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COMPARISONS OF MITOCHONDRIAL DNA IN BLACK AND
WHITE RHINOCEROSES

CoLLeeN O’Ryan AND Ertc H. HARLEY
Department of Chemical Pathology, University of Cape Town,
Observatory 7925, Cape, South Africa

Mitochondrial DNA restriction maps of Diceros bicornis, the black rhinoceros, and Cera-
totherium simum, the white rhinoceros, were constructed to provide a basis for population

genetic and systematic studies. The sequence divergence between DNA of the two species
was calculated to be 6.79% from which it could be estimated that the time of divergence
from a COmMMon ancestor was ca. 3.4 x 10years ago. Little intraspecific variation was found

in the 24 black rhinocereses or the 4 white rh

inoceroses studied.

Key words: mitochondrial DNA, sequence divergence, rhinoceros

The black rhinoceros, Diceros bicornis,
and white rhinoceros, Ceratotherium si-
mum. are the two African representatives
of the family Rhinocerotidae. As with the
three Asian members of this family, they
comprise dwindling populations in immi-
nent danger of extinction. We report here
restriction-endonuclease maps of mito-
chondrial DNA (miDNA) prepared from
heart tissue obtained after natural deaths in
the field of Diceros bicornis minor and Cer-

stherium simum simum, both from
Hiuhluwe Game Reserve, Natal, South Af-
rica. The restriction-site data were used to
provide a measure of the sequence diver-
gence between mtDNASs of the two species
and hence, an estimate of the time of their
divergence from a common ancestor. As
more members of the family become avail-
_uie for study, they also will contribute to
a more detailed biogeographic and phylo-
genetic study of extant specics and popu-
lations of rhinoceroses.

METHODS

Mitochondrial DNA was extracted from hean
issue frozen shortly afier death and purified by
centrifugation in CsCl/ethidium bromide gra-
dients (Ausubel et al,, 1989; Lansman et al.,
1981). Restricted DNA was cnd-labelled with 2P
by using the Klenow fragment of DNA poly-
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merase I and P-deoxycytidine triphosphate
(Amersham, UK). Restriction fragments werc
separated by agarose or polyacrylamide-gel clec-
trophoresis and visualized by autoradiography
of the dried gel, and sized by reference to appro-
priate end-labelled molecular-weight markers.
Maps were constructed for each animal inde-
pendently by the double-digestion method by us-
ing a total of 18 restriction endonucleases rec-
ognizing six base-pair scquences. Maps were
aligned with each other and with the known bo-
vine sequence (Anderson et al., 1982) using the
two Sac 11 sitcs and a Hpa 1 site at positions 676,
2364, and 5480, respectively. These sites are in-
variant throughout most of the Vertebrata (Carr
ctal.. 1987). Sites that were aligned to within 1%
of the total map length, estimated to be 16,417
+ 298 and 16,411 + 225 for black and whitc
rhinoceroses, respectively, were interpreted to
represent shared sites.

Since postmortem material was available for
only one black and one white rhinoceros, both
from Hiuhluwe (Natal), cell cultures were cstab-
lished from the ear nicks taken while marking
three additional white rhinoceroses from
Hluhluwe (all C. s. simum) and 23 black rhi-
noceroses. The latter come from three popula-
tions of D. b. minor, which consist of 15 indi-
viduals from Hluhluwe, 6 from Mkuzi (Natal),
and 2 from Zimbabwe. Total DNA was extracted
at an early passage number from cell cultures
propagated in Dulbecco’s modified Eagle’s me-
dium (Gibco, UK) containing 5% fetal-calf se-
rum (Highveld, South Africa). The restriction
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only approximate. Factors contributing to
the uncertainty are not only error due to the
stochastic nature of the mutational process
(the value given abovc as +0.8 million
years), but also the applicability of the cal-
ibration of ratc of sequencc divergence
against time to the group under study, and
the amount of within-species divergence.
Although the latter would appear to be low,
at least within the population of black rhi-
noceros sampled here, and in Ashley et al.’s
study (1990), levels of intraspecific diver-
gence as high as 6.8% have been reported
for other mammalian species (Carr et al.,
1987; Cronin, 1991). Our value of 3.4 +
0.8 x 10¢ years is, therefore, a measure of
the divergence of the mtDNA of these two
species and only a qualified estimate of the
species’ actual divergence time. Neverthe-
less, this agrees well with the value of 3.5
x 10¢ years suggested by George (1987),
who used comparisons of restriction-frag-
ment sizes, as well as with fossil evidence.
The fossil record of the Rhinocerotidae is
fragmentary, but the description of Cerg-
totherium praecox from deposits of ca. 4 x

10 years before present (Hooijer and Sing-
er, 1972), and its similarity to C. simum
and D. bicornis, was used to support the
proposal that Ceratotherium split from the
Diceros lineage sometime during the Plio-
cene. George and Ryder (1986) used restric-
tion-site comparisons of mtDNA in another
family of Perissodactyla to estimate that the
common ancestor of the Equidae was pres-

ent ca. 3.9 x 10 years before present. This
similarity to the figure of 3.7 x 10¢ years
before present in the African Rhinoceroti-

dae may be coincidental, but contributes to
the gradual accumulation of a dataset that

may define major episodes of radiation of
African mammals in the Pliocenc and Pleis-

tocene,
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THE ZYGOMATIC ARCH OF HYAENODON
(HYAENODONTIDAE: CREODONTA)

GEerArDO DE IuLus

Department of Zoology, University of Toronto,
Toronto, Ontario, Canada, M5S 141

The horizontally oriented zygomatic arch of Hyaenodon tradifionally has been viewed as
thin and structurally weak. This condition has been correlated w_lth ?Uophy of the massetgn?
musculature, itself reduce because of stresses imposed along with increased gape. Physxc}z:
reconstruction of the adductor-masticatory musculature of Hya.enod‘on suggests that | e;
mass of the masseteric musculature was proportionally smaller in this genus as compar
to other carnivores, but not to the degree suggested by Mellett (1977, Contrib. Vert. Evol..,
1:1-134). The condition of the arch primarily is not a result of atrophy ot: the ma‘ssetenc
musculature because such atrophy is not a solution to the problem of stress; indeed, it v:vould
aggravate the problem. Rather, the condition of the afch probably reﬂects.the function of
reducing the distance between the origins and insertions of the masseteric musculature,
while the length of the fibers remained largely unaltered.

Key words: Hyaenodon, Creodonta, morphology, evelution

The skull of Hygenodon is highly spe-
cialized for carnivory, but possesses a suite
of characters that distinguishes it from the
skulls of creodonts and carnivorans of a
comparable grade of carnassiality. Some of
these modifications have been described by
vzrious authors (e.g., Mellett, 1977; Scott
and Jepsen, 1937).

Mellett (1977) proposed a sequence of
factors that could give rise to the skull mor-
phology of Hyaenodon. He suggested that
the masseteric musculature was reduced be-
cause of the increased stress imposed by se-
lection for increased gape, and that the hor-
izomal and weak zygomatic arch resulted
from this muscular atrophy. This opinion
commonly is accepted by palcomammalo-
gists and has become so pervasive that it is
expressed consistently by researchers oth-
erwise only vaguely familiar with Hyaeno-
don. However, Mellett's (1977) assertiqn
t : the condition of the zygomatic arch is
due solely and simply to masseteric reduc-
tion is questionable based on muscle phys-
iology. A more probable explanation is that
the morphology of the arch may in part be
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a product of selective pressurcs to decrease
the distance between the origin and inser-
tion of the masseteric musculature, assum-
ing that selection for increased gape im-
posed an initial stress on the musculature.

MATERIALS AND METHODS

Hyaenodontids were obtained from a number
of institutions {(American Museum of Natural
History, AMNH: Frick Collection, American
Museum of Natural History, FAM; Natural His-
tory Museum of Los Angeles County, LACM
[CIT)) and included four taxa: Hyaenodon cru-
cians (AMNH 647), H. horridus (AMNH 394390,
FAM 756920, LACM [CIT] 83/102. LACM
[CIT] 143/1660), H. vetus (LACM [CIT] 150/
1359), and H. ?vetus (LACM [CIT] 150/1381).
Extant taxa examincd, from the Royal Ontario
Museum, Department of Mammalogy (ROM).
and Grant Hurlburt Private Collection (GHPC).
include: Alopex lagopus (ROM 21591), Bassaris-
cus astutus (ROM 91-10-1-3), Canis adustus
(ROM 28188), C. familiaris (GHPC 7, GHPC
24), C. latrans (ROM 19940), C. lupus (ROM
18669), Crocuta crocuta (ROM 16754), Dusi-
cyon (ROM 14214), Felis concolor (ROM 33-9-
25-1), F. catus (GHPC 39), Hvaena hyaena(ROM
80312), Genetta trigrina (ROM 65103) Urocyon
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