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ABSTRACT 

Hearne, J.W. and Swart, J., 1991. Optimal translocation strategies for saving the Black 
Rhino. Ecol. Modelling, 59: 279-292. 

Over the past 30 years the black rhinoceros (Diceros bicorn&) populations in Africa have 
dwindled dramatically. To enhance the survival prospects of the species, a national conser- 
vation strategy has been developed in South Africa. Its main goal is to formulate and 
implement policies to increase the southern African rhino population as rapidly as possible. 
This involves translocating animals from areas where the population is approaching the 
ecological carrying capacity and establishing new viable populations in other suitable 
reserves. 

A nonqinear differential equation model for a population of black rhino was developed. 
The model is used with a combination of analytical and numerical techniques to investigate 
a number of issues relating to the translocation of rhino from well-stocked, high-density 
areas to low-density areas with small herds or no herds. Firstly, the model is used to 
determine the maximum sustainable yield from the well-stocked reserves. The model is then 
applied to a newly established population to determine optimal import policies. Finally, the 
model is extended to include both an established exporting population and a new under- 
stocked importing population. Simulations are performed to give an indication of the 
number and age of animals which should be translocated to maximise the growth rate of the 
total rhino population in southern Africa. 

INTRODUCTION 

The black rhinoceros (Diceros bicornis) populations in Africa have 
dwindled dramatically from 65 000 head 20 years ago to about 3500 today. 
During this period twelve African countries lost their entire black rhino 
populations and presently at most six countries have herds exceeding 100 
head. 
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In contrast, the black rhino population in South Africa and Namibia has 
increased four-fold to about 1000 head. With poaching a less serious 
problem in South Africa than the rest of Africa, the attainment of a 
sufficiently large population in this country, to ensure the survival of the 
species, has become the main goal of a national rhino conservation policy 
(Brooks, 1989). This involves the translocation of rhino from areas of high 
population density to other areas suitable for the establishment of new 
herds. At what rate and from which age and sex groups should animals be 
removed from high density areas so as to maximise the overall growth rate 
of the southern African population? 

To answer the above question a mathematical model of a rhino popula- 
tion was developed. Three investigations were undertaken with the model. 
Firstly, we tried to determine the maximum sustainable yield of a well- 
stocked area. The assumption here being that the more animals that can be 
exported from this area on a sustainable basis the greater the likelihood of 
viable populations being established elsewhere and hence the faster the 
total population growth rate. This problem was solved by manipulating the 
mathematical problem into a form where it could be solved by linear 
programming techniques. Secondly, the translocation policy is considered 
from the perspective of maximising the growth rate of the new and newly 
established populations. The solution of this problem was achieved by 
analytically solving a linearised version of the differential equation model. 
Finally, the model is extended to include an exporting population (the 
founder population) and a newly established population (the translocated 
population). The translocated population imports from the founder popula- 
tion. Simulations are performed to test some translocation policies on the 
growth rate of the total (founder + translocated) population. 

FORMULATION OF THE MODEL 

The population and behavioural biology of black rhinoceros is not well 
understood. Our current understanding stems from the several different 
sub-species of black rhino which occur in various localities throughout east 
and southern Africa. The model we develop incorporates information on 
black rhino population characteristics from the published literature (God- 
dard, 1967, 1970; Hitchins, 1978; Hitchins and Anderson, 1983) and other 
unpublished sources. Where no specific data for black rhino exist, we 
substitute with empirically supported generalisations for large mammals 
from the literature, notably Eberhardt  (1977), Fowler (1981) and Laws 
(1981). 

According to certain known characteristics of rhino and the ability of 
rangers to distinguish between different age groups in the field, the 
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TABLE 1 

Division of the female population 
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Group Age (yrs) Flows IN Flows OUT 

F 1 0-1 Births Aging, death, predation 
F 2 1-2 Aging Aging, death, predation 
F 3 2-8 Aging Aging, death, translocation 
F 4 8 + Aging Death, translocation 

populat ion is divided into eight groups according to age and sex. The 
various female groups, and the rates determining their levels are shown in 
Table 1. The male groups M 1 - M  4 are divided in a similar way. Transloca- 
tions remove animals from a founder  populat ion and add them to a 
t ranslocated population. 

From the table it should be  noted that no migration occurs and that 
predat ion is confined to the younger  groups. In South Africa poaching 
presently occurs infrequently and is ignored in the model. As the overall 
effect of poaching is to add to the total death rate of  adult and sub-adult  
rhinos, its effect will be tested during a sensitivity analysis of death rates. 
Calves stay with the cows until at least two years of age, so removals 
(translocations) are restricted to the third and fourth age groups. 

In order  to measure  the impact of a populat ion on resources, a popula- 
tion is converted into large stock units. One large stock unit is defined as 
one adult  in terms of its resource requirements.  A younger  animal exerts 
less pressure on resources and is therefore  equivalent to only a fraction of 
a large stock unit. The total populat ion measured in large stock units is 
denoted  by LSV and calculated as follows: 

LSU = a l ( F  1 + M1) -at- a z ( F  2 + M2) + a3 (F  3 + M3) + F 4 -at- M 4 

where  a 1, a e and a 3 take on the values 0.5, 0.67 and 1.0, respectively. 
Populat ion density in a given region is defined as the ratio LSU/CC, 

where  cc  is the ecological carrying capacity in large stock units of  that 
region. 

Observations indicate that births in the Umfolozi  Game Reserve have 
occurred from as early as 6 years of  age (Goddard,  1967) and in the 
high-density extreme in the Hluhluwe Game Reserve,  first calves are 
d ropped  at around 10.5 years (Hitchins and Anderson,  1983). In this model  
it is assumed that all fecund females are in the fourth age group (which is 
true on average). 

Fecundity,  which is reflected by the interval be tween  calving, is sug- 
gested to be a declining function of  density (Eberhardt ,  1977; Laws, 1981). 
Hitchins and Anderson (1983) summarised calving interval statistics from a 
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variety of areas and recorded a minimum interval between calving of 26 
months (0.46 calves cow -1 yr -1) and a maximum of 63 months (0.19 calves 
cow-~ yr-1). The specific fecundity rate FV is assumed to have a maximum 
value of 0.46 for population densities below 25% of the carrying capacity; a 
minimum value of 0.19 for population densities exceeding 85% of the 
carrying capacity. Intermediate values of FF are obtained by linear interpo- 
lation between these two extremes. 

The effect of density changes on the conception rate is represented by 
Fv~, a first-order delayed version of the fecundity function FF, with delay 
time T 1. Thus: 

d (FF --  FF1) 
d t  FF1 T1 

It is only after some further delay (gestation period) that density-induced 
changes in the conception rate result in changes in the birth rate. Thus FV 1 
is subjected to a further delay to yield the specific birth rate v v  4. This delay 
is modelled by the third-order delay equations: 

d (FFi_ 1 --  FFi) 
" ~  FF i = T2 i = 2, 3, 4 

where FF 2 and FF 3 are intermediate variables and 3T 2 is the gestation 
period. The birth rate is therefore given by: 

birth rate = F 4 FF 4 (calves yr-  1) 
Mortality is a function of age (Goddard, 1970) and density (Eberhardt, 

1977; Fowler, 1981). Eberhardt (1977) proposed that one of the first signs 
of density-dependent stress was an increase in juvenile mortality. At the 
other extreme Fowler (1981) states that in many large mammal popula- 
tions, adult survival is insensitive to changes in density. Observations 
indicate that for rhino, sub-adults have higher mortality rates than adults 
because they are subject to more social stress than adults, particularly when 
they are trying to establish their home ranges for the first time. Animals in 
the youngest two age groups are also subject to nutritional stress. Yearlings 
(age group 2) are weaned and so must depend on vegetation for food. They 
therefore have a higher mortality rate and are more susceptible to density 
stress than unweaned calves. 

There is insufficient information available for a precise definition of the 
mortality functions but based on the above discussion and field experience 
the functions shown in Fig. 1 were considered plausible. In addition to 
natural mortality, deaths due to predation occur amongst the two younger 
groups. 
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Fig. 1. Mor t a l i t y  f u n c t i o n s .  

Observations indicate that half of all rhino births are female. The female 
sector of the population is therefore  described by the following model 
equations: 

d 
~--~F 1 = 0 . 5 ( F  4 FF4)  - -  F 1 AGING 1 - -  F1 MORT1 -- F1 PRED a 

d 
~-~F 2 = F I A G I N G  1 - -  F2 A G I N G  2 - -  F 2  M O R T 2  - -  F 2  P R E D  2 

d 
~ F  3 = F 2 A G I N G  2 - -  F 3  A G I N G  3 - -  F 3  M O R T 3  - - f 3  

d 
~ X 4  = F3 A G I N G  3 - -  F4 MORT4 --f4 

where  AGING/ is the specific aging rate of group F, (yr-~), MORT i the 
specific mortality rate function of group F~ (yr-a),  and PRED i the specific 
predation rate of group F i (yr-1). The translocation rates f3 and f4 (head 
y r - l )  are exogenously specified. The mortality functions are given in Fig. 1, 
and the predation rates (yr -1) [PRED i (i = 1, 2)] are 0.16 and 0.01, respec- 

1 
tively. The specific aging rates (yr - I )  [AGING/ (i = 1, 2, 3)] are 1, 1, g and 
were calculated from the time spent in each age group (see Table 1). 

The male sector is modelled in a similar way. 

O P T I M A L  H A R V E S T I N G  O F  A P O P U L A T I O N  

The model  developed above can now be used to maximise the number  of 
rhino that can be harvested from a reserve under  sustainable conditions. 
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Thus, equilibrium solutions of the dynamic model  are sought which max- 
imise the rate at which animals can be removed for translocation. 

The problem stated more concisely is to find a removal strategy (f3, f4, 
m3, m 4) and a density so as to maximise the rate of removals (f3 +f4  + m3 
+ m 4) subject to the constraints below, where F and M denote  the column 
vectors [F 1 F 2 F 3 F4] T and [M 1 M 2 M 3 M4] T respectively: 

d 
- - F = 0  (1) 
dt  

d 
- - ~ t = 0  (2) 
dt  

M 4 - F 4 = 0 (3) 

LSU 
density = - -  (4) 

CC 

F 1 ,  F 2 ,  F 3 ,  F 4 ,  M 1 ,  M 2 ,  M 3 ,  M 4 ,  f 3 ,  f 4 ,  m 3 ,  m 4  >t 0 ( 5 )  

The social effects of a skewed sex distribution is not known. In the light 
of this uncertainty there is a reluctance to disturb the social order. Thus 
constraint (3) is included to maintain an equal sex distribution. Detai led 
expressions for constraints (1) and (2) are obtained from the dynamic 
model  and require that the population be in equilibrium. These equations 
also show that the decision vector (f3, f4, m3, m4) and density are implicit 
functions of the state variables F and M. The problem is thus one of 
non-linear constrained optimisation. 

Substituting the equations for the dynamic model  into (1) and (2) and 
solving for f3, f4, m3, m4, we get: 

0 = 0 . 5 ( F  4 FF4)  - -  F 1 AGING 1 - -  F1 MORT1 - -  F1 PRED 1 

0 = F 1 AGING 1 - -  F 2  AGING 2 - -  F 2  MORT2 - -  F 2  PRED 2 

f 3  = F2  AGING 2 -- F3 AGING 3 --  F3 MORT3 

f4  = F3 AGING 3 --  F4 MORT4 

0 = 0 . 5 ( F  4 FF4)  - -  M 1 AGING 1 - -  M1 M O R T I  - -  M1 PRED 1 

0 = M 1 AGING 1 - -  M2 AGING 2 - -  M 2  MORT2 - -  M2 PRED 2 

m 3 ---- M 2 AGING 2 - -  M 3  AGING 3 - -  M 3  MORT3 

m 4 = M 3 AGING 3 - -  M 4  MORT4 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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The optimisation problem can now be restated as follows: 

Find 

F1, F2, g3, F4, M1, M2, M 3 and M 4 to maximise the sum of the right 
hand sides of (8), (9), (12) and (13) 

subject to 
the equalities (3), (4), (6), (7), (10), (11) 
and the inequalities 

right-hand sides of (8), (9), (12), (13) >~ 0 
and 
F,, F2, F3, F4, M1, M 2, M3, M 4 >~ 0 

One the optimal structure of the population is determined the optimal 
removal strategy can be recovered from (8), (9), (12), (13). For a specified 
density, the optimal removal strategy can be determined by solving a linear 
programming problem. By specifying, in turn, a range of values for the 
density a series of linear programming problems can be solved. The results 
can then be compared to yield the optimal density and the corresponding 
optimal strategy at this density. 

To illustrate this procedure we consider a population in a fixed area 
where the carrying capacity (cc) is 480 large stock units in total - this is the 
case in the province of Natal, South Africa (see later). The results are 
presented in Fig. 2 as the 'reference' graph where it is seen that the 
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Fig. 2. Opt imal  removal  ra tes  (head  yr -1)  using the reference,  more  sensitive and  less 
sensitive mortal i ty functions,  respectively. 
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population should be kept to a density of around 40-60%. At this density 
the optimal strategy is to remove 9 males and 9 females from the third age 
group each year. Under current policy this is the preferred age group for 
capture and translocation. For current policy therefore we have deter- 
mined the maximum sustainable harvest. There is some uncertainty as to 
the validity of some of the mortality functions. The mortality functions for 
age groups 1 and 2 are of particular concern as the function increases 
rather rapidly once density exceeds 60% of the carrying capacity. These 
functions were thus replaced by similar functions which assumed values 
about 10% greater than the original functions for densities of 50% and 
higher, i.e. the sensitivity of these functions to density has been increased. 
The problem of determining the optimal sustainable removal rate was then 
solved again. A similar procedure was followed for the mortality functions 
less sensitive to density. The results of both these exercises are also 
presented in Fig. 2. It is seen that the previously determined optimal 
strategy is not appreciably affected by these changes in the mortality 
functions. 

In the next section we investigate whether this removal strategy is a good 
one from the perspective of achieving maximum growth in the newly 
established reserves. 

MAXIMISING THE GROWTH OF A NEWLY ESTABLISHED POPULATION 

When density levels are low the dynamic model developed earlier is 
closely approximated by a non-homogeneous linear system of first-order 
differential equations. This is likely to be the case for the translocated 
population in the short term. This might even be true in the medium term 
if the current growth in the number of game reserves continues. An 
analysis of a linear model of the new populations is thus performed with a 
view to determining what input strategy would maximise its growth rate. 

Removals from a well-stocked population would provide the source term 
for a new population. It was therefore assumed that the source term would 
comprise equal numbers of males and females in each age group. In this 
case it is only necessary to consider the female population as the rates 
affecting the corresponding male and female groups are the same. 

From the original dynamic model it can be seen, for low population 
densities, that the female population can be represented by a linear system 
of differential equations of the form: 

d 
- - F = A F  +s F(O) given (1) 
dt 
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where the matrix A is the following 

( - - A G I N G  I -- MORT I -- PREDI)  0 

AGING I ( - -AGING2 -- MORT2 -- PRED2)  

0 AGING 2 

0 0 

0 0.5 FV a ] 

0 0 

( - -  AGING 3 -- MORT3) 0 

AGING 3 -- MORT4 

The coefficients of A are constant for any specified density and are 
approximately constant for any variations in populat ion such that the 
density remains less than 25% of the carrying capacity. The vector s = 
(0 0 s I s2) T is the rate at which rhino are added to the population 
from an outside source. This rate is assumed constant and the total 
numbers  fixed at r animals per  unit item. Thus we have: 

Sl + s2 = r (2) 

The mathematical  problem can now be stated as follows: 

Find 

s l , s  2 to maximise L ( s )  = F 1 + F 2 + F 3 + F 4, for arbitrary time t > 0 

subject to 

( 1 ) , ( 2 ) a n d  s 1 ,s  2 , F  1 , F  2 , F  3 , F  4>/0  

To solve the problem we proceed as follows: 
Let  

e = F + A -  (3)  

then it follows from (1) that 

d 
- - P = A P  (4) 
d t  

Substituting data values into the matrix A it is found that the eigenval- 
ues A~, A 2, A 3 and *~4 a r e  real, non-zero and distinct. Corresponding 
eigenvectors v~, v 2, v 3 and t, 4 were then calculated to yield the general 
solution of  (4): 

p = c I e h l t b ' l  -Jr- c 2 eA2 t /Y  2 -}- C 3 eA3tu 3 q- C 4 e h 4 t / )  4 

for some constant vector 

c 2 
C =  C3 

C4 
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Substituting back into (3) and solving for F gives: 

F ( t ) = ( e ~ , t v ,  e~2tv 2 eA3tv3 eAa~v4)c-A-ls  

The vector c can be determined from the initial conditions: 

F(0)=(Vl v2 ,,3  4)c-A-'s 
Denoting the ma t r ix (v  1 v 2 v 3 v 4) by V, w e g e t :  

c = V -1F(O) + V - I A - l s  

and 

F ( t ) - -  WV- '  F (0 )  + (WV- 'A -1 - A  1)s (5) 

where 

W ~  (eAItu1 eA2t/J 2 eA3tu3 ehat/y4) 

To maximise L(s), s needs to be chosen to maximise components  
relating to the second term in (5). Let ( b i j ) =  (WV-1A -1 - A - l ) ,  then we 
need to maximise: 

(b13 + b23 + b33 + b43)s 1 - (b,4 + b24 + b34 + b44)s 2 (6) 

subject to the constraints given earlier. Denot ing the multipliers of  s I and 
s 2 in (6) by a and /3 respectively, it is easily seen that for a maximum we 
require: 

s 1 = r, s 2 = 0 if a >/3 

s 1 = 0 ,  S 2 = r if a </3 

Numerical  evaluation of  the co-efficients of (bij) revealed that /3 > a for 
all t > 1 and that (/3 - a)  increases with t. The results indicate that even 
allowing for inaccuracies in data the new populat ion increases faster if a 
given number  of animals in age group 4 are imported compared with the 
same number  in age group 3. However,  the sustainable yields from the 
source populat ion are maximised when animals from the third age group 
only are translocated. In fact, for our source populat ion with a carrying 
capacity of 480 large stock units, only 12 animals from the fourth age group 
can be translocated annually on a sustainable basis as opposed to about  18 
from the third age group. 

DETERMINING A TRANSLOCATION STRATEGY FOR THE WHOLE POPULA- 
TION 

From the above results it is clear that a strategy aimed at maximising 
either the sustainable harvest of the founder  population or the growth rate 
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TABLE 2 

Initial values of the founder and translocated populations 
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Group Age (yrs) Founder (head) Translocated (head) 

1 0-1 20 0 
2 1-2 16 0 
3 2-8 44 10 
4 8 + 320 40 

of the translocated population will not necessarily maximise the overall 
(founder + translocated) population growth rate. This matter is further 
explored by performing a number of simulations with a model that includes 
both an exporting (founder) population and a newly established importing 
(translocated) population. The dynamic model developed earlier is applied 
to the founder population with removals forming the input to a similar 
model for the translocated population. In this way the effects of a translo- 
cation policy on the total population can be evaluated. 

Black rhinos of the southern-central subspecies available for transloca- 
tion are found in the following game reserves in Natal: Hluhluwe, Um- 
folozi, Mkuzi, Ndumu and Itala (Brooks, 1989). There are a number of 
areas in southern Africa suitable for establishing or increasing populations 
of black rhino. Based on estimates for these areas the ecological carrying 
capacity of the total founder population is assumed to be 480 large stock 
units, that of the total translocated population 1920 large stock units and 
the initial values are given in Table 2. A period of 10 years was considered 
to be a suitable period over which to perform the simulations. After 
consideration of the results and discussion in the earlier sections of this 
paper it was decided to test translocation rates from 12 to 20 animals per 
year. To avoid social disruption as previously discussed the numbers 
translocated in any age class were equally divided among the sexes. For this 
reason only even numbers of total removals are considered. A translocation 
strategy can therefore be represented by two numbers r 3 and r4, the 
numbers removed from the third and fourth age groups, respectively. 

The results indicate that for any specified total translocation rate r 
(=  r 3 + r 4) the greater r 4 is, the greater will be the total population at the 
end of a 10-year period. Thus, for a given total number of removals the 
best strategy is a pure strategy of translocating animals from age group 4 
only and the worst strategy is the pure strategy of translocating animals 
from age groups 3 only. This is true for any given r in the range of 12 to 20. 
Some examples are shown in Table 3. 

It would appear then that translocating adults (group 4) is more 
favourable to total population growth due to the immediate enhancement 
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TABLE 3 

Performance of translocation strategies with nominal initial values 
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Translocation 
(head yr- 1 ) 

F3 ?'4 

strategy Population (head) 

Total = Founder + Translocated 

0 12 773 427 346 
6 6 750 433 317 

12 0 727 440 287 
0 14 794 414 380 
8 6 763 423 340 

14 0 740 430 310 
0 16 814 401 413 
8 8 784 410 374 

16 0 754 419 335 
0 18 834 387 447 

10 8 797 399 398 
18 0 767 409 358 
0 20 853 373 480 

10 10 817 386 461 
20 0 780 398 382 

of fecundity in the new lower density environment. With sub-adults (group 
3), there is some delay before they mature into fecund adults. After 10 
years, for a translocation rate of 20 head per year, the total population 
attained by the two pure strategies differs by nearly 10%. 

Based on the nominal initial and parameters values it can be seen in 
Table 3 that translocating 20 adults (group 4) per year over a period of ten 
years will lead to a 90% increase in the total population (founder + 
translocated). Note that despite the removal of 20 animals per year the 
founder population declines by less than 10% over this period. 

We now explore the dependence of these results on the initial and 
parameter values by performing further simulations. For various reasons 
including the preservation of an adequate gene pool, conservation authori- 
ties would find unacceptable any policy which leads to a severe decline in 
the founder population. For this reason any policy which leads to a decline 
in the founder adult population below 200 head is considered to be 
infeasible. 

It was calculated earlier that if the founder population was to be kept in 
equilibrium at 60% of its carrying capacity then at least 18 animals can be 
translocated each year provided these animals were in the third age class. 
When the additional constraint was imposed on the problem that only 
animals from the fourth age group could be translocated then it was found 
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TABLE 4 

Performance of translocation strategies for altered initial values 

291 

Translocation strategy Population (head) 
(head yr- 1) Total = Founder + Translocated 
l'3 r4  

10 6 729 365 364 
16 0 712 335 377 
12 6 737 349 388 
14 4 732 354 378 
16 2 727 359 368 
18 0 722 363 359 
14 6 744 333 411 
20 0 730 348 382 

that only 12 animals could be removed on a sustainable basis. These results 
suggest that if the initial structure of the founder  populat ion were such that 
the populat ion could export 18 animals each year on a sustainable basis 
then there is a possibility that this would also be the best policy for the 
total population. Thus the simulations were repeated  with this considerably 
changed initial structure. The initial values for the translocated population 
remains unchanged.  This initial structure was expected to be more 
favourable to a policy of exporting animals from age group 3. Although a 
number  of strategies were now infeasible, the results (table 4) for feasible 
strategies showed a similar pat tern to those for the original initial values. 

Fur ther  experimentation with the initial and parameter  values was 
undertaken.  In the case of  the parameter  values the mortality rates were 
increased by 20% and the fecundity rate simultaneously decreased by the 
same percentage.  All the results s t rengthened the conclusion that, provided 
a strategy remained feasible, the greater  the proport ion of  translocated 
animals that are in the fourth age group the more rapidly the total 
populat ion will increase. However,  the results also indicate the need for 
some caution regarding the actual number  translocated per  year. For 
example the translocation of 20 adults per  year is no longer feasible for the 
changed set of parameter  values. An inspection of  the results from all our 
simulations indicated that a more cautious policy would be the transloca- 
tion of 14 adults per  year. With the nominal parameter  values the total 
populat ion would still experience an appreciable increase (75%) over the 
10-year period. 

CONCLUSION 

The stocking density and translocation strategy required to maximise the 
sustainable yield from a reserve well-stocked with rhino has been deter- 
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mined for the nominal parameter  values. However, further analysis showed 
that following such a policy would not maximise the growth rate of the 
s o u t h e r n  Af r i c an  p o p u l a t i o n  as a whole .  T h u s  the  survival  p r o s p e c t s  o f  
b lack  rh ino  would  be  e n h a n c e d  by a c h a n g e  in the  p r e s e n t  policy o f  
t r ans loca t ing  an ima l s  f r o m  the  th i rd  age  g r o u p  only to a pol icy of  t r ans lo -  
ca t ing  as m a n y  f r o m  the  fou r th  age  g r o u p  as the  sou rce  p o p u l a t i o n  can  
to le ra te .  
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