Generalism as a subsistence strategy: advantages and limitations of the highly flexible feeding traits of Pleistocene *Stephanorhinus hundsheimensis* (Rhinocerotidae, Mammalia)*a,b*

Ralf-Dietrich Kahlke* a,*, Thomas M. Kaiser b

*Senckenberg Research Institutes and Natural History Museums, Research Station of Quaternary Palaeontology Weimar, Am Jakobskirchhof 4, D-99423 Weimar, Germany
bUniversity of Hamburg, Biocentre Grindel, Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany

A B S T R A C T

The so-called Hundsheim rhinoceros, *Stephanorhinus hundsheimensis*, was a very common faunal element of the Early to early Middle Pleistocene period in the western Palaearctic. In this study, individuals from two different central European populations of the Hundsheim rhinoceros were analysed in order to determine whether their local dietary signals could reflect differing food availability between the two populations, and whether such information could provide a better understanding of the ecological role of *S. hundsheimensis* within corresponding faunal assemblages, and of its principal subsistence strategy in the western Palaearctic. The mesowear traits observed in the studied *S. hundsheimensis* populations have been interpreted as representing biome-specific signals, indicating grassland vegetation at the site of Süssenborn, and dense to open forests at Voigststedt (both localities in Germany). The analyses performed on the fossil rhino material demonstrate the most pronounced dietary variability ever established for a single herbivorous ungulate species by mesowear studies. This variability ranges from an attrition dominated grazing regime, to a one of predominantly browsing, and characterises *S. hundsheimensis* as the most ecologically tolerant rhinoceros of the Palaearctic Plio-Pleistocene. Although such dietary flexibility proved an effective enough subsistence strategy over a period of 600–900 ka (1.4/1.2–0.6/0.5 Myr) in the western Palaearctic, the situation changed dramatically after 0.6 Myr BP, when the new species of rhinoceroses, *Stephanorhinus hemitoechus* and *Stephanorhinus kirchbergensis*, appeared and started to compete for both the grass and the browse. For the generalist *S. hundsheimensis*, this bilateral interference was detrimental to its success in all of its habitats. The successful competition of specialised forms of rhinoceroses, which might have originated as a result of the development of 100 ka periodicity in the global climatic record, is proposed as the main reason for the extinction of *S. hundsheimensis* during the early Middle Pleistocene.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fossil vertebrate remains can be useful tools for reconstructing palaeoenvironmental parameters and improving knowledge on the natural variability and evolution of palaeoecosystems and -climates. However, accurate reconstruction of fossil faunal assemblages requires the establishment of the food resources available for each species, and conclusions on their corresponding subsistence strategies. In the case of herbivores, reconstructions of the vegetational character of associated palaeoecosystems,
using the dietary interface as a pathway, may provide subtle insights into the behaviour of different species based on dietary signals only, even when no palaeobotanical record is available.

For this study, we selected a species of rhinoceros, *Stephanorhinus hundsheimensis*, which was very common during the Early to early Middle Pleistocene period in the western Palaearctic. Since taxonomic work in fossil rhinoceroses is strongly based on dental morphology, a tooth related method of dietary evaluation, the mesowear method (Fortelius and Solounias, 2000; Kaiser and Fortelius, 2003; Kaiser and Solounias, 2003; Kaiser and Rössner, 2007), has been chosen. This method provides a long-term signal of the overall abrasiveness of the forage, covering a considerable part of an individual's life span. In contrast to the dental microwear method (e.g., Hayek et al., 1992; Solounias and Semprebon, 2002; Rivals et al., 2008), it is not affected by seasonal fluctuation.

Mesowear evaluation has been rather frequently applied as a community based approach to palaeoecology (e.g. Schubert et al., 2006), however, studies of intraspecific variability of closely related populations within a time series are rare so far (e.g. Rivals et al., 2007; Semprebon and Rivals, 2007). As an approach to intraspecific variability of contemporaneous populations of a single species and as a measure of the degree of generalism the method has yet been applied only by Kaiser (2003), making the approach attempted here a rather novel one.

2. Hypothesis

Just a few extant herbivore species are known to be nearly monophageous, such as the koala (*Phascolarctos cinereus*), which has developed a trophic dependence on the foliage and bark of only around 20 *Eucalyptus* species (Zoidis and Markowitz, 1992; Ellis et al., 2002). The majority of today's herbivores have a much more opportunistic feeding strategy, reflected by a broader spectrum of food resources (Ansell, 1960; Darling, 1960; Lamprey, 1963; Skinner and Smithers, 1990; Estes, 1991). If conspecific populations from different habitats are investigated, the dietary signal of a given species should not only provide information on the availability of food items within these habitats, but could also reveal the corresponding dietary spectra considered by the studied vertebrate species. In turn, such information would provide a tool with which the flexibility of the feeding behaviour of the studied herbivores could be determined.

The hypothesis tested here is, whether the individuals from two different fossil populations of the so-called Hundsheim rhinoceros, *S. hundsheimensis* (Toula, 1902), reflect different food availability in their local dietary signals. If so, we would expect to recover general information on the subsistence strategy of this species, and, in addition, obtain further information on its evolutionary history within the Early to Middle Pleistocene faunal assemblages of the western Palaearctic. The samples chosen for this study originate from two well studied European early Middle Pleistocene sites with very different habitats.

The applied mesowear method (Fortelius and Solounias, 2000) involves measuring the abrasiveness of a typical diet. Many angiosperms, both monocotyledons and dicotyledons (Piperno et al., 2002), may heavily impregnate their vegetative and reproductive organs with phytoliths. Besides lignifications, phytoliths are considered to constitute an important system of mechanical defence in angiosperms. The evolution of hypsodont dentitions during the upper Miocene (Fortelius et al., 2002), when open woodlands and savannas expanded globally at the expense of forests, has been hypothesised to be linked to the high phytolith content of grass leaves in particular (Cerling et al., 1998). Since opalines were long considered to be the only substance hard enough to grind and abrade the tooth enamel of herbivorous mammals (e.g. Baker et al., 1959), this paradigm has recently been challenged (Sanson et al., 2007).

In addition to phytoliths, exogenous grit makes up the second major source of abrasives eaten by herbivorous mammals, where higher levels of grit are broadly associated with less water availability to the existing plant cover (Kaiser and Schulz, 2006; Kaiser and Rössner, 2007). Differences in habitat structure should, therefore, be indicated by the mesowear signature, as a simple measure of overall abrasiveness of foods averaged over a considerable part of an individual’s life span. Variation observed in mesowear signatures of a species at different locations, should thus not only reflect habitat conditions, but also indicate the magnitude of variability in the feeding trait of the studied species. A third source of abrasiveness could arise from excessive fruit or seed consumption, as suggested by Fortelius and Solounias (2000).

3. Material and methods

3.1. Investigated rhinoceros species

The fossil genus Stephanorhinus Kretzoi, 1942 comprises dolichocephalic, two-horned rhinos with strongly molarised premolars without functional incisors (Fortelius et al., 1993). Its temporarily distribution is restricted to the Palaearctic Neogene and Quaternary. The phylogenetic relationship of Plio-Pleistocene species of Stephanorhinus is still under debate. Whereas the classical evolution model (e.g. Guérin, 1982; H.-D. Kahlke, 2001) sees a single Plio- to early Middle Pleistocene evolutionary line of Stephanorhinus etruscus, comprising the Early to Late Villafranchian nominate form *S. etruscus etruscus* and the late Early to middle Middle Pleistocene *S. etruscus brachycephalus* sensu Guérin (1980) (including *S. hundsheimensis* of several authors; see H.-D. Kahlke, 2001), Fortelius et al. (1993) and Lacombat (2007, 2009) link the Early to early Middle Pleistocene *S. hundsheimensis* with the Early Villafranchian species *S. jeanvireti*, which has, so far, only been recorded in Europe. For the latter authors, the *S. jeanvireti/hundsheimensis* group of rhinos form a separate Eurasian evolutionary branch different from that of Villafranchian *S. etruscus*.

Independent from the current debate, the studied early Middle Pleistocene rhinocerotid fossil populations from Süßenborn and Voigstedt (Fig. 1) belong to a single species (H.-D. Kahlke, 1965b, 1969b). Following the model of Lacombat (2006a, 2006b, 2007), we have assigned the material from both sites to *S. hundsheimensis*, which appeared in Europe for the first time between 1.4 and 1.2 Myr (Piro Nord and Pietrafitta in Italy, Mazza et al., 1993; Venta-Micena, Fuente Nueva 3 and Barranco Léon 5 in Spain, Lacombat and Martinez-Navarro, in press), and survived until 0.6–0.5 Myr (Mauer and Mosbach 2 in Germany, Fortelius et al., 1993; Schreiber, 2005). *S. hundsheimensis* was a long-legged rhinoceros with cursorial limb-proportions and a head posture that presumably allowed the animal to feed both as a grazer and browser on vegetation of intermediate height (Fig. 2).

3.2. Investigated rhinoceros populations

3.2.1. Süßenborn (SH-SUESS)

The extended fossil mammal material from the Ilm river gravels of Weimar-Süßenborn (50° 59’16”N, 11° 23’58”E) in central Thuringia (Germany) was collected more or less systematically during the second half of the 19th century up to the 1980s – especially during periods of hand quarrying. The resulting Süßenborn collection comprises approximately 3200 finds (stored in the Senckenberg Research Station of Quaternary Palaeontology Weimar; abbreviated as IQW). Süßenborn’s, up to 15 m thick, fluviatile
horizons represent a relatively long time interval of the early Brunhes magnetochrone (with M. savini as a biostratigraphic marker). Its mammal fauna includes characteristic early Middle Pleistocene elements, such as S. elisabethae, B. schoetensacki, C. suessenbornensis, A. latifrons, P. verticornis, M. savini, E. suessenbornensis, E. altidens, and an extended series of Mammuthus trogontherii remains (monograph: H.-D. Kahlke, 1969a). Although several climatic oscillations are represented in the sequence, the faunal inventory does not indicate periglacial conditions, or the formation of a steppe-tundra (R.-D.Kahlke, 1999). Single occurrences of the earliest Eurasian reindeer (R. tarandus stadelmanni) and musk-ox (Ovibos moschatus suessenbornensis) at Süßenborn have been assigned as sporadic appearances from winter visitors from sub-Arctic or Arctic regions (Soergel, 1939; R.-D.Kahlke, 1999).

According to the fluviatile character of the site, most of the 465 remains of S. hundsheimensis, among them one calvarium, were found disarticulated. In addition, some of the finds show strong traces of pre-depositional transportation. In rare cases, individually found dental or skeletal elements were later assigned to each other; however complete mandibles were more common. The varying stages of preservation of the fossils possibly reflect the variability of water currents within the riverine system. For this study, only well-preserved dental elements were used.

3.2.2. Voigtstedt (SH-VOI)

The fossil vertebrate fauna from the former clay pit immediately east of Voigtstedt (51°23′49″N, 11°20′01″E) near Sangerhausen (northern Thuringia, Germany) was systematically excavated (in total 2650 m²) during the years 1954–1966 (H.-D. Kahlke, 1965a). The entire c. 2500 fossil mammal finds (stored in the IQW) originate from the so-called “Lehmzone” (“loam layer”), which was deposited during an early period of the Brunhes magnetochron. The occurrence of the biostrigraphically indicative arvicolid M. savini assigns the fauna to the Late Biharian, most probably to MIS 17 (Maul et al., 2007), an age that fits with the large mammal record. The Voigtstedt fauna includes, amongst others, B. schoetensacki, A. latifrons, P. verticornis, and E. altidens; species which clearly reflect warm climatic conditions. According to the MIS 17 correlation, the age of the Voigtstedt fauna is believed to be around 0.7 Myr (absolute data from Bassinot et al., 1994).

Among the 273 rhinocerotid finds recovered at the site were two, more or less complete, skeletons of a juvenile and a subadult individual (Fig. 3). Their carcasses were deposited in stagnant waters, low in oxygen, and were effectively unavailable to large scavengers. Additional material was found in more or less disarticulated states.

3.3. Mesowear analysis

The mesowear method applied to the fossil S. hundsheimensis populations from Süßenborn and Voigtstedt (Fig. 4), was developed by Fortelius and Solounias (2000). Mesowear is based on facet development on the occlusal surfaces of the ungulate upper molar teeth. The degree of facet development reflects the relative proportions of tooth-to-tooth contact (attrition) and food to tooth contact (abrasion). Attrition creates facets and abrasion obliterates them. Mesowear analysis defines ungulate tooth mesowear by two variables: 1. Occlusal relief (OR) and 2. Cusp shape (CS). The occlusal relief is classified as high (h) or low (l), depending on how high the
cusps rise above the valley between them (Table 1). Data from this analysis is given as percentages: % high and % low (Table 2). The second mesowear variable, cusp shape, is comprised of three scored attributes: sharp (s), round (r), and blunt (b), according to the degree of facet development (see Fortelius and Solounias, 2000). Cusp shape is also given as a percentage in Table 2, as are the three variables % sharp, % round, and % blunt. Where both cusp apices (paracone and metacone) are preserved, the sharper of the two was selected for analysis as proposed by Fortelius and Solounias (2000) (Table 2, Fig. 5A–C). Cusp shape variables were evaluated for both cusp apices of each tooth independently (Table 2, Fig. 5D).

Fortelius and Solounias (2000) restricted their study on ungulate mesowear to the labial wall of the upper M2. Their methodology was modified for this study by selecting all upper M1-M3 of S. hundsheimensis, following the “extended” mesowear method introduced by Kaiser and Solounias (2003). This methodology was chosen in order to include lesser-extended samples of fossil teeth, such as the Voigtstedt material. The mesowear principle has been proven to allow consistent inter- and intraspecific comparison in extant rhinocerotids (Fortelius and Solounias, 2000).

For this study, only upper cheek teeth from wear stages 2 and 3 (sensu Kaiser et al., 2003) were used. Unworn teeth, specimens in very early wear, and very worn teeth were excluded. In total, 44 dental specimens from the Süßenborn population (SH-SUESS), which most likely represent 39 individuals, and seven dental specimens from six individuals from Voigtstedt (SH-VOI), were available for study (Table 1). 52 extant species, as reported by Fortelius and Solounias (2000), were used as comparative data for dietary classification; however, here, their original dataset was modified slightly by excluding the two domestic species, Camelus dromedarius and Lama guanicoe f. glama.

The set of fossil populations in our study was plotted within a nested set of extant ungulate species. Extant species were classified into the three broad dietary categories: browsers, mixed...
Table 1

<table>
<thead>
<tr>
<th>SPEC ID</th>
<th>LOC</th>
<th>TOOTH</th>
<th>SIDE</th>
<th>CS-A</th>
<th>CS-P</th>
<th>WEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQW Suess. 1963 1/5045</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>s</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 1/5045</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>s</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 13/463</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 2/7154</td>
<td>SUCESS 8m3</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 21/6982</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 23/9081</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 24/6847</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 27/4133</td>
<td>SUCESS 8m12</td>
<td>r</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 28/5981</td>
<td>SUCESS 8m3</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 29/7150</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 30/9082</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 31/9775</td>
<td>SUCESS 8m3</td>
<td>l</td>
<td>h</td>
<td>s</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 32/7993</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 33/7175</td>
<td>SUCESS 8m2</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 36/42769</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 38/260</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 39/9083</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 40</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 42/7165</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 43/7459</td>
<td>SUCESS 8m3</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 44</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 47/7469</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 5</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 50/7153</td>
<td>SUCESS 8m3</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 51</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 53/7164</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 54/9119</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 55/4270</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 56/464</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 57/5272</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 58/359</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 7/9073</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 7/9073</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1963 9/9077</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 315/9128</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 316/9129</td>
<td>SUCESS 8m12</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 317/9130</td>
<td>SUCESS 8m13</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 319/9112</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 366</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 466</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 480/7143</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 514</td>
<td>SUCESS 8m1</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1964 480/7143</td>
<td>SUCESS 8m3</td>
<td>l</td>
<td>h</td>
<td>r</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Suess. 1965 5916</td>
<td>VOI 8m1</td>
<td>l</td>
<td>h</td>
<td>s</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Vol. 3280/I 1966/74 15</td>
<td>VOI 8m1</td>
<td>l</td>
<td>h</td>
<td>s</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IQW Vol. 3280/I 1966/74 15</td>
<td>VOI 8m1</td>
<td>l</td>
<td>h</td>
<td>s</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

In both of the studied fossil S. hundsheimensis (SH) populations, occlusal relief is close to 100% high. If only the sharpest cusp is evaluated following the original mesowear technique by Fortelius and Solounias (2000) (one cusp model), cusp shape scorings range between 7% (SH-SUESS) and 100% (SH-VOI) sharp, and 93% (SH-SUESS) and 0% (SH-VOI) round. No blunt cusps were identified in either sample (Table 2). Applying the two cusps model results in a slight decrease of sharp cusps in both the Süßenborn (4.5%) and Voigtstedt populations (80%) (Fig. 6A, E). Percentages of round cusps remain almost unchanged in the SH-SUESS population (93/91%), but increase substantially in the SH-VOI population (0.0/20%). When applying the two cusps model, 4.5% blunt cusps can be identified in the SH-SUESS population (Table 2).

A chi-square test of combined variables of occlusal relief and cusp shape (h, s, and r) indicates the high probabilities of different mesowear signatures of the two studied populations (p < 0.001 in both of the cusp models). Similarly, high probabilities are obtained for cusp shape variables sharp and round (p < 0.001). If the one cusp model is tested against the two cusps model, p-values are typically high (p > 0.3 < 0.9). These data indicate the low likelihood of the models differing significantly with 0.05 error probability (Table 2).

The cluster diagrams (Fig. 5A–C) illustrate the relationships between the datasets: the closer the data, the smaller the Euclidean distance (ED) at the branching point. The dendrogram in Fig. 5A shows four main clusters: cluster 1 contains only grazers; cluster 2 comprises several mixed feeders, in addition to some grazers and one browser; cluster 3 contains the majority of the mixed feeders, three browsers, and no grazers; cluster 4 corresponds to the attrition-dominated end of the dietary spectrum and contains most of the browsers, only two attrition-dominated mixed feeders, and no grazers.

Data from the S. hundsheimensis samples from Süßenborn (SH-SUESS) fall into cluster 2, together with several grazers and the abrasion dominated mixed feeders. The Süßenborn rhino is linked most closely to the extant reedbed feeduck (Redunca redunca, rr), a grazing African bovid that inhabits flood plains, and requires reed beds and grasses alongside a steady supply of water. The most distinctive feature in the mesowear signature that the SH-SUESS population shares with R. redunca, is the high percentage of high relief and round cusps (Fig. 6A, B, 7).

The SH-VOI population is classified in cluster 4, where it shares a close sub-cluster with two of the three extant Asian rhinocerodonts; the Sunnatan rhino (Diceros sumatrensis, DS) and the Indian rhino (Rhinoceros unicornis, Ru) (Fig. 6F, K). Close proximity with the giraffe (Giraffa camelopardalis, GC; Fig. 6H) and the mule deer (Odocoileus hemionus, OH; Fig. 6G) is also evident.

If cluster analysis is restricted to those extant comparison species recognized to represent "typical" dietary categories by Fortelius and Solounias (2000: 27 species model), the pattern becomes more distinct (Fig. 5B); clusters 1 and 2 contain only grazers, and cluster 3 all of the mixed feeders. The fossil SH-SUESS population falls into cluster 2, where it shares a sub-cluster with the reedbeduck (R. redunca, rr), the Roan antelope (Hippotragus equinus, ke; Fig. 6D) and the waterbuck (Kobus ellipsiprymnus, ke;

feeders, and grazers, following the "conservative" (CONS) classification of Fortelius and Solounias (2000). All statistics were computed using Systat 9.0 and Axum 6 software. Hierarchical cluster analysis with complete linkage (furthest neighbour) was applied following the standard hierarchical amalgamation method of Hartigan (1975). According to the default settings of Systat 9.0, the algorithm of Grunvaeus and Wainer (1972) was used to order the trees. The three mesowear variables, % high, % sharp and % blunt were analysed by cluster statistics. We performed three cluster analyses using three different sets of extent reference species. In Fig. 5A we have included all 52 extant species classified as "normal" and "typical" by Fortelius and Solounias (2000) (52 species model).
Table 2
Distribution of mesowear variables in the populations of *Stephanorhinus hundsheimensis*: LOC — locality (SUESS — Süßenborn, VOI — Voigtstedt); OR — occlusal relief variables (l — absolute scorings low, h — absolute scorings high, %b — percent high occlusal relief); CS — cusp shape variables (n1 — number of specimens available in the one cusp model [all cusp apices preserved are included in the mesowear model], n2 — number of specimens available in the two cusps model); (s) — sharp, (r) — round, (b) — blunt, %s — percent sharp cusps, %r — percent rounded cusps, %b — percent blunt cusps.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>LOC</th>
<th>OR</th>
<th>CS (one cusp model)</th>
<th>CS (two cusps model)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>n1</td>
<td>s</td>
</tr>
<tr>
<td>Stephanorhinus hundsheimensis</td>
<td>SUESS</td>
<td>4</td>
<td>41</td>
<td>91.1</td>
</tr>
<tr>
<td></td>
<td>VOI</td>
<td>0</td>
<td>7</td>
<td>100</td>
</tr>
</tbody>
</table>

S. hundsheimensis VOI, one cusp model: h, s, r
S. hundsheimensis VOI, two cusps model: s, r
S. hundsheimensis VOI, two cusps model: s, r
S. hundsheimensis VOI, one cusp model/VOI, two cusps model: s, r

--

Fig. 6C. The SH-VOI population falls into cluster 4, together with the browsing only extant species. As seen in Fig. 5A, *S. hundsheimensis* is most closely linked to *D. sumatrensis* (DS), *G. camelopardalis* (GC), and *O. hemionus* (OH).

Further reducing the set of extant species to rhinocerotids (5 species model) results in only two major clusters (Fig. 5C). Cluster 1 comprises the African White rhinoceros (*Ceratotherium simum*, cs; Fig. 6L), which is the only modern grazing rhino (Janis, 1988, 1990; Janis and Ehrhardt, 1988; Estes, 1991), and the SH-SUESS fossil population. Cluster 2 comprises the four remaining extant rhinocerotids, i.e. the African Black rhino (*Dicerorhinus bicornis*, DB; Fig. 6L), the Sumatran, the Indian, and the Javan rhinoceroses (*D. sumatrensis*, DS; *Rhinoceros unicornis*, Ru; *R. sondaicus*, RS; Fig. 6M). Whereas the Indian rhinoceros can be considered as a mixed feeder, the remaining three species are browsers (Janis, 1988, 1990; Janis and Ehrhardt, 1988; Fortelius and Solounias, 2000). Furthermore, it should be noted that the two extant rhinoceroses that cluster closest to the SH-VOI population are both Asian forms.

5. Discussion

The fossil remains of the investigated *Stephanorhinus* populations originate from two fundamentally different depositional environments. The Süßenborn faunal remains have been...
embedded in riverine gravels accumulated during a rather long, geochronologically relevant span of time. The majority of faunal elements indicate a continental type climate, with cool to cold conditions (see above). Most of the recorded species of large mammals (e.g., *Alces latifrons*, *M. savini*, *E. suessenbornensis*, *M. trogontherii*), as well as several of the micromammals (Maul, 2002), primarily inhabited open landscapes, which were prevailing in the immediate and broader environs of the site. The Voigtstedt fauna, on the other hand, lived in predominantly forested areas, rich in stagnant water bodies. Here, the fossil remains became deposited...
during a relatively short span of time in limnic sediments. The Voigtstedt fauna lived under warm-humid (Atlantic influenced) climatic conditions, as is indicated by several thermophilous mammal species, such as *Sus scrofa* ssp., *Mammuthus meridionalis* “voigtstedtensis” (= a late evolutionary stage), *Trogontherium cuvieri*, and *Petauria voigtstedtensis*.

The two palaeoenvironments are believed to have maintained a distinct composition of food resources for the corresponding ungulate faunas. The diversity in species representing a certain dietary trait should allow inference on the availability, abundance, and overall abrasiveness of the related dietary sources in the habitat under consideration. In order to resolve the dietary regimes of the studied *Stephanorhinus* populations, we used the following determined extant dietary analogues:

The SH-SUESS population is referenced by the reedbuck (*R. redunca*), which according to Gagnon and Chew (2000) is an obligate grazer with a monocot/dicot ratio of 95/5% in its diet, which does not include fruit (Fig. 7A). Cerling et al. (2003) identify the species as a “hypergrazer” with >95% grass in its diet, consisting of a variety of grass species (Skinner and Smithers, 1990), including common reed (*Phragmites communis*), foraged close to water bodies, as a major component. Estes (1991) notes that the reedbuck may also eat forbs and the leaves of woody plants in dry seasons. The mesowear signature of *R. redunca* (Fig. 5) is never linked to bulk or roughage feeders, but indicates a grazer situated at the more attrition-dominated end of the grazing spectrum. This position matches Hofmann and Stewart’s (1972) classification, which characterises the species as being a fresh grass grazer.

Among the rhinocerotids, *C. simum* shares most similarities with the Süßenborn population of *S. hundsheimensis* (Fig. 5C). The African White rhinoceros lives in bush-covered, flat, short grass areas and is thus adapted to open country environments (Player and Feely, 1960). The species is recognized as a selective grazer (Janis, 1988, 1990; Janis and Ehrhardt, 1988) with a preference for short grass (Owen-Smith, 1988). Among the extant rhinocerotids, *C. simum* is the most specialised form, as it is adapted to subsist from highly abrasive and less nutritious roughage. The mesowear signature of SH-SUESS differs from that of *C. simum*, as indicated by the prevalence of low relief and the comparably high percentage of blunt cusps in the latter species (Figs. 4 and 6I). The Süßenborn *S. hundsheimensis* probably had a less abrasive feeding regime compared to that of the modern White rhino. With its brachydont teeth fresh grass grazing may have been temporarily viable for the Süßenborn *S. hundsheimensis* without wearing out teeth before reproductive age was reached. We consider the reedbuck, therefore, the more likely dietary analogue for the SH-SUESS fossil population.

The extant dietary analogue of the SH-VOI population is *D. sumatrensis*. Unfortunately, little is known about the biology of the Sumatran rhinoceros, owing to its near extinction in present times. The species inhabits hilly country covered with tropical rain forest and mountain moss forests. According to Van Strien (1974), *D. sumatrensis* is very flexible and can live in a wide variety of habitats. Unfortunately, little is known about the biology of the Sumatran rhinoceros, owing to its near extinction in present times. The species inhabits hilly country covered with tropical rain forest and mountain moss forests. According to Van Strien (1974), *D. sumatrensis* is very flexible and can live in a wide variety of habitats.

![Fig. 7. Dietary regimes of the extant reference taxa.](image-url)

(A) The reedbuck (*Redunca redunca*) is the extant dietary analogue species of the *Stephanorhinus hundsheimensis* fossil population from Süßenborn (SH-SUESS). (B) The Voigtstedt population of *S. hundsheimensis* (SH-VOI) is referenced by the Sumatran rhinoceros (*Dicerorhinus sumatrensis*), a browser. (C) Its closest non-rhinocerotids dietary analogues are the giraffe (*Giraffa camelopardalis*) and (D) mule deer (*Odocoileus hemionus*) (see text). Dietary proportions from: Gagnon and Chew (2000) for *R. redunca*; Van Strien (1974) and Dierenfeld et al. (2000) for *D. sumatrensis*; Codron et al. (2005) for *G. camelopardalis*; Kufeld et al. (1973), Van Wieren (1996) and Nicholson et al. (2006) for *Odocoileus hemionus*. Pictograms of *D. sumatrensis* and *Odocoileus hemionus* after Mochi and Carter (1971).
et al. (2005) have also recorded up to 10% C4 grass in the isotope
ironus (Fig. 6G), are also C3 browsers. The giraffe has up to 5% C4
grasses (Skinner and Smithers, 1990, p. 573). The Javan rhinoceros
observation that the species occasionally grazes heavily on short
grasses (Skinner and Smithers, 1990, p. 573). The Javan rhinoceros
was not specific in its dietary traits, but rather mined that the European early Middle Pleistocene rhinoceros
SH-SUESS population do not appear to have occurred in large amounts in the dietary spectrum of the SH-VOI
rhinos. Two possible explanations may shed light on this phenomenon: 1. The early Middle Pleistocene Süttenborn biome
supported more abrasive food components, such as e.g., grass, dicots rich in phytoliths, grit loaded foliage, fruit with hard seeds, or
2. The Süttenborn S. hundsheimensis had to compete for a predomi-
nantly browsing dietary niche with at least one other large herbivorous species, and was therefore likely to incorporate
a greater amount of less nutritious (Owen-Smith, 1997), and more abrasive, components in its diet.

The SH-VOI population reflects a particularly high diversity of
dietary sources, as concluded from the feeding strategy of its die-
tary analogue, D. sumatrensis. The abrasive components eaten by
the individuals of the SH-SUESS population do not appear to have
occurred in large amounts in the dietary spectrum of the SH-VOI
rhinos. Two possible explanations may shed light on this phenomenon: 1. The early Middle Pleistocene Süttenborn biome
supported more abrasive food components, such as e.g., grass, dicots rich in phytoliths, grit loaded foliage, fruit with hard seeds, or
2. The Süttenborn S. hundsheimensis had to compete for a predomi-
nantly browsing dietary niche with at least one other large herbivorous species, and was therefore likely to incorporate
a greater amount of less nutritious (Owen-Smith, 1997), and more abrasive, components in its diet.

The latter scenario can be discarded as the Süttenborn fauna did
not comprise another rhinoceros species more adapted to browsing
than S. hundsheimensis. Moreover, if the diet of M. trogontherii,
whose remains have been regularly found at Süttenborn, had
included a significant amount of browse, these animals, with
shoulder heights of up to 4.5 m, would have exploited a different
storey of the vegetation than that of the rhinos. Furthermore, the
group of large sized cervids frequently recorded at Süttenborn
(A. latifrons, P. verticornis, M. savini), can also not be taken as serious
competitors for the browsing niche of the rhinos, since all of them
(or in the case of M. savini a closely related form) were similarly
abundant in the Voigtstedt fauna, but did not prevent the browsing
strategy of the SH-VOI population.

In summary, the mesowear traits of both of the SH-SUESS und
the SH-VOI populations must be interpreted as biome-specific
signals of food availability. As such, they reflect dry and predomi-
nantly open environmental conditions with grassland vegetation
at the site of Süttenborn, and extended dense to open forests in the
case of Voigtstedt. This mesowear study has produced the most
pronounced dietary variability ever established for a single
herbivorous ungulate species, which ranges from an attrition
dominated grazing regime at Süttenborn, to a pronounced
browsing one at Voigtstedt. Based on these data, we have deter-
mined that the European early Middle Pleistocene rhinoceros
S. hundsheimensis was not specific in its dietary traits, but rather
a highly flexible feeder.

For the majority of the period that S. hundsheimensis was
present in the western Palaearctic (c. 1.4/1.2–0.6/0.5 Myr; see 3.1.),
it was the only rhinocerotid species in corresponding mammal faunas. Throughout most of the given time span, contemporaneous
members of the mammoth evolutionary line were represented in
corresponding faunas by two different species (late forms of M.
meridionalis and M. trogontherii), which replaced each other by
paralleling the changes of habitat conditions (detailed discussion in
Lister et al., 2005). In contrast, the Hundsheim rhinoceros, as an
ecological generalist, was adapted to the whole range of habitats
occupied by both of the aforementioned mammath species. Thus,
S. hundsheimensis was undoubtedly the most ecologically tolerant
rhinoceros of the Palaearctic Plio-Pleistocene. For more than half
a million years it ranged from the Mediterranean coast to North-
west Europe, and from the Iberian peninsula to Transcaucasia, the
Levant, the Caspian lowlands, and beyond (sketch map in H.-D.
Kahlke, 1969b: p. 706). Due to the lack of any sympatric rhino, or
other species seriously competing for the available food resources,
the generalistic feeding behaviour of S. hundsheimensis proved to be
the most successful subsistence strategy under the given faunistic
circumstances.

The retreat of S. hundsheimensis only began when more speci-
alised rhino species appeared in the western Palaearctic. After
a period of sympathy, documented in the faunal spectra of several early Middle Pleistocene sites, such as Soleilhac (France), Mauer and Mosbach 2 (Germany), as well as Kolkotova Balka and Suklelya near Tiraspol (Moldova), the so-called forest rhinoceroses, Stephanorhinus kirchbergenisis, started to replace S. hundsheimensis in temperate environment faunas (Beljaev and David, 1975; Guérin, 1980, p. 972; Fortelius et al., 1993, p. 118; Schreiber, 2005). Its migration into the western Palaearctic was paralleled by the appearance of a new proboscidean in Europe, the straight-tusked elephant Elephas (Palaeoloxodon) antiquus (detailed data in Lister, 2004), which roamed as a specialised browser in the same type of habitats as S. kirchbergenisis. The kirchbergenisis-rhino was a very large animal with long legs, a high head posture, and moderately hypsodont molars (Fortelius et al., 1993), and was, therefore, also clearly adapted to a browsing lifestyle. It exploited a different storey of vegetation than the straight-tusked elephant, but browsed at the same level as S. hundsheimensis. Thus the specialised S. kirchbergenisis, with its more effective browsing abilities, became a serious food competitor of S. hundsheimensis in forested habitats, which formed an important part of the Hundseim rhino’s ecological range.

During cooler to colder periods, S. hundsheimensis was replaced by Stephanorhinus hemitoechus, another highly specialised rhino, over wide areas of the western Palaearctic. The latter species, which probably originated in Asia, appeared for the first time between 0.6 and 0.5 Myr, as recorded by the Mosbach 2 gravels (Fortelius et al., 1993, p. 118f.; faunal list in Hemmer et al., 2003). Its anatomy, especially its relatively short limbs, hypsodont molars, and its low-slung cranium (Fortelius et al., 1993), indicate its closer affinities to open grasslands and abrasive food resources. The origins of such specialised forms of rhinoceroses might have been ultimately caused by the development of the 100 ka periodicity in the global climatic record (Lisiecki and Raymo, 2005: Fig. 4), which led to a longer lasting stability in the resulting biomes compared to the preceding 41 kyr span of time. S. hemitoechus, also called the steppe rhino, appeared to successfully compete for food resources in open landscapes, which over hundreds of millennia had formed an essential part of the Hundseim rhino’s ecological range.

Whereas the described flexible feeding style of western Palaearctic S. hundsheimensis was an effective enough subsistence strategy when no specialised food competitors were around, the situation changed dramatically after 0.6 Myr BP with the appearance of the new species of rhinoceroses, S. hemitoechus and S. kirchbergenisis. For the generalist S. hundsheimensis, such bilateral interference produced detrimental effects in practically all of its habitats, owing to the superiority of both the recently arrived rhinoceroses species due to their specialised feeding strategies. Presently, it is not well understood whether or not this interference actually led to morphological or ecological character displacement (Dayan and Simberloff, 2005) in western Palaearctic Stephanorhinus-populations of early Middle Pleistocene age. Body size changes in S. hundsheimensis, S. kirchbergenisis, and S. hemitoechus, as recently described by Lacombat (2006a, 2006b) from Mediterranean Europe and the French Massif Central, might be linked to this kind of evolutionary process.

To conclude, we propose that the successful competition of the two forms of advanced rhinoceroses (S. hemitoechus, S. kirchbergenisis), i.e. the bilateral interference of their ecological ranges with that of S. hundsheimensis, was the main reason for the extinction of the latter during the early Middle Pleistocene. The invasion of these new rhinoceroses, specialised as grazers and browsers, turned the advantage of the Hundseim rhino’s generalism into a major disadvantage. Although the impact of only one single highly specialised species might have been compensated for by a generalist feeding strategy, several competing specialists increased the disadvantages of such a feeding strategy dramatically. In the described case of western Palaearctic rhinoceroses, the appearance of two phylogenetically closely related rhinos with different but specialised feeding strategies, ended the long period of existence of an impressive ecological generalist with unique flexible feeding traits.

Acknowledgements

The study was carried out as part of the Senckenberg Research Institutes project group “Origin, dispersal and impoverishment of Eurasian cold faunas” (R.-D. K.). It also benefited from work supported by DFG KA-1525/4-1, 42/2 and DFG KA-1525/6-1, which we gratefully acknowledge. The paper is counted as publication no. 10 of the DFG Research Unit 771 “Function and performance enhancement in the mammalian dentition - phylogenetic and ontogenetic impact on the masticatory apparatus”. Our thanks are due to F. Lacombat (Weimar, Le Puy-en-Velay) for both information and discussion and to E. Haase (Weimar) for her support to prepare the graphics. The reviewers M. Fortelius (Helsinki) and P. P. A. Mazza (Florence) helped to improve the paper.

References

