THE NEOGENE RHINOCEROSES OF NAMIBIA by ## Claude Guérin ERS 2042 - Centre de Paléontologie Stratigraphique et Paléoécologie, Université Claude Bernard -Lyon I, U.F.R. des Sciences de la terre, 27-43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cédex, France. #### ABSTRACT: Since 1991 the Namibia Palaeontology Expedition has excavated four Miocene sites in the Sperrgebiet, three of which (Arrisdrift, Fiskus and Auchas Mine) are new. Only the material from Arrisdrift and a single bone from Langental are specifically determinable. All but one of the 81 rhinocerotid fossils from Arrisdrift constitute a homogeneous sample pertaining to a very large species of cursorial rhino. The exception is an isolated magnum which suggests a small to medium-sized short legged form, perhaps *Chilotheridium pattersoni*. A magnum from Langental probably represents Brachypotherium heinzelini. The large form from Arrisdrift seems to be the largest of the Miocene African Rhinos; the size and proportions of the metapodials and the other limb bones suggest an analogy with *Diceros* gr. pachygnathus-neumayri of the Upper Miocene of the Near East; the type of construction of the upper cheek teeth, namely the fourth premolar, is of Dicerotine type and presents, as do the dimensions, close resemblances with *Diceros douariensis* of the Upper Miocene of North Africa and Italy; the mandible shows analogies with the Dicerotines, especially the apparently short symphysis. This Rhino is *Diceros australis* nov. sp., so far the oldest known species of the subfamily. KEYWORDS: Neogene, Namibia, Sperrgebiet, Arrisdrift, Perissodactyla, Rhinocerotidae, Diceros australis sp. nov. # INTRODUCTION Since 1991 the Namibia Paleontology Expedition, led by B. Senut and M. Pickford, has excavated Miocene sites in the Sperrgebiet (Pickford et al. 1995). Rhinos were found at four sites, one of them, Arrisdrift, being very important. I had the good luck to find among about 85 fossils three specimens of the same carpal bone, the magnum, showing that three different species are present, one at Langental and two at Arrisdrift (Figure 1: 3-5; Figure 2). The bulk of the Arrisdrift material (80 pieces) belongs to a new species, Diceros australis. D. australis is the oldest species of the Dicerotine subfamily, whose present day representatives are the black and the white rhinos of Africa. Previously, some mammalian remains were recovered from South West Africa and sent to Germany, where they were studied by E. Stromer (1926); the only published fossil rhino was assigned to "Rhinocerine g. et sp. indet". Several papers were later published reassessing some mammalian species and describing others. Hamilton & Van Couvering (1977) synthesized the preceding works and brought the faunal list up to date. In that list the only identified rhinocerotid was *Brachypotherium heinzelini*, based on a report by K. Heissig (1971) on the half-mandible found at Langental and described without determination by E. Stromer. Among the undescribed rhino fossils from Namibia found prior to the work of the Namibia Palaeontology Expedition, there is a weathered but complete metatarsal III from a large *Brachypotherium* housed in the Figure 1. 1: right calcaneum (AD 50'97) of Diceros australis nov. sp.; 2: left astragalus (AD 619'94) of Diceros australis nov. sp.; 3-5: the three magnums of the Miocene rhinoceroses from Namibia: 3: cf. Chilotheridium pattersoni (AD 618'97), 4: Diceros australis nov. sp. (AD 638'97); both from Arrisdrift, 5: Brachypotherium heinzelini from Langental (LT 384'96). Scale bar is 3 cm. collections of the South African Museum (SAM PQ 2517) and recovered 8 km southeast of Bogenfels (probably the sites of Glastal 1 or 2) by J. Schneider in 1983. Finally some Quaternary rhino remains also are known from Namibia: an M3/of Ceratotherium (South African Museum SAM PQ 2126) was found in 1978 by G. Corvinus in the "brown grits in the Upper Grillental". A skull, a mandible and some rhinoceros tracks attributed to Diceros bicornis were recovered near Kolmannskuppe (= Kolmanskop) and Charlottenthal and briefly described by R. Heinz (1933) and reviewed by C. Guérin & G. Demathieu (1993). ### THE SITES Four lower or middle Miocene rhino sites were worked by the Namibia Paleontology Expedition in the Sperrgebiet, three of which are new: Arrisdrift, Fiskus and Auchas Mine. #### Arrisdrift This very rich site, near the Orange River, 35 km east of Oranjemund, is about 17 Ma old and yielded numerous vertebrate remains (Pickford et al. 1996). All but one of the 81 fossil rhino specimens from Arrisdrift constitute a homogeneous sample pertaining to a very large species of cursorial rhino, Diceros australis. The exception is an isolated magnum which is totally different from the magnum assigned to D. australis: it is shallow and very wide and suggests a small to medium sized short-legged form, perhaps Chilotheridium pattersoni, which was defined at Loperot, Kenya, the age of which is about the same as that of Arrisdrift. #### Langental In this 18 to 19 Ma old site one rhino specimen, a complete magnum, was recovered. This fossil probably represents *Brachypotherium heinzelini* which was recognized by Heissig in 1971 on the basis of half a mandible found at the same site. #### Fiskus A deeply worn upper premolar was found in Fiskus, with an age of about 20 Ma. # Auchas Mine Auchas Mine is an alluvial diamond-bearing deposit 50 km upstream from Oranjemund (Pickford *et al.* 1995), about 19 to 20 Ma old. Among seven mammalian species found in pit AM 02 is an undetermined rhinoceros of which two specimens were recovered: an atlas vertebra and a mandible fragment. ## MIOCENE RHINOS OF AFRICA Six rhino lineages (comprising a total of seven genera and eleven species) are so far known from the African Miocene (Hooijer 1973, 1978; Guérin 1980 b, 1989; Prothero et al. 1989). The ages of numerous African sites are based on the results of M. Pickford (pers. comm.). #### Aceratheres Aceratheres are medium to large-sized, hornless, tapir-like cursorial rhinos with four toes in the forelimb. They possess strong lower tusks, and their cheek-teeth are very brachyodont with the upper ones possessing an outer wall which is more or less flat. They are recorded from East and North Africa: Aceratherium acutirostratum (Deraniyagala 1951) is medium-sized: It is known from the Alengerr Beds (14 to 12 Ma), Chemeron Formation-Northern Extension (5 to 4.5 Ma), Karungu (18 Ma), Moruaret Hill near Losidok (ca 16 Ma), Ngorora Formation (11 to 12 Ma), Ombo (15 Ma), and Rusinga (18 Ma) in Kenya; Napak (19.5 Ma) in Uganda; Karugamania (older than 7 Ma) and Sinda (more than 6 Ma) in Congo. Figure 2: Scatter diagram of the anterior width (Y axis) versus the sus-articular height (X axis) of the three magums of Miocene rhinoceroses from Namibia, other Miocene rhinoceroses and the present day *Diceros bicornis*. Aceratherium campbelli Hamilton 1973 is very large: it is recorded from Jebel Zelten (ca 16 to 17 Ma) in Libya. #### **Dicerorhines** Dicerorhines are two-horned medium- to large-sized cursorial rhinos with well developed lower tusks; the upper cheek teeth are relatively brachyodont with an outer wall presenting (especially in the two last premolars) two powerful vertical folds (paracone and metacone folds). They possess long faces. It is known from East Africa: Dicerorhinus leakeyi Hooijer 1966 is medium-sized: it has been recorded from the Alengerr Beds (14 to 12 Ma), Chemeron Northern Extension (ca 5 Ma), Karungu (18 Ma), Maboko (15.5 Ma), Ombo (15 Ma), Rusinga (18 Ma) in Kenya and Napak (19.5 Ma) in Uganda. Note that in most of these sites D. leakeyi is sympatric with Aceratherium acutirostratum. An Upper Miocene Algerian species, *Dicerorhinus* primaevus Arambourg 1959, has a controversial generic status (Geraads 1986). Large species of *Dicerorhinus* are so far unknown in the African Miocene but are present in Europe with *D. schleiermacheri* and others (Guérin 1980). #### **Dicerotines** This subfamily includes the two extant African rhinos Diceros bicornis ("black" rhino) and Ceratotherium simum ("white" rhino). Ceratotherium is much more evolved and dates from the Uppermost Miocene. Species of the less specialized genus Diceros, which appears during the Middle Miocene, are large and heavily-built two-horned rhinos. The face is short; they possess short mandibular symphysis and there are no incisors. The outer wall of the brachyodont upper cheek teeth possesses only one marked vertical fold, the paracone. Miocene forms are known from Northern Africa, Southern Spain, Italy and the Near East (Guérin 1980): Diceros douariensis Guérin, 1966: This species has been reported from Douaria (9.5 Ma), and possibly Djebel Krechem el Artsouma (Upper Miocene) in Tunisia (Geraads 1989), and Baccinello V3 (zone MN 13) in Italy (Guérin 1980). Material from Gravitelli (Upper Miocene) in Sicily (Italy), Cenes de la Vega and Los Hornillos (both MN 13) in the Granada Basin (Spain) clearly represents Diceros but is not sufficient for a determination at the specific level. The two Near-East Upper Miocene Diceros species, whose discrimination and affinities are somewhat controversial, are D. pachygnathus from Pikermi (Greece) and D. neumayri from Turkey. All these species of Diceros are much younger than the Arrisdrift fauna. Paradiceros mukirii Hooijer 1968 is a small rhino of the Dicerotine group known from Fort Ternan (about 13 Ma) and perhaps Maralal in Kenya, Kisegi (13 to 14 Ma) in Uganda, and Beni Mellal (12.5 Ma) in Morocco (Hooijer 1968; Guérin 1994). #### **Iranotheres** Iranotheres are very large and heavily built rhinos from Eurasia with (for the time) extremely hypsodont cheek-teeth whose folded enamel is characteristic. Only one species has so far been found in Africa, and it is poorly known (Aguirre & Guérin 1974): Kenyatherium bishopi Aguirre & Guérin 1974 is recorded from Nakali (9.5 Ma) and Samburu Hills in
Kenya (9.5 Ma) (Nakaya et al. 1999). ## Brachypotheres Brachypotheres are large hippopotamus-like hornless rhinos with very shortened but powerful legs. The outer wall of the upper cheek teeth show a trend to flattening. The tusks are large. The way of life was hippopotamus-like. As noted by M. Pickford *et al.* (1993, p. 109) the African species need revision. They are known from North, East and South Africa: Brachypotherium snowi (Fourtau 1920) is known from Wadi Moghara, Egypt and Jebel Zelten (17 to 16 Ma) in Libya. Brachypotherium heinzelini Hooijer, 1963 is reported from Arongo Uyoma (Early Miocene), Chemeron Formation-Northern Extension (5 to 4.5 Ma), Karungu (18 Ma) and Rusinga (18 Ma) in Kenya; Bukwa (between 17.5 and 18.5 Ma) and Napak (19.5 Ma) in Uganda; Karugamania (older than 7 Ma) and Sinda (more than 6 Ma) in Congo and Langental (18 Ma) in Namibia. Brachypotherium lewisi Hooijer & Patterson, 1972 is recorded from Kanapoi (4.5 Ma), Lothagam (7 Ma), Mpesida (6.5 Ma), Ngorora (12 to 11 Ma) in Kenya and Sahabi (6.5 Ma) in Libya. ## Chilotheres Although pertaining to a different subfamily *Chilotheridium* presents many convergences with the preceding group. It is a small short-legged rhino with small tusks, but there is one small horn in both sexes, and the manus is four-toed. The cheek teeth are hypsodont. It is known from East Africa (Hooijer 1971). Chilotheridium pattersoni Hooijer 1971 is present at Kirimum (15 Ma), Loperot (17 Ma), Ngorora (12 to 11 Ma), Ombo (16 Ma) and Rusinga (18 Ma) in Kenya; and Bukwa (ca 18 Ma) in Uganda. # Reference material I had the opportunity to study a great number of specimens of Miocene rhinos from Africa, particularly material preserved in the Natural History Museum, London. I had the possibility to study all the known material of *Chilotheridium pattersoni* from Loperot when it was in Holland. The holotype of *Diceros douariensis* is in Lyon, and the material from Baccinello V3 is preserved in Basle, Switzerland. Among the material in London there are different pieces from the three African species of *Brachypotherium*, good casts of skulls and teeth of *Paradiceros mukirii*, some specimens of *Aceratherium campbelli*, skulls and mandibles of *Aceratherium acutirostratum* and *Dicerorhinus leakevi*. Unfortunately, in the original description of Dicerorhinus leakeyi, D.A. Hooijer (1966, 1973) wrote that it is impossible to distinguish the postcranial material of that species from Aceratherium acutirostratum. Consequently postcranial bones of the two species are not separated in the London collections, and they are not numerous enough to enable distinction. But, although I have not seen it, I am convinced that such a distinction will be possible on the original material housed in the National Museums of Kenya in Nairobi. In the following tables the undifferenciated D. leakevi/A. acutirostrartum material is named MSUR. To cover up the absence of references for the postcranials of mediumsized African Aceratherium, I thus use a mixture of measurements taken on the European species Aceratherium tetradactylum (Middle Miocene) and A. incisivum (Upper Miocene), which pertain to the same lineage, for comparison; in the tables the mixture is labelled Aceratheres. Because large species of Dicerorhinus are so far unknown in the Miocene of Africa, I utilise Dicerorhinus schleiermacheri from the Upper Miocene of Europe for comparisons. Finally, to have a sample of large Miocene Diceros, I used the material from Pikermi (widely scattered in all the Natural History Museums of Europe) which is D. pachygnathus, and the material from Turkey which is housed in the Museum of Munich, Germany; the last one belongs to Diceros neumayri. In order to avoid the problems of disorder in the nomenclatural designation of D. pachygnathus, and of the differentiation between D. pachygnathus and D. neumayri (in my opinion close to but somewhat distinct from each other) I will refer to the regrouped material by the name Diceros gr. pachygnathus-neumayri. # THE LARGE RHINOCEROS FROM ARRISDRIFT, # Diceros australis sp. nov # Material - 2 large and 5 small fragments of mandibles with more or less important elements of their respective toothrows; - 2 lower incisors; - 10 isolated upper cheek-teeeth; - 13 isolated lower cheek-teeth; - 1 radius: - 3 ulnae (including 1 complete); - 6 carpals (2 magnums, 2 pyramidals, 1 semilunar, 1 pisiform); - 4 metacarpals (1 Mc II, 2 Mc III, 1 Mc IV); 1 tibia; TABLE 1. Compared dimensions of the mandible of *Diceros australis* nov. sp. ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | ARRISDRIFT | | | | | | | Dicer | os douariensi | .5 | | |---------------------------|-----------|-----------|-----------|-----------|------------|-------------|-------|---------------|------|---------| | n° | AD 556'94 | AD 300'97 | AD 313'98 | AD 437'97 | AD 223'97 | AD 478'95 | n | mean | min. | max. | | symmetry | R | L | R | R | R | | | 1,14,111 | | illu. | | | | | | | | | | | | | | Distance symphysis-heel | | 462 | | | | | 1 | 396 | | | | Depth horiz. ramus P2-P3 | | 67 | | 67.5 | | | 1 | 82.00 | | | | Depth horiz. ramus P3-P4 | | 80 | | | 77 | | 2 | 84.50 | 80 | 89 | | Depth horiz, ramus P4-M1 | 87.5 | 81 | | | | | 2 | 96.50 | 95 | 98 | | Depth horiz. ramus M1-M2 | 93.5 | 93 | | | | | 2 | 108.00 | 106 | 110 | | Depth horiz. ramus M2-M3 | 99 | 102.5 | 108 | | | | 1 | 100.00 | | | | Depth horiz. ramus M3 | 107 | 105 | | | | | 1 | 107.00 | | | | Width horiz. ramus P4-M1 | | 60 | | | about 43,5 | | 2 | 49.75 | 49.5 | 50 | | Width horiz. ramus M3 | 67 | 60.5 | 50 | | | | 2 | 57.50 | 57 | 58 | | AP diam, ascending ramus | 167 | | | | | | | | | | | Transv. diam. condyle | | | | | | 125.5 | Chilotheridium pattersoni | | | | | | P. mukirii | | B. heinzelini | | MSUR | | | n | mean | min. | max. | | Fort Ternan | | Langental | | Karungu | | Distance symphysis-heel | 2 | 423.00 | 404 | 442 | | | | | | | | Depth horiz. ramus P2-P3 | 1 | 92.00 | | | | 59.5 | | | | 60 | | Depth horiz. ramus P3-P4 | 3 | 84.50 | 71 | 98 | | 64 | | | | 59 | | Depth horiz. ramus P4-M1 | 3 | 89.00 | 77 | 99 | | 70 | | | | 64 | | Depth horiz. ramus M1-M2 | 3 | 91.67 | 77 | 104 | | 82.5 | | | | 66 | | Depth horiz. ramus M2-M3 | 3 | 91.67 | 85 | 103 | | 88.5 | | est. 82 | | 70 | | Depth horiz, ramus M3 | 2 | 101.75 | 101.5 | 102 | | 92 | | | | 78 | | Width horiz, ramus P4-M1 | | | | | | 45 | | | | 37 | | Width horiz, ramus M3 | | | | | | 47 | | 54 | | 41.5 | | AP diam. ascending ramus | | | | | | | | | | | | Transv. diam. condyle | | | | | | | | | | 98 | Figure 3: Teeth of *Diceros australis* nov. sp. 1: lower tusk AD 87'98 (photo V. Eisenmann); 2: Left D 4/ AD 292'94; 3: Right P 4/ AD 578'98; 4: Right M 3/ PQ AD 339; 5 and 8: Left D /3 PQ AD 635 (respectively labial and lingual view); 6 and 9: Left P /2 AD 86'98 (respectively labial and lingual view); 7 and 10: Left M /3 AD 200'98 (respectively labial and lingual view). Scale bar is 1 cm for the tusk and 3 cm for the cheek-teeth. 1 patella; 11 tarsals (3 tali, 4 calcanea, 1 cuboid, 2 naviculars, 1 first cuneiform); 9 metatarsals (4 Mt II including 2 complete, 4 complete or subcomplete Mt III, 1 complete Mt IV); 9 phalanges; 3 sesamoids. # Systematic Palaeontology All but one of the 81 fossil rhino specimens from Arrisdrift constitute a homogeneous sample pertaining to a very large species of cursorial rhino. The large rhino from Arrisdrift can be characterized as follows: - with the possible exception of Kenyatherium, whose teeth are totally different, it is the largest of the known African Miocene rhinos; - size and proportions of the metapodials and the other limb bones suggest an analogy especially with the Diceros gr. pachygnathus-neumayri of the Upper Miocene of the Near East, and to a lesser extent with Dicerorhinus schleiermacheri from the Upper Miocene of Europe; - the type of construction of the upper cheek teeth, especially the fourth premolar, is of Dicerotine type and presents strong resemblances to *Diceros* douariensis of the Upper Miocene of North Africa and Italy; - the mandible shows analogies with the Dicerotines, especially the apparently short symphysis. - the small reduced lower tusk could represent an evolutionary stage prior to the loss of the entire anterior dentition. Thus this rhino is a large new species of Dicerotine, which I name *Diceros australis* nov. sp.; it is so far the oldest known species of the sub-family. Its definition is as follows: TABLE 2. Compared dimensions of the upper cheek teeth of Diceros australis nov. sp ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. #### ARRISDRIFT M 1/ M 2/ M 3/ P 4/ ap ap tr ap the central one. absolute length anat. length AD 292'94 AD 578'98 AD 649'97 AD 228'97 AD 285'95 PQ AD 339 PQ AD 2697 PQ AD 2661 PD AD 1103 | D 4/ | ар | 47 | | | | | | | | | |---------|-----------------|-------------|-------|-----------|----------|-----------|-------------|-----------------|------|------| | | tr | 47 | | | | | | | | | | M 1/ | ap | | | | 59 | | | | | | | | tr | | | | 56.5 | | | | | | | M 2/ | ap | | | | | 58 | | | | | | | tr | | | | | 62.5 | | | | | | M 3/ | absolute length | | | | | | 64.5 | 65.5 | 66.5 | 65.5 | | | anat. length | | | | | | 55 | 53 | 52 | 54 | | | tr | | | | | | 62 | 62 | 61 | 60 | | P 4/ | ap | | 43.5 | 37.5 | | | | - | | .00 | | | tr | | 60.5 | 54 | D. doua | riensis | | | | | | B. snowi | | | | | | | n | mean | min. | max. | | n | mean | min. | max. | | D 4/ | ap | 1 | 44.00 | | | | 0 | | | | | | tr | 1 | 49.00 | | | | 0 | | | | | M 1/ | ap | 2 | 60.25 | 59 | 61.5 | | | 61.50 | 55 | 68 | | | tr | 2
3
3 | 61.33 | 59 | 64 | | 2 | 71.00 | | | | M 2/ | ap | 3 | 62.83 | 60 | 67.5 | | | 67.00 | 63 | 71 | | | tr | 2 | 68.75 | 66.5 | 71 | | 2
2
0 |
76.50 | 74 | 79 | | M 3/ | absolute length | 1 | 63.00 | | | | 0 | | | | | | anat. length | 3 | 57.33 | 50 | 64 | | 1 | 63.00 | | | | | tr | 3 | 61.17 | 59 | 64 | | 0 | (Martin Martin | | | | P 4/ | ap | 2 2 | 40.50 | 37.5 | 43.5 | | 1 | 49 | | | | | tr | 2 | 57.25 | 54 | 60.5 | | 1 | 69 | | | | Paradic | eros mukirii | | | Dicerorh. | leakevi | A. campbe | lli | | | | | | | Fort Ternan | | Rusinga | icane ji | i. campoe | | | | | | D 4/ | ap | - or remain | | rasingu | | | | | | | | - " | tr | 50 48 56 53 43 56.5 Diagnosis: a very large cursorial rhinoceros of the Dicerotine type. Upper cheek teeth brachyodont, with a more or less continuous crenellated inner cingulum, and a crochet as the only or main internal fold. Ectoloph of the upper premolars with a strong parastyle, paracone fold thick but not very prominent and no mesostyle nor metacone fold. Upper molars possess on their ectoloph a large paracone fold and a weak vertical bulge in the middle of it, and a protocone weakly constricted on its anterior face. Tall and slim but sturdy limb bones. Lateral and medial metapodials very long with respect to 31.5 Locus typicus and Stratum typicum: Arrisdrift, Sperrgebiet, Southern Namibia; Lower Middle Miocene, about 17 Ma. Derivatio nominis: from «austral» = southern; D. australis is the most southern Tertiary Diceros ever found. Holotype: Left third metacarpal AD 52'97 (Figure 5: 3 and 4). Ascribed material: Left half mandible AD 300'97; right upper fourth premolar AD 578'98 (Figure 3: 3); left upper fourth milk molar AD 292'94 (Figure 3: 2); right upper third molar PQ AD 339 (Figure 3: 4); left lower second premolar AD 86'98 (Figure 3: 6 and 9); left lower third molar AD 200'98 (Figure 3: 7 and 10); left lower third milk molar PQ AD 635 (Figure 3: 5 and 8); left radius PQ AD 3099; AD 52'97; left astragalus AD 619'94 (Figure 1: 2); right calcaneum AD 50'97 (Figure 1: 1); right third metatarsal AD 618'94 (Figure 5: 1 and 2). The material is housed in the Geological Survey of Namibia in Windhoek. # Description #### Mandible 58 68.5 54 47.5 49.5 48 Of the six specimens which are all incomplete, two possess an important part of the horizontal ramus, with probably a very short symphysis (none showing the anterior end) whose maximum height is 35 mm. In the two cases the posterior border of the symphysis at the middle P/2 level; for *Diceros douariensis* the symphysis is 100 mm long and 43 mm high, with the level of the posterior border is between P /2 and P /3; the posterior border is at the anterior part of P /4 in D. pachygnathus. Whereas the anterior part of the horizontal ramus is shallower, the posterior part (from about the M /2 level) has dimensions comparable with D. douariensis (Table 1). Middle-sized African Aceratheres and Dicerorhines are much smaller, as is Paradiceros, and Chilotheridium pattersoni shows different proportions. Symphysis shortness suggests a very weak development or an absence of lower incisors, a character of the Dicerotine group. # Lower incisors Two lower tusks (in fact incisors and not canines as reported by Hooijer 1971) were recovered. AD 88'98 looks like a vestigial tooth, is knob-shaped and unworn. Its total length is 41.5 mm including 11 mm for the crown, the crown base transverse diameter is 9.5 mm, and its dorso-ventral diameter is 11 mm. It could be a dI /1. AD 87'98 is a right lower incisor, feebly worn (Figure 3:1), it is 84 mm long (including 24 mm for the crown); at the crown base the transverse diameter is 19 mm, and its dorso-ventral diameter is 13.5 mm; the bevelled wear surface is 11 mm long and 10 mm wide; enamel thickness indicates a permanent tooth, i.e. an I /2. The cross section is an asymmetrical flattened ellipse. Chilotheridium tusks are much larger: after Hooijer 1971, the cross sections are respectively 22 x 17, 30 x 18, 30 x 15 and 40 x 25 mm, with crown length (for much worn specimens) between 44 and 55 mm; the shape is different, being more asymmetrical (Hooijer 1971, Plate 6), and there is a cingulum at the base of the crown. Such reduced dimensions would preclude the use of the Arrisdrift tusk as an effective weapon, whereas tuskbearing living (and thus fossil) rhinos have much larger tusks and use them as bayonets. I consider the small reduced lower adult tusk from Arrisdrift to be a representative of an evolutionary stage prior to the loss of the entire anterior dentition, the loss being accomplished in the Upper Miocene Dicerotine. # Upper cheek teeth A well preserved D 4/ is weakly worn (Figure 3:1): its maximum height of 38 mm gives it a hypsodonty index of 81. The powerful paracone fold constitutes the sole relief on the outer wall, and the crochet is the only internal fold. There is a discontinuous crenellated lingual cingulum, mainly under the mouth of the inner valley. Its dimensions are about the same as these of D. douariensis (Table 2). Two complete specimens of M 1/ or 2/ are known; one of them (AD 228'97), probably an M 1/, is only slightly worn and has a hypsodonty index of about 85. The ectoloph shows a large paracone fold and a weak vertical bulge in the middle of it. The crochet is the only internal fold. The protocone is weakly constricted on its anterior face. There is a weak crenellated inner cingulum under the mouth of the inner valley. The dimensions (Table 2) are slightly inferior to D. douariensis and largely inferior to A. campbelli but the two teeth are larger than those of D. leakeyi. The four available specimens of M 3/ show the same morphology (Figure 3:4): a strong paracone fold, a crochet as the only inner pleat, a weakly constricted protocone, an incomplete lingual cingulum and a crenellated postero-labial cingulum extending onto the posterior quarter of the outer surface. Its dimensions are the same as for three M 3/ of D. douariensis. Two right specimens of P 4/ have been recovered, one of them (AD 578'98) in a medium state of wear and the other (AD 649'97) very worn. The ectoloph has a strong parastyle, and a paracone fold which is thick but not very prominent; there is no mesostyle nor metacone fold. The sole inner fold is a strong crochet (but AD Figure 4: Diceros australis nov. sp: Simpson diagram of the radius compared with that of other Miocene rhinoceroses. Reference is Diceros bicornis. 1: Length; 2: proximal transverse diameter; 3: proximal anteroposterior diameter; 4: diaphysis transverse diameter; 5: diaphysis anteroposterior diameter; 6: distal transverse diameter; 7: distal anteroposterior diameter. TABLE3 Compared dimensions of the lower cheek teeth of Diceros australis nov. sp ab=anteroposterior: artic=articular: diam=diameter: dist= distal: horiz=horizantal: nrov=nrovimal: tr= | | AD
223'97 | | 37 | | |--|--------------|--|--|--| | | AD
437'97 | 32
43
43 | | P. mukirii Fort Ternan 35 27 42 26 43.5 26 43.5 27 21 42 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27 | | | AD
313'98 | 58 | | | | sverse. | AD
30097 | 46.5
37.5
55
39
about 60 | 44.5
35.5
83
157 | MSUR
28.50
16.00
16.00
39.00
30.00
47.00
32.00
32.50
23.50
23.50
27.50
66.00 | | ap=anteroposterior; artic=articular; diam=diameter; dist=distal; horiz=horizontal; prox=proximal; tr=transverse. | AD
556'94 | 45
50.5
37
59
35.5 | 40
32.5
156.5 | | | proxima | PQ AD
330 | | 40.5 | Hax. 43.5 33 32.5 63 34 25 24 25 77 74.5 | | tal; prox= | PQ AD
827 | 38 | | 40.5
27
29.5
50.5
29.5
20
20
14
25.5
34
25.5
53 | | = horizon | AD
432'95 | 39 | | mean mean 42.00 30.00 54.50 31.00 59.50 33.62 23.12 16.00 33.62 26.17 67.00 | | tal; horiz- | AD
157'95 | 38 | | Chil. pattersoni
n
2
2
2
2
4
4
4
4
4
4
4 | | dist=dist | AD
86'98 | 30 | | 5 | | liameter; | PQ AD
134 | 33 | | 8. snowi
51.50
35.00
58.00
36.50
36.50
22.00
22.00
26.50
44.50
31.50 | | ; diam=¢ | AD
378'94 | 31.5 | | je | | articular | AD
163'97 | 35 | | B. heinzelini
Langental
48
34.5
50
36
60
about 38 | | r; artic= | AD
468'97 | 52.5 | | | | posterio | AQ
200'98 | 59 | | тах.
49
58
35.5 | | antero | AD
44'98 | 38.5 | | min.
47
55.5
32 | | ab | PQ AD
635 | 45 25.5 | | mean mean 48.00 30.50 56.75 33.75 54.00 18.50 25.00 18.50 33.00 43.00 80.00 80.00 | | | AD
8'98 | 30 | | Appearation of the control co | | | | 4 | д н Б | AND CONTROL OF THE CONTROL OF CONTROL OF THE CONTROL OF | | | ARRISDRIFT | D / 3
D / 4
M / 1
M / 3
P / 2
P / 3 | P /4
Length P/3-P/4
Length M/1-M/3 | D /2 D /4 D /4 M /1 M /2 M /3 P /2 P /3 P /4 Length P/3-P/4 Length M /1 M /3 | 649'97 shows a closed medifossette). There is a strong, continuous and crenellated lingual cingulum, and no trace of constriction of the protocone (Figure 3:3). Such a morphology, especially that of the outer wall - the best odontological character for rhino determinations, see Guérin 1980 a - is very close to that seen in *Diceros douariensis* and *D. gr. pachygnathus-neumayri* from Pikermi, as are the dimensions (Table 2). ## Lower cheek teeth Lower deciduous molars include one D/2 and one D/3. The latter tooth, which is weakly worn, shows sharp V-shaped internal valleys with no difference in level; traces of a labial cingulum are to be seen on the posterior lobe (Figure 3: 5 and 8). Dimensions (Table 3) are very similar to those (43 x 24 mm) of an isolated D/3 from Pikermi (Museum of Bologna, Italy). There is one incomplete isolated M/2, and there are three isolated M/3, the latter in a good state of preservation (Figure 3: 7 and 10). These are wider than the only known M/3 of D. douariensis, and are about as large as those of Brachypoptherium heinzelini and B. snowi, but much wider than Chilotheridium, Paradiceros and the medium-sized African Acerathere and Dicerorhinine (Table 3). The internal valleys have, for the anterior one, a sharp V-shaped transverse profile; the posterior valley is V-shaped in one case, U-shaped in the other two, the difference of level being moderate or strong. There are no lingual or labial cingula, but all the M/3 present a crenellated posterior cingulum of a very diverse shape. Two isolated specimens of P/2, three of P/3 and one of P/4 were available for study. The P/3 n° AD 157'95 shows no trace of wear and possesses a hypsodonty index of 108; the two internal valleys are V-shaped with a strong level difference; there are no labial nor lingual cingula but the anterior and posterior ones run slightly onto the labial surface, as also observed in the P/2 (Figure 3: 5 and 8). Lower cheek teeth included in tooth rows present the same characters; the most complete row (AD 300'97) has the lengths of the molar segment and of the two last premolars very close to the values observed in *D. douariensis* (Table 3) and *D. gr. pachygnathus-neumayri*. # Radius and ulna The radius is longer than those of the largest *D*. gr. pachygnathus-neumayri and *D*. schleiermacheri, the last being more slender. The undifferentiated Acerathere/Dicerorhine from Rusinga, which possesses the same dimensions and proportions as the middle-sized Upper Miocene Aceratheres of Europe, is smaller and with different proportions. The radius of *Chilotheridium* and especially *B*. snowi is stockier and much shorter (Table 4; Figure 4). TABLE 4. Compared dimensions of the radius of *Diceros australis* nov. sp ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | | | ARRISE | RIFT | | MSUR | | | B. snowi | | | | | |---------------|--------|-----------|---------|--------|-------------|---------------|--------|------------|---------|-------|-------------|-------------| | | | PQ AD 3 | 3099 | | Rusinga | | J | ebel Zelte | n | | | | | Length | | 435 | | | 305 | | | 286.5 | | | | | | prox tr | | 113 | | | 95 | | | 86.5 | | | | | | prox ap | | 70.5 | | | 57.5 | | | 51.5 | | | | | | diaphysis tr | | 64.5 | | | 51.5 | | | 48.5 | | | | | | diaphysis ap | | 42 | | | 47.5 | | | 40 | | | | | | dist tr | | 115 | | | 92 | | | 86 | | | | | | dist ap | | 83 | | | 69 | | | 53.5 | | | | | | dist artic tr | | 103 | | | | | | 80.5 | | | | | | dist artic ap | | 54 | | | | | | 41.5 | | | | | | | D. gr. | pachygna | thus/ne | umayri | | | Chilot | heridium | patters | oni | | | | | n | mean | min. | max. | Stand. dev. | . coeff. var. | n | mean | min. | max. | | | | Length | 9 | 364.22 | 342 | 375 | 9.536 | 2.62 | 1 | 327.00 | 327 | 327 | | | | prox tr | 9 | 100.61 | 95 | 107 | 3.790 | 3.77 | 2 | 94.50 | 94 | 95 | | | | prox ap | 9 | 65.00 | 55 | 72 | 5.315 | 8.18 | 1 | 53.00 | 53 | 53 | | | | diaphysis tr | 9 | 59.11 | 55 | 63 | 2.667 | 4.51 | 2 | 45.00 | 44 | 46 | | | | diaphysis ap | 9 | 38.78 | 33 | 47 | 4.402 | 11.35 | 2 | 32.50 | 32 | 33 | | | | dist tr | 9 | 104.00 | 95 | 109.5 | 4.488 | 4.32 | 2 | 93.00 | 91 | 95 | | | | dist ap | 9 | 65.78 | 60 | 71.5 | 3.833 | 5.83 | 2 | 56.75 | 54.5 | 59 | | | | dist artic tr | | | | | | | 2 | 85.50 | 85 | 86 | | | | dist artic ap | | | | | | | | | | | | | | | D. sch | leiermach | eri | | | | Acera | theres | | | | | | | n | mean | min. | max. | Stand. dev | . coeff. var. | n | mean | min. | max. | Stand. dev. | coeff. var. | | Length | 5 | 369.30 | 351.5 | 396 | 18.62 | 5.04 | 6 | 341.17 | 316 | 348 | 12.46 | 3.65 | | prox tr | 4 | 99.38 | 94.5 | 104.5 | 4.33 | 4.35 | 9 | 86.67 | 78.5 | 100 | 7.96 | 9.19 | | prox ap | 3 | 64.00 | 63 | 66 | 1.73 | 2.71 | 10 | 54.25 | 50.5 | 59.5 | 2.78 | 5.13 | | diaphysis tr | 5 | 54.20 | 48 | 57.5 | 3.78 | 6.98 | 6 | 48.33 | 44 | 52.5 | 3.66 | 7.56 | | diaphysis ap | 5 | 40.60 | 38 | 43 | 1.78 | 4.39 | 6 | 37.92 | 33 | 42.5 | 3.65 | 9.63 | | dist tr | 5 | 95.20 | 87 | 100 | 5.71 | 6.00 | 6 | 85.17 | 75 | 103.5 | 10.61 | 12.45 | | dist ap | 5 | 65.60 | 61 | 69 | 3.99 | 6.08 | 7 | 54.50 | 50 | 61 | 3.93 | 7.20 | | dist artic tr | 4 | 82.12 | 79 | 88.5 | 4.39 | 5.34 | 5 | 72.60 | 68.5 | 79.5 | 4.89 | 6.74 | | dist artic ap | 4 | 44.75 | 44 | 45 | 0.50 | 1.12 | 5 | 38.70 | 36.5 | 42.5 | 2.41 | 6.24 | | | | | | | | | | | | | | | The proximal articulation does not possesses the very undulating anterior border nor the large re-entrant angle at the level of the coronoid process which characterize the genus *Ceratotherium*. But it shows a transversely elongated lateral facet the anterior border of which is only slightly retracted in relation to the anterior edge of the medial facet, and whose posterior border, regularly concave, constitutes moreover an obtuse angle with the posterior edge of the medial facet. These last characters speak in favour of the proximity of the large Arrisdrift rhino to the Dicerotine subfamily. Three ulnae have been recovered from Arrisdrift of which one only (AD 273'97) is complete; for a total length of 533 mm its proximal articular diameter is 95 mm and the proximal antero-posterior diameter is 157 mm. The other two pieces are a distal epiphysis of an adult specimen and the proximal end of a juvenile one. ## Carpus The semilunar presents an anterior surface whose width (42 mm) is similar to the height. The distal point of that surface, sited near the midline, is rounded. The length is 69.5 mm. One of the two known pyramidals (= cuneiforms) is well preserved; it is very large, and markedly wider (71.5 mm) than tall (63 mm). The only pisiform in the collection has a length of 70 mm, and is 29 mm wide; the height is 52 mm. One only of the two magnums found at Arrisdrift (AD 538'97) is attributable to the large rhino species. Its dimensions are as follows: Total length: 104 mm Anterior width: 56 mm Anterior height: 45 mm Maximum height: 74 mm Sus-articular height: 72 mm Such dimensions and proportions differ from those of *D. schleiermacheri* but are close to those of three magnums of *Diceros* gr. *pachygnathus-neumayri*; they are totally different from that of the other magnum recovered in the same site (Figure 1: 3-5 and Figure 2). In anterior view the bone presents a rhomboidal outline, rounded distally, and is higher than wide; the distal articulation is about as wide in its fore part as in its posterior part. # Metacarpal II The only known specimen, a left one, is longer than the largest known specimens of *Diceros* gr. *pachygnathus-neumayri* and *Dicerorhinus schleiermacheri*, and is distinctly slender. That of *Chilotheridium* is very short and stocky, and that of true Aceratheres is shorter and shows very different proportions (Table 5). The proximal articulation is long and narrow, crescentshaped with a distinct notch on its posterior edge. On the lateral surface of the proximal epiphysis there is only one #### TABLE 5. Compared dimensions of the second metacarpal of *Diceros australis* nov. sp ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | | | ARRISDR | IFT | | | | | | | | | | |---------------|------|-------------|------------|-------|------------|--------|-------|--------------|-----------|-------|-------|--------| | | | AD 536'97 | | | | | | | | | | | | Length | | 188 | | | | | | | | | | | | prox tr | | 41 | | | | | | | | | | | | prox ap | | 54 | | | | | | | | | | | | diaphysis tr | | 32.5 | | | | | | | | | | | | diaphysis ap | | 25 | | | | | | | | | | | | dist max tr | | 43 | | | | | | | | | | | | dist tr artic | | 42 | | | | | | | | | | | | dist ap | | 45.5 | | | | | | | | | | | | | D. 8 | gr. pachygn | athus/neur | nayri | | | Chile | otheridium p | attersoni | | | | | | n | mean | min. | max. | Stand. | coeff. | n | mean | min. | max. | | | | Length | 9 | 156.33 |
140.5 | 169 | dev. | var. | 2 | 120.50 | 120 5 | 120.5 | | | | prox tr | 9 | 44.67 | 37 | 54 | 8.842 | 5.66 | 2 | 129.50 | 129.5 | 129.5 | | | | | 4 | 46.50 | 40 | 51 | 5.385 | 12.06 | 2 | 43.00 | 42 | 44 | | | | prox ap | | | | | 4.231 | 9.10 | 2 | 37.25 | 37 | 37.5 | | | | diaphysis tr | 9 | 40.78 | 33.5 | 44.5 | 4.374 | 10.73 | 2 | 31.75 | 31 | 32.5 | | | | diaphysis ap | | 24.33 | 20 | 26 | 1.750 | 7.19 | 2 | 16.50 | 16 | 17 | | | | dist max tr | 9 | 48.89 | 40 | 54 | 5.355 | 10.95 | 2 | 39.75 | 37 | 42.5 | | | | dist tr artic | 9 | 43.17 | 34.5 | 48.5 | 4.644 | 10.76 | 2 | 34.00 | 31 | 37 | | | | dist ap | 9 | 42.39 | 38.5 | 46 | 4.583 | 6.09 | 2 | 36.25 | 36 | 36.5 | | | | | D. s | chleiermac | heri | | | | | Aceratheres | | | | | | | n | mean | min. | max. | Stand dev. | coeff. | n | mean | min. | max. | Stand | coeff. | | Length | 3 | 168.83 | 156.5 | 179 | 11.41 | 6.76 | 5 | 133.20 | 120.5 | 148 | 13.30 | 9.98 | | prox tr | 3 | 43.00 | 40 | 47 | 3.61 | 8.39 | 3 | 33.67 | 32 | 36 | 2.08 | 6.18 | | prox ap | 3 | 42.50 | 40 | 44 | 2.18 | 5.13 | 3 | 33.17 | 29.5 | 40 | 5.92 | 17.86 | | diaphysis tr | 4 | 36.88 | 34 | 40.5 | 2.72 | 7.37 | 4 | 32.38 | 28.5 | 36 | 3.09 | 9.55 | | diaphysis ap | 4 | 22.50 | 18.5 | 27 | 3.54 | 15.71 | 4 | 19.00 | 17 | 21.5 | 1.96 | 10.30 | | dist max tr | 3 | 44.67 | 40 | 47 | 4.04 | 9.05 | 4 | 37.75 | 36 | 40 | 1.66 | 4.39 | | dist tr artic | 3 | 40.17 | 39 | 41 | 1.04 | 2.59 | 4 | 34.38 | 32.5 | 36 | 1.49 | 4.34 | | dist ap | 3 | 40.33 | 39.5 | 41.5 | 1.04 | 2.58 | 4 | 35.62 | 32 | 38.5 | 2.69 | 7.55 | | | | | | | | | | | | | | | Figure 5. Third metapodials of *Diceros australis* nov. sp. 1: Mt III AD 618'94, front view; 2: Mt III AD 618'94, posterior view; 3: Mc III AD 52'97, front view; 4: Mc III AD 52'97, posterior view. Scale bar is 3 cm. articular facet, constricted in its medium part and expanding onto the whole height of the bone. The transverse section of the diaphysis is a rounded triangle. ## Metacarpal III Two left Mc III have been recovered complete and the largest is marginally longer than the largest known specimens of *Diceros gr. pachygnathus-neumayri* and *Dicerorhinus schleiermacheri*, but are a little more slender. *Brachypotherium snowi* and *B. heizelini* are shorter and stockier, as is *Chilotheridium*. True Aceratheres show more or less analogous proportions but are much smaller. The Simpson diagram shows that the Arrisdrift Mc III does not belong to a Brachypothere, nor to an Acerathere, whereas analogies with *Diceros* gr. *pachygnathus-neumayri* and *Dicerorhinus schleiermacheri* are noticeable (Table 6, Figures 5 and 6). The proximal articulation is very wide, triangular, and with a rectilinear anterior edge. There are two articular facets on the lateral surface of the proximal epiphysis; the anterior one is pentagonal with two parts, the lowest of which is more or less expanded anteroposteriorly according to the observed specimen; the posterior facet, located lower than the anterior one, is a rounded triangle whose width varies on each specimen. On the medial surface of the epiphysis there is a small inverted S-shaped facet whose height is variable. The transverse section of the diaphysis is trapezoidal, with a slightly convex anterior edge and a slightly concave posterior one; the lateral edge is straight and longer than the medial edge whose profile is more or less straight. ## Metacarpal IV This bone is much more longer and more slender than the largest measured specimens of *Diceros* gr. pachygnathus-neumayri and *Dicerorhinus* schleiermacheri (Table 7). The proximal articulation is triangular, a little longer than broad; such a width/height ratio is inverted for short-legged rhinos such as *Brachypotherium* and *Chilotheridium*. On the medial surface of the proximal epiphysis there are two articular facets; the anterior one is long and low, and semi-elliptical, while the posterior one is a vertical ellipse, much taller than broad. # Tibia Only one tibia was found, and it is badly damaged especially the proximal epiphysis, but the total length can nevertheless be measured. As for the Mc IIIs the tibia is marginally longer than the largest known specimens of Diceros gr. pachygnathus-neumayri and Dicerorhinus schleiermacheri, and is more slender (Table 8). Surprisingly enough, the dimensions of a broken distal epiphysis of a Diceros cf. douariensis from Baccinello V3 are identical to those of Arrisdrift! #### Astragalus Three astragali have been recovered of which two are complete (Figure 1: 2). Dimensions (Table 9) and proportions (Figure 4) are close to those of *Diceros* gr. pachygnathus-neumayri, and do not differ much from *Dicerorhinus schleiermacheri*. The astragalus of *Brachypotherium snowi* is slightly larger but markedly lower, and it is proportionally the same for Figure 6: Diceros australis nov. sp: Simpson diagram of the third metacarpal compared with that of other Miocene rhinoceroses. Reference is Diceros bicornis. 1: length; 2: proximal transverse diameter; 3: proximal anteroposterior diameter; 4: diaphysis transverse diameter; 5: diaphysis anteroposterior diameter; 6: distal maximal transverse transverse diameter; 7: distal transverse articular diameter; 8: distal anteroposterior articular diameter. TABLE 6. Compared dimensions of the third metacarpal of *Diceros australis* nov. sp. ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | | | ADDICEDO | mar. | | | n | | | | | | | |---------------|-------|------------|-------------|------|-------------|--------------|-------|--------------|-----------|------|-----------|---------------| | | | ARRISDR | | | | B. snowi | | . heinzelini | | | | | | Lamadh | 4 | | AD 243 '95 | | | Jebel Zelten | R | lusinga | | | | | | Length | | 200 | 212 | | | 159.5 | | 149.5 | | | | | | prox tr | | 68 | 63.5 | | | 74.5 | | 66 | | | | | | prox ap | | 58 | 51.5 | | | 57 | | 52 | | | | | | diaphysis tr | | 57.5 | 58.5 | | | 60.5 | | 53 | | | | | | diaphysis ap | | 27 | 26.5 | | | 22.5 | | 24.5 | | | | | | dist max tr | | 65 | 63.5 | | | 73.5 | | 72.5 | | | | | | dist tr artic | | 60 | 60 | | | 58 | | 58.5 | | | | | | dist ap | | 48 | | | | 54.5 | | 46.5 | | | | | | | D. g | r. pachygn | athus/neuma | yri | | | Chile | theridium p | attersoni | | | | | | n | mean | min. | max. | Stand. dev. | coeff. var. | n | mean | min. | max. | | | | Length | 9 | 187.17 | 181 | 198 | 5.668 | 3.03 | 3 | 157.67 | 150 | 169 | | | | prox tr | 6 | 65.50 | 62.5 | 74.5 | 4.461 | 6.81 | 3 | 54.33 | 50 | 61 | | | | prox ap | 8 | 54.94 | 52 | 59 | 2.427 | 4.42 | 3 | 41.67 | 37 | 45 | | | | diaphysis tr | 11 | 63.55 | 59 | 69 | 3.020 | 4,75 | 3 | 40.83 | 39 | 43 | | | | diaphysis ap | 9 | 24.56 | 22 | 26.5 | 1.333 | 5.43 | 3 | 19.17 | 17.5 | 21.5 | | | | dist max tr | 9 | 71.22 | 66.5 | 76 | 2.705 | 3.80 | 3 | 54.83 | 51 | 61 | | | | dist tr artic | 10 | 56.15 | 52 | 59 | 2.174 | 3.87 | 3 | 46.33 | 44.5 | 49.5 | | | | dist ap | 10 | 48.05 | 45 | 53 | 2.619 | 5.45 | 3 | 38.17 | 37.5 | 39 | | | | | D. se | chleiermac | heri | | | | А | ceratheres | | | | | | | n | mean | min. | max. | Stand, dev. | coeff, var. | n | mean | min. | max. | Stand dev | . coeff. var. | | Length | 6 | 195.42 | 181 | 204 | 8.55 | 4.37 | 10 | 163.75 | 139.5 | 181 | 13.38 | 8.17 | | prox tr | 9 | 62.67 | 58 | 69 | 3.70 | 5.90 | 10 | 53.35 | 50 | 59.5 | 3.09 | 5.80 | | prox ap | 5 | 50.30 | 47.5 | 52 | 1.99 | 3.95 | 10 | 43.80 | 40 | 47.5 | 2.41 | 5.49 | | diaphysis tr | 9 | 55.78 | 49.5 | 66 | 5.36 | 9.61 | 11 | 45.55 | 42 | 49 | 2.25 | 4.95 | | diaphysis ap | 8 | 23.38 | 22 | 25.5 | 1.19 | 5.08 | 10 | 20.20 | 17 | 24.5 | 2.16 | 10.71 | | dist max tr | 7 | 63.50 | 60 | 69 | 3.15 | 4.96 | 10 | 55.25 | 49.5 | 60.5 | 3.68 | 6.65 | | dist tr artic | 7 | 52.14 | 49 | 56 | 2.48 | 4.75 | 10 | 47.00 | 38.5 | 52 | 3.89 | 8.29 | | dist ap | 7 | 46.71 | 45 | 49 | 1.41 | 3.02 | 7 | 41.71 | 38 | 44.5 | 2.56 | 6.15 | | | | | | | | 5.02 | | | 50 | 11.5 | 2.50 | 0.15 | TABLE7: Compared dimensions of the fourth metacarpal of *Diceros australis* nov. sp. ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | ap-anteropo | Sterior | , artic-arti | cuiai, uia | m- uiai | neter, dist- | uistai, nori | 2-110 | rizontai, pro | x-prox | aimai, t | i-transver | sc. | |--------------------|---------|--------------|------------|---|--------------|---------------|-------|---------------|----------|-----------|--------------|-----------| | | Α | RRISDRIFT | | | | | MSI | UR | | | | | | | Α | D 404'97 | | | | | N | moyenne | mini | maxi | | | | Length | | about 188 | | | | | 2 | 158.75 | 152.5 | 165 | | | | prox tr | | 55 | | | | | 1 | 52.00 | | | | | | prox ap | | 51.5 | | | | | 1 | 46.00 | | | | | | diaphysis tr | | 37.5 | | | | | 2 | 34.00 | 34 | 34 | | | | diaphysis ap | | 27 | | | | | 2 | 21.25 | 20.5 | 22 | | | | dist max tr | | 51 | | | | | 2 | 46.25 | 42 | 50.5 | | | | dist tr artic | | 45 | | | | | 2 | 43.00 | 40 | 46 | | | | dist ap | | 53 | | | | | 2 | 38.75 | 37 | 40.5 | | | | | D. gr | . pachygnath | us/neuma | yri | | | Chi | otheridium p | atterson | i | | | | | n | mean | min. | max. | Stand. dev | . coeff. var. | n | mean | min. | max. | Stand. dev. | | | Length | 8 | 144.81 | 134 | 156 | 9.059 | 6.26 | 3 | 125.17 | 121.5 | 129.5 | 4.04 | | | prox tr | 8 | 47.81 | 43 | 53 | 3.535 | 7.39 | 2 | 35.50 | 34 | 37 | 2.12 | | | prox ap | 8 | 42.12 | 37 | 47,5 | 3.410 | 8.09 | 2 | 38.00 | 32 | 44 | 8.49 | | | diaphysis tr | 8 | 37.69 | 31.5 | 41 | 3.162 | 8.39 | 3 | 26.17 | 23 | 30.5 | 3.88 | | | diaphysis ap | 8 | 24.75 | 20 | 29 | 2.726 | 11.01 | 3 | 18.00 | 17.5 | 18.5 | 0.50 | | | dist max tr | 8 | 46.69 | 39 | 52.5 | 4.166 | 8.92 | 3 | 42.17 | 37 | 47.5 | 5.25 | | | dist tr artic | 8 | 43.06 | 37.5 | 47 | 3.590 | 8.34 | 3 | 35.50 | 33.5 | 37 | 1.80 | | | dist ap | 8 | 41.00 | 37.5 | 46 | 2.712 |
6.62 | 3 | 34.33 | 33 | 37 | 2.31 | | | | D sc | hleiermachei | ri | | | | | Aceratheres | | | | | | | n | mean | min. | max. | | | n | mean | min. | max. | Stand. dev. | coeff var | | Length | 1 | 145.00 | | mux. | | | 5 | 144.50 | 141.5 | 147.5 | 2.48 | 1.71 | | prox tr | 2 | 49.25 | 47.5 | 51 | | | 7 | 42.86 | 38.5 | 48 | 3.58 | 8.35 | | prox ap | 1 | 43.00 | 41.3 | 31 | | | 7 | 39.21 | 32 | 42 | 3.32 | 8.45 | | diaphysis tr | 2 | 32.50 | 32.5 | 32.5 | | | 5 | 30.10 | 27.5 | 32.5 | 2.38 | 7.91 | | diaphysis ap | 2 | 21.50 | 21 | 22 | | | 5 | 22.40 | 19 | 25 | 2.33 | 10.40 | | dist max tr | 2 | 45.25 | 43 | 47.5 | | | 5 | 39.00 | 37.5 | 40 | 0.94 | 2.40 | | dist tr artic | 2 | 42.25 | | | | | | | | | | | | | 2 | 40.50 | 38.5
40 | 46
41 | | | 5 | 38.90 | 36
34 | 43
40 | 2.90
2.38 | 7.46 | | dist ap
0,15 — | 2 | 40.50 | 40 | 41 | | | 3 | 37.60 | 34 | 40 | 2.38 | 6.34 | | 0,13 | | | | | | | | | | | | | | | * | \ | | | | | | | | | | | | 0,1 + | | | | | | - | _ | | <i>*</i> | | - Arrisdrift | | | | ٥ | | | _ | | <u>_</u> ~ | | | / | | - MSUR | | | 0,05 + | | 70 | | ======================================= | | _ | | ~ | * | _ | | | | | • | , | | -• | | | | | _ | - | snowi | | | 0 | | 1 | | + | | + | | | 1 | ─ | — pachygn | athus | | ٩ | 23: | 2 | - | 3 | 4 | 5 | | 6 | 1 | | schleiern | nacheri | | -0,05 + | | | | | | A | | -11 | | <u></u> _ | - Acerathe | eres | | | | | | | | | / | 4/ | | - | — patterso | | | -0,1 + | | | | | | | | Y | L | | parterso | | | | | | | | | | | | | | | | | -0,15 [⊥] | | | | | | | | | | | | | Figure 7: Diceros australis nov. sp: Simpson diagram of the astragalus compared with that of other Miocene rhinoceroses. Reference is Diceros bicornis.1: transverse diameter; 2: height; 3: anteroposterior medial diameter; 4: distal articular transverse diameter; 5: distal articular anteroposterior diameter; 6: trochlea upper width; 7: distal maximal transverse diameter. Chilotheridium. The dimensions are inferior and the proportions are different for the true Aceratheres, and also for the undifferenciated sample of *D. leakeyi-A. acutirostratum*, whose similarity with true Aceratheres is noticeable. Among the qualitative characters, the tubercle on the lower part of the medial surface is located in the middle, well above the articular edge. Individual variation observed in the three astragali from Arrisdrift concerns mainly the height of the neck, the obliquity of the medial edge of the distal articulation, and the posterior development of the upper end of the medial lip. ### Calcaneum A damaged juvenile and three adult calcanei are known, of which two are complete (Figure 1: 1). As for the astragalus, their dimensions (Table 10) and proportions are close to *Diceros* gr. pachygnathus-neumayri and TABLE 8. Compared dimensions of the tibia of Diceros australis nov. sp ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | ap-anti | roposterior, ar | iic— ai ticuia | u, uiaii | i– dian | icici, dist- | uistai, noriz- | пог | izoniai, prox | - prox | timai, i | 1- transver | se. | |--|-------------------------------------|---|----------------------------|--------------------------|--|--|--------------|--|---------------------------|---------------------------|--|--------------------------------------| | Length
diaphysis ap
dist tr
dist ap
dist artic tr
dist artic ap | | ARRISDRI
PQ AD 561
440
57
100
80
87
75 | | | Chilotheric
min.
319
47
88
66 | max.
355 | | | | | | | | Length
diaphysis ap
dist tr | D. gr. pachygno
n
5
7
6 | mean
390.40
58.36
107.92 | min.
368
49
99 | 420
73
115 | 19.97
8.80
7.09 | . coeff. var.
5.12
15.07
6.57 | | D. cf. douard
Baccinello V
58
101 | iensis
13 | | | | | dist ap
dist artic tr
dist artic ap | 7 D. schleiermaci | 79.00 | 71 | 99 | 10.72 | 13.57 | | 80
Aceratheres | | | | | | Length
diaphysis ap
dist tr | n 2 2 2 2 2 2 | mean
398.00
58.25
103.50 | min.
386
57.5
101 | max.
410
59
106 | | | n
9
9 | mean
361.22
47.39
86.17 | min.
328
38
72.5 | max.
383
53
91.5 | Stand. dev.
20.66
5.82
6.26 | coeff. var.
5.72
12.28
7.26 | | dist ap
dist artic tr
dist artic ap | 2
1
1 | 72.25
82.50
60.00 | 69 | 75.5 | | | 11
3
3 | | 53
60
46 | 68
79
55 | 5.01
9.85
4.51 | 8.01 | | 0,1 | _ | 4 | | 7 | >, | <u></u> | | | | | | | | 0,06 - | | | / | / | | | | | a
- | | | | | 0,04 + | ~ | | // | ٠. | | $\setminus \bigvee$ | / | | • | | Arrisdriftpachygnat | thus | | 0 | | <u>\</u> | - | + | | - | _ | 1 | - - | | schleierma | | | -0,02 | 1 ♦ | ž
⊸∝ | 3 | 1 | 5 | 6 | _ | 1 | | - | - Acerather | es | | -0,04
-0,06 | | _ | | / | _ | | | ^ | _ | | pattersoni | | | -0,08 | / | | A | _* | | | | | * | | | | | | K | | _ | | | | | | | | | | Figure 8: Diceros australis nov. sp: Simpson diagram of the third metatarsal compared with that of other Miocene rhinoceroses. Reference is Diceros bicornis. 1: length; 2: proximal transverse diameter; 3: proximal anteroposterior diameter; 4: diaphysis transverse diameter; 5: diaphysis anteroposterior diameter; 6: distal maximal transverse transverse diameter; 7: distal transverse articular diameter; 8: distal anteroposterior articular diameter. D. schleiermacheri, having nothing to do with those of Paradiceros, Chilotheridium nor Aceratheres. In posterior view the sustentaculum axis makes a right angle with the axis of the body of the bone. In lateral view the front of the tuberosity is situated well behind the beak (= foremost part of the bone), the anterior edge between the two points being oblique and slightly concave. The posterior edge of the surface is globular for the upper two thirds of its height, and depressed for the last third, especially in specimen PQ AD 601. Individual variation is noticeable in the proximal part of the bone when observed from the posterior surface: shaped as an inverted V for PQ AD 601, it is flat for AD 50'97. # Other tarsals The cuboid is very large: its total length is 77 mm, its total height 61 mm, and maximum width 52.5 mm. The anterior surface is much taller than broad (53 and 41.5 mm), and its lateral edge is longer than the medial one. Two naviculars have been recovered, and are broader pachygnathus pattersoni TABLE 9. Compared dimensions of the astragalus of *Diceros australis* nov. sp. ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | ap=anteroposterior; | artic= artic | cular; diam= o | diame | ter; dis | t= distal | ; horiz | = horiz | zontal; pr | ox=proxim | al; tr= | transve | erse. | |---------------------|--------------|----------------|-------|----------|-------------|----------|---------------|------------|---|---------|---------|------------| | | Arrisdrift | Arrisdrift | | D. gr. 1 | oachygno | athus/ne | eumavr | i | | | | | | | | PQ AD 1219 | | n | mean | | max. | Stand. | coeff. var. | | | | | | | | | 57 | /4.405.5704 | | | dev. | T. R. E. S. | | | | | Transverse diameter | 101 | 100 | | 7 | 98.57 | 94 | 104 | 3.65 | 3.70 | | | | | Height | 95 | 96 | | 6 | 87.17 | 84 | 92 | 3.55 | 4.07 | | | | | ap medial diameter | 63.5 | 64.5 | | 6 | 63.00 | 61 | 65 | 1.90 | 3.01 | | | | | Dist artic tr | 75 | 78 | | 7 | 81.07 | 76.5 | 86 | 3.10 | 3.83 | | | | | Dist artic ap | 55 | 53.5 | | 7 | 50.86 | 45 | 53.5 | 3.33 | 6.54 | | | | | Trochlea width | 72 | 77 | | 6 | 69.83 | 61 | 77.5 | 5.77 | 8.26 | | | | | Distal tr diameter | 80.5 | 85 | | 5 | 84.90 | 82 | 90.5 | 3.47 | 4.09 | | | | | | D. schleiern | macheri | | | | | | | otherium snov | wi | | | | | n | mean | min. | max. | Stand. | coeff. | | n | mean | min. | max. | | | | | mean | | mun | dev. | var. | | *** | | ******* | | | | Transverse diameter | 11 | 91.45 | 86.5 | 99 | 3.60 | 3.93 | | 2 | 108.75 | 105 | 112.5 | | | Height | 13 | 85.35 | 78.5 | 93 | 4.72 | 5.53 | | 1 | 82.00 | | | | | ap medial diameter | 12 | 61.79 | 55 | 70 | 4.13 | 6.68 | | 2 | 59.00 | 58 | 60 | | | Dist artic tr | 8 | 73.00 | 62 | 82 | 6.65 | 9.11 | | 2 | 82.25 | 80 | 84.5 | | | Dist artic ap | 10 | 47.95 | 44.5 | 55 | 2.83 | 5.91 | | _ | 02.20 | | | | | Trochlea width | 12 | 66.63 | 61 | 75 | 3.73 | 5.60 | | 1 | 51.00 | | | | | Distal tr diameter | 10 | 79.75 | 76 | 86 | 3.81 | 4.78 | | 2 | 92.75 | 90.5 | 95 | | | | | | 0.75 | - | 17.7.7.7 | 1997 | | | | | 18/30 | | | | Aceratheres | S | | | | - | | Chilother | ridium patter | | | 2 | | | n | mean | min. | max. | Stand. | | | n | mean | min. | max. | Stand | | | | | | | dev. | var. | | | | | | dev. | | Transverse diameter | | 79.60 | 72 | 88.5 | 4.35 | 5.46 | | 3 | 88.50 | 85.5 | 92 | 3.28 | | Height | 30 | 70.07 | 62 | 81 | 4.58 | 6.54 | | 3 | 70.17 | 68.5 | 71 | 1.44 | | ap medial diameter | 26 | 52.44 | 45 | 59 | 3.59 | 6.85 | | 3 | 53.67 | 52 | 55.5 | 1.76 | | Dist artic tr | 29 | 64.59 | 56.5 | 73 | 3.88 | 6.01 | | 3 | 71.00 | 64 | 79 | 7.55 | | Dist artic ap | 25 | 39.68 | 35 | 47 | 2.69 | 6.77 | * | 2 | 40.50 | 38 | 43 | 3.54 | | Trochlea width | 31 | 52.39 | 46 | 65 | 5.23 | 9.98 | | 3 | 55.33 | 52 | 58 | 3.06 | | Distal tr diameter | 28 | 70.95 | 65 | 76.5 | 3.12 | 4.40 | | 3 | 75.33 | 73 | 79 | 3.22 | | | MSUR | | | | | | | | | | | | | | n | mean | min. | max. | Stand. | coeff. | | | | | | | | | | | | | dev. | var. | | | | | | | | Transverse diameter | | 80.62 | 75.5 | 84 | 3.41 | 4.23 | | | |
 | | | Height | 7 | 72.79 | 69 | 78.5 | 3.71 | 5.09 | | | | | | | | ap medial diameter | 7 | 52.14 | 47.5 | 56 | 3.16 | 6.06 | | | | | | | | Dist artic tr | 8 | 68.00 | 65 | 74 | 3.02 | 4.45 | | | | | | | | Dist artic ap | 6 | 38.83 | 33.5 | 43.5 | 3.80 | 9.79 | | | | | | | | Trochlea width | 7 | 48.79 | 45 | 50 | 1.89 | 3.87 | | | | | | | | Distal tr diameter | 8 | 73.81 | 70.5 | 78.5 | 3.09 | 4.19 | 0,15 T | | | | | | | | | | | | | | | | | | _ | | | | | , | | | | | | | | | \sim | | | $\overline{}$ | | | | | | | 0,1 🕂 | | - | | | | | • | | / | | | | | U,1 | | \sim | | / | | | | \/ | _ | | | | | | , | / \ | _/ | | | | | ¥ | | | _ ^_ | sdrift | | | _ | • | Y | | | п | | | | _ | AIII | Suille | | 0,05 | | P- | | | / | • | | | | | — schl | eiermacher | | | | / | ~ | | // | | | - | | | | | Figure 9. Diceros australis nov. sp: Simpson diagram of the limb segments compared with those of other Miocene rhinoceroses. Reference is Diceros bicornis. 1: ulna length; 2: radius length; 3: Mc II length; 4: Mc III length; 5: Mc IV length; 6: tibia length; 7: Mt II length; 8: Mt III length; 9: Mt IV length. -0,05 TABLE 10. Compared dimensions of the calcaneum of *Diceros australis* nov. sp. ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | | | | ARRISDRIFT | ARRISDRIFT | | | | Paradiceros | | | MSUR | | |-----------------------------------|----|----------------|-------------|------------|--------|--------|-------|----------------|---------|------|--------|--------| | | | AD 50'97 | PQ AD 601 | AD 530'95 | | | | Kisegi | | | | | | Height | | 158.5 | 153 | 153 | | | | 92.5 | | | 130.5 | | | Head tr | | 58 | 55 | 64 | | | | 36 | | | 52.5 | | | Head ap | | 77 | 67 | | | | | 50 | | | 54 | | | middle width | | 41.5 | 40 | | | | | 33 | | | 43 | | | Sustentaculum tr | | 77.5 | 79 | 77 | | | | 50 | | | 81 | | | maximum width | | 81 | 81 | 80 | | | | 55.5 | | | 85.5 | | | maximum ap | | 84 | 75.5 | about 75 | | | | | | | 63 | | | | D. | gr. pachygnath | us/neumayri | | | | Chil | lotheridium pa | tterson | i | | | | | n | mean | min. | max. | Stand. | coeff. | n | mean | min. | max. | Stand. | coeff. | | | | | | | dev. | var. | | | | | dev. | var. | | Height | 7 | 143.36 | 132 | 151.5 | 6.30 | 4.39 | 3 | 120.83 | 113 | 132 | 9.93 | 8.22 | | Head tr | 6 | 58.42 | 54 | 63 | 3.64 | 6.23 | 3 | 44.33 | 42 | 48.5 | 3.62 | 8.16 | | Head ap | 7 | 75.07 | 65 | 82 | 5.76 | 7.68 | 3 | 67.67 | 60 | 74 | 7.10 | 10.48 | | middle width | 2 | 46.50 | 45 | 48 | 2.12 | 4.56 | | | | | | | | Sustentaculum tr
maximum width | 7 | 82.07 | 74 | 87.5 | 4.64 | 5.65 | 2 | 70.00 | 70 | 70 | 0.00 | 0.00 | | maximum ap | 5 | 77.90 | 72 | 83 | 5.03 | 6.46 | 3 | 59.17 | 57 | 62 | 2.57 | 4.34 | | | D. | schleiermache | ri | | | | | Aceratheres | | | | | | | n | mean | min. | max. | Stand. | coeff. | n | mean | min. | max. | Stand. | coeff. | | | - | | | 12792 | dev. | var. | 12121 | | | | dev. | var. | | Height | 5 | 142.10 | 134 | 149 | 6.71 | 4.72 | 20 | 108.82 | 98.5 | | 6.66 | 6.12 | | Head tr | 6 | 53.17 | 50.5 | 55 | 1.78 | 3.35 | 20 | 42.97 | 35 | 49 | 3.93 | 9.13 | | Head ap | 6 | 72.67 | 68.5 | 79.5 | 5.97 | 9.01 | 19 | 61.03 | 49.5 | 79 | 6.55 | 10.73 | | middle width | 4 | 40.13 | 37 | 43.5 | 2.78 | 6.93 | 6 | 33.75 | 26 | 41 | 6.03 | 17.87 | | Sustentaculum tr
maximum width | 5 | 80.90 | 72.5 | 88 | 6.37 | 7.87 | 15 | 70.33 | 61 | 78.5 | 4.14 | 5.88 | | maximum ap | 6 | 74.50 | 69 | 86 | 6.72 | 9.01 | 20 | 59.58 | 51 | 70 | 5.10 | 8.55 | than long: respectively 67 x 56.5 mm for a height of 40 mm and 78 x 56.5 mm for a height of 38 mm. The only big cuneiform preserved is 44.5 mm long, 26 mm wide, and 35.5 mm high. #### Metatarsal II Four Mt IIs were found, of which two are complete or nearly so (during fossilisation they were broken but knitted again into place). They are much longer but more slender than the largest known specimens of *Diceros* gr. pachygnathus-neumayri and *Dicerorhinus* schleiermacheri. That of *Chilotheridium* is very short and relatively stockier, and that of true Aceratheres is shorter with different general proportions (Table 11). On the lateral surface of the proximal epiphysis there are two well separated articular facets, both taller than broad, with an elliptical outline. The transverse section of the diaphysis is a rounded trapezium, widest on the posterior border and with a sharp anterior angle. In one specimen (AD 442'97) the posterior part of the proximal epiphysis is strongly expanded rearwards, the lateral facets are broader and there are two articular facets on the medial face. # Metatarsal III Four Mt IIIs have been recovered, including one broken into two parts more or less linked together, and another one whose incomplete proximal epiphysis is partly preserved in gypsum. The bone (Figure 5: 1-2) is about as long as the largest known specimens of *Diceros* gr. pachygnathus-neumayri and has about the same proportions except the sus-articular transverse distal diameter. It is significantly longer than those of *Dicerorhinus schleiermacheri*. Chilotheridium is much shorter and relatively stockier. True Aceratheres show different proportions and are smaller (Table 12, Figure 8). The proximal articulation is very wide, triangular, with a convex anterior edge whose point of bending is laterally offset; the antero-lateral angle is pointed; the medial edge begins with a cant followed by a shallow depression. The anterior articular facet on the lateral surface of the proximal epiphysis is located higher than the posterior one, which possesses an elliptical elongated outline. The transverse section of the diaphysis is trapezoidal, with a convex anterior edge and a concave posterior one; the lateral edge is straight, and the medial one is slightly convex. Individual variation observed concerns mainly the outline of the anterior articular facet of the lateral surface of the proximal epiphysis which is more or less triangular. It also concerns the convexity of the anterior edge and the concavity of the posterior edge of the transverse section. #### Metatarsal IV Only one Mt IV is known, and it is in a bad state of preservation. As for the Mt II, it is much longer than the largest known specimens of *Diceros* gr. pachygnathusneumayri and *Dicerorhinus schleiermacheri*, but is not especially slender. That of *Chilotheridium* is very short, and that of true Aceratheres is shorter with different general proportions (Table 13). TABLE 11. Compared dimensions of the second metarsal of *Diceros australis* nov. sp. ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | | Arrisdrift
AD 744'97 | Arrisdrift
PQ AD 251 | Arrisdrift
AD 442'97 | Arrisdrift
AD 348'95 | | Chilotheridia
Loperot | m pattersoni
Loperot | MSUR
Kiboko | |-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------|--------------------------|-------------------------|----------------| | Length | 182.5 | 181 | | | | 129 | 115 | 153 | | | 30 | 31 | 32 | 31 | | about 36 | 30 | 27 | | prox tr | 51 | 47 | 57 | 51 | | about 50 | 37.5 | 34.5 | | prox ap
diaphysis tr | 31 | 30 | 31.5 | 31 | | | 23 | 19.5 | | diaphysis ap | 30 | 25.5 | 29 | | | | 21 | 18.5 | | dist max tr | 40.5 | 39 | 29 | | | 42 | 35 | 29 | | dist tr artic | 38.5 | 37.5 | | | | 38.5 | 32.5 | 28 | | dist ap | 46 | 40 | | | | 43 | 36.5 | 30 | | uist ap | | | | | | -13 | 50.5 | | | | D. schleiern | | | | | | | | | | n | mean | min. | max. | | coeff. var. | | | | Length | 3 | 153.33 | 150 | 156 | 3.06 | 1.99 | | | | prox tr | 3 | 33.83 | 27 | 40.5 | 6.75 | 19.96 | | | | prox ap | 3 | 45.67 | 43 | 50.5 | 4.19 | 9.18 | | | | diaphysis tr | 3 2 | 27.00 | 26 | 28 | 1.41 | 5.24 | | | | diaphysis ap | 2 | 27.75 | 27 | 28.5 | 1.06 | 3.82 | | | | dist max tr | 3 | 37.17 | 35.5 | 39 | 1.76 | 4.72 | | | | dist tr artic | 3 | 35.00 | 33 | 37 | 2.00 | 5.71 | | | | dist ap | 3 | 39.17 | 37 | 40.5 | 1.89 | 4.83 | | | | | D. gr. pach | ygnathus/neu | mayri | | | | | | | | n | mean | min. | max. | Stand. dev. | coeff. var. | | | | Length | 5 | 153.70 | 147.5 | 157.5 | 4.04 | 2.63 | | | | prox tr | 5 | 33.60 | 30.5 | 37 | 3.03 | 9.01 | | | | prox ap | 5 | 45.70 | 42.5 | 49 | 2.73 | 5.97 | | | | diaphysis tr | 5 | 34.80 | 32 | 37.5 | 2.08 | 5.98 | | | | diaphysis ap | 5 | 25.20 | 23.5 | 27 | 1.48 | 5.89 | | | | dist max tr | 4 | 43.50 | 40 | 45 | 2.38 | 5.47 | | | | dist tr artic | 5 | 39.30 | 36.5 | 41 | 1.75 | 4.46 | | | | dist ap | 5 | 43.50 | 39 | 47 | 2.96 | 6.80 | | | | | According | | | | | | | | | | Aceratheres | | min. | max. | Stand day | coeff. var. | | | | | n | mean | mm. | max. | Stand, dev. | coeii. vai. | | | | Length | 8 | 137.06 | 117.5 | 165.5 | 14.37 | 10.49 | | | | prox tr | 9 | 28.00 | 25.5 | 31 | 1.70 | 6.06 | | | | prox ap | 9 | 39.17 | 35 | 41.5 | 2.26 | 5.78 | | | | diaphysis tr | 7 | 26.57 | 23.5 | 32 | 2.99 | 11.26 | | | | diaphysis ap | 7 | 21.93 | 19 | 25 | 2.13 | 9.71 | | | | dist max tr | 7 | 36.07 | 31 | 40 | 3.18 | 8.82 | | | | dist tr artic | 8 | 32.88 | 26 | 40 | 4.60 | 14.00 | | | | dist ap | 7 | 36.50 | 33 | 40.5 | 2.80 | 7.67 | | | | | | | | | | | 1997 | | ## Limb segments: Simpson diagram of the limb segments (Figure 9) shows once more similarities with *Dicerorhinus schleiermacheri* and *Diceros* gr. *pachygnathus-neumayri*, with, as a noticeable particularity, a much greater relative length of the lateral and medial metapodials. # THE SMALLER RHINO FROM ARRISDRIFT, # cf. Chilotheridium pattersoni An isolated magnum (AD 618'97) is totally different (Figure 1: 3) from that attributed to *Diceros australis*. Its dimensions are as follows: Total length: 91 mm Anterior width: 50 mm Anterior height: 27 mm Maximum height: 54.5 mm Sus-articular height: 52.5 mm Shallow and very wide, with a flattened and
oblique anterior surface, it shows an inverted width/height ratio (Figure 2) which suggests a small to medium sized short-legged form, probably *Chilotheridium*, which was defined at Loperot, Kenya, the age of which is about the same as Arrisdrift. For ten incomplete specimens of *Chilotheridium* from Loperot, Hooijer (1971, Table 14) gives a slightly greater anterior height (30 to 33 mm) and a slightly lesser anterior width (44 to 49 mm) but this is not a significant difference, the method of measuring probably not being exactly the same. # THE LANGENTAL BRACHYPOTHERE, Brachypotherium heinzelini A complete magnum (LT 384'96) presents the following dimensions: Total length: 84.5 mm Anterior width: 57 mm Anterior height: 39 mm Maximum height: 58.5 mm Sus-articular height: 57 mm The Langental magnum (Figure 1: 5) is thus much larger than the smaller specimen from Arrisdrift but TABLE 12. Compared dimensions of the third metatarsal of Diceros australis nov. sp. ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | | Arrisdrift
AD 618'94 | Arrisdrift
PQ AD 249 | Arrisdrift
PQ AD 119 | Arrisdrift
PQ AD 18 | 3 | C. pattersoni
Loperot | |---------------|-------------------------|-------------------------|-------------------------|------------------------|-------------|--------------------------| | Length | 197.5 | 197 | about 180 | about 178 | | 128 | | prox tr | 57.5 | 61 | | 54 | | 43.5 | | prox ap | 52 | | | 49 | | 40 | | diaphysis tr | 50 | 51.5 | 52.5 | 44 | | 36 | | diaphysis ap | 26 | 25.5 | | 25.5 | | 18.5 | | dist max tr | 61.5 | 60.5 | 57.5 | 55.5 | | 48 | | dist tr artic | 53 | 57 | 52.5 | 51 | | 43 | | dist ap | 46 | 47.5 | 42 | 42 | | 35 | | | D. schleierm | acheri | | | | | | | n | mean | min. | max. | Stand. dev. | coeff, var. | | Length | 2 | 173.25 | 171.5 | 175 | 2.48 | 1.43 | | prox tr | 1 | 48.00 | ., | 1,0 | 2.10 | 1.45 | | prox ap | 1 | 40.00 | | | | | | diaphysis tr | 2 | 45.00 | 43.5 | 46.5 | 2.12 | 4.71 | | diaphysis ap | 2 | 23.25 | 23 | 23.5 | 0.35 | 1.52 | | dist max tr | 2 | 55.50 | 53.5 | 57.5 | 2.83 | 5.10 | | dist tr artic | 2
2
2
2 | 47.75 | 46 | 49.5 | 2.48 | 5.18 | | dist ap | 2 | 39.00 | 33 | 45 | 8.49 | 21.76 | | | D. gr. pachy | gnathus/neu | mayri | | | | | | n | mean | min. | max. | Stand. dev. | coeff. var. | | Length | 9 | 174.56 | 165 | 194.5 | 8.56 | 4.90 | | prox tr | 8 | 60.06 | 57 | 64.5 | 2.32 | 3.86 | | prox ap | 8 | 50.88 | 45 | 57.5 | 4.96 | 9.74 | | diaphysis tr | 9 | 53.22 | 51.5 | 55 | 1.23 | 2.31 | | diaphysis ap | 9 | 25.33 | 22.5 | 28.5 | 1.97 | 7.77 | | dist max tr | 7 | 66.93 | 60.5 | 71.5 | 3.76 | 5.61 | | dist tr artic | 8 | 54.50 | 49.5 | 60.5 | 3.65 | 6.69 | | dist ap | 8 | 46.50 | 41.5 | 49 | 2.41 | 5.17 | | | Aceratheres | | | | 2 | | | | n | mean | min. | max. | Stand. dev. | coeff. var. | | Length | 11 | 150.36 | 130 | 166 | 11.44 | 7.61 | | prox tr | 10 | 46.25 | 40 | 53.5 | 4.63 | 10.00 | | prox ap | 10 | 41.90 | 38 | 46 | 2.76 | 6.58 | | diaphysis tr | 11 | 41.32 | 37.5 | 46.5 | 2.70 | 6.55 | | diaphysis ap | 10 | 19.90 | 16.5 | 24.5 | 2.76 | 13.85 | | dist max tr | 11 | 52.45 | 47 | 60.5 | 4.12 | 7.85 | | dist tr artic | 11 | 45.45 | 40.5 | 51.5 | 3.23 | 7.10 | | dist ap | 11 | 37.82 | 32 | 42.5 | 3.47 | 9.17 | presents the same kind of width/height ratio (Figure 2), which is typical of Brachypotheres and Chilotheres. I thus assign it to *Brachypotherium heinzelini*, a large brachypothere whose magnum remains undescribed but the presence of which is already known at the site since the study of K. Heissig (1971). # UNDETERMINED RHINOS FROM FISKUS AND AUCHAS MINE From Fiskus a very worn and poorly preserved upper right premolar (P 3/ or P 4/) was recovered. Its total length is 42 mm for a collar width of 52 mm. The ectoloph seems flat. Dimensions are compatible with the P 3/ of a Brachypothere or the P 4/ of a large true Acerathere. From Auchas Mine there is an atlas not completely cleared from the sediment, and a totally encrusted mandibular fragment which was found during the field trip following the 1998 PSSA meeting at Windhoek. # CONCLUSIONS Four mammal-bearing Miocene sites excavated since 1991 by the Namibia Paleontology Expedition have yielded rhinoceros remains: Langental, Fiskus, Auchas Mine and Arrisdrift, the last three being new. At Langental a well preserved magnum was found. It probably pertains to *Brachypotherium heinzelini*, a half mandible of which was recovered from the site before the First World War and which was identified by K. Heissig (1971). From Fiskus there is a very worn upper premolar, perhaps from an Acerathere or a Brachypothere. An atlas vertebra and a mandibular fragment, both encrusted with sediment and thus specifically undeterminable, have been recovered from Auchas Mine. A great number of rhino specimens were found at Arrisdrift. All but one of the 81 fossil pieces constitute TABLE 13. Compared dimensions of the fourth metatarsal of Diceros australis nov. sp. ap= anteroposterior; artic= articular; diam= diameter; dist= distal; horiz= horizontal; prox= proximal; tr= transverse. | | Arrisdrift
PQ AD 253 | | Chilotheria
Loperot | lium patterson
Loperot | ıi | | |---------------|------------------------------|--------|------------------------|---------------------------|-------------|-------------| | Length | about 182 | | 111 | 113 | | | | prox tr | 44 | * | 41 | 40.5 | | | | prox ap | 42 | | 40 | about 38,5 | | | | diaphysis tr | 35.5 | | 22.5 | 22.5 | | | | diaphysis ap | 22.5 | | 20.5 | 20 | | | | dist max tr | 42 | | 33 | 30.5 | | | | dist tr artic | 41 | | 34.5 | 32 | | | | dist ap | about 36 | | 35.5 | 34.5 | | | | ша чр | | | | | | | | | D. schleierma | | | | | | | | n | mean | min. | max. | | | | Length | 2 | 153.50 | 152 | 155 | | | | prox tr | 2 | 42.25 | 37 | 47.5 | | | | prox ap | 1 | 50.00 | 50 | 50 | | | | diaphysis tr | 2 | 27.75 | 26.5 | 29 | | | | diaphysis ap | 2
2
2 | 29.25 | 28 | 30.5 | | | | dist max tr | 2 | 36.00 | 35.5 | 36.5 | | | | dist tr artic | 2 | 36.50 | 35 | 38 | | | | dist ap | 2 | 42.50 | 42 | 43 | | | | | D. gr. pachygnathus/neumayri | | | | | | | | n | mean | min. | max. | Stand. dev. | coeff. var. | | Length | 8 | 148.31 | 138.5 | 166.5 | 9.05 | 6.10 | | prox tr | 8 | 48.63 | 43 | 53 | 3.15 | 6.47 | | prox ap | 8 | 46.88 | 42.5 | 51 | 2.90 | 6.19 | | diaphysis tr | 8 | 32.12 | 30 | 35 | 1.64 | 5.11 | | diaphysis ap | 8 | 29.00 | 24.5 | 32 | 2.79 | 9.62 | | dist max tr | 8 | 41.12 | 37 | 45 | 2.62 | 6.36 | | dist tr artic | 8 | 39.75 | 35.5 | 43 | 2.78 | 6.99 | | dist ap | 8 | 42.75 | 40 | 45 | 1.93 | 4.51 | | | Aceratheres | | | | | | | | n | mean | min. | max. | Stand, dev. | coeff. var. | | Length | 10 | 131.40 | 117.5 | 144 | 9.02 | 6.87 | | prox tr | 11 | 40.95 | 37 | 44.5 | 2.08 | 5.08 | | prox ap | 11 | 38.09 | 32.5 | 42.5 | 3.59 | 9.43 | | diaphysis tr | 10 | 26.85 | 23 | 30 | 2.08 | 7.76 | | diaphysis ap | 10 | 24.85 | 21 | 28 | 2.21 | 8.90 | | dist max tr | 9 | 31.56 | 29 | 34.5 | 1.98 | 6.26 | | dist tr artic | 8 | 30.25 | 27.5 | 35.5 | 2.87 | 9.47 | | dist ap | 10 | 35.15 | 31 | 37.5 | 2.48 | 7.07 | a homogeneous sample pertaining to a very large species of cursorial rhino. The exception is an isolated magnum which suggests a small to medium sized short-legged form, perhaps *Chilotheridium pattersoni*, a species described from Loperot in Kenya, the age of which is about the same as Arrisdrift, i.e. 17 Ma. The large form from Arrisdrift seems to be the largest of the African Miocene Rhinos; the size and proportions of the metapodials and the other limb bones suggest a strong analogy with *Diceros* gr. *pachygnathus-neumayri* of the Upper Miocene of the Near East; the type of construction of the upper cheek teeth, in particular the fourth premolar, is of Dicerotine type and presents, as do the dimensions, close resemblances with *Diceros* douariensis of the Upper Miocene of North Africa and Italy; the mandible shows analogies with the Dicerotines, especially the apparently short symphysis. This rhino is Diceros australis nov. sp., so far the oldest known species of the subfamily. ## **ACKNOWLEDGEMENTS** I am greatly indebted to Dr. Brigitte Senut and Dr. Martin Pickford for offering me the Miocene Namibian rhinoceros remains for study and report, and for inviting me to the September 1998 PSSA meeting at Windhoek, where I presented a preliminary version of the present paper. Dr. Véra Eisenmann made useful remarks, provided help for the statistical interpretation and did the photograph for Figure 3: 1. Dominique Gommery kindly made the cast of the figured lower tusk. Dr M. Pickford kindly corrected the English. #### REFERENCES - AGUIRRE, E. & GUÉRIN, C. 1974. Première découverte d'un *Iranotheriinae* (Mammalia, Perissodactyla, Rhinocerotidae) en Afrique: Kenyatherium bishopi nov. gen. nov. sp. de la formation vallésienne (Miocène supérieur) de Nakali (Kénya). Estudios geologicos 30, 229-233. - GERAADS, D. 1986. Sur les relations phylétiques de Dicerorhinus primaevus Arambourg, 1959, rhinocéros du Vallésien d'Algérie. Comptes rendus hebdomadaires des séances de l'Académie des Sciences de Paris, II 302 (13), 835-837. - ------ 1989. Vertébrés fossiles du Miocène supérieur du Djebel Krechem el Artsouma (Tunisie centrale). Comparaisons biostratigraphiques. Geobios 22 (6), 777-801. - GUÉRIN, C. 1966. Diceros douariensis nov. sp., un rhinocéros du Mio-Pliocène de Tunisie du Nord. Documents du Laboratoire de Géologie de la Faculté des Sciences de Lyon 16, 1-50. - ----- 1976. Les restes de rhinocéros du gisement miocène de Béni-Mellal, Maroc. Géologie méditerranéenne 3 (2), 105-108. - ------ 1980 a. Les rhinocéros (Mammalia, Perissodactyla) du Miocène terminal au Pléistocène supérieur en Europe occidentale. Comparaison avec les espèces actuelles. Documents des Laboratoires de Géologie de Lyon 79 (1-3), 1-1185. - ------ 1980 b. A propos des rhinocéros (Mammalia,
Perissodactyla), néogènes et quaternaires d'Afrique: essai de synthèse sur les espèces et sur les gisements. Proceedings of the 8th. PanAfrican Congress of Prehistory and Quaternary Studies, Nairobi, September, 1977, TILLMIAP edit., Nairobi, 58-63. - ------ 1989. La famille des Rhinocerotidae (Mammalia, Perissodactyla): systématique, histoire, évolution, paléoécologie. Cranium 6 (2), 3-14. - ------ & DEMATHIEU, G. 1993. Empreintes et pistes de Rhinocerotidae (Mammalia, Perissodactyla) du gisement pliocène terminal de Laetoli (Tanzanie). Geobios 26 (4), 497-513. - ------ 1994. Les Rhinocéros (Mammalia, Perissodactyla) du Néogène de l'Ouganda, 263-279, In: Senut, B. & Pickford, M. Eds, Geology and Palaeobiology of the Albertine Rift Valley, Uganda-Zaire, vol. II: Palaeobiology, CIFEG édit, Orléans, occasional publication 1994/29. - HAMILTON, W.R. 1973. North African Lower Miocene Rhinoceroses. Bulletin of the British Museum (Natural History), London 24 (6), 351-395. - ----- & VAN COUVERING, J.A. 1977. Lower Miocene Mammals from South West Africa. Bulletin of the Desert Ecological Research Unit, Oct. 1977, 9-11. - HEINZ, R. 1933. Ein vorzeitlicher Tränkplatz in der Namibwüste bei Lüderitzbucht (Deutsch-Südwestafrika). Mitteilungen der Geographischen Gesellschaft in Hamburg XLIII, 267-302. - HEISSIG, K. 1971. Brachypotherium aus dem Miozän von Südwestafrika. Mitteilungen der Bayerische Staatssammlung für Paläontologie und historische Geologie, München 11, 125-128. - HOOIJER, D.A. 1966. Miocene rhinoceroses of East Africa. Bulletin of the British Museum (Natural History), London, 13 (2), 119-190. ------- 1968. A rhinoceros from the late Miocene of Fort Ternan, Kenya. Zoologische Mededelingen 43 (6), 77-92. - ------ 1971. A new rhinoceroses from the late Miocene of Loperot, Turkana District, Kenya. Bulletin of the Museum of Comparative Zoology. 42 (3), 339-392. - ----- 1973. Additional Miocene to Pleistocene rhinoceroses of Africa. Zoologische Mededelingen 46 (11), 149-178. - ------ 1978. 19: Rhinocerotidae, 371-378, In: Maglio V.J. & Cooke H.B.S. Eds, Evolution of African Mammals, Cambridge (Mass.), Harvard University Press. - NAKAYA, H., PICKFORD, M., YASUI, K., & NAKANO, Y., 1999 (dated 1987). Additional large mammalian fauna from the Namurungule Formation, Samburu Hills, Northern Kenya. Afr. Study Monogr. Suppl. Issue 5, 79-130. - PICKFORD, M., SENUT, B. & HADOTO, D. 1993. Geology and palaeobiology of the Albertine Rift Valley, Uganda-Zaire, vol. I: Geology, CIFEG, Orléans, occasional publication 1993/24, 190 p. - ------, SENUT, B., MEIN, P., MORALES, J., SORIA, D., NIETO, M., WARD, J. & BAMFORD, M. 1995. The discovery of lower and middle Miocene vertebrates at Auchas, southern Namibia. Comptes rendus hebdomadaires des séances de l'Académie des Sciences de Paris, II a 322, 901-906. - ------, SENUT, B., MEIN, P., GOMMERY, D., MORALES, J., SORIA, D., NIETO, M. & WARD, J. 1995. Preliminary results of new excavations at Arrisdrift, middle Miocene of southern Namibia. Comptes rendus hebdomadaires des séances de l'Académie des Sciences de Paris, II a 322, 991-996. - PROTHERO, D.R., GUERIN, C. & MANNIN, G. E. 1989. The History of the Rhinocerotoidea. In: Prothero, D.R. & Schoch, R.M., Eds, The Evolution of Perissodactyls (IVth Theriological Congress, Edmonton, Alberta, 1985), 321-340. New York, Oxford Univ. Press. - STROMER E. 1926. Reste Land- und Süsswasser-bewohnender Wirbeltiere aus den Diamantfeldern Deutsch-Südwestafrikas. In: Kaiser, E. Ed., Die Diamantenwüste Südwestafrikas, 107-153 Dietrich Reimer (Ernst Vohsen) A.D. édit., Berlin, Bd. II.