornis)	$\begin{aligned} & \text { Ceneral } \\ & \text { appearance } \\ & \text { ilke anttle } \\ & \text { horn. } \end{aligned}$	Maltese-cross effect (Fig. 4)	Poorly orientated α-pattern reflexions.
Tavan (1) (A. sondaicus)	$\begin{aligned} & \text { Filaments } \\ & \text { very firmly } \\ & \text { embedded in } \\ & \text { matrix. } \end{aligned}$	Patchy bireringence. irregular too irroduce cross.	Poorly orientated a-pattern. Apatite reflexions absent
AIican Black (2) (Diceros bicornis)	$\begin{aligned} & \text { General } \\ & \text { appearance } \\ & \text { like buudle e } \\ & \text { of bristles. } \end{aligned}$	Maltese-cross effect (Tig. 3)	Poorly orientated α-pattern. Apatite reflexions absent
Arican White (1) (Certhotherium simus)	$\begin{aligned} & \text { Filaments } \\ & \text { readily } \\ & \text { separated. } \end{aligned}$	Patchy birefringence. liaments too irregular to	Poorly orientated α-pattern. Apatite raflexions absent.

PThe number of specimens examined from different auimals is
arisen in parenthesis.
cattle horm that the African species, and R. unicornis s the only species containing apatite as a majo constituent of its horn, it must be borne in mind tha the observations have been made on a small number of animals
ransversal and longitudinal orientation are located transversal and longitudinal orientation are located horn, however, the poor X-ray diffraction pattern produced when the specimen was mounted longitudin illy and the extensive but rather ill-defined Maltese ross pattern shown by a transverse section in polar ized light, suggest that the protein molecules showing ifferent orientations are more intimately associated (g) Mammalian quills. The birefringent zones
exhibited by transverse sections of porcupine and

Nevertheless, the four extinction positions were clearly visible and there can be no doubt that a thin layer possessing transverse orientation is present.
If the complex internal structure of quill be regarded as a medulla, the location of this layer is not dissimila to that in tactile whiskers Thus, it has been shown conclusively by X-ray diffraction and polarizing microscopy that feather calamus and cattle horn are polyphase in structure possessing molecular orientation of the protein molecules at right angles to the main structural axis, in addition to parallel orientation.
Strong evidence has been obtained also from polarizing microscopy that similar structures are
present in rhinoceros horn, baleen plate and mammalian quills, but in hair and wool with a single exception the preferred molecular orientation lies exclusively in the direction of the fibre axis.
It is considered that the biological significance of these structures is to prevent the splitting that would occur if the structural elements were laid down exclusively in one direction.
Tong of the Zoological Societ Matthews and Mr. E. H Corbet of the British Museum (Natural History) and Dr. E. Lees of the Department of Biological Sciences Bradford Institute of Technology, for providing specimens and advice. One of us (J. G.P.S.) is a Wool Textile Research Council Fellow.
' Astbury, W. T., and Bell, F. O., Tabulue Biologicue, 17, 90 (1939).
$=$ Earland, C., Blakey, P. R., aud Stell, J. G. P., Biochim. Biophys.
"Earland, C., Blakey, P. R., and Stell, ग. G. P., Biochim. Biophys.
${ }^{3}$ Pautard, F. G. E., J. Dental Res., 40, 1285 (1961).
: Schmidt, W. J., Protoplasma, 29,435 (1937).

- Schmidt, W. J., Protoplasma Mon
11 (193)
Schmidt, W. J., Protoplasma Mon., 11 (1937)
Ryder, M. L., Nutture, 193, 1199 (1962)
Anthony, H. E., Bull. N.Y. Zool. Soc., 31, 179 (1928).
Beddard, F. E., Camb. Nat. Hist,, 10253 (Macmillan, London, 1902)

UBIQUINONE AND UBICHROMENOL

Ubiquinone and Ubichromenol in Torula

Yeast

$\bigcup_{\text {isomeric. }}^{\text {BIQUINONES (I) and ubichromenols (II) are }}$
CH2

Ubichromenol ${ }_{10}(n=9)^{1}$ has been found in various orula lissues and ubichromenol $7_{7}(n=6)$ occurs in a orula yeast (commercially dried)

The isomerization can be effected in the laboratory by various procedures involving the use of a catalyst ${ }^{2,3}$. Trose lead to a racemic product, but the preparations orm human kidney ${ }^{4}$ and from Torula yeast were The question whether ubichromenol is or is not a natural product for which it is reasonable to seek a function is not easily settled, although evidence has some animal tissues. It became necessary to investigate the problem in the case of Torula yeast. A commercial, dried Torula yeast (Candida kindly given by the Lake States Co., New York, and designated type B, was analysed for ubiquinone (UQ) and ubichromenol (UC) with the results shown in Table 1.
Simple extraction of lipid from yeast is an inefficient process ${ }^{6}$, and the failure in experiments 1,2 after alkali digestion (saponification) of the yeast is not surprising. Alkali and heat tend to destroy UQ and UC, and saponification should aim at liberating these substances with minimal destruction. The fact that the ratio UC/UQ in Table 1 is nearly constant argues against conversion of UQ in the saponification

