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CHAPTER 1  

INTRODUCTION 

With ever increasing world population (current 1.3% growth rate) coupled with constant 

change in technologies, we are becoming urban species and as a result our effects on the 

environment are also increasing (Cincotta et al., 2000; Botkin & Keller, 2003). Economic 

development is the precursor of urbanization; urban areas expand and rural area decreases. With 

urban sprawl, environmentally sensitive lands such as forests, wetlands, floodplains and 

grasslands are lost forever. According to Botkin and Keller (2003), currently about 75% of 

population in the developed world live in urban areas and 25% in rural areas. In contrast, only 

38% of people are city dwellers in developing countries. However, urbanization trends indicate 

that by 2025 almost two-thirds (~ 5 billion) of the world’s population will live in cities and 

megacities. A megacity is a city with more than 8 million inhabitants. And by 2015, there will be 

36 megacities of which 23 will be in the developing world especially in the Asian continent 

(Botkin & Keller, 2003). 

Further, Huston (2005) described three phases of human-induced alteration of 

landscapes; agrarian, transportation and communication. The agrarian phase is driven by primary 

and secondary productivity of a particular area and has been a part of hunter-gatherer culture of 

human history (Huston 2005). In this phase, both primary and secondary productivity leads to 

population growth that in turn leads to agricultural culture. However, net primary productivity 

(NPP, plant mass) is the ultimate driver of this phase as well as the fundamental constraint that 

determines animal densities of a particular place including humans. In other words, high plant 

productivity can support high animal mass and vice-versa. Global cultivation patterns also 

suggest that high proportions of agriculture activities are found where soils are fertile and thus 
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carry high human populations. Due to this inevitable correlation between NPP and human 

population density, the impacts of the agrarian phase are restricted to landscapes with high NPP 

such as riparian and alluvial areas, productive grasslands, and productive forests on fertile soils. 

For example, forests in the prairie areas of the United States of America (USA) and alluvial 

floodplains of Chitwan Valley in Nepal have been converted to cropland thus eliminating large 

native herbivores such as elk and bison from their historic range and shrinking the once abundant 

habitat of rhinoceroses in Chitwan Valley. 

The second or transportation phase weakened the connection of population to local NPP. 

With the expansion of transportation networks such as highways, waterways and railways, 

humans were able to move foods efficiently and population began to shift towards locations 

where transportation concentrated food and other resources called as transportation nodes. 

Sometimes, these places could be areas with low NPP and have escaped impact during the 

agrarian stage that now can be heavily affected by resource extraction and urban/industrial 

growth. Other environmental impacts include increased use of aquatic resources and degraded 

water quality caused by concentrated human population (Wang et al., 2001; Stepenuck et al., 

2002; Hansen et al., 2005). However, one indirect environmental benefit of this stage is 

reduction of population density from high NPP areas or agricultural regions (Lobao & Meyer, 

2001). This is yet to happen in the Nepal study site as the mainstay of the economy is agriculture 

and people are still attracted to the fertile floodplains of the valley. However in the USA, 

improved transportation and industrial technologies resulted in depopulation from high NPP 

areas that led to abandonment of marginal agricultural lands in places such as southern and 

northeastern Iowa. As a result, northeastern areas of the USA experienced substantial forest 

regeneration while in the western USA, impact from grazing was reduced and grassland was re-
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established (Licht, 1997; Hall et al., 2002; Foster et al., 2003). Nonetheless, this recovery might 

be beneficial to the local or regional biodiversity but may be short lived if the population 

continues to grow and food production becomes less efficient (Huston 1995; Waggoner & 

Ausubel, 2001). 

The third stage, communication or information stage, enabled humanity to be more 

independent than in the two stages discussed above. As noted, the direct impact was on the low 

productivity areas, reservoirs of biodiversity that were largely ignored during agrarian and 

industrial stages. Such areas tend to have higher densities of rare ‘endemic’ species of plants and 

animals and these areas are mostly targeted for aesthetic purposes such as views of natural 

scenery of streams, rocks and vegetation (Hansen et al., 2005). Thus, in third stage, people were 

able to build houses on once inaccessible but aesthetically valuable hillsides and ridge tops or 

near lakes as they can electronically transfer wealth generated in urban/industrial areas for use in 

remote areas (Jacobs, 1984). Consequently, these low productivity areas are being developed 

regardless of its sensitivity to anthropogenic disturbances such as land clearing and road 

construction thereby impacting its water availability and higher productivity content that are 

critical to ecosystem function and biodiversity (Abbott et al., 2001; Hansen et al., 2005). Further 

impact can be seen on the population of plants and animals as they tend to be smaller in such 

areas. And if disturbed, it takes longer for the plants and animals to recover and make them more 

vulnerable to land clearing and invasion by exotic species (Huston, 1994; Huston, 2004). 

Unfortunately, in developed countries such as the USA, these agriculturally marginal, low-

productivity landscapes frequently occur in public lands that are subject of current rapid land-use 

alterations (Huston, 1993; Scott et al., 2001; Hansen, 2005). Thus, until recently these marginal 

low-productivity areas have been the primary refuges for biodiversity and are currently 
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threatened with the third stage of communication development. The three stages discussed here 

have been potent drivers of forest loss in both developed and developing worlds. As mentioned 

above, in developed countries, low NPP areas are the current subject of exploitation due to 

improved communication technologies but developing countries are still going through agrarian 

and industrial stages. 

 

Biodiversity Hotspots 

Jha and Bawa (2006) studied relationships between population growth, human 

development index (HDI), and deforestation rate in thirty countries in Asia, Africa and Latin 

America. They made two groups of 11 and 19 countries. Some countries are included in the 

current list of biodiversity hotspots of the world by Conservation International (explained later in 

this section). They also examined the Gini coefficient (measurement of income inequality) of 

some countries. HDI measures income, health and education of a population (Jha & Bawa, 

2006). Their results showed that high population growth can increase deforestation but high HDI 

can mitigate that rate. However, HDI effects can be uneven across countries. In other words, 

with improved economic status, health and education, deforestation rate can decrease but this is 

not always the case. Even with HDI values, some countries such as Costa Rica, the Philippines, 

and Thailand (hotspots) had high deforestation rate and this is attributed to the policies of these 

countries that favored over logging, land clearing for agriculture, and conversion to ranch land 

(Bawa & Dayanandan, 1997; Kaimowitz & Angeisen, 1998). However, once the policies were 

reversed, these countries saw substantial drop in deforestation rate. This shows that besides high 

HDI, low population growth and low deforestation rate, policies that favor biodiversity 

conservation are very important. 
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Many regions of the developing world have been identified as biodiversity hotpots where 

unique assemblage of species and habitats occur that are experiencing a severe threat of 

overexploitation (Cincotta et al., 2000; Jha & Bawa, 2006). A biodiversity hotspot is a 

biogeographic region with 0.5% or more of the world’s flora endemic to that place and that has 

already lost at least 70% or more of its primary vegetation or their original geographic extent 

(Myers et al., 2002; Brooks et al., 2002). In other words, to qualify as a hotspot the area should 

contain at least 0.5% or 1,500 of the world’s 300,000 plant (vascular) flora species as endemics 

(Mittermeier et al., 1998; Myers et al., 2000). It is impossible to include all the species of a biotic 

community and ‘surrogate’ species are commonly used to represent biodiversity of an area 

(Sarkar, 2002). However, according to Rozzi et al. (2003), use of surrogate species might under-

represent species of an area that contain limited vascular plants. They suggest that use of other 

abundant species might be feasible in such cases. For example, bryophytes are abundant in Chile 

and they can be used as one of the hotspot criteria. 

Beside plant endemism, four groups of vertebrates (aves, mammal, reptile and amphibia) 

are very important to consider, although they are not directly used as criteria for hotspot selection 

(Mittermeier et al., 1998; Myers et al., 2000). The vertebrate data was used as back-up support, 

to determine congruence, and to facilitate other comparisons among the hotspots. Moreover, the 

species dimensions were emphasized on vascular plants because of their importance to all forms 

of animal life and are fairly well known scientifically (Mittermeier et al., 1998; Margules & 

Pressey, 2000; Myers et al., 2000; Brooks et al., 2002). Thus, endemism and degree of threat of a 

hotspot makes them both irreplaceable and vulnerable because endemics require and depend on a 

particular area to survive (Mittermeier et al., 1998; Myers et al., 2000). And this restricted range 
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can become the target of extinction episodes thus requiring immediate effective conservation 

action (McNeely et al., 1990; Pimm et al., 1995). 

Currently, there are 34 biodiversity hotspots around the world and about half (16) are 

located in the developing world, where threats are greatest and conservation resources are 

scarcest (Myers et al., 2000; Conservation International, 2005; Jha & Bawa, 2006) (Figure 1.1). 

These hotspots contain 50% of the world’s vascular plants and 42% of four terrestrial vertebrates 

in just 2.3% of land area (Myers et al., 2000; Brooks et al., 2002; Conservation International, 

2005). Previously hotspots occupied 17.4 million square kilometers or 11.8% of the earth’s land 

surface. According to Cincotta et al. (2000), there were 1.1 billion people living within the 

hotspots in 1995 and growing at a rate of 1.8%/yr (higher than world’s growth rate of 1.3%). 

They calculated population density in the hotspots and found 73 people per square kilometer, 

which is well above world’s average (42 people per km2). Their findings indicate substantial 

human-induced environmental changes are likely to continue in the hotspots and that 

demographic change will remain an important factor in biodiversity conservation (Cincotta et al., 

2000). 
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Figure 1.1. Current 34 biodiversity hotspots of the world. 
 

Among 34 biodiversity hotspots, the Himalaya hotspot covers approximately 750,000 

km2 and is divided into two parts; Eastern and Western (Conservation International, 2009) 

(Figure 1.1). The eastern part extends from Nepal to Bhutan, northeast Indian states of West 

Bengal, Sikkim, Assam, Arunachal Pradesh, southeast Tibet (China) and northern Myanmar. The 

Western Himalaya extends from Kumaon-Garhwal, northwest Kashmir to northern Pakistan. The 

Eastern Himalaya hotspot is home to eight of the world’s highest mountains, including Mt. 

Everest, as well as several of the world’s deepest river gorges. It is home to important 

populations of several large mammals and birds, including vultures, tigers, elephants, rhinos and 

wild water buffalo. The primary reason for such diverse assemblage of faunal species is due to 

the unique topography of this region. The mountains rise abruptly from less than 300 meters to 

more than 8,000 meters in only a couple of hundred kilometers, creating a diversity of 
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ecosystems from alluvial grasslands (among the tallest in the world) and subtropical broadleaf 

forests along the foothills to temperate broadleaf forests in the mid hills, mixed conifer and 

conifer forests in the higher hills, and alpine meadows above the treeline. This eastern hotspot 

includes one of the study area; Chitwan National Park (CNP). 

 Even though one of this thesis’s study areas, the Big Thicket National Preserve (BTNP), 

does not qualify as a global biodiversity hotspot in terms of plant endemism, it was recently 

recognized by UNESCO and is in the list of International Biosphere Reserves (National Parks 

Service 2009). In addition, the American Bird Conservancy designated BTNP a Globally 

Important Bird Area in 2001. BTNP is also designated as Biological Crossroads of North 

America due to its unique congruence of four different ecosystems. The southeastern swamps, 

Appalachians, eastern forests, central plains and southwest deserts mark the biological 

crossroads of BTNP. As a result, 85 tree species, more than 60 shrubs, nearly 1000 flowering 

plants including 20 orchids, 26 ferns and allies, and four of North America’s insectivorous plants 

make their home in BTNP (Callicott et al., 2007). In addition, about 50 species of reptiles and 

300 kinds of birds live in BTNP including the vulnerable red-cockaded woodpecker species and 

many migratory species. Thus, both study areas are important in terms of ecological and 

biological refuges for above mentioned vulnerable species and co-existence of other wildlife 

species. 

 

Land Use and Wildlife 

Land use practice is often linked to the loss and fragmentation of wildlife habitats and has 

evolved to become one of the most important factors to increase the current wildlife extinction 

rate. Even though, loss and fragmentation of habitat are inextricably related or linked, they differ 



 

9 

markedly in the severity of impact they impose upon wildlife. Fragmented habitats may still 

contain enough of the original features such as sufficient life or habitat requisites to sustain small 

or viable populations of some species, but loss of habitat has detrimental effects on species 

survival or may even become the cause for their extinction. Our hotspot study site, CNP (Figure 

2.1) is one such area that still contains some original features of the landscape such as mosaic 

alluvial grasslands and riverine forests that sustain some of the world’s largest vertebrates today. 

However, it has experienced both natural and anthropogenic disturbances. Most significant 

among natural disturbances is the annual monsoon, which makes three major rivers (Rapti, 

Narayani and Reu) change their course. As result new grassland pockets are regularly created 

and some are lost forever. In addition, recent invasion of a rapid growing vine species covering 

the critically important grassland has increased the threat dramatically. Anthropogenically, the 

park is surrounded by burgeoning human population that has led to increased pressure on the 

wildlife and its habitat, accelerated illegal grass cutting and poaching. 

 In the BTNP, changes in land use patterns are also primarily human-induced by activities 

such as agriculture, forestry and plantations, oil and gas operations, and urbanization. Before the 

European settlement, there were 200 million acres of pine forest sprawled across southeastern 

United States of which 92 million acres were inhabited by red-cockaded woodpecker. Today 

only 3 million acres remain (almost a 98% decline) of which only 1 percent is in natural 

condition. Hundreds of years of extensive logging of southern pine forests, suppression of fire in 

the landscape, change in forest species and recent forestry practices such as clear cutting and 

short rotation of tree harvest have all been detrimental to red-cockaded woodpeckers. Over the 

last five decades, the landscape surrounding the BTNP has been converted from contiguous pine 

forest to a matrix dominated by agriculture, pasture, timber plantations and exurban and 
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suburban development (Wilcove et al., 1986). As a result, the once intact pine forests have been 

converted into small patches that are mutually isolated by a matrix of agricultural or other 

developed lands (Callicott et al., 2007). 

 

Dissertation Structure 

The dissertation is divided into four chapters and an appendix as follows: chapter 1, this 

introduction; chapter 2, One-Horned Rhinoceros Habitat Analysis; chapter 3, Red-Cockaded 

Woodpecker Habitat Analysis; chapter 4, Development Potential Maps in BTNP; and the 

appendix, Data Search for Big Thicket Region. 

The three chapters after this introduction include manuscripts submitted or being 

submitted for publication, while the appendix explains how the data were searched that was used 

to complete the fourth chapter. The chapters are presented as individual papers since they are 

written for submission to peer-reviewed journals. 

 Chapters 2 and 3 illustrate how a common methodology based on remote sensing, 

geographic information systems, and fragmentation analysis can be used for both species. The 

methodology conducted in chapter 4 is applied only to the BTNP study, where significant NSF-

funded research resources were invested in data acquisition, modeling and analysis. In addition, 

this chapter illustrates how this methodology could eventually be applied to Chitwan and other 

wildlife conservation areas of the world. 
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CHAPTER 2  

ANALYSIS OF THE HABITAT OF GREATER ONE-HORNED RHINOCEROS AT THE 

CHITWAN NATIONAL PARK, NEPAL*

Abstract 

 

Remote sensing and geographic information systems (GIS) are widely used for a plethora 

of applications including habitat analysis. However, prior to this project, use of these tools and 

techniques to evaluate greater one-horned rhinoceros (Rhinoceros unicornis) habitat was lacking. 

We have employed the aforementioned tools to investigate available habitat area of the 

rhinoceros at the Chitwan National Park of Nepal during 2004–2005. We used a Landsat image 

of April 12, 2003 to derive the vegetation types of the park area. The image was classified into 

eight land-cover types: wetland, sand, water, mixed forest, sal forest, agriculture, settlement, and 

grassland. This classified image was converted into habitat suitability index (HSI) maps by using 

a heuristic model based on the abundance of food, water, and cover in a neighborhood around 

each pixel. The rhinoceros prefers areas with tall grass for food, water for drinking and 

wallowing, and nearby closed canopy for refuge from floods and for breeding during the 

monsoon and mating seasons, respectively. We developed an HSI map that categorizes habitat 

into three types: very unsuitable, unsuitable, and suitable. We then used this map to estimate the 

amount and fragmentation of each habitat type. Patch and class metrics associated with the 

habitat types were determined with FRAGSTATS program. These metrics exhibited highly 

fragmented status for all three habitat types explored. The vegetation and HSI maps derived 

using remote sensing and GIS combined with metrics resulted in a useful tool to quantify the 

                                                   
* This chapter has been submitted to the Journal of Wildlife Management with Miguel Acevedo and Kul Limbu as 
co-authors. 
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habitat of the rhinos. Furthermore, our results can be used for management, monitoring, and 

improvement of the habitat of greater one-horned rhinoceros and other wildlife. 

KEYWORDS: Chitwan National Park, Greater one-horned rhinoceros, GIS, Habitat suitability 

index model, Habitat fragmentation, Remote sensing. 

 

Introduction 

The Asian or greater one-horned rhinoceros (Rhinoceros unicornis) evolved in the 

hygrophilous tall grass floodplains of South Asia along with woodlands, tropical moist 

deciduous and tropical semi-evergreen forests that remain in a state of flux due to recurring flood 

and succession (Rawat, 2005). The rhinoceroses were once widely distributed throughout the 

Brahmaputra, Indus, and Ganges plains of South Asia, but indiscriminate poaching and 

unprecedented habitat loss has nearly pushed them to extinction (Laurie, 1978; Dinerstein & 

Price, 1991; Jnawali & Wegge, 1993; Dinerstein, 2003). They are now restricted to small 

isolated populations on the Indian subcontinent, mainly in India and Nepal (Laurie, 1978: Rawat, 

2005). The current estimated wild population of the greater one-horned rhinoceros is about 2800, 

with Kaziranga National Park (KNP) of India harboring the highest population of more than 

1900 (Dinerstein & McCracken, 1990; Dinerstein & Price, 1991; Rawat, 2005). A free-ranging 

population of 1000 rhinoceroses survived in the malaria infested southern lowlands of Nepal 

until early 1950s. However, with the abatement of malaria in Nepal and Northern India during 

the same year, the once inaccessible rhino habitats were opened to human settlement followed by 

subsequent poaching and massive destruction of alluvial floodplains, adjacent swamps, and 

forests, triggering a drastic decline of the rhinoceros population (Laurie, 1978; Cohn, 1988; 

Dinerstein, 2003; Harini et al., 2008). 
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Only small populations of less than 100 individuals were reported to have survived in the 

floodplains of the major rivers – the Reu, Rapti, and Narayani (Laurie, 1978; Dinerstein & 

Wemmer, 1988; Dinerstein & Price, 1991; Dinerstein, 2003; Harini et al., 2008). Fortunately, 

these prime habitats of 932 km2 of Chitwan valley were declared a national park in 1973 

(Chitwan National Park, CNP), and the rhinoceroses became the property of Nepal government. 

This change reduced poaching and other illegal activities significantly. As a result, the 

rhinoceros population increased dramatically and nearly 600 rhinoceroses wandered the 

floodplains during late 1990s, marking this as one of the most successful conservation stories in 

South Asia (Dinerstein & Price, 1991; Dinerstein, 2003). Around the same decade, Dinerstein 

and Price (1991) recognized four distinct subpopulations based on their isolation. They used 

physical barriers such as rivers and low mountains and ecological boundaries such as sal forests 

and agricultural lands to identify the four subpopulations of the Sauraha (1), the Bandarjhola-

Narayani River (2), the west (3) and the south (4) (Figure 2.1). They also reported frequent 

movement of animals from far-east of the park boundary that was initially thought as separate 

population by Laurie (1978). They combined this population with the Sauraha, which currently 

has the highest population of rhinos and is most intensively studied. Simultaneously, the 

increased population of wildlife, especially of the greater one-horned Rhinoceros, intensified 

park-people conflicts (Nepal & Weber, 1995). As a consequence, 80 rhinoceroses were 

translocated to Bardia National Park, Nepal (Jnawali & Wegge, 1993).  
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Figure 2.1.  Study area showing location of rhino subpopulations and others. 
 
 However, the success was short-lived as Nepal plunged into deep political strife due to 

Maoists insurgency in 1996 that lasted for nearly a decade and cost more than 12,000 lives 

(Baral & Heinen, 2005). As with other sectors, ongoing conservation efforts were severely 

impacted and Chitwan valley saw an increase in poaching of rhino and Bengal tigers and other 

endangered animals. For example, CNP had 32 army posts prior to the insurgency that were 

reduced to 8 by early 2000 (Dinerstein, 2003; Baral & Heinen, 2005; Sharma, 2005). As a result, 

rhino numbers plummeted to less than 400 individuals supporting the statement that habitat or 

species are never safe (Dinerstein, 2003). 

 Thus, the insurgency interrupted Nepal’s tradition of being one of the few countries 

where national army and civilians patrol and protect national parks and reserves along with 
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international conservation partners. However, in 2006, once Maoists were included in the 

Government, conservation efforts resumed. Recent rhino census indicates a gradual increase in 

the population from ~350 to 408 in CNP (DNPWC, 2008). This success shows that with strict 

regulations and relative political stability, these mega vertebrates can bounce back from the brink 

of extinction. However, increase in wildlife population number warrants continuous and 

effective management of existing habitat pockets, i.e. grasslands in the national park and to 

ensure sustainability of current viable populations. In addition, a thorough study of biological 

and ecological behavior of target species is critical for effective habitat management. 

 Greater one-horned rhinos are usually solitary animals except for females with young 

(Laurie, 1978). They are primarily grazers but occasionally browse. They inhabit riverine 

(floodplain) grasslands and seasonally utilize adjacent woodland or mixed forests (Dinerstein & 

Wemmer, 1988; Dinerstein & Price, 1991; Jnawali & Wegge, 1993; Lott & McCoy, 1995). The 

animal’s frequent mixed forests during the cool season, as availability of nutritious grassland 

becomes low, and seek refuge in the upland sal forests from annual monsoon floods. They 

wallow in oxbow lakes to regulate body temperature in the hot season and feed on aquatic plants 

indicating amphibious ancestry (Dinerstein, 2003) (Figure 2.2). Females reach sexual maturity 

between 5 to 7 years of age while males at 8 to 10 years of age. The gestation period lasts 

approximately 15-16 months and the mothers give birth to one calf every 1-3 years (Laurie, 

1978; Dinerstein, 2003). Depending on the suitability of habitat (abundance of forage and water) 

and season (whether it is the cool or hot season), the annual home range of breeding male and 

female is found to be 4.3 km2 and 3.5 km2 respectively (Dinerstein, 2003). In other words, rhinos 

do travel far if the habitat fails to provide enough food and water (Jnawali & Wegge, 1993). 
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However, most research reports indicate the importance of grassland habitats for their survival 

(Figure 2.2). 

 
Figure 2.2.  Grassland habitat and its inhabitant (photo by K.P. Limbu and Vivek Thapa). 
 

The existing literature on monitoring rhino habitats of Chitwan valley is scarce since 

most papers on rhino focus on biological and ecological aspects of the species (Laurie, 1978; 

Owen-Smith, 1988; Lott & McCoy, 1995; Dinerstein, 2003). Satellite remote sensing and GIS 

(Geographic Information Systems) offer an opportunity to contribute knowledge about the 

habitat. These technologies are increasingly used to model spatial information about wildlife 

habitat (Porwal & Roy, 1996; Sharma et al., 2004). In addition, remote sensing coupled with 
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field work and GIS has proven effective in deriving much needed data for habitat monitoring, 

conservation and management and such data is lacking for greater one-horned rhinoceros 

(Laperriere et al., 1980; Porwal & Roy, 1996; Innes & Koch, 1998; Berlanga-Robles & Ruiz-

Luna, 2002; Dinerstein et al., 2003). 

 Satellite images represent important data sources to develop vegetation maps for large 

areas. Particularly, Landsat 7 Enhanced Thematic Mapper-Plus (ETM+) images have been 

proven useful and cost-effective for large-scale habitat analysis (McClain and Porter, 2000). A 

vegetation map derived from remote sensing can be processed to determine habitat suitability by 

using habitat evaluation procedures (HEP) leading to development of a map of habitat suitability 

index (HSI). HEP involves collection of information on behavior, food habits, mating season, 

taxonomy and the animal’s position in the trophic niche of a target species in order to evaluate its 

habitat (Porwal & Roy, 1996; Sharma et al., 2004). The resulting HSI map can aid in the 

understanding and management of habitat for this species. It could be used to locate, target and 

manage areas of suitable habitats and therefore support conservation and restoration program in 

CNP. In addition, HSI maps can be further analyzed to determine spatial structure, particularly 

fragmentation, of suitable habitat. The FRAGSTATS program (McGarigal & Marks, 1994) 

offers capabilities to calculate several metrics related to spatial structure and fragmentation. 

 The major objective of this paper is to determine the amount and spatial structure of the 

remaining rhino habitat in CNP. Our research consisted of three major components: 1) 

developing a land-cover map emphasizing the vegetation of the CNP by using a Landsat ETM+ 

image, 2) developing HEP to generate a HSI map, and 3) determining the spatial distribution of 

the current suitable habitat area for rhinoceroses via fragmentation metrics. 
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Methods 

Study Area 

CNP was located in the lowlands of Nepal along the northern border of India (Figure 2.3) 

at an elevation of 120 to 200 m above sea level and covers an area of 932 km2 in the Chitwan 

district. Although the area was almost flat, the terrain contains some depressions. 

Geographically, the park lies from 83º 41’ to 83 º 49’ E longitudes and from 27º 1’ to 27º 41’ N 

latitude. CNP was bordered to the northeast, northwest and west by privately owned land used 

primarily for agriculture and on the southeast by another wildlife reserve, Bardia National Park, 

which was regarded as ideal habitat for wild elephants. The climate was subtropical, with 

temperatures rising to approximately 37 oC on a typical summer day. The mean annual 

precipitation was 2400 mm with 90% of it falling during the period from May to September. 

 
Figure 2.3.  Study area in the Himalaya hotspot. 
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 The vegetation consists of deciduous, mixed, and riverine forests punctuated by grassland 

communities. Sal forests are a prominent forest type, covering 70% of the park area dominated 

by trees of Shorea robusta and occur on upland, well-drained slopes rarely used by the 

rhinoceroses (Laurie, 1978). The riverine forest association is composed of Trewia nudiflora, 

Bombax ceiba, Acacia catechu, and Dalbergia sisoo frequently used by the rhinoceros. Mixed 

forest was mostly composed of T. nudiflora and B. ceiba and the rhinoceroses ate the fruits of 

T.nudiflora during the summer (Dinerstein & Price, 1991; Jnawali & Wegge, 1993; Dinerstein, 

2003; Rawat, 2005). 

 The grassland habitat associations included either monospecific stands of tall grass 

species of Saccharum spontaneum (4-6m); S. benghalensis, Narenga porphyrocoma, and 

Themeda arundinacae (5-7m) or mixed with short grass species of Imperata cylindrica, 

Chrysopogon aciculatus, Eragrostis spp and several others (Lekhmul, 1988; Dinerstein, 1989; 

Dinerstein and Price, 1991; Dinerstein, 2003). The short grasses usually occurred within tall 

grasslands and were intensively grazed by the rhinos. The physiographic distribution of tall 

grasslands was also noteworthy. According to Dinerstein (2003), the tall grass species occupied 

approximately 15% of the total park area and occurred on higher terraces of the floodplain. The 

rhinoceros grazed on the young shoots of these grasses but largely avoided them once they grew 

past shoot stage. 

 Another tall grass species, S.spontaneum, was the first to colonize the major river banks 

after the retreat of annual monsoon floods. It often occurred in pure stands and its thickness 

range from less than 100 m to more than 1 km in width. This type of grassland accounts for only 

5% of the total park area (Dinerstein, 2003). Among the grassland types, the rhinoceros seeks out 
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S.spontaneum as it is the most nutritious of available tall grass species of Chitwan valley (Laurie, 

1989; Lekhmul, 1988; Dinerstein & price, 1991; Dinerstein, 2003) (Figure 2.4). 

 
Figure 2.4.  Saccharum spontaneum grass along the major rivers. 
 

Satellite Data Selection and Processing 

We selected one ETM+ image for analysis based on criteria of desired geographic 

coverage, cloud-free conditions, and date (for seasonal considerations). Single-date scene (path 

142/ row 41, collected in April 12, 2003) from early summer or pre-monsoon (mid-February to 

mid-June) was considered optimal because the deciduous trees are leafless enhancing the 

chances of discriminating deciduous from evergreen forests (Harini & Gadgil, 1999). The ETM+ 

images provide multispectral coverage for seven spectral bands in the visible (TM1, TM2, TM3), 

near-infrared (NIR TM4), mid infrared (MIR TM5, TM7) and thermal portions (TM 6) of the 
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electromagnetic spectrum. Vegetation pixels are pronounced in TM4 (0.7 – 0.9 µm). The spatial 

resolution of these bands is 30 m except for the thermal which is 60 m. Because of this coarse 

resolution, we excluded thermal resolution from the analysis. The image also provides a 

panchromatic spectral band with better spatial resolution (15 m), which is commonly used for 

producing quality fusion imagery to obtain richer information in the spatial and spectral domain 

(Choi et al., 2005). 

 The image of the study area was geo-referenced using ground control points (GCPs) 

collected from topographic maps of 1:25000. We used locations of park headquarters, small 

towns, hotels, army posts and naturally visible features such as lakes to collect GCPs in order to 

reduce geometric and location distortion in the image (Hardison, 2003). We used the image as a 

guide map during our field work in 2004 and 2005. In 2004, we collected more than 800 ground 

truth reference points using global positioning systems (GPS). Although there is no standard 

minimum distance between ground truth points, we separated points by at least 150 m in order to 

avoid overlap. In 2005, we made another trip to collect additional GPS points (20) of confused 

pixels (to be explained with detail in the results section). Each point was accompanied with notes 

of vegetation and soil type, moisture regime and elevation. We used half of the points to conduct 

supervised classification of eight land cover types, by employing the maximum likelihood 

algorithm (Harini & Gadgil, 1999). The eight land cover types were water, sand, grassland, 

agriculture, wetland, settlements, mixed and sal forest (Figure 2.5). Our clipped image contained 

some agricultural lands and settlements adjacent to CNP. Therefore, we defined a separate class 

as agriculture and settlement as rhinos do venture out to nearby fields especially during night and 

sometimes become a source of wildlife-people conflict (Nepal & Weber, 1995; Studsrod & 

Wegge, 1995). 
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Figure 2.5.  Symbolized classes derived from supervised classification. 
 
 We used the other half of the ground-truth points to assess classification accuracy. 

Generally, random points are used as a reference class to assess accuracy. However, in our case, 

we used a set of the ground-truth points as a reference class and compared with classified image 

class values to evaluate accuracy. This set of ground-truth points employed for evaluation was 

different from the set employed for classification. 

 

Habitat Suitability Index (HSI) 

According to Dettki et al. (2003), two approaches are used to assess wildlife habitat 

relationships: process and empirical oriented approaches. Process-oriented models assess 

plausible causal relationships or functional processes underlying habitat use and provide a more 
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general conceptual framework. In contrast, empirical models analyze data on habitat use and 

habitat characteristics collected at specific sites. 

 Process-oriented HSI models use habitat requisites or parameters such as food, cover, and 

proximity to water as input variables to a function providing a dimensionless 0.0 – 1.0 index, 

where 0 and 1 indicates unsuitable and optimum habitat conditions respectively (Dettki et al., 

2003). This function is determined by assumptions on how each one of the habitat requisites and 

their combination affect suitability and evaluate aptness of a habitat (Porwal et al., 1996; Dettki 

et al., 2003). We adopted a process-oriented approach to develop a heuristic HSI model for the 

greater one-horned rhinoceros inspired by moose habitat analysis of Dettki et al. (2003). Even 

though both species differ in habitat use, the model is applicable to any wildlife as it simply 

requires specific habitat use parameters. To estimate these parameters, we derived detailed rhino 

habitat use information from several published papers and field observations (Laurie, 1978; 

Dinerstein & Wemmer, 1988; Lekhmul, 1988; Owen – Smith, 1988; Dinerstein & Price, 1991; 

Jnawali & Wegge, 1993; Dinerstein, 2003). 

We made two major assumptions while constructing the HSI model for the rhino. First, 

we assumed that existing information on habitat use by the animal can be translated to data 

related to model parameter values. Second, we assumed that the uncertainty associated with 

these parameter estimates can be evaluated by sensitivity analysis. We used presence of grass, 

and forest in a neighborhood of 70x70 grid of a target pixel as input variables to calculate the 

HSI value for that pixel. The neighborhood size was determined according to the animal’s 

average mean annual home range, which is ~4km2 = 400 ha = 70x70 pixels x 900 m2 = 

4410000/10000 = 441 ha. We selected focal over block statistics to calculate the HSI value of 

each pixel. Focal functions assign a value for each processing cell and allow overlap while block 
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statistics do not allow overlap (all cells within the block receive identical value). We extracted 

food (grass and agriculture) and cover (sal forest and mixed forest) from the land cover map and 

ran focal statistics to calculate proportion of food and cover in a neighborhood, denoted by xf and 

xc respectively. These were then used in the following way. 

 We define the suitability Sf and Sc for food and cover as  

/ when
1 when
xf Tf xf Tf

Sf
xf Tf
<

=  ≥  

and  

/ when
1 when
xc Tc xc Tc

Sc
xc Tc
<

=  ≥
 

where Tf and Tc are parameters that define thresholds for each factor to obtain maximum 

suitability. These threshold parameters are determined in the following manner. 

 For food, a large rhino eats between 60-80 kg a day fresh weight and spends most of its 

time browsing or grazing (Dinerstein, 2003). In addition, the food primarily consists of wild 

sugarcane Saccharum species. According to Coombs and Vlitos (1978) estimation, the standing 

biomass of sugarcane is 100 MT/ha fresh weight or 35 MT/ha dry weight, which gives a 

fresh/dry ratio of 100/35. So, one rhino eats approximately 21-28 kg/day of dry weight. 

Assuming the mid value of this range, 24.5 kg/day, the annual food requirement of one animal is 

24.5 kg/day x 365 day/year = 8.9 Tons/year. 

 Furthermore, Dinerstein (2003) calculated 0.34 kg/ m2 dry weight of Saccharum in 

Chitwan. Thus in the home range 400 ha, we would have a total of 3400 kg/ha x 400 ha = 1,360 

Tons of dry food if it is covered entirely by grass. According to Dinerstein and Price (1991) 

about 39 animals have been reported to use 3.2 km2 (320 ha) area of prime habitats mostly 

composed of Saccharum and riverine forests. Therefore, we assume 40 animals would use the 
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400 ha of home range area. Then, 8.9 Tons/year per animal x 40 animals = 356 Tons of food per 

year which represents a fraction Tf = 356 /1360 = 0.26. However, there are no data available to 

estimate parameter Tc. We assumed that 12 ha out of 400 ha would be sufficient cover, and 

therefore Tc=12/400= 0.03. Because of its uncertainty we will use sensitivity analysis as 

described later. 

 The impact of cover on habitat suitability must take into account its seasonal importance. 

During monsoon season (4 months), we factor in the need for cover by using a geometric mean 

of food Sf and cover Sc suitability with a weight factor a. However, during the rest of the year (8 

months), the animals do not need cover and food suitability accounts for HSI. The final HSI 

model is then a weighted arithmetic mean of the monsoon and off-monsoon suitability 

( )(1 )4 8
12 12

a aHSI Sf Sc Sf−= × +  

For parameter a, we estimated that food is much more important than cover and assigned a value 

of a = 0.8 (4 times more important). In order to study the potential error that the arbitrary 

selections of a and Tc may produce, we conducted sensitivity analysis by varying a and Tc by 

±20% around their nominal values (a = 0.8, Tc = 0.03). 

 Figure 2.6 shows the effect of varying parameter a. As expected, for values of xf, xc 

around or exceeding the corresponding threshold values the HSI is insensitive to changes in a. 

Only for very low values of fraction of food the HSI is more sensitive to a, reaching values of up 

to 25-30% change in HSI. Figure 2.7 show the effect of varying parameter Tc. As before, for 

values of xf, xc exceeding the corresponding threshold the HSI is insensitive to changes in Tc. 

Only for very low values of fraction of cover the HSI is more sensitive to Tc and represents less 

than 1-2% change. Therefore, the uncertainty with respect to Tc is very small. 
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Figure 2.6.  Effects of varying parameter a. 
 

 
Figure 2.7.  Effects of varying parameter Tc. 
 
 From this sensitivity analysis we conclude that the HSI value of a pixel could change 

with uncertainty in parameter a for very low values of fraction of food. Moreover, it will not 

vary due to uncertainty in this parameter as long as the neighborhood around that pixel has 

fractions of food larger than the threshold Tf = 0.26 or 10 ha in 400 ha. Therefore, the HSI map 

will only be relatively uncertain for outside or edge grassland patches. This uncertainty is further 

reduced by the following classification of pixels into four classes (as explained below) - highly 

unsuitable, unsuitable suitable, moderately suitable and suitable habitat types, since all areas of 
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low HSI values (which are relatively uncertain values) will be classified as either highly 

unsuitable , unsuitable or moderately suitable. The resultant HSI map pixels had values ranging 

from 0 to 1 (Figure 2.8). 

 
Figure 2.8.  Habitat suitability map. 
 

We needed to group the values between 0 and 1 into different classes that represented 

different habitat types and that in turn reflected habitat conditions. For example, pixels with low 

values such as 0.01, 0.0, 0.14, 0.23 etc reflected poor habitat conditions (these pixels either had 

less cover or food or vice versa) as compared to pixel values of 0.5, 0.8 and so on. Thus, higher 

pixel values indicated favorable habitat conditions. And to assign the pixels into different habitat 

types, we selected natural breaks (Jenks) as classification method in ArcMap and derived four 
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classes as shown in Figure 2.8. We selected this method primarily because we wanted to find the 

breaks (high jumps) in the pixel data values of 0 and 1. The break serves as a boundary while 

delineating classes. For example, pixels with values from 0 - 0.14 were grouped in one class and 

pixels with values from 0.14 – 0.44 were grouped in another class and so forth. In this case, the 

boundary lies at pixels with 0.14 values. In order to use these classes in FRAGSTATS (decimals 

are not accepted), we further assigned integer values of 1, 2, 3 and 4 to represent the four habitat 

categories (1= highly unsuitable, 2 = unsuitable, 3 = moderately suitable and 4 = suitable habitat 

pixels) (Figure 2.8). We converted HSI map into ASCII text file and calculated metrics. We 

carefully selected metrics relevant to the habitat requirements of the rhinoceros and that met our 

objectives (Table 2.1). 

Table 2.1  
 
FRAGSTATS Metrics at Patch and Class Levels 
 
Metric Designation 

Patch Level 

Area/Density/Edge:  

Patch Area AREA 

  

Class Level 

Area/Density/Edge:  

Class Area CA/TA 

Percentage of class PLAND 

Number of patches NP 

Connectivity 

Cohesion  

Note. Landscape level metrics were not analyzed because of their little interpretive value and identical behavior at 
class level. 
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Our primary interests were 1) to find the size of individual patch 2) to find the amount 

and distribution of particular patch type and 3) to find whether particular patch types are 

contiguous or fragmented. And to meet our first objective, we selected AREA metric at patch 

level. This is useful metric as many vertebrates including rhino require suitable habitat patches 

larger than some minimum size. For example, the average home range of a rhino is ~400 ha. We 

selected CA/TA (Total Area), PLAND (Percentage of Landscape) and NP (Number of Patches) 

at class level to satisfy second objective. These metrics quantify composition of the patches. And 

to meet third objective, we selected COHESION (Patch Cohesion Index) to find physical 

connectedness of particular patch type. This metric measure configuration of a patch to it its 

neighbors in the landscape. 

 

Results 

Vegetation Classification 

The overall accuracy was about 70 % with more than 80% of water, sand, sal forest and 

mixed forest pixels accurately classified (Table 2.2). KHAT index for water and sand exhibited 

more than 90% agreement between reference and classified pixels. Whereas it was less than 40% 

for agriculture indicating 60% of the pixels were incorrectly classified. The classification of 

sand, sal, and mixed forest was satisfactory. It was easy to create area of interest (AOI) for sal 

and sand pixels as 70% of the park area is covered by sal forest and sand pixels were easy to 

select based on the location and spectral profile. The three major rivers had sandy banks of 

relative thickness running parallel to them that made easier to create AOI. Once a group of pixels 

belonging to same class is identified, ERDAS automatically select areas with similar pixels 

under the supervision of the user – a tool commonly employed during supervised classification. 
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On the other hand, wetland, grassland and agriculture were classified with 75% and 50% 

accuracy. The reason for low accuracy of grassland category may have resulted from confusion 

of agriculture and grass pixels, a typical situation in such studies. The growth stage or the height 

of the crops and the grass could have been similar when this image was taken.  

The agricultural land contains some of the settlement and grassland pixels. Similarly, 

wetland pixels could be confused with other water bodies. The largest wetland area is actually 

the outlet of one of the major lake, Tamar Tal (Tamar Lake). It is located closer to the confluence 

of the three rivers; and when the lake is inundated during monsoon season, water overflows to 

this area. The purpose of the second visit to the field was to confirm vegetation and location of 

this area. The fieldwork revealed a secondary succession of grassland in the outlet. While one 

side of the outlet was covered with marshy vegetation, the other side flourished with grassland. 

The marshy vegetation would eventually convert into grassland that would serve as additional 

habitat for the greater one-horned rhinoceros. The area or the lake could have overflowed when 

this image was taken in 2003. The spectral profiles of these pixels also exhibit the nature of 

vegetation that is submerged in water. New classification routines are needed that can tease apart 

detailed reflectance patterns that are essential to distinguish agriculture, grassland, and settlement 

pixels. This increases need in field identification of these classes, and the use of higher-

resolution imagery is another promising alternative. 
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Table 2.2  
 
Errors of Commission (User’s Accuracy), Errors of Omission (Producer’s Accuracy), and 
Kappa Statistics for Classification of 2003 Landsat ETM Image (Overall Accuracy was 69.90%) 
 

Serial 

No. Classes 

Producer's Accuracy 

(%) 

User's Accuracy 

(%) 

Kappa 

Statistics 

1 Water 55.17 94.12 0.9365 

2 Wetland 100.00 75.00 0.7441 

3 Agriculture 96.05 50.34 0.3840 

4 Settlement 0.00 0.00 0.0000 

5 Sand 52.38 91.67 0.9119 

6 Sal Forest 87.65 84.52 0.8049 

7 Mixed Forest 52.54 81.58 0.7832 

8 Grassland 61.76 75.00 0.6621 

 

 

HSI and Habitat Fragmentation 

For one-horned rhinoceros, food is considered to be the most important factor of their 

habitat components with some seasonal cover. Thus, we assigned a value of 0.8 for parameter a. 

We calculated threshold values for food to be Tf=0.26. And for cover threshold, we assumed 12 

ha out of 400 ha (mean annual home range) would be sufficient to hold one animal and Tc = 

0.03. We performed sensitivity analysis by varying the nominal values of a and Tc by ± 20%. 

Interestingly, we found HSI is only sensitive to a with low values of fractions of food (xf) and 

cover (xc). In other words, the uncertainty of parameter a is minimum if food and cover 

availability is more than their respective thresholds. The small uncertainty of parameter Tc 

suggested that forests are used less frequently or used seasonally but it is critical component of 
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habitat requisites. The HSI map showed distinct spatial pattern, with high values of HSI along 

the areas near water bodies and adjacent grasslands and edges of sal forests with low values in 

the inland areas (Figure 2.8). 

 The metric result showed presence of 476 patches that belong to four different habitat 

types (Table 2.3 and Table 2.4). AREA metric revealed the largest patch (51,065.73 ha) 

belonged to suitable habitat type (Table 2.3). The total area of suitable habitat is 51,781.95 ha or 

517.82 km2 that include some buffer zone and agricultural areas outside the park boundary. Our 

results correlate to the recent findings of Hemanta et al. (2009). They reported presence of 614 

km2 of potential suitable habitat in CNP and suggests increase of artificial oxbow lakes to 

achieve this extent of habitat. Moreover, the lowest number of patches (NP = 18) and highest 

value of connectivity metrics (99.84) for suitable habitat support its homogeneity across the 

landscape especially along the river boundaries (Table 2.4). 

Table 2.3  

Patch Metric Results 

PID TYPE AREA PID TYPE AREA PID TYPE AREA PID TYPE AREA 

4 1 0.09 247 2 0.09 332 3 0.09 82 4 0.09 

455 1 0.09 367 2 0.18 96 3 0.18 28 4 0.18 

459 1 0.09 445 2 0.27 423 3 0.27 132 4 0.27 

6 1 0.18 152 2 0.36 411 3 0.36 252 4 0.72 

16 1 0.18 299 2 0.45 88 3 0.45 23 4 1.08 

385 1 0.18 319 2 0.54 366 3 0.54 63 4 1.35 

392 1 0.18 440 2 0.63 413 3 0.63 52 4 1.53 

399 1 0.18 144 2 0.72 433 3 0.72 131 4 1.98 

402 1 0.18 182 2 0.9 86 3 0.81 166 4 2.07 
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43 1 0.27 258 2 0.99 119 3 0.9 371 4 14.22 

224 1 0.27 95 2 1.26 127 3 0.99 425 4 25.29 

355 1 0.27 133 2 1.35 246 3 1.08 475 4 178.2 

469 1 0.27 222 2 1.53 393 3 1.17 135 4 488.7 

36 1 0.36 309 2 1.62 287 3 1.26 328 4 51065.73 

 

Table 2.4  

Class Metric Results 

LID CA (ha) PLAND (%) NP COHESION 

1 56647.26 39.275 176 99.84 

2 21441.96 14.8661 98 99.67 

3 14362.92 9.9581 184 99.25 

 4 51781.95 35.9013 18 99.94 

   476  

 

This last result indicates rhinos inhabiting habitats near three major rivers can travel undeterred 

using river banks as migrating route. This is corroborated by the findings of Dinerstein and Price 

(1991) that discovered frequent rhino movement from far-east to the Sauraha subpopulation. 

However, resident rhinos of Reu and Rapti may be permanently separated by contiguous blocks 

of highly unsuitable habitat of sal forest and so are the subpopulation of the Bandarjhola- 

Narayani River and the Sauraha by extensive blocks of agriculture and settlements. The rhinos 

can use river banks but previous works has indicated that they do not travel far if prime habitats 

are nearby i.e. abundant productive floodplains. Other metrics such as PLAND indicated highly 

unsuitable habitat (mostly sal forests) occupied the largest percentage of the landscape (39%) 
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followed by suitable habitat patches (36%). Moderately suitable habitat patches are the most 

fragmented and the least in numbers as indicated by NP and COHESION metrics and occurred 

adjacent to the suitable habitat patches (Table 2.4). 

 

Discussion 

Vegetation Classification 

The most valuable data – land-cover types, soil profile, plant composition, and density of 

canopy cover – were determined by the field study. Field verification of land cover types proved 

to be the most effective method and best suited to using a GPS unit as the device of choice. 

Ground-truth data along with pictures of field activities compensated the paucity of previously 

tested data such as aerial photos and assisted in classifying the vegetation types represented in 

CNP. We used supervised method to classify the image into eight land cover classes – water, 

sand, settlement, wetland, grassland, agriculture, mixed and sal forest. We employed a new 

technique to assess classification accuracy. Generally, random points created in ERDAS or aerial 

photos or previous data are used to assess accuracy of a thematic map (Anderson et al., 1976; 

Congalton and Green, 1999; Salovaara et al., 2005). For this project, we used ground-truth points 

to classify, test and enhance accuracy. The overall classification accuracy was 70%. Most 

categories including water, sand, sal and mixed forest, and wetland were classified with more 

than 80% accuracy. The low accuracy value for grassland and agriculture could be attributed to 

the confusion of their pixels. Depending on growth stage and season, agricultural pixels are 

easily mistaken for grass and it is a common and persisting problem in remote sensing. 

Moreover, grasslands near Tamar Lake are classified as mixed or sal forest; this classification 

may be due to the tall nature of these grasslands. With a height ranging from 6 to 8 m, sometimes 
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they grow with small trees and shrubs and can completely overshadow them. To achieve more 

accuracy for the grassland, we recommend the use of higher-resolution imagery. 

 

HSI Model and Habitat Fragmentation 

We constructed two maps (food and cover) from the land cover map. We used two land 

cover categories i.e. agriculture and grassland to make food map and used sal forest cover type to 

make cover map. And we ran focal neighborhood statistics to calculate the proportion of food 

and cover in 70x70 cell neighborhood that represented mean annual home range of an adult 

rhino. In this way, we developed a heuristic HSI model for the greater one-horned rhinoceros 

based on a process-oriented approach. In other words, we merely attempted to develop HSI using 

habitat use parameters that were collected from extensive literature reviews of spacing behavior, 

biology, and daily routine of a rhino (Laurie, 1978; Dinerstein & Wemmer, 1988; Lekhmul, 

1988; Dinerstein, 1989; Dinerstein & McCracken, 1990; Dinerstein & Price, 1991; Jnawali & 

Wegge, 1993; Dinerstein, 2003). We used this information to conduct neighborhood analysis, to 

select, construct and build HSI and to assign threshold to the parameters. Our sensitivity analysis 

confirmed about 0.03 cover and 0.26 of food in ~ 400 ha is sufficient to sustain a rhino crash (a 

group of rhinos). As noted above, this research applied habitat use to generate an HSI model in 

an attempt to examine whether such HSIs can be developed for the mega herbivore; and after 

conducting these procedures, we determined that the development of the indices was feasible. 

However, validation of the results of any HSIs require rigorous field study involving home 

range, telemetric studies for years, and habitat use (Dettki et al., 2003). We think this method 

will be effective and useful if used with data that are acquired in the manner explained above and 
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if such data are available we can apply these procedures to study the habitat suitability of other 

large ungulates in the study region or elsewhere.  

We demonstrated careful selection of FRAGSTATS metrics yields interesting and useful 

results. We quantified the four habitat patches with respect to patch size, number of patches and 

connectivity of corresponding patch types. This would provide much needed data on the habitat 

of the rhinoceros (especially on the remaining suitable habitat patches). COHESION metrics 

revealed contiguous nature of suitable habitat patches that is vital to the survival of rhinos and 

other sympatric species. In case of rhinos, this means CNP landscape facilitates ecological flows 

i.e. there is constant movement of animals among habitat patches thus reducing the threat of 

extinction threshold. As noted above, the rhinos seek out the most nutritious of all grass species 

(Saccharum) that are available year around. These grass species thrive on the floodplains and are 

maintained by periodic monsoon floods. It would be interesting to find core habitats, number of 

core habitats, edge density, diversity and several others and FRAGSTATS produces several 

metrics to study these aspects of a landscape. However, lack of fine scale data such as edge 

effect on rhino population or individual or how a rhino perceive its habitat and the actual size of 

the habitat etc limited our study. We relied heavily on the studies that were conducted mostly on 

ecological and biological aspects of a group of rhinoceros not on individual. Laurie (1978) and 

Dinerstein and Price (1991) did use conventional radio-telemetry to study habitat use but they 

focused mainly in finding mean annual home range, seasonal distribution and feeding habits. 

Thus, study of effect of edge on a rhino movement is still lacking and such studies could provide 

vital information about distribution and movement of a rhino within its suitable habitat and 

influence on its behavior due to adjoining unsuitable habitat – an open area for future study.  
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Management Implications 

We examined process-oriented approach to model the rhino habitat and found it can be 

ecologically meaningful if selection of the used environmental variables is based on the habitat 

requirements of the target species. And if the variables are correctly identified, they enable us to 

understand the effects of changes in the landscape on the model outcome. The wildlife managers 

of Chitwan can find the results of this study valuable for managing the remaining and available 

habitats as such habitats need constant monitoring to ensure prolonged management. The 

vegetation and HSI maps would facilitate future conservation and management of the suitable 

habitats and aid in further ecological researches. Presently, Nepal is undergoing political 

transition whose end does not appear to be in sight anytime soon. The imminent impact is on the 

wildlife of Chitwan valley because it is located on Terai or plain and is more accessible than 

other Himalayan parks and wildlife reserves. Rhino deaths continue to make headlines. In 2009, 

15 rhinos died in the hands of poachers and recently in April and May of 2010, 7 rhinos have 

perished (Himalayan Times, 2010). Not to mention, current invasive vine spread have added to 

the worsening situation. All these factors contribute to the bleak future of the Rhinoceros 

unicornis in the Chitwan valley of Nepal. However, we hope with the return of relative peace 

(Maoists gave up arms in 2006) and the tools developed and the results obtained in this project 

could help in managing the remaining habitat and improve the deteriorating condition of this 

mega herbivore and its habitat. 
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CHAPTER 3  

HABITAT QUANTITY OF RED-COCKADED WOODPECKER IN A HUMAN-

DOMINATED LANDSCAPE NEAR THE BIG THICKET NATIONAL PRESERVE, TEXAS*

Abstract 

 

The goal of this study was to quantify the pine habitat of red-cockaded woodpecker 

(Picoides borealis). These birds require extensive patches of pine-forest with little mid-story 

vegetation for successful breeding and foraging. Natural and human-induced fires controlled the 

overgrowth of mid-story vegetation for decades. Red-cockaded woodpeckers evolved in the low 

intensity, fire-dominated pine ecosystems of the Southeastern United States. Consumptive land-

use practices contributed greatly to the loss of pine forests, which reduced the red-cockaded 

woodpecker’s nesting and foraging habitat and altered their spatial distribution. We used a 

remotely sensed image and geographic information systems (GIS) to create a land-use/land cover 

map and to evaluate the potential habitat for the bird. We calculated a habitat suitability index 

(HSI) from the proportion of pixels in a selected neighborhood that met habitat requirements; 

i.e., adequate coverage of pine trees for breeding and foraging. Then, this index was used to 

produce a HSI map with three habitat types – very unsuitable, unsuitable, and potentially 

suitable. We used FRAGSTATS to compute patch, class, and landscape metrics for each habitat 

type. The metrics provided area, perimeter, percentage, size and fragmentation of each habitat 

type at patch, class, and landscape levels. Our results show the study area is heavily fragmented 

owing to mixed anthropogenic use. We suggest that once a potentially suitable habitat is 

                                                   
* This chapter has been submitted to the Texas Journal of Science with Miguel Acevedo and J. Baird Callicott as co-
authors. 



 

39 

identified, the under and mid-stories may be managed for suitable foraging habitat by prescribed 

burning. 

KEYWORDS: Habitat suitability, Landsat image, Accuracy assessment, Global positioning 

system, Habitat fragmentation, Patches, Metrics, Big Thicket National Preserve. 

 

Introduction 

Red-cockaded woodpeckers are habitat specialists. They require large, old and living pine 

species of longleaf (Pinus palustris), shortleaf (P. echinata), loblolly (P. taeda), pond (P. 

serotina) and slash (P. elliotii) pine, but prefer longleaf for nesting and foraging habitat (Conner 

et al., 2004; Hedrick et al., 1998; Hopper et al., 1980; Jackson, 1994). The tree age varies for 

species i.e. 80-100 years for loblolly and shortleaf and 100-120 years for longleaf with enough 

heartwood space to support cavity chamber and little or no midstory hardwood vegetation 

(Conner et al., 1994; Hedrick et al., 1998; Hooper et al., 1980). Natural or prescribed fires 

controlled the midstory overgrowth for decades and the result was open, park-like mature pine 

woodlands and savannahs with abundant herbaceous ground cover that provided an ideal habitat 

for these birds. Besides age, the potential cavity tree has high rates of red heart fungal (Phellinus 

pini) infection that softens the heartwood and facilitates cavity excavation (Conner & Locke, 

1982; Conner et al., 1976; Conner et al., 1994; Conner et al., 2004). In other words, they depend 

on open, park-like, mature pine stands for foraging and red heart fungus infected trees for nesting 

and roosting. A colony or cluster is a collection of two to more than 12 cavity trees on a 5 to 10 

acres (2-4 ha) of land and the cavity trees are normally located within one mile radius or less 

from each other (Hopper, 1988). A single colony is used by only one clan or group that has two 

to nine birds but contains only one breeding pair and the rest are helpers. A suitable foraging 
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habitat or territory surrounds a colony and covers an area of 30 to 81 contiguous hectares (75 to 

200 acres) of park-like mature pine stands (Jackson, 1994). Thus, contiguous open stands of 

mature longleaf pine and other pine species with an herbaceous ground cover offers a high 

quality habitat or potentially suitable habitat for a clan of red-cockaded woodpeckers (Conner & 

Rudolph, 1991).  

Few studies exist on the use of geographic information systems (GIS) and remote sensing 

to study the habitat of red-cockaded woodpeckers. Thomlinson (1993) used GIS, remote sensing 

and landscape ecology to study ecological characters of suitable pine stands in southeast Texas. 

Cox et al. (2001) evaluated GIS methods that were used to assess red-cockaded woodpecker 

habitat and cluster characteristics. Ertep and Lee (1994) used GRASS to facilitate red-cockaded 

woodpecker management at Fort Benning Military Reservation. Another recent study by Santos 

et al. (2010) reports the use of remote sensing based on hyperspectral imagery to study tree 

senescence in red-cockaded woodpecker habitat. They used reflectance properties of the bands to 

detect senesced pine trees and found red-cockaded woodpeckers did not inhabit such trees. In 

contrast, most study focuses on biological and ecological interaction of the birds with its special 

habitat (Baker, 1971; Conner, 1981; Conner et al., 1975; Conner et al., 2004). 

We utilized GIS and remote sensing techniques to study spatial distribution of pine forest 

in one of the former historic range of red-cockaded woodpeckers i.e. southeast Texas and assess 

suitable habitat and its fragmentation. Furthermore, we used habitat suitability index (HSI) 

models and FRASGSTATS to evaluate or quantify species-habitat relationships. HSI models 

provide a quantitative measure of the quality of wildlife habitats, and can integrate our 

understanding of wildlife-habitat relationships especially at landscape scales (Larson et. al., 

2003). In addition, process-oriented and empirical HSI models are commonly used to assess 
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wildlife-habitat relationships (Dettki et al., 2003). Process-oriented models assess plausible 

causal relationships to provide a general conceptual framework; whereas empirical models 

analyze data on habitat characteristics collected at specific sites for a long period of time (Thapa, 

2005). 

For this paper, we adopted a process-oriented approach for developing a heuristic HSI 

model for the red-cockaded woodpecker. This approach is based on a literature review (U.S. Fish 

and Wildlife Service’s HSI models), field observations (ground-truth), and geographic data 

obtained from topographic maps (scale 1:24000, USGS). An HSI is based on a set of functional 

relationships between habitat suitability (expressed as a dimensionless index or score) and 

habitat requirements (variables). These variables are selected according to their relevance to the 

organism; for example, herbaceous canopy cover, tree canopy cover, tree height, tree age and 

proximity to water. There is a partial suitability for each variable, which scales from 0 

(unsuitable habitat) to 1 (optimum habitat). 

The overall HSI, which also scales from 0 to 1, is calculated with a formula that 

represents hypothetical relationships between partial suitability indices. GIS provide a tool to 

synthesize habitat data derived from remotely sensed sources together with databases of 

elevation, soil types, land use, and land cover. Thus, GIS can be coupled with remote sensing to 

calculate HSI over relatively large geographic areas, and incorporate landscape variables at 

multiple spatial scales. We also demonstrate the use of GIS and remote sensing to collect or 

prepare data for habitat fragmentation study by using software called FRAGSTATS, which is a 

computational program designed to compute a wide array of landscape metrics for categorical 

map patterns (McGarigal, 2002). Some of the metrics are commonly used to measure and 

quantify spatial patchiness in terms of composition (patch types and abundance) and 
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configuration (shape and juxtaposition). These metrics represent the percentage of fragmented 

habitats, area of largest patch, and — most importantly — the area of remaining potentially 

suitable habitat. 

In this paper, we used aforementioned habitat characteristics and applied remote sensing, 

GIS and FRAGSTATS techniques to examine abundance, distribution and fragmentation of 

available pine forest and provide a possible scenario of re-colonization of red-cockaded 

woodpeckers. We have four scientific objectives: (1) to use a Landsat Enhanced Thematic 

Mapper Plus (ETM+) image to develop a land-use/land-cover map; (2) to develop a heuristic 

GIS-based habitat suitability index model and a map for the woodpecker; (3) to determine the 

spatial distribution of current potentially suitable habitats and (4), to illustrate a general 

methodology for conservation cartography and spatial analysis that can be adapted to other 

interior-forest-dwelling avifauna of conservation interest. In addition, we have two policy-

oriented objectives: (1) to provide a map of potentially suitable red-cockaded woodpecker habitat 

that may be preserved for (a) existing populations in the region or (b) that may serve as sites for 

establishing new populations in the region: and (2) to indicate the most important habitat 

characteristics, such as shape, size, habitat composition, etc., for purposes of proactive red-

cockaded woodpecker habitat management in the region. 

 

Methods 

Study Area 

The study area is located near the Gulf coastal plains of southeast Texas between the 

Trinity River to the west and the Neches River to the east, around the small towns of Kountze, 

Silsbee, Lumberton and suburbs north of Beaumont that adjoin the 39,338-ha Big Thicket 
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National Preserve (BTNP) (30o to 31o N to 94o to 95o W) (Figure 3.1). Over the last five decades, 

the landscape surrounding the BTNP has been converted from continuous pine forest to a matrix 

dominated by agriculture, pasture, timber plantations and exurban and suburban development 

(Wilcove et al., 1986). As a result, the once intact pine forests were converted into small patches 

that are mutually isolated by a matrix of agricultural or other developed lands (Callicott et al., 

2007). The study area was further subjected to intense oil and gas exploration that continues 

today, although such activities seem to have minimal effects on the breeding but proximity to 

roads and vehicular movement does affect and reduce foraging activities of red-cockaded 

woodpeckers (Charles & Howard, 1996). Annual precipitation averages 1350 mm (Marks & 

Harcombe, 1981; Callicott et al., 2007) and is uniformly distributed throughout the year, but 

because of its proximity to the Gulf of Mexico, the Big Thicket study area experiences a high 

frequency of devastating tropical storms and hurricanes. Since 1900, 40 tropical storms and 

hurricanes have struck the Gulf coast, with Rita in 2005 and Ike in 2008 being the most recent 

big storms to hit Texas. However, these hurricanes did not cause damage in the study area as 

they did in the surrounding counties and areas especially near Angelina, Harris, and Galveston 

Bay (NOAA). 
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Figure 3.1. Vegetation types and map of the study site that is located in the Pineywoods region 
of southeast Texas, USA. 
 
 
Nevertheless, hurricanes and other extreme natural disturbances such as severe winters can 

damage large portions of cavity and foraging trees, thereby affecting breeding populations of 

red-cockaded woodpeckers, which in turn leads to loss of genetic diversity (Reed et al., 1988). 

The vegetation types of the study area can be characterized by both community 

physiognomy and physiographic position. Forests, savannas, and shrub thickets are normally 

combined with important trees such as pine, oak, and other hardwoods to characterize 

community physiognomy while upland, slope, floodplain and flatland indicate the physiographic 

position of the vegetation (Marks & Harcombe, 1981). Thus, according to community 

physiognomy and physiographic position, four broad types of vegetation characterize the Big 

Thicket region. The upland forest community consists of dominant longleaf pine forest or mixed 
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with a small-tree layer of Bluejack oak (Quercus incana). The slope community includes 

dominant species of shortleaf and loblolly pines with overstory hardwoods of Southern red oak 

(Q. falcata), White oak (Q. alba), Magnolia (Magnolia grandiflora), and American beech 

(Fagus grandifolia). The floodplain vegetation consists of hardwood forests of European 

hornbeams (Caprinus spp), Sweetgum (Liquidambar styraciflua) and Water oak (Q. nigra) 

mixed with Bald cypress (Taxodium distichum) and Water tupelo (Nyssa aquatica) and very few 

loblolly pines. And the flatlands include dominant species of Basket oak (Q. michauxii), Willow 

oak (Q. phellos), Laurel oak (Q. lauriflora), P. taeda and Red ash (Fraxinus pensylvanica).  

Data Acquisition and Image Processing 

We selected a cloud-free Landsat ETM+ scene of March 2003 for analysis because the 

spring season was considered optimal for achieving the highest reflectance for floodplain 

hardwood forests and pine trees (Thomlinson, 1993). The image was geographically referenced 

using ground control points (GCPs) created in ERDAS IMAGINE (a suite of software tools by 

Leica Geosystems Geospatial Imaging). The GCPs should be uniformly distributed over the 

image with good coverage near the edges. At least, 16 GCPs are considered reasonable if each 

GCP can be located with an accuracy of one-third of a pixel size (Bernstein, 1983). This number 

may not be sufficient, however, if the GCPs are poorly distributed or if the nature of the 

landscape prevents accurate placement (Campbell, 1996). Following these guidelines, we 

extracted 19 GCPs from topographic maps to georectify the image. In addition, the coordinate 

system was modified into the Universal Transverse Mercator coordinate system (zone 15) and 

newly revised datum of the 1984 world geodetic system to correlate with the image. Landsat TM 

data were acquired from six spectral bands: TM1 (0.45 to 0.52 µm), TM 2 (0.52 to 0.60 µm), 

TM3 (0.63 to 0.69 µm), TM4 (0.7 6 to .90 µm), TM5 (1.55 to 1.75 µm) and TM7 (2.08 to 2.35 
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µm) (Luiz & Garcia, 1997). Other data include topographic maps at a scale of 1:24,000; GIS 

files of roads and streets; polygons of towns; and aerial reconnaissance of 41 sections of the 

study area. More detailed data on vegetation were obtained by ground-truth (GPS points) visits 

to 287 sites. Individual global positioning system (GPS) points were accompanied with notes of 

soil texture, soil moisture regime, land use, plant composition, and elevation data. Digital 

cameras were used to take photographs of each site visited. ArcMap, a suite of GIS tools by 

Environmental Research Systems Inc. (ESRI), was used for GIS processing. A file with GPS 

points was imported to ArcMap as a shape file.  

 

Vegetation Classification 

We used supervised classification procedure to derive final land use and land cover 

(LU/LC) categories. Supervised methods require the user to define the spectral characteristics of 

known areas of land-use types and develop training sites (Thapa, 2005). The training sites or 

signature is employed to verify and define distinct classes (Jenson, 1996). This is achieved either 

by user’s prior knowledge of the geographic features of an area of interest such as identification 

of distinct, homogenous regions that represent each class (e.g. water or grass) or by ground-truth 

data such as GPS points, which refers to the acquisition of knowledge about the study area from 

field work, analysis of aerial photography, personal experience etc (Conner et al., 1975). 

Ground-truth data are considered to be the most accurate (true) data available about the area of 

study. They should be collected at the same time as the remotely sensed data, so the data 

corresponds as much as possible (Stars & Estes, 1990). We used March landsat image of 2003 

for the study and collected GPS points in May of 2007.  
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Furthermore, elements of visual interpretations such as color, shape, texture and pattern 

on aerial photos are commonly used that provides valuable clue during supervised classification. 

For example, we employed texture and pattern analysis technique on aerial photos and selected 

pixels in such areas. With texture and pattern, it is easy to differentiate naturally growing trees 

and human managed plantations e.g. coconut and pine plantation. We derived seven LU/LC 

categories (water, urban areas, pine forest, pine plantation, mixed forest, grass, and cypress forest 

on floodplain) from the landsat image (Figure 3.2). We classified entire pixels into their 

designated classes according to the vegetation categories found in the study area. For example, 

areas with tall pine trees were classified as ‘pine trees’, areas with mixed pine and oak trees were 

labeled as ‘Mixed Forest’, areas of floodplain were labeled as ‘Cypress trees on sloughs’ and so 

on. GPS locations of each category accompanied with aerial and field photos were extensively 

used during classification process. 
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Figure 3.2.  Seven land-use categories derived from supervised classification. 
 

Accuracy Assessment 

It is necessary to assess the accuracy of any thematic classification to evaluate its 

intended application and high accuracy assures consistency and reliability of derived landscape 

metrics (Xulong et al., 2005; Shao & Wu, 2008). Several factors, related to the sensors as well as 

to the classification process, contribute to classification errors (Lunetta et al., 1991). 

Furthermore, it is critical to measure quality and accuracy of the data utilized for the 

classification (Congalton & Green, 1999). The classification or errors are analyzed by a 

confusion or error matrix, which is also called as accuracy assessment (Congalton & Green, 

1999). An error matrix or accuracy assessment cell array is a table with entries representing the 
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number of sample units; i.e., pixels, clusters of pixels, or polygons that are assigned to a 

specified class relative to the actual class found on the ground (Congalton, 1991). Rows contain 

a list of class values for the pixels in the classified image file. And column represent class values 

for the corresponding reference pixels  that are input by the user and are generally collected from 

sources such as aerial photographs, GPS points, previously tested maps, or other data. The 

reference class values are compared with the classified image class values to assess the accuracy 

of an image classification. And according to Anderson et al. (1976), classification accuracy 

closer to 85% for LU/LC study is acceptable. 

Several statistical measures of a classified LU/LC map can be derived from an error 

matrix including overall classification accuracy (sum of the diagonal elements divided by the 

total number of sample points), categorical omission and commission errors, and the KHAT 

coefficient (an index that measures the agreement between reference and classified data). A 

minimum of 204 reference points are required to achieve 85% accuracy with an allowable error 

of 5% (Jensen, 1996). First, we generated about 300 random (reference) points and with the help 

of aerial photos and with prior knowledge of geographic features we assigned values for each 

random point. Then, we compared these reference class values with the classified image class 

values, which gave us an overall accuracy of 77.33% with KHAT = 0.7277. Second, we used 

GPS locations as reference points and compared with the class values of image file, which 

produced an overall accuracy of 81.48% with KHAT = 0.7449 (Table 3.1). The latter accuracy 

was deemed acceptable for this study because it was within the five-percent allowable margin of 

error and was closer to 85%. 
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Table 3.1 

Combination of GPS and Random Points to Assess Classification Accuracy 

Class Name Reference  

Totals 

Classified  

Totals 

Number  

Correct 

Producer’s 

Accuracy, % 

    User’s 

Accuracy, % 

1. Grass 5 4 3 60.00 75.00 

2. Pine plantation 13 11 10 76.92 90.91 

3. Pine trees 53 59 44 83.02 74.58 

4. Urban area 59 58 52 88.14 89.66 

5. Cypress trees on sloughs 12 13 10 83.33 76.92 

6. Water 1 1 1 100.00 100 

7. Mixed forest 19 17 13 68.42 76.47 

Totals 162 163 133   

Overall Kappa Statistics     0.7449 

Overall Accuracy, %     81.48 

 

Habitat Suitability Index Models 

We computed HSI value for each pixel of the resultant classified image. We selected pine 

trees class only because adequate acreage of pine trees of specified species is required for 

successful breeding and foraging as explained in the beginning of this chapter. We assigned 1 to 

pine trees class value and the rest to 0. In this way, we had a binary map of pine trees only. We 

ran neighborhood analysis in ArcGIS, which is a statistic that uses surrounding pixels in a 

defined neighborhood to assign a value to a target pixel. It is commonly used to find the most 

dominant land-cover category in a neighborhood or to find the number of certain LU/LC 

categories within a specified neighborhood. We selected neighborhood size based on the annual 
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home range size of the red-cockaded woodpeckers as reported by several studies and determined 

using a variety of methodologies including 100%, 95%, 50% minimum convex polygons and 

95% fixed kernel estimator (DeLotelle et al., 1987; Doster & James, 1998; Engstrom & Sanders, 

1997; Walters et al., 2002). 

According to Franzreb (2006), the minimum convex polygon estimator includes outliers 

or areas that are not even used by the animals (birds in this case) and provide overestimate of the 

home-range size making it less suitable as a descriptive statistic in terms of the biology of the 

species. On the other hand, the fixed kernel estimator is relatively insensitive to the presence of 

outliers and is less biased and produced more consistent results. Thus, we selected the home-

range size that was produced by fixed kernel estimator i.e. ~ 50 ha. To implement this, we 

selected a neighborhood size of 23 × 23 pixels, i.e., 529 pixels of 900 m2each (30 m × 30 m) 

which yields a slightly lower value of 476,100 m2 or 47.61 ha or 117.6 acres. A suitability index 

S for a pixel was determined as the proportion of pixels in pine tree cover in the neighborhood 

around the target pixel. Once all pixels are evaluated, we have a HSI map (Figure 3.3).  



 

52 

 
Figure 3.3. HSI map showing suitability values in nine levels. 
 

For simplification we reclassified the HSI map to three classes only: 1, very unsuitable habitat 

(HSI, 0 - 0.333); 2, unsuitable habitat (HSI, 0.333 - 0.666); and 3, potentially suitable habitat 

(HSI, 0.666 – 1). The reclassified map is shown in Figure 3.4. These nominal break points were 

selected arbitrarily to provide equal intervals and will be varied later for sensitivity analysis. 
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Figure 3.4.  Habitat suitability index (HSI) map with three habitat types – very unsuitable, 
unsuitable, and potentially suitable. 
 

Then we converted the resulting HSI raster map to polygon features to calculate areas in 

hectares of each patch (Figure 3.5). 
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Figure 3.5. Potentially suitable habitat patches and their areas in ha. 
 

Habitat Fragmentation and FRAGSTATS 

FRAGSTATS accepts Arc/Info (a GIS ESRI tool) polygon files (vector) or “raster” (a 

matrix or grid of pixels) images in a variety of formats (McGarigal & Marks, 1994). For our 

study, we adopted the raster version of FRAGSTATS and used the HSI map as input data. Prior 

to this, the HSI map was reclassified into three discrete classes using equal interval method, one 

of the several classification methods available in ArcMap. We selected this method because it 

groups the pixels according to their values and allowed us to maximize the difference amongst 

classes. Recall from the previous section that a pixel was assigned a value of 1, 2, or 3, according 

to the interval break values (0.000 to 0.333 for class 1, 0.333 to 0.666 for class 2, and 0.666 to 1 
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for class 3). These three classes represent very unsuitable (1), unsuitable (2), and (3) potentially 

suitable habitat. A suite of metrics was selected and computed at patch, class, and landscape 

levels (Table 3.2). The resultant metrics reflected various configurations and compositions of a 

landscape (Thapa, 2005). 

Table 3.2  

Selected Metrics  

Area/Density/Edge Metrics 

CA/TA = Total Class Area (ha) 

PLAND = Percentage of Landscape (%) 

NP = Number of patches  

LPI = Largest Patch Index (%) 

Connectivity Metrics 

COHESION = Patch Cohesion Index 

 

 

 

Results 

Image Processing 

From a total of 287 GPS points, we used 162 points for classification accuracy. The rest 

(125) were used during image classification. Use of GPS points and visual interpretation of aerial 

photos proved effective in Landsat ETM+ classification and facilitated the process. Our results 

show pine trees and grass have the lowest classification accuracy with 74.58% and 75% 

respectively. For pine trees, it might be due to insufficient GPS points because we could not 

gather data from private lands and such lands contained pure stands of old pine trees. For grass, 

it is possible to classify agricultural lands as grass and a common problem with Landsat image of 

30 m resolution. In addition, short-grass areas (grazed pastures or manicured lawns) and dirt 
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roads had overlapping values with other urban areas such as patches of bare soil and asphalt 

roads. We classified pine plantation with 90.91% accuracy because they were easily identified 

based on texture and pattern on aerial photos and GPS data collected from well within the 

plantation areas. Similarly, we classified urban areas with 89.66% accuracy as they are also 

easily identifiable on aerial photos. 

Water pixels were classified with 100% accuracy. And it is one of the geographic 

features that a user can accurately classify in remote sensing applications as water pixels exhibits 

the lowest reflectance property when examined in a spectral profile. Profile Tools of ERDAS 

allow the users to examine spectral behavior of pixels of different features. Cypress trees on 

sloughs class was classified with 76.92% accuracy. Cypress trees occur mostly in sloughs of 

floodplains mixed with oak species and several factors such as topographic shadows and deep 

water contributed to the low accuracy of this class. Similar to water, wet sandy banks of creeks, 

streams, rivers, and sloughs have a lower reflectance in most bands and they became a source of 

confusion. Statistical analysis of spectral responses or profile from training samples, as well as 

ellipse and dendrogram plots, showed a similar reflectance with dark pixels (wet soils, black soil, 

and topographic shadows). Furthermore, vegetated (forest, urban, grass) and non-vegetated 

(water) were spectrally distinct. In order to redefine, refine and improve accuracy, we constantly 

reduced, merged and masked the confused classes. 

 

Sensitivity Analysis 

Since the selection of nominal class break values of 0 - 0.333, 0.333 - 0.666 and 0.666 – 

1 was arbitrary, we performed sensitivity analysis by perturbing these break values by 10% to 

examine the effect on the resultant habitat suitability indices (Table 3.3). We perturbed two break 
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values of 0.333 and 0.666 as the minimum of 0 and maximum of 1 will remain constant. These 

two breaks represent unsuitable (UB) and suitable breaks (SB). We multiplied each value of UB 

to the individual value (three) of SB to get nine break values shown in Table 3.4. 

Table 3.3  

Perturbation Above and Below the Nominal Break Values 

Breaks -10% Nominal +10% 

Unsuitable Breaks (UB) 0.3 0.333 0.366 

Suitable Breaks (SB) 0.599 0.666 0.733 

 

Table 3.4  

Nine Break Selections 

Breaks 

Selection 

Habitat Type 

 1 2 3 

1 0-0.3 0.3-0.599 0.599-1 

2 0-0.333 0.333-0.599 0.599-1 

3 0-0.366 0.366-0.599 0.599-1 

4 0-0.3 0.3-0.666 0.666-1 

5 0-0.333 0.333-0.666 0.666-1 

6 0-0.366 0.366-0.666 0.666-1 

7 0-0.3 0.3-0.733 0.733-1 

8 0-0.333 0.333-0.733 0.733-1 

9 0-0.366 0.366-0.733 0.733-1 
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The maps are presented in Figure 3.6, Figure 3.7 and Figure 3.8. Each figure is organized in a 

row of maps that represents change in UB while SB remains constant. In the first row of maps 

(Figure 3.6), with increasing range in the UB values, there is decrease in the unsuitable habitat 

and increase in the highly unsuitable habitat areas. As expected the suitable habitat areas remain 

unchanged. Similarly, in the second row of maps (Figure 3.7), the areas of very unsuitable 

habitat increases dramatically while the amount of unsuitable habitat decreases and the 

potentially suitable habitat areas remain unchanged. And the last row of the maps (Figure 3.8) 

represents the final group of break values. With this break selection, the potentially suitable 

habitat decreases and the very unsuitable habitat area increases with more fragmentation of 

unsuitable habitats. 

 

 
Figure 3.6. Maps of first set of three break value selections. 
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Figure 3.7. Maps of second set of three break value selections. 
 

 
Figure 3.8. Maps of third set of three break value selections. 
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Metrics at Patch, Class, and Landscape Levels  

We used nine selection break values to compute landscape metrics (Table 3.4). We 

calculated two metrics i.e. area/density/edge and connectivity of three different patch types 

(class) or habitat types i.e. very unsuitable, unsuitable and suitable. These metrics were used to 

examine composition and configuration of patches in the study area (McGarigal et al., 2002). 

Even though, FRAGSTATS provide individual patch property at three levels i.e. patch, class and 

landscape, we quantified patch properties at class level only because most metrics are redundant 

and provide similar values at patch and landscape levels. For example, total core area (TCA) at 

class and landscape levels is defined the same as core area at patch level except the core area is 

aggregated over all patches of the corresponding patch type at the class and landscape levels. 

Total (Class) Area (CA/TA) and Percentage of landscape (PLAND) metrics measure landscape 

composition (Table 3.5). CA measures how much of the landscape is occupied by a particular 

patch type. For potentially suitable habitat, the value of CA/TA decreases with increasing value 

of the break point for that class. For example, potentially suitable habitats reach 878.76 ha when 

the break is 0.599, decreases to 264.96 ha when the break is 0.666, and further decreases to 62.46 

ha when the break is 0.733 (Table 3.5). PLAND quantifies the proportional abundance of patch 

type in a landscape. PLAND approaches 0 when a landscape consists of single patch type. 

PLAND metrics largely mirror the patterns of CA. The PLAND metric revealed that potentially 

suitable habitat occupies 1.7% when the break is 0.599, decreases to 0.5% when the break is 

0.666, and further decreases to 0.12% when the break is 0.733. Thus, the amount of potentially 

suitable habitat area decreases with increasing break value. Number of Patches (NP) is a simple 

measure of the extent of subdivision or fragmentation of a patch type. NP = 1 when the 

landscape contains only a single patch type and NP > 1 indicates degree of fragmentation.
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Table 3.5  

Class Metric Results  

Breaks 

Selection 

CA/TA (ha) PLAND (%) NP LPI COHESION 

Habitat Type Habitat Type Habitat Type Habitat Type Habitat Type 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1 28964.43 22528.71 878.76 55.30 43.02 1.7 192 220 62 39.02 24.6 0.17 99.8 99.70 94.21 

2 34562.97 16930.17 878.76 65.99 32.33 1.7 153 233 62 59.32 17.21 0.17 99.92 99.56 94.21 

3 39151.34 12341.34 878.76 74.76 23.56 1.7 99 220 62 72.79 9 0.17 99.96 99.25 94.21 

4 28964.43 23142.51 264.96 55.30 44.19 0.5 192 219 27 39.03 25.63 0.09 99.80 99.70 92.03 

5 34562.97 17543.97 264.96 65.99 33.5 0.5 153 232 27 59.32 18.02 0.09 99.92 99.55 92.03 

6 39151.80 12955.14 264.96 74.76 24.74 0.5 99 219 27 72.79 9.4 0.09 99.96 99.25 92.03 

7 28964.43 23345.01 62.46 55.30 44.57 0.12 192 218 14 39.03 25.96 0.05 99.8 99.69 89.29 

8 34562.97 17746.47 62.46 65.99 33.88 0.12 153 231 14 59.32 18.29 0.05 99.92 99.55 89.29 

9 39151.80 13157.64 62.46 74.76 25.12 0.12 99 218 14 72.79 9.55 0.05 99.96 99.25 89.29 
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NP for potentially suitable habitat varies from 62, to 27, and 14 as the break value changes from 

0.599, 0.666, and 0.733 indicating that this habitat type is more fragmented than the unsuitable 

and very unsuitable types (Table 3.5).  

Largest patch index (LPI) is a simple measure of dominance as it quantifies the 

percentage of total landscape occupied by the largest patch. LPI = 0 when the largest patch of the 

corresponding patch type is small and 100 when the largest patch occupies the entire landscape. 

The largest patch of potentially suitable habitat occupies only 0.05 – 0.17 % of the landscape as 

compared to 9 - 26% and 39 – 73% for unsuitable and very unsuitable habitat types respectively. 

This corroborates the results of CA/TA and PLAND that showed presence of small amount of 

potentially habitat types as compared to the other two. Connectivity is considered a vital element 

of landscape structure and we used a single connectivity metric, i.e. COHESION to observe 

physical connection between patches. COHESION = 0 when patches are less connected and 

approaches 100 when they are more connected. Our analysis showed that the potential suitable 

habitat patch type is physically disconnected as indicated by 89 – 94 as compared to the other 

two habitat types with sometimes approaching almost 100 showing they are more connected and 

contiguous.  

 

Discussion 

Overall, the LU/LC map derived from satellite imagery was satisfactory because 

categories were adequately mapped, and resulted only in minor misclassifications. The resultant 

map was refined with spatial masking and recoding to achieve acceptable accuracy. Use of aerial 

photographs and GPS points proved effective in improving classification accuracy. The 

contrasting reflectance of bare areas and vegetation in the visible and infrared bands facilitated 
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accurate identification. However, accurate delineation of grass from crops and shrubs 

represented a challenge (as in many remote sensing studies). Visual examination of the satellite 

imagery of the study area and field work revealed numerous dirt roads crisscrossing the entire 

landscape. Our study area once contained booming oil towns and clearly shows signs of human-

induced fragmentation. Several pipelines, power lines, railroads cut through the study area thus 

dissecting the entire landscape into smaller fragments. 

GPS locations of different categories or classes proved to be the most critical data during 

LU/LC classification of the landsat image in facilitating and enhancing classification accuracy. 

Composition metrics such as CA/TA, NP and PLAND revealed heterogeneous structure of the 

landscape especially the number of patches. NP ranged from 14-233 patches depending on the 

break selections. For example, the NP for first break value is 192 patches for very unsuitable, 

220 for unsuitable and 62 for potentially suitable habitats. Therefore, the total NP for first break 

value is 192 + 220 + 62 = 474. The NP for potentially suitable habitat patches decreases with 

decreasing pixel values from 0.733 to 1 for which NP is only 14 (Table 3.5). Similarly, CA/TA 

and PLAND indicated low amount of land occupied by potentially suitable habitat patches 

(PLAND = 0.12 to 1.7%) as compared to 55-75% for very unsuitable and 24-45% for unsuitable 

habitat respectively. On the other hand, configuration metrics such as LPI and COHESION 

produced expected results. LPI for potentially suitable habitat ranged from 0.09 to 0.17% for the 

nine break values indicating even the largest patch occupies only 878.76 ha of the total 52,371.90 

ha landscape (for first break value). 

The composition metrics showed that about 9-73% of the study area is composed of very 

unsuitable and unsuitable habitats combined. This includes floodplain areas near major rivers 

and streams, pine plantations, areas around small towns and mixed forests. The metrics further 
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indicated only about 0.05-0.17% of the study area is composed of potentially suitable habitat and 

included areas located away from urban areas and major roads. For three break values of 

potentially suitable habitats, NP ranged from 14-62 for 62.46-878.76 ha of land and COHESION 

metrics ranged from 89.29-94.21 exhibited severe fragmentation (Figure 3.4). This suggests that 

the isolation and size of smaller fragments might be the cause of decline of clans from those 

patches if there were any because for a territorial avian species such as red-cockaded 

woodpeckers with very restrictive habitat requirements and limited gap-crossing ability will 

likely be the most sensitive to isolation effects (Conner & Rudolph, 1991; Dale et al., 1994; 

Pearson et al., 1996; With & Christ, 1995). 

The connectivity metrics (COHESION) provided vital information about the structure of 

landscape i.e. the patches of potentially suitable habitat patches are more physically disconnected 

than the other two unsuitable habitat patches. Thus, we were able to show composition, 

configuration and connectedness of the three habitat patches that formed a heterogeneous habitat 

across the study area. In addition, for this study, we used maps as means to study effects of 

changes in parameters. In our case, the parameters were the pixel value ranges. We showed with 

change in each break values, there was obvious impact on the three habitat types. And the most 

dramatic effect was observed on two habitat types especially on the unsuitable and potentially 

suitable habitat patches. This result is also corroborated by the findings of landscape metrics 

(Table 3.5).  

 

Conclusion 

We presented a method of quantifying composition and configuration of possible habitats 

for the red-cockaded woodpecker by using GIS, remote sensing and FRAGSTATS. We did not 
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include other variables which may impact habitat such as tree age, tree diameter and tree species 

because these are difficult to assess from a Landsat image. Hyperspectral images can provide 

these variables as reported in a recent study by Santos et al. (2010). Thus, our methods could be 

coupled with variables obtained from hyperspectral images for better understanding of the 

current potential suitable habitat available in the study region. By using sensitivity analysis, we 

were able to show that only few areas contain adequate amount of pine trees that could sustain a 

group of woodpeckers. However, to assess the full quality of the habitat, we would require 

inclusion of other variables as noted above. 

The results revealed a highly fragmented nature of available habitats in public and private 

rural lands especially near the towns of Kountze, Silsbee, and Lumberton. Most of the potentially 

suitable habitats were found well away from the towns, especially on the west side of the study 

area near Highways 69, 326, 421 and public lands (Figure 3.4). FRAGSTAT analysis revealed 

62.46 to 878.76 ha of available potentially suitable habitat; visual inspection of the habitat 

suitability map shows that these habitats are highly fragmented and mostly occur on the west 

side of HW 69 & 287 and FM 421. There is one in the V-notch of highways 69 and 96 and 

another bigger patch on the north east side of HW 96.  

We assume that red-cockaded woodpeckers are absent near towns due to small fragments 

of possible habitats and lack of foraging habitat, traffic activity and patch isolation. There was 

row of patches located on public lands near the town of Kountze (Figure 3.5). The patch sizes 

were 47, 33, 9, 18 and 13 hectares respectively. Four of the patches are located within a mile 

while the fifth and the largest one are located within 1.5 miles from the nearest one. The other 

large patches are located near FM 421and are less than 1.5 miles apart from each other. Our field 

activity revealed presence of massive pockets of pure pine stands in these areas. And if these 
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patches contains some clans of red-cockaded woodpecker, they can travel to and fro within these 

patches as they are located within a mile (foraging radius is ~1 mile). However, this is unlikely 

to happen owing to the bird’s fidelity to their cavities. We determined that areas larger than 50 ha 

are able to sustain a group of red-cockaded woodpeckers given that they contain old, red heart 

fungus infected cavity trees with few or no midstory. Landowners who have a red-cockaded 

woodpecker group or groups can do much to enhance survival, regardless of the size of their 

property by controlling midstories and building artificial cavities. USFWS assists landowners to 

manage habitat and even provides incentives and grants to promote red-cockaded woodpecker 

conservation. 

This study is confined to determining the quantity of potentially suitable red-cockaded 

woodpecker habitat in the current landscape near and around the Big Thicket National Preserve. 

We conclude that there are no large patches (more than 50 ha) that can sustain a clan or 

populations of red-cockaded woodpeckers under ideal habitat conditions. Most of the large 

patches are located within a distance of one mile and isolation might not be a cause of decline if 

there were any clans living in those habitats. Other factors such as encroaching midstory and 

suppressed fire might have contributed to the loss. To assess quality of these patches; a thorough 

study of midstory vegetation, pine tree age, diameter and species is strongly warranted. In 

addition, our study reveals that a woodpecker census in the region might be fruitful and that with 

proper management practices to preserve red-cockaded-woodpecker habitat both in private and 

federal lands, existing populations (if any) might be conserved and new populations might be 

established there. 
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CHAPTER 4  

POTENTIAL DEVELOPMENT MAPS AND HABITAT SUITABILITY INDEX MAP TO 

QUANTIFY SUITABLE HABITATS OF THE RED-COCKADED WOODPECKER IN A 

REGION NEAR THE BIG THICKET NATIONAL PRESERVE, TEXAS 

Abstract 

We combine land-use (LU) change models and habitat suitability index (HSI) models to 

quantify the amount of potentially suitable habitats of red-cockaded woodpecker for various 

scenarios of hypothetical development. LU models are increasingly used to forecast conversion 

of vegetated land parcels to urban land cover. These models require varied information that 

range from physical structures, population density, to information on current land cover. In this 

paper, we describe the processes involved in creating variables that drive a LU model such as 

proximity to roads, population density and several land cover types. Geographic Information 

Systems (GIS) and remote sensing are useful tools in the construction of these variables. We 

combined these variables to find potential development probabilities for residential, commercial, 

industrial, as well as total probability of LU change. Then, we used HSI models to calculate the 

amount of suitable habitats available before and after the hypothetical developments have 

occurred. Our results indicate this method is useful to evaluate the effects of urbanization on 

wildlife habitat. This method could be even more effective when more data are available through 

the use of high resolution images and field work and when functions are validated empirically.  

KEYWORDS: Land-use change, Simulation models, Potential development maps, Southeast 

Texas, Habitat suitability, Habitat fragmentation, Big Thicket National Preserve. 
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Introduction 

Even though a variety of factors including economics, culture, and land management 

policies play vital roles in shaping LU pattern in a region, population growth is undoubtedly the 

most potent driving force (Dale et al., 1993; Houghton, 1994; Lambin, 2001; Ramankutty et al., 

2002; Shoshany et al., 2002; Ningal et al., 2007; Silveira & Dentinho, 2010). The need to feed 

growing populations has caused increased conversion of forests and grasslands into cropland 

(Ningal et al., 2007). Resultant LU change from the aforementioned activities can have direct 

impact on the world’s biotic diversity (Wilson, 1988; Sala et al., 2000), on soil quality 

(Buschbacher et al., 1988; Tolba et al., 1992), on local, regional and global climate conditions 

(Chase et al., 1999; Houghton et al., 1999) and may alter ecosystem services that humans require 

to survive (Vitousek et al., 1997). 

Locally, in north central Texas (Denton County), human population nearly doubled from 

1990 to 2003 i.e. from 273,775 to 504,750 (Callicott et al., 2006; Monticino et al., 2007). In the 

city of Denton, the population grew from 66,270 in 1990 to 106,050 in 2008 (62% increase in 18 

years, NCTCOG 2008). Simultaneously, percentage of developed land also doubled from 13% to 

26.8% from 1995 to 2000 and the number of housing units also increased by over 10% 

(NCTCOG, 2003) and by over 26% from 2000 to 2005 (NCTCOG, 2005). About 39,000 new 

single-family units were completed in 2007 which was 9000 fewer than in 2006. However, 

11,600 multi-family units were added in the same year showing a sizeable increase, up from 

8,300 in 2006 (NCTCOG, 2008). The housing trend indicates that even though the single-family 

unit’s construction slowed and a high number of them remained vacant at the end of 2007, they 

are likely to become occupied as long as the region continues to experience job growth and 

might experience increase in single-family construction. On the other hand, the multi-family 
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construction is expected to continue at the current rate pace (NCTCOG, 2008). The additional 

housing units certainly increased the percentage of developed lands and impervious surface. 

These development and human population growth trends are likely to increase the impact on the 

Greenbelt corridor – a protected part that covers ~ 20 km2 of the Cross Timbers and Prairies 

biogeographic province of Texas (Acevedo et al., 2008). 

In southeast Texas, potent drivers of LU change are operations by timber companies 

along with gas and oil companies. Such extractive industries often lead to deforested land cover 

as LU activity associated with logging results in denuded lands (Lambin, 1997). In addition, 

recent restructure in the timber industry led to increased demand for residential properties. The 

restructure prompted big real estate companies to acquire large tracts of land set aside for 

residential development and sell it to big timber companies (Callicott et al., 2006). In addition, 

proximity to refineries in Port Arthur and city of Beaumont with a population of more than 

100,000 (NCTCOG, 2008), has resulted in steady increase in residential development making 

this another potent driver of LU/land-cover change. 

Besides timber, gas and oil companies, this region is comprised of matrix of privately 

owned timberland, small farms and a few small towns – a clear sign of fragmentation. Such rapid 

development and increased demand for land is threatening one of the most biologically diverse 

regions of Texas called the Big Thicket National Preserve (BTNP) that lie adjacent to the matrix 

of above lumbered, farmed, and mined lands (Gunter, 1993). The preserve is composed of 

legally preserved areas that are small and tenuously connected by riparian corridors (Cozine, 

2004). 

According to landscape ecological theory, the extent of development and its impact is 

determined by location of development relative to spatial pattern of ecological features (Turner 
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et al., 2001) with agents or entities such as humans actively participating in the landscape 

(Brandt et al., 2002; Lundberg, 2002; Zube, 1987). Several approaches have been proposed to 

reduce the ecological impacts of development and to prevent or minimize urban sprawl (Brown 

et al., 2004). An array of spatial modeling techniques are being employed to understand the 

drivers of urban development and their future impacts and to develop scenarios that can be used 

to test alternative approaches to minimize these impacts. Simulation models based on discrete 

choice statistics focus are used to estimate likely locations of development (Landis, 1994). And 

artificial neural networks are used to identify non-linear interactions between predictor variables 

and possible locations of development (Pijanowski et al., 2002). Percolation theory is used to 

develop mathematical models that correlate physical arrangement, configuration, population and 

size distribution of towns and cities (Makse et al., 1998). This theory applies statistical physics to 

urban growth phenomena and yields valuable information on how cities grow and change; these 

results in turn can be used for future planning and management. Such models have proven 

effective in evaluating the impacts of variables and processes that lead to change in LU.  

In this paper, we have the following objectives: a) to assess the fate of rural or 

undeveloped land parcels by using a potential development model that is based on discrete 

choice statistics (Acevedo et al., 2008); b) to calculate the amount of remaining potentially 

suitable habitat for red-cockaded woodpecker after the hypothetical development has occurred; 

c) to evaluate fragmentation of such remaining habitat. 

 

Methodology 

Study Site 

Our study site includes areas near Big Thicket National Preserve (BTNP) in southeast 
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Texas (Figure 3.1). The study site includes some portion of protected areas: state parks and areas 

near the Neches River adjacent to BTNPs. It has a temperate climate with relatively flat relief 

and precipitation range of approximately 1100-1600 mm annually (Callicott et al., 2007). As for 

vegetation, piney woods dominate. This region is located near large growing cities (with 

population over 100,000), threats to natural systems, LU change resulting in deforestation, 

ecological processes, biodiversity, water (quantity and quality), and habitat fragmentation. Prior 

to the establishment of the national preserve, the Big Thicket was haven to runaway slaves, draft 

dodgers, conscientious objectors of Civil War, outlaws and fugitives and to the inroads of timber 

and oil industries (Cozine, 2004). And now, BTNP is a fragmented group of small conservation 

units in a rapidly urbanizing rural matrix (Callicott et al., 2006). 

 

Development Potential Functions  

The development potential model uses a collection of simple functions, derived from 

hypothesized mechanisms. These functions were incorporated in routines written in the C 

programming language to score the suitability or potential for development of a parcel. The 

potential development model selects the potential development category of a parcel i.e. 

residential, commercial, or industrial based on factors such as proximity to highways and streets, 

population density, and proportion of already developed land around the target cell (Callicott et 

al., 2006). Available or undeveloped land can be agricultural, natural vegetated parcels, denuded 

lands, a part of floodplain, and a segment in a fragmented landscape. 

As mentioned above, several spatial modeling techniques have been used to study urban 

development patterns: discrete choice statistics to estimate likely locations of development, 

artificial neural networks are to identify non-linear interactions between predictor variables and 



 

72 

possible locations of development, percolation theory to predict how cities grow and change. We 

have opted to employ a combination of functions based on hypothetical mechanisms of spatial 

location choice and discrete choice models. 

For our model, we perform the following procedure on the basis of a grid of cells or 

raster map (in GIS terminology). To calculate the expected utility of converting LU of a cell, we 

assume that an undeveloped land cell can transform into three development categories: 

residential, commercial, and industrial. The potential LU change of a cell to one of these three 

types is a function of five factors: 

• Minimum distance to major roads (based on chessboard distance). Major roads are 

highways, and collector roads. Normalized after dividing by the maximum. 

• Minimum distance to all roads (based on chessboard distance). Normalized after dividing 

by the maximum. 

• Proportion of residential or commercial developed land around the target cell. 

Normalized after dividing by maximum which is the size of neighborhood used for 

analysis. 

• Proportion of industrial developed land around target cell. Normalized after dividing by 

maximum which is the size of neighborhood used for analysis. 

• Population density calculated as population in a circle of given radius centered on the 

target cell. The search radius operates on raster map produced from census data. 

Normalized after dividing by maximum. 

In addition we consider natural impediment (e.g., floodplain) or legal impediment (e.g., federal 

or state protected land) to development. In this case the potential change assumes a value of 0. 
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The factors are denoted by Xi, i=1, 5 and are summarized in Table 4.1. To calculate these factors 

we wrote routines in the C programming language. 

Table 4.1  
 
Input Factors for Potential Development Model that are Used to Create Potential Development 
Maps 
 

Input Factors Description 

X1 Chessboard distance to major roads 

X2 Chessboard distance to all roads 

X3 Proportion of residential/commercial developed land around a target cell 

X4 Proportion of industrial developed land around a target cell 

X5 Population density within a specified radius around the parcel 

 

Define the potential utility Yi to change LU to one of the three development types (i=1, 

residential, i=2 commercial, and i=3 industrial).The potential LU change functions were 

designed as follows 

5

1
( )i j i j

j
Yi w f Xj

=

= ×∑  

i = 1..., 3 to reflect potential change as a function of all five factors j=1,…,5. This is a weighted 

average of five single variable functions (one for each of the five input factors) with coefficients 

wij. We assume that all five functions are equally important and therefore the weights wij were all 

set to 1/5=0.2. The Yi values are viewed as the market’s evaluation of the potential utility of the 

land for the respective type of development. The development utilities – Y1, Y2, and Y3 are the 

first step to determine that a cell will become a residential, commercial or industrial. Later we 
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will describe how they combine into development potential probabilities, but first let’s define the 

functions fij. 

 
Figure 4.1. Function repertoire. 

 
We need a set of 3×5 = 15 fij functions. Each one was selected from a repertoire of four functions 

with only one parameter b that were properly scaled. These are: an increasing 

function 1( ) bg x x= , a decreasing function 2 ( ) (1 )bg x x= − , a peak skewed to the right, s is height 
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of peak for scaling 3( ) (1 ) /bg x x x s= − , a peak skewed to the left, where s is height of peak for 

scaling 4 ( ) (1 ) /bg x x x s= − . For example, with the set of values 0.1, 0.5, 1.0, 2.0, and 10.00, for 

parameter b we obtained the function behavior shown in Figure 4.1. Here we used the maximum 

value (1 )/ (1 )b bs b b += + for scaling of g3 and g4. 

We selected a set of b values and g type for each development type potential utility 

function fij as shown in Table 4.2. 

Table 4.2  

Functions and Parameters Selected 

 g type function, and b value 

Y1 g3, b=0.5 g2, b=2.0 g1, b=2.0 g2, b=10 g3, b=0.5 

Y2 g2, b=2.0 g2, b=2.0 g1, b=10 g2, b=1.0 g1, b=0.2 

Y3 g2, b=2.0 g2, b=1.0 g2, b=10 g1, b=0.5 g2, b=2.0 

 

The thought processes behind this model are illustrated by Figures 4.2-4.3. Figure 4.2 exhibits 

the effect of five factors on residential development using these functions and parameter values. 

The first graph shows higher potential to change to residential areas when cells are mid-distant 

from the major roads (X1) and lower for both small and large distances. The second graph 

expresses the concept that potential to change to residential areas decreases with increasing 

distance to all roads (X2). The third graph shows higher potential to change to residential areas 

for areas with higher density of residential and commercial areas (X3). In the fourth graph, 

potential to change to residential areas decreases sharply with increase in proportion of industrial 

areas. In the fifth graph, potential to change to residential areas increases with population (X5) 

but decreases if the population continues to grow above 0.6%. 



 

76 

 
Figure 4.2. Effects on residential. 

 

Potential to develop to commercial areas is shown in Figure 4.3. The first and second 

graph show a decrease with increasing distance to major roads (X1) as well as distance to all 

roads (X2). However, this potential will increase sharply for larger proportion of residential areas 

(X3, third graph) but decreases linearly with proportion of industrial developments (X4). 

Potential to develop to commercial areas increases rapidly with population density (X5). 
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Figure 4.3. Effect on commercial. 

 

Potential to develop to industrial areas is shown in Figure 4.4. The first and second graph 

show a decrease with increasing distance to major roads (X1) as well as distance to all roads 

(X2). But, the decrease with respect to X2 is linear. This potential will decrease sharply for 

smaller proportion of residential areas (X3, third graph) but increases with proportion of 
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industrial developments (X4). Potential to develop to commercial areas decreases with increase 

in population density (X5). 

 
Figure 4.4. Effects on industrial. 

 

The potentials Y1, Y2, Y3 were combined into development potential probabilities or 

development utilities based on notions from discrete choice theory. We denoted the probability 

that some type of development will occur on the cell as P(D). It is set to 0 if there is a natural 
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(e.g., floodplain) or legal (e.g., federal or state protected land) impediment. Otherwise P(D) is 

given by 

)exp(1)( MYDP δ−−=  

where },,max{ 321 YYYYM = . YM gives the highest utility for the cell’s development, and the 

parameter δ represent the overall desirability of developing land in the region as a whole. Low 

values of δ produce low probabilities for development even with favorable physical properties of 

the land. Thus, low δ values represent a region with low economic growth. While high δ values 

provide higher probabilities of development, even for moderate utility values. It also suggests or 

represents regions experiencing strong economic growth. The δ value around 2 produced 

reasonable results for the range of Yi values used ( 10 ≤≤ iY , for each i). 

Now, we define the probabilities of development for each LU type as  

( ) ( ) ( | ) ( )P R P R D P R D P D= ∩ = ×  

( ) ( ) ( | ) ( )P C P C D P C D P D= ∩ = ×  

( ) ( ) ( | ) ( )P I P I D P I D P D= ∩ = ×  

for residential, commercial, and industrial, respectively. Here, the conditional probabilities for 

each development type are given by 

)exp()exp()exp(
)exp()|(

321

1

YYY
YDRP

βββ
β

++
=  

)exp()exp()exp(
)exp()|(

321

2

YYY
YDCP

βββ
β

++
=  

)exp()exp()exp(
)exp(

)|(
321

3

YYY
Y

DIP
βββ

β
++

=  



 

80 

The parameter β is the developer market’s ability to distinguish the relative suitability or utility 

of the different types of development given that the parcel will develop. Parameter β increases 

when the probability of development type with the largest utility increase to 1. Parameter β 

decreases when the development probabilities tend to be equally likely i.e. the market makes 

little distinction between the suitability of different development types. A value of β around 2 to 

3 produced reasonable results for the range of Yi values used ( 10 ≤≤ iY , for each i). 

 

Data Acquisition for Constructing Input Factors 

In this section we describe our methods of data acquisition required for the input factors. 

To apply the model just described we created maps for the five Xi factors (Table 4.1) using and 

several data sources (Table 4.3), Geographic Information Systems (GIS), and the routines written 

in the C programming language. Model input files were ESRI ASCII grid text files which were 

generated from raster data or from vector data after conversion to raster. The model also 

produces ESRI ASCII grid text files that are converted to raster for map display using ESRI’s 

ArcMap. 

Table 4.3  

Data Acquisition Sources 

Raw Data Source Data Type 
Roads/Streets www.tnris.state.tx.us  Vector (ESRI 

shapefiles) 
Population www.census.gov  Tables and vector 

(ESRI shapefiles) 
NLCD 1992 www.mrlc.gov/ 

http://seamless.usgs.gov/website/seamless/viewer.php 
Land cover map 
(raster) 

Parcel data Hardin County Appraisal District CAD drawings 
 

 

http://www.tnris.state.tx.us/�
http://www.census.gov/�
http://www.mrlc.gov/�
http://seamless.usgs.gov/website/seamless/viewer.php�
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Roads and Streets Data (X1 and X2 Factors) 

We downloaded road data from the website mentioned in Table 4.3. The data contained 

both major highways and residential streets (minor roads). In order to calculate chessboard 

distance to the major roads, we need a separate file containing major roads. To do this, we used 

‘Select by Attribute’ function from ArcGIS to tease out major roads from the road data. We 

selected major roads such as interstates, freeways and highways and created a separate shapefile 

and converted the shapefile to raster. We used a conditional statement to select roads only and 

made the road cells bigger to ensure only the roads are selected. We applied the same procedure 

for minor roads. 

Then we converted both road rasters to ASCII text files to be used for the C program 

roaddist.c to calculate X1 and X2 factors using the command 

roaddist.exe <input_ASCII_grid> <output_ASCII_grid> 

The function was based on chessboard distance. It assumes that one moves on the pixel grid as if 

a king were making moves in chess, i.e. a diagonal move counts the same as a horizontal move. 

The metric is given by: D = max (|x2-x1|, |y2-y1|. For our application where speed is more 

important than accuracy, chessboard distance has an advantage over Euclidean distance. The 

output is ASCII files of X1and X2 factors that represented chessboard distance to major roads 

and combined (major and minor) roads respectively and are converted to raster for visual display 

(Figure 4.5). On the raster maps, the value of 1 indicated areas further away from roads that are 

highly suitable for development and areas closer to the both roads are less suitable and are 

indicated by lower values. 
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Figure 4.5. X1 and X2 factors. 

 

National Land Cover Dataset (NLCD, 1992/2001) (X3 and X4 Factors) 

The National Land Cover Data (NLCD) is produced by the U.S. Geological Survey 

(USGS) in collaboration with U.S. Environmental Protection Agency. The NLCD is a 

component of USGS Land Cover Characterization Program and is produced from 1992 Landsat 

Thematic Mapper imagery. The seamless NLCD contains 21 categories of land cover 

information suitable for a variety of State and regional applications, including landscape 

analysis, land management, and modeling nutrient and pesticide runoff. The data classification 

system key is given in Table 4.4. Among the categories, 21, 22 and 23 indicate already 
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developed areas where occurrence of future development is minimal. These areas were selected 

to produce X3 and X4 factors. Recall that X3 represent proportion of residentially developed 

lands and X4 represent proportion of industrially and commercially developed lands.  

Table 4.4  

NLCD Classification Schemes (Level II) 

Land Cover Description Value Land Cover Description Value 

Open water 11 Grassland/Herbaceous 71 

Low Intensity Residential 21 Pasture/Hay 81 

High Intensity Residential 22 Row Crops 82 

Commercial/Industrial/Transportation 23 Small Grains 83 

Bare Rock/Sand/Clay 31 Urban/Recreational Grasses 85 

Deciduous Forest 41 Woody Wetlands 91 

Evergreen Forest 42 Emergent Herb Wetlands 92 

Mixed Forest 43 Shrubland 51 

 

First, we reclassified the land cover map to residential and commercial/industrial maps. 

Areas that contained existing developed lands received a value of 1 and the rest 0. This was done 

to ensure the exclusion of developed raster cells in the final calculation. However, the 

development potential model designates X3 and X4 as proportion of residential or commercial 

development and the proportion of industrial development respectively. And we followed NLCD 

classification system to extract already developed areas. Second, we converted the classified 

maps to ASCII text file and the C program useprop.c was ran with each file using the command 

useprops.exe <input_ASCII_grid> <output_ASCII_grid> <window size> 
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The above program calculates proportions of developed land around a target cell using a moving 

window of given size. In our case, we selected a 7 x7 window. For example, for a total of 49 

pixels in the neighborhood size of 7 x 7, if we have 40 pixels that are already developed then 

40/49 = 0.81 or 81%. In other words, 81% of the neighborhood is already developed making it 

less desirable for future development. On the other hand, if 5/49 is developed i.e. only 10% of 

the neighborhood is developed making it highly desirable for future development. This way, the 

procedure produced two maps that contained proportion of developed lands from commercial, 

industrial and residential activities as shown in Figure 4.6. 

 
Figure 4.6. X3 and X4 factor. 
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Population Data (X5 Factor) 

We downloaded the census data that contains demographic information collected by 

United States Census Bureau (USCB). However, the data is selected according to the 

requirement of the study, i.e. whether we are trying to find the population density of a block, 

block group or a tract. A block is the smallest geographical unit used by USCB for a population 

density followed by a block group and tract. For our study, we selected block unit to meet our 

objectives because we were interested in knowing the population density in each parcel polygon. 

We imported census block data to excel and saved in database format so it can be imported to 

ArcMap for further analysis. We also downloaded census block shapefiles that contains 

information of a block such as streets etc. However, in order to join census block shapefiles and 

census block data; we needed a column with similar field type. A field is a column in a table that 

stores the values for a single attribute. And field data type is the attribute of a variable. The field 

or column in a table determines the kind of data it can store and common data types include text, 

character, integer, decimal, single, double and string. The attribute table of census block 

shapefile had a column named ‘BLOCK’ that contained four numbers and we needed a column 

in census block data table with similar field types and numbers. We created a new field with text 

field type in the census block .dbf table and named it ‘NEW_BLOCK’ to match the column 

‘BLOCK’ of the census block shapefile table. This field was used to join the tables and we 

created two additional fields to hold values of area and population density (population/area) for 

each polygon in the census attribute table. We selected float and double field types for 

population density and area columns respectively, square miles as units for area to calculate 

population density for individual polygons, and population density column to convert the 

polygon shapefile. This raster was then converted to ASCII text file that in turn was used in the 
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popdense.c routine of the potential development model. We calculated the population density 

factor (X5) as a population in a circle of given radius of 2.5 km to 3 km or using a moving 

window of 7 x 7. The search radius operates on a raster map produced from census block data. 

popdense.exe <input_ASCII_grid> <output_ASCII_grid> <window size> 

The output population density factor was converted to raster for display as shown in Figure 4.7. 

 
Figure 4.7. X5 factor. 
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Potential Development Probabilities 

Each factor Xi is normalized by dividing into its maximum to ensure a common scale of 0 

to 1. In addition, it was necessary to ensure the five ASCII files contained equal amount of rows 

and columns. In order to do this, we worked with a larger dataset from the start and after 

constructing the factor files; we clipped the five ASCII files using the study area polygon. This 

procedure yielded ASCII files with equal number of rows and columns. Then we executed the 

development model devpot.c to derive maps of four development probabilities, P(R), P(C), P(I), 

and P(D), i.e. residential, commercial, industrial, and total. The model was executed with the 

command 

devpot.exe <X1> <X2> <X3> <X4> <X5> <o1> <o2> <o3> <o4> 

The output is four ASCII grid text files that are denoted by o1, o2, o3, o4 that represents 

residential, commercial, industrial and total potential development probabilities respectively and 

are converted to raster for visual display (Figure 4.8). The total potential development map 

indicates areas for all the three types of development i.e. residential, commercial and industrial 

development. 

 

Potential Development at the Parcel Level 

Visually, the potential development maps provided an effective method to find areas of 

particular developments i.e. commercial, residential, industrial and total. However, in our case, 

we wanted to know the probability of individual parcels, i.e. which parcel will likely develop 

into a particular development type? In order to achieve this, we needed parcel data of the study 

region to overlay with the potential development maps. As stated above, a typical parcel data 

contains information such as parcel id, owner id and other attributes.  
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Figure 4.8. Potential development probabilities: a) residential b) commercial c) industrial, and d) 
total. 
 
 
However, for Hardin County, there were no such data available. We used CAD polyline to create 

parcel polygons in GIS instead. This procedure provided a skeleton of parcel polygons suitable 

for our intended objectives. We examined the attribute table of these parcel polygons – it had 
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three columns: ‘FID’, ‘shape’ and ‘id’. FID contains numerical number of the parcels, polygons 

for the shape and the id column was filled with 0s. 

 
Figure 4.9. Potential development probabilities at parcel level a) residential b) commercial c) 
industrial and d) total.  
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 We cannot use FID for overlay since it is linked to the shapefile geometry and is 

automatically created or updated when a new feature is added. Therefore, we used data from FID 

column to populate ‘id’ column by using the field calculator from the attribute table. Then we 

used the newly populated id column as a zone and the potential development rasters as input 

values. Each cell in the raster contains values from 0 to 1. The zonal statistic function calculates 

the mean of the pixel values for individual zones i.e. parcel. We overlaid the parcel polygons 

with the four types of development maps. This way, we calculated mean value for individual 

parcel that range from 0 – 1. Values closer to 1 indicate higher probability for the parcels to 

become developed. The resultant map showed the probability of each parcel for a particular type 

of development at the parcel level (Figure 4.9). 

 

Development in the Red-Cockaded Woodpecker Habitat 

After the LU change predictions are made, the habitat for red-cockaded woodpecker is 

analyzed as in Chapter 3 with a conjunction of remote sensing and FRAGSTATS. We used our 

previously classified image, neighborhood statistics and landscape metrics to calculate amount of 

potentially suitable red-cockaded woodpecker habitat in the study region (the calculation of 

neighborhood and landscape metrics is explained in detail in Chapter 3). The classified image 

contained seven categories of land cover including pine trees. We reclassified this image to 

derive a binary image. The pine tree category received a value of 1 and the rest of the land cover 

classes got 0. As before, we conducted neighborhood analysis in a 23x23 set. This way, a habitat 

suitability index map was obtained that indicated areas of potential suitable habitat areas along 

with two other habitat types (highly unsuitable and suitable habitat types) before any sort of 
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development – this is our first map. In other words, this first map contained the original extent of 

three habitat types prior to potential development. 

Then we created maps of what the habitat would be like after the hypothetical 

development. For this we generated scenarios at different levels of likelihood of development. In 

order to create these maps, we employed the following steps: 1) selected thresholds of total 

probability of development, P(D), to define the scenarios, 2) for each scenario, selected areas 

above the threshold in the total potential development maps and gave these cells the value 0, and 

3) multiplied these new maps with the binary pine tree map to derive areas of pine trees that were 

left undeveloped. 

We selected threshold values of 0.70, 0.75 and 0.80 because the total potential 

development map had values ranging from 0.55 to 0.86 (Figure 4.8). We used a conditional 

statement to assign 0 to areas above the designated threshold. As a result of Step 2 of the above 

procedure, we obtained three maps (one for each scenario) that had areas removed from the 

habitat due to development and contained remaining undeveloped areas. Once we multiplied 

each one of these maps with the binary pine tree map, we obtained three maps that showed areas 

of either remaining pine trees or no trees. In other words, the resulting maps contained areas 

from which we could calculate remnants of three habitat types after development. Next, we 

conducted neighborhood statistics on this new map and calculated landscape metrics. Then we 

calculated differences between the original and the remaining habitat areas but we focused 

mainly on the amount of potentially suitable habitat. 

The resultant maps had different maximum values. For example, the maximum values for 

the original binary and 80% threshold maps were 0.89 while it was 0.82 for 70 and 75% 

threshold maps. The results for 80% development probability indicate that most development 
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occurs near the highways and does not affect the maximum value of habitat suitability (Figure 

4.8). For 70 and 75% thresholds, pixels that had high values are removed and pixels with 0.82 

become the highest. In Chapter 3, we used nominal breaks of 0-0.333, 0.333-0.666 and 0.666-1 

to reclassify the 9 classes to three using equal interval classification method (please refer to 

Chapter 3 for full details).  
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Figure 4.10. Four scenarios of potentially suitable habitat change (a) Before development (b) 
Probability of development ≥70% c) Probability of development ≥75% and d) Probability of 
development ≥ 80 %.  
 

To maintain consistency,  we used similar breaks for the four maps and reclassified the nine 

classes of the four resultant neighborhood maps to derive three classes that represented: 1) very 
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unsuitable, 2) unsuitable, and 3) potentially suitable habitat. We labeled the reclassified classes 

obtained from the four maps to 1, 2, and 3 habitat types for comparison (Figure 4.10). Then we 

conducted FRAGSTATS analysis on all four maps and calculated the difference in the amount of 

habitat (Table 4.5 to Table 4.6).  

Table 4.5  

Number of Pixels that Belonged to the Three Habitat Types for Each Threshold 

Description Habitat type Number of 
pixels 

Neighborhood analysis 
of current extent of 

habitat 

Very unsuitable 384033 

Unsuitable 194933 

Potentially suitable 2944 

Neighborhood analysis 
for more than 70% 

development 

Very unsuitable 576990 

Unsuitable 4588 

Potentially suitable 332 

Neighborhood analysis 
for more than 75% 

development 

Very unsuitable 518731 

Unsuitable 62611 

Potentially suitable 568 

Neighborhood analysis 
for more than 80% 

development 

Very unsuitable 393441 

Unsuitable 185769 

Potentially suitable 2700 
 

Table 4.6  

Class Metric Results for Current Situation – Before Any Further Development 

TYPE CA/TA PLAND NP LPI COHESION 
1 34562.97 65.99 153 59.32 99.92 
2 17543.97 33.5 232 18.02 99.55 
3 264.96 0.5 27 0.09 92.04 

 



 

95 

In addition, we used the map of total potential development probabilities at parcel level to 

calculate the habitat amounts for the four scenarios mentioned above (Figure 4.11). Interestingly, 

the results or the habitat amounts looked similar with minute changes in the shape of the patches. 

We did observe rough edges of the parcels when we first removed the pixels with different 

thresholds and disappeared when we ran the neighborhood statistics. 

 
Figure 4.11. Four scenarios of potentially suitable habitat change at parcel level (a) Before 
development (b) Probability of development ≥70% c) Probability of development ≥75% and d) 
Probability of development ≥ 80 %.  
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Results 

Data Preparation 

We used GIS to create input variables or the five factors and parcel data. Even though, 

the data were readily available on the web, they required extensive polishing prior to use in the 

potential development model. For example, we converted coordinate system to WGS 1984 of the 

entire data set so they would project correctly on the ArcMap, and teased major roads from the 

combined roads. In addition, we constantly updated road data as there were new roads or 

intersections being constructed during the course of the project that are still being constructed. 

For NLCD, we selected 1992 classification system. 

The classification schema facilitated selection of already developed lands required for the 

model. Population data required extensive preparation before it was used for the model. We used 

excel to create text that was imported to Arc Catalog to convert it to database format file. 

ArcMap only recognizes the latter file. And for the parcels, we used CAD and converted it to 

polygons. We used the polygons as zone and the potential development rasters as inputs while 

calculating development probability mean for individual polygons. 

 

Potential Development Functions 

We constructed development potential models to forecast development pattern in the 

study area. Our results indicate that potential development models are useful in establishing 

possible locations of change on the landscape. We used a set of predictor variables such as 

proximity to major and combined roads, LU characteristics obtained from NLCD, and population 

density obtained from census block data. 
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As expected, the development probability maps display the patterns intended by the 

model design. For example, our results indicate commercial development will occur near the 

densely populated areas, i.e. near towns and close to major roads. Industrial development will 

occur in close proximity to highways and commercial areas but away from residential areas. 

Similarly, residential developments tend to occur little further away from the roads, industrial 

and commercial developments. These maps propose that development occurs in certain areas 

depending on the need and category. For example, for residential, people tend to select quiet 

locations away from noisy roads with low traffic volumes and less polluted environment, 

commercial and industrial developments require easy access to roads and a dense human 

population nearby to flourish. 

Areas near the small towns will see growth in commercial and industrial development. 

Areas near highways 326, 327, 96, 69 and FM 421 will experience residential growth. 

Furthermore, use of parcel polygons to study the development pattern provided further ability to 

pinpoint where and which parcel will convert to a particular development type. These projections 

illustrate how a potential development model can effectively establish relationship between 

urbanization and the predictor variables evaluated in Hardin County. 

 

Amount of Habitats Before and After the Development 

As mentioned above we quantified the amount of habitat area before and after potential 

development using total potential development map both as raster and at the parcel level. We 

used two methods to calculate the amount of habitat: 1) pixel counts, and 2) FRAGSTATS 

analysis. For pixel counts, we counted the number of pixels that belonged to the three habitat 

types (Table 4.5). We found the number of pixels for the very unsuitable habitat increased after 
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the development occurred, i.e. from 384033 to 576990, 518731, and 393441, for 0.70, 0.75, and 

0.80 probability scenarios respectively. The highest increase was observed when we removed 

pixels with more than the 0.7 threshold. And the smallest increase was observed when we 

removed pixels with more than the 0.8 threshold. This suggests that total development will be 

highest near the major roads where there was absence of potentially suitable habitats (Please 

refer to Fig. 4.10 d). Moreover, the increase in the number of pixels for very unsuitable habitat 

and decrease in the number of pixels especially for potentially suitable habitat patches from 2944 

to 332, 568, and 2700, for 0.70, 0.75, and 0.80 probability scenarios respectively. This coincides 

with the results obtained from landscape metrics as will be discussed in the following paragraphs 

and pages. The greatest decrease was observed for 70% and 75% development probability. 

For the second method, FRAGSTATS analysis, we created four ASCII text files from the 

raster files. The headers were removed from the ASCII files prior to use in the FRAGSTATS 

program. First, we determined the current extent of the all habitat types (full method explained in 

Chapter 3). It showed that, prior to development, the study area contained 265 ha of areas 

potentially suitable habitat in 27 patches (Table 4.6). There were few patches that contained no 

data and were not included in the calculation. These 27 patches were scattered across the study 

landscape (Figure 4.11 a) and physically disconnected, i.e. fragmented, as indicated by 

COHESION metrics of 92. In contrast, the same metric approaches nearly 100 for the other two 

habitat types suggesting they are less fragmented. Moreover, the potentially suitable habitat only 

occupied 0.5% of the total landscape while the other two habitat types occupied nearly half of it. 

After 70% development, the amount of potentially suitable habitat decreases to merely 29 ha and 

becomes more fragmented as indicated by COHESION metrics staying at 92 (Table 4.6). 



 

99 

PLAND metrics supports other metric findings – it decreases to 0.06 from 0.5 % showing a 50% 

decrease. 

We used a threshold of 0.70 for the first scenario. The results indicated that the amount of 

very unsuitable habitat nearly doubles (51,929.1 from 34,562.97 ha) and that there is a drastic 

reduction in the unsuitable and potentially suitable habitat amounts from 17,543.97 and 265 to 

412.92 and 29.88 hectares respectively (Table 4.6). Along with an increasing amount, the 

COHESION metric of very unsuitable habitat indicates they are still well connected with value 

approaching 100 (Figure 4.10b). The other two habitat types become more fragmented as 

indicated by COHESION metric values of 97.54 and 92.33 respectively. In addition, visual 

inspection indicated potentially suitable habitats are completely engulfed by the development 

with only about 29.88 ha remaining near Bentura and Sapp Graveyard streets (Figure 4.10b). 

Table 4.7  

Class Metric Results for First Scenario – More Than 70% Development Probability 

TYPE CA/TA (ha) PLAND NP LPI COHESION 

1 51929.1 99.15 1 99.15 99.99 

2 412.92 0.79 10 0.65 97.54 

3 29.88 0.06 2 0.032 92.33 

 

 For the second scenario –75% threshold  the metric results showed an increase in the 

amount of unsuitable habitat from 412.92 to 5634.99 ha. This sudden increase was the result of 

removal of pixels with values higher than 0.75 i.e. the developments are more towards the major 

highways. There was an increase in the amount of potentially suitable habitat types (29.88 to 

51.12 ha), and the very unsuitable habitat still increases in size from 34,562.97 to 46685.79 ha. 
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Similar to the 70% threshold scenario, PLAND, NP, LPI and COHESION metric results showed 

patchiness of potentially suitable habitat (Table 4.8). Patches near highway 326, 327 and farm-

market-to-road 421 highways are the most impacted (Figure 4.10c). The obvious impact was 

observed in the patches located near FM 421. There were two large potentially suitable habitat 

patches; one located south of FM 421 and Highway 96 and one located on FM 421 towards the 

Town of Sour Lake. These patches are completely destroyed for a 75% threshold development. 

Another patch near HW 327 also completely disappears (Figure 4.10c). 

Table 4.8  

Class Metric Results for Probability of Development Larger Than 75% – Second Scenario 

TYPE CA/TA (ha) PLAND NP LPI COHESION 

1 46685.79 89.14 27 89.09 99.99 

2 5634.99 10.76 128 3.14 98.28 

3 51.12 0.1 6 0.03 91.74 

 

Under the third scenario – when the area is under more than 80% development, there are 

minimal changes in its spatial pattern of the three habitat types. The composition and the 

configuration remain mostly unchanged. For example, the patch number for potentially suitable 

habitat merely changes from 27 to 28. However, the amount changes from 265 to 243 ha and is 

reflected by changes in PLAND and LPI metric results (Table 4.9). In other words, the current 

situation and third scenario produced similar results indicating most of the developments 

occurred near the major highways where few potentially suitable habitats exist (Figure 4.10d). In 

addition, these suggested existing habitats are not severely impacted. Thus, our analysis suggests 

that development is not further detrimental to habitat if it occurred near the highways.  
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Table 4.9  

Class Metric Results for Probability of Development Larger Than 80% – Third Scenario 

TYPE CA/TA (ha) PLAND NP LPI COHESION 

1 35409.69 67.61 142 62.12 99.93 

2 16719.21 31.92 225 16.93 95.51 

3 243. 0.46 28 0.09 91.45 

 

We created a graph (Figure 4.12) to represent the amount of habitat pre- and post- development 

that changes according to the FRAGSTATS analysis from the previous four tables (column 

CA/TA). 

 
Figure 4. 12. Impact of pre and post development on habitat areas. 
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Conclusion 

The major goals of this work were 1) to build and apply potential development models 

based on mathematical functions that determined fate of an undeveloped parcel of land based on 

a set of predictor variables; 2) apply these potential development predictions to assess potential 

habitat changes for the red-cockaded woodpecker. 

We do not study the dynamics of such developments; we assumed that the pattern of each 

LU predictor variable and their relative effect remained constant. This is of course simplistic, 

because for example, the values of factors X1, X2 related to roads are likely to change as new 

roads and streets are built and they respond to change in LU. This limitation can be removed by 

including this potential development model in an agent-based simulation as we have done for the 

North Texas area (Acevedo et al., 2008). 

Since we started this work, the study area has experienced substantial growth in 

population followed by housing units and other developments as explained in the introduction 

section. The model can be updated to reflect changes in transportation or commercial, industrial 

and residential if updated layers are available. Thus, given the availability of newer data such as 

new roads, population estimates, new housing units and more temporal and spatial information 

about LU change, it is possible to re-examine the model and also study the effects of the 

assumptions might have on the performance of the potential development model. 

This work provided critical data for the coupled human-nature system models of the 

larger interdisciplinary project Integrating Models of Natural and Human Dynamics in Forest 

Landscapes across Scales and Cultures, a Biocomplexity in the Environment project funded by 

the National Science Foundation (Acevedo et al., 2008). 
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With further efforts, the model can be improved to produce more realistic results. For 

example, we could use higher resolution images coupled with rigorous field work to improve the 

habitat analysis conducted here and in Chapter 3. Further field work and use of higher resolution 

images would provide vital data on pine tree age, diameter at breast height, identification of 

cavity and non-cavity trees and most importantly, we can have the current data collected in real-

time. Such pool of data can be very useful during classification and other analysis. For example, 

we could use these data to investigate maximum values – why they are 0.89 instead of 1 for 

initial neighborhood analysis of binary pine tree image? Or why they are 0.76 for total potential 

development maps? For this project, we had to rely on several assumptions for such low 

maximum or high minimum values. Also future improvements of the potential development 

model entails analysis of empirical information to validate the mathematical functions employed. 

Overall we conclude that the methods employed here resulted useful to study LU spatial 

dynamics and its impact on wildlife habitat. 
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DATA SEARCH 
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Data Required 

1. Road/Streets 

2. NLCD 

3. Population data (Census) 

Data Searching 

• I went to www.tnris.state.tx.us to find required data (Figure A.1). This website also 

provides other data such as census, roads, hydrology, LiDAR, SPOT, soil etc. I 

downloaded census block shapefile and road polyline.  

 
Figure A. 1. Website for road and census data. 

 

Road Data 

• The road data resided in ‘StratMap ver2’ and it contained both minor and major roads. I 

teased out the major roads and created a separate file as these data were later used for the 

program to calculate the minimum road distances.  

• Then I converted the roads into rasters. I used the following functions as – 

Arc Toolbox  Conversion Tools  To Raster  Polyline to Raster 

• After the above procedure, I used the following function on the converted road rasters – 

CON ([merged_roads] > 0, 1, 0). This is done to select the roads only. Then I used 

http://www.tnris.state.tx.us/�
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Spatial Analyst  Raster Calculator  [merged_roads] + 10. This process will make the 

road cells bigger that facilitated selection of road only (Figure A.2).  

 
Figure A. 2. Selection of road cells only. 

 
• And then I converted the road rasters ASCII text files to use in the C program (Figure 

A.3). 

 
Figure A. 3. Conversion of road raster to ASCII text file. 

 

• After the conversion, the text files were used in program in order to calculate minimum 

road distance. For this, I used COMMAND PROMPT for the calculation (Figure A.4).  
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Figure A. 4. Program for calculation of road distance. 

 

• The output was another ASCII text files that were converted back to rasters for visual 

display. I selected ‘Float’ as the field data type as the cells contained values in decimals 

(Figure A.5). 

 
 

 
Figure A. 5. Conversion of output ASCII to raster for visual display. 
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Population Data 

• For population data, I went to www.census.gov and clicked on the “American 

FactFinder” to go to the following page. On this page, I clicked the ‘DOWNLOAD 

CENTER’ (Figure A.6). 

 
Figure A. 6. Website to download census data. 

 
• From the download center, I selected census data of 2000 under the file named ‘Census 

2000 Summary File 1 (SF 1) 100 Percent Data’. This file contains population count of 

2000 (Figure A.7).  

 
Figure A. 7. Selection of 2000 census data. 

 

http://www.census.gov/�
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• After selecting desired state and county, the population count for block. Other population 

data such as numbers of specific race such as Asian or Hispanic can be also be 

downloaded. The block data was downloaded using a zip file (Figure A.8).  

 
 

 
 

Figure A. 8. Procedures to download block data. 
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• The block data was then imported to excel for further analysis. I used ‘Delimited’ and 

‘Other’ before importing the data (Figure A.9). 

 
Figure A. 9. Import of block data in Excel. 

 

• I deleted the second row and saved it as a text file. The P001001 contains the population 

data (Figure A.10). 

 
Figure A. 10. Population data import to Excel. 
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• I imported the text file to ArcGIS and opened it using ArcCatalog. Once opened, I right 

clicked it and saved it data base format file and suing single (table to table) choice 

options as shown in Figure A.11.  

 
Figure A. 11. Conversion of the text file into dbf file in ArcCatalog. 

 

• After creating the dbf file, I checked the attribute of the census block polygon shapefile to 

search for appropriate column to use it to with join the newly created population table 

(Figure A.12).  

 
Figure A. 12. Attribute table of the census block shapefile. 
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• I found a column named ‘BLOCK’ that four numbers. I searched for similar numbers in 

the population table and found it under GEO_ID column. However, the total numbers 

were six instead of four. The last four numbers were similar to BLOCK column of census 

block polygons. Thus, a column with four of these numbers was needed within the 

population table. I created a new column and named it ‘NEW_BLOCK’ and selected the 

field type as ‘text.’ I right clicked this new column to get to ‘Field Calculator.’ I used this 

step in order to populate the new column of NEW_BLOCK and to burrow the last four 

digits from GEO_ID column. To do this, I selected ‘String’ as ‘Type’ and ‘Right’ from 

the available functions. This means, out of six, four numbers from the right will be 

selected in order to match them with the numbers from BLOCK column. In other words, 

Right () trimming numbers from the right side. I typed Right ([GEO_ID], 4) and derived 

the four numbers and populated the NEW_BLOCK column. Then I joined the two tables 

using these four matching numbers (Figures A.13 and A.14). 

 
Figure A. 13. Selection of the four numbers from GEO_ID column. 
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Figure A. 14. Populating the new NEW_BLOCK column with the four numbers burrowed from 
GEO_ID column. 
 

• Then I created two additional fields in the census block shapefile that now contained 

newly created ‘NEW_BLOCK’ column. They were POP_DENSE and AREA 

respectively. These tables were necessary in order to calculate the population density of 

the region that in turn was required to create potential development maps. For field data 

type, I selected ‘Float without precision’ for POP_DENSE field and ‘Double without 

precision’ for AREA field. Float without precision) and AREA (Double without 

precision). These fields can be created without turning on the ‘Editor’ function of the 

ArcMap (Figure A.15).  

 
Figure A. 15. Calculation of AREA. 
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• And to calculate population density, area of a certain place is required. Thus, I calculate 

the AREA using ‘Calculate Geometry’ and for unites, square miles was selected (Figure 

A.16). 

 

 
Figure A. 16. Selection of units as square miles to calculate AREA. 

 

• And to calculate population density, I used ‘Field Calculator’ and divide the population 

by the area as shown in Figure A.17. 
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Figure A. 17. Calculation of population density. 

 

• After calculating area and population density, I converted the census shapefile to raster. I 

selected ‘POP_DENSE’ field as the value field during the conversion (Figure A.18).  

 

Figure A. 18. Conversion of census blocks to raster. 

• The resultant population density raster image was then converted to ASCII text file 

similar to roads. The ASCII text file was used for c program to calculate the population 

density using a 7x7 moving window. 
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Land Use Data of 1992 

• I used www.mrlc.gov to download land use and land cover data. I selected 1992 land use 

data (Figure A.19).  

 
Figure A. 19. Website to download land cover data. 

•  The raster has 21 land cover categories and are number is assigned to individual 

category. I extracted land cover categories of 21and 22 for residential and 23 for 

commercial and industrial. I converted the two rasters directly to ASCII text files and 

executed the program to calculate the proportion of developed lands around a target cell 

(Figure A.20).  

 

http://www.mrlc.gov/�
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Figure A. 20. Land cover categories for 1992 NLCD. 

• The program calculates proportions of land development around a target cell. I used 7 x7 

windows similar to population density. Suppose, we have 5 pixels that is 21and 22 (low 

and high intensity residential areas) in a total of 49 pixels neighborhood then we have 

5/49 = 0.1. The target cell will receive the value of 0.1 and so on. Thus, the pixel with a 

value of 0.1 indicates it is 10% or 0.1 developed that in turn indicates this pixel will have 

a high probability for future development. Similarly, in a 7x7 neighborhood, if we have 

40 pixels that are already developed to residential areas then 45/49 = 0.81 or 81%. The 

target pixel will get a value of 0.81. In other words, the pixel is 81% developed and 

possess less chance of future development. In this way, each pixel is calculated for its 

probability for future development to either residential or commercial and industrial 

areas. Most of the high valued pixels were centered near the town, major and minor 

roads. This indicated these areas are already developed and holds little importance to 

developers.  

 

Executing Final Program Called Devpots 

• To execute the final program and to create potential development maps successfully, the 

raster images of the five factors should contain equal number of rows and columns. Since 

I was working on the entire Hardin county data while creating the five factors, I made a 

polygon that encompassed my study area only. I used this polygon to clip the rasters. 

This way the five factors had equal rows and columns of 776 and 1000.  

• The rasters were then converted to ASCII text files and the final program was executed.  
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Finding Hydrology Dataset (Streams/Rivers/Wetlands) 

• The initial program required six factors including hydrology data. The hydrology data 

included lakes, ponds, reservoirs, wetlands and rivers. If an area contained any of the 

aforementioned water bodies, the development is unlikely. In other words, the program 

recognized such areas as natural impediments where there is less opportunity for 

development. In addition, the study area contains numerous wetlands and is protected 

under wetland conservation acts. Once thought to be wastelands, nowadays they have 

received protections due to their free services they provide to the populations living 

nearby. The services include natural filter of the agricultural pesticides and habitat for 

wetland species. I went to www.tnris.state.tx.us/DataDictionary.aspx to acquire the data 

(Figure A.21). 

 

http://www.tnris.state.tx.us/DataDictionary.aspx�


 

119 

 
Figure A. 21. Website for hydrology dataset. 

• And to find the data, I selected Texas and clicked the sub basin circle. I emailed the 

selected data.  

• However, I had to find another website to find stream data as shown below from TCEQ 

website and it stands for Texas Commission for Environmental Quality. I downloaded 

four basins as follows – 5, 7, 8, and 10 (Figure A.22). From these basins, I extracted 

streams, rivers and major highway data. The website is 

http://www.tceq.state.tx.us/implementation/water/tmdl/atlas.html#files  

http://www.tceq.state.tx.us/implementation/water/tmdl/atlas.html#files�
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Figure A. 22. Website for stream data. 

 

Parcel Data 

• I contacted several personnel’s of Hardin County Appraisal District to obtain parcel data. 

However, finding parcel data for Hardin County was troublesome. They do not have a 

full-fledged GIS center like the one in Denton County. As suggested by Howard 

Redfearn, I searched for CAD data and finally, Theresa mailed CD that contained CAD 

drawings that I used to create parcel polygons. The CAD files were called dgn and 

converted the polyline into polygons and for input labels, I used annotation. Still, I am 

missing some parcels. I used Arc Info to convert the CAD polyline to polygons. To do 

this, the required tool is under ArcToolbox  Data Management  Features  Feature 

to Polygon (Figure A.23). 
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Figure A. 23. Converting CAD polyline to polygons. 

• I checked the attribute of the parcel polygons and found the third column empty. The 

other two columns i.e. FID and Shape contained polygon numbers and shape type 

respectively. Since we cannot use both first and second column, we needed to populate 

the third column with FID values. I also changed the coordinate system to WGS 1984 

(Figure A.24).  

 
Figure A. 24. Attribute table of CAD converted polygons.  
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• I used field calculator as shown below to populate the third column. This way I produced 

parcel polygons with values (Figure A.25).  

 
Figure A. 25. Populating third column with FID values. 

• After populating the column, I used Spatial Analyst  Zonal  Zonal Statistics tool to 

calculate the mean value for each polygon. I used the zone field from ‘Id’ and potential 

development rasters as input value raster (Figure A.26). 

 
Figure A. 26. Calculation of mean for individual polygons using zonal statistics. 
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