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Mineral implications in health issues of captive rhinos have received much
attention lately. This study was undertaken to establish reference values for the
mineral status of rhinos. Serum/plasma samples of free-ranging black (Diceros
bicornis) and white (Ceratotherium simum) rhinos and of captive black, white,
Indian (Rhinoceros unicornis), and Sumatran (Dicerorhinus sumatrensis) rhinos, as
well as liver tissue samples of captive black, white, and Indian rhinos were
analyzed for mineral content. Circulating mineral levels of free-ranging animals
were subject to variation according to region. In free-ranging animals, high
molybdenum (Mo) values compared to horse normals were striking. Captive
animals displayed even higher circulating Mo concentrations. The significance of
iron (Fe) overload in captive specimens of the browsing rhinos (black and
Sumatran) was confirmed. Hepatic Fe levels increased in blacks with age.
Although this Fe overload is suspected to be linked with diets, the data indicate
that this is not due solely to an excessive dietary Fe supply. Whereas the grazing
species (white and Indian) had high liver copper (Cu) levels, the browsing species
had low to marginal liver Cu concentrations. Liver concentrations of K, Mg, Co,
and Mo increased with age in captive black rhinos. Additional findings include
high circulating Se levels in all rhino species. Future research should be directed at
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investigating factors leading to high Fe levels, and at investigating Cu metabolism
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INTRODUCTION

Various diseases of captive black rhinoceros have implicated mineral
imbalances as an underlying factor. Health syndromes receiving most attention
regarding mineral metabolism include those associated with Fe storage disease, and
oxidative processes where minerals may be considered essential co-factors [Paglia,
1994; Paglia and Dennis, 1999]. Hemosiderosis has been reported in captive, but not
free-ranging, black rhinos [Kock et al., 1992; Montali and Citino, 1993; Paglia et al.,
2001]. In captivity, hypophosphatemia has been associated with hemolytic anemia
and dermatitis [Kock and Garnier, 1993].

Selected mineral concentrations have been investigated in forages consumed by
free-ranging black [Ghebremeskel et al., 1991; Dierenfeld et al., 1995], Sumatran [Lee
et al., 1993], and white rhinoceros [Kiefer et al., 2003], but little is known of systemic
blood levels, or tissue storage, of these nutrients in any rhino species. Macromineral
and trace element ranges in native rhino browses fall into general ranges for horse
requirements [Dierenfeld et al., 1995], although sodium and phosphorus may be
limiting, the latter particularly in relation to calcium content. Selenium and zinc
status in captive black rhinos have also been suggested to be marginal based on
limited blood samples [Ghebremeskel et al., 1991], and native browse samples appear
to contain low levels of these nutrients [Dierenfeld et al., 1994, 1995].

Dietary mineral interactions, overall health, and nutritional status need to be
investigated in detail, particularly in relation to an overall in vivo oxidative status of
rhinoceros. This survey study was designed to quantify mineral concentrations in
rhinoceros serum/plasma and liver samples in an attempt to establish baseline
nutritional assessment criteria for the Rhinocerotidae. We intended to establish
mineral levels for free-ranging animals, which should presumably be used as
‘‘normal’’ reference for the species, compare these to normal ranges of the domestic
model animal, the horse, and then evaluate the status of the captive population. As
in earlier studies [Paglia and Dennis, 1999], the comparison between the rhino species
was anticipated to be especially revealing.

MATERIALS AND METHODS

Frozen plasma or serum samples (0.5–1 ml aliquots) available from living
individuals in North American zoological institutions between 1982 and 2000 were
obtained from the AZA (American Zoo and Aquarium Association) Rhinoceros
Taxon Advisory Group (TAG) tissue bank, or were shipped directly to the Wildlife
Nutrition Laboratory (Wildlife Conservation Society, Bronx, NY). Samples from
free-ranging black rhinos were obtained through International Field Veterinary
Services, Inc. (Salinas, CA), following rhinoceros translocation operations in
Zimbabwe (1998). Blood collection took place after chemical immobilization in
the free-ranging animals, whereas a majority of the captive animals were trained for
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blood sampling. Liver samples (5–50 g) collected at necropsy, and stored frozen
(�701C; o10 years) as part of the AZA Rhinoceros TAG research protocol were
utilized. Comparative blood and tissue samples obtained from healthy domestic
horses were also assayed over the course of this study. All samples were shipped
frozen overnight to the Animal Health Diagnostic Laboratory at Oregon State
University (OSU AHDL), Corvallis, for mineral determination.

The elemental analysis on the plasma and serum samples was accomplished by
using inductively coupled plasma atomic emission spectroscopy (ICP-AES) (JY
2000, Jobin Yvon Inc., Edison, NJ), inductively coupled plasma mass spectroscopy
(ICP-MS) (Elan 6100, Perkin-Elmer Corp., Norwalk, NJ) and automated fluoro-
metric determination of selenium (Se) (AAII System with Se cartridge) (Alpkem
Corp., Clackamas, OR). Plasma/serum samples analyzed using the ICP-AES were
diluted with a protein-precipitation/reducing/internal standard solution. After
centrifugation the supernatant was removed for analysis [Melton et al., 1990].
Preparation of the plasma/serum for analysis by the ICP-MS consisted of mixing the
sample with a dilute nitric acid solution containing the internal standards. Before
analysis the samples were centrifuged [Nuttall et al., 1995]. Liver samples for
elemental analysis by ICP-AES and ICP-MS were prepared by adding a measured
amount of tissue and nitric acid to a digestion vessel. The sample was then heated
overnight in a 1001C oven. After decomposition the mixture was diluted with an
ultra pure water/internal standard solution and centrifuged before analysis
[Anderson, 1996; Saito and Saito, 1996]. The instrument calibration, tuning,
interference check and internal standard solutions used in the ICP-AES and ICP-MS
determinations were supplied by SPEX CertiPrep (Metuchen, NJ) The determina-
tion of Se on all plasma/serum and liver samples was conducted using a modification
of the method developed by Brown and Watkinson [1977]. The samples were
digested by wet-ashing with nitric acid, phosphoric acid and hydrogen peroxide
before fluorometric analysis. The Se standard used in this assay was obtained from
the National Institute of Standard Technology (NIST) Standard Reference Material
(SRM) 3149, Se liver (Gaithersburg, MD). The accuracy and precision of each
analysis was established using commercially purchased controls. These materials
were obtained from the NIST SRM, 1577b bovine liver and Seronorm Trace
Elements, Serum (Nycomed Pharma AS, Oslo, Norway).

Minerals analyzed included calcium (Ca), inorganic phosphorus (Pi), sodium
(Na), potassium (K), magnesium (Mg), copper (Cu), iron (Fe), manganese (Mn),
molybdenum (Mo), Se, and zinc (Zn). Chloride (Cl) was not analyzed. Additionally,
arsenic, cadmium, aluminium, lead, nickel, chromium, vanadium and tin were
analyzed in liver samples (results not shown). Available data from the literature was
added to the tables; it should be noted, however, that literature data may have been
analyzed differently from the current data set.

Differences between black rhinos from different locations were tested by
ANOVA and subsequent post-hoc tests. In case of different variances, Dunnett’s T3-
test was used for the pair-wise comparisons. Differences within species between free-
ranging and captive individuals and between free-ranging black and white rhinos,
were investigated by t-tests for each individual mineral or, if data deviated from the
normal distribution, by U-test, which is then indicated in the results section.
Differences between species serum/plasma levels were tested in captive animals by
ANOVA, using species as factor. In three species where n was 3 or less, these were
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not compared against each other. Instead of pair-wise post-hoc tests, only a
difference between black rhinos and ‘other species’ was tested (contrast analysis). A
potential influence of sex or age was investigated using ANCOVA with sex as a
factor and age as covariables. Differences between newborn and adult animals were
tested by t-test. In three of four species sampled younger animals (age¼o20 years)
were poorly represented, differences between species liver levels were tested in
animals 420 years of age only to avoid age effects, by ANOVA and post-hoc tests.
Again, Dunnett’s T3 was used in case of significantly differing variances. All analyses
were carried out using the SPSS 9.0 statistical package (SPSS Inc., Chicago, IL). The
significance level was set to a¼ 0.05.

RESULTS

Serum/Plasma Samples

Black rhinoceros (Diceros bicornis)

Table 1 provides circulating mineral concentrations in free-ranging black
rhinoceros sampled from four locales in Zimbabwe. Mean concentrations of Se in
animals from Matusadona, the Midlands, and Chete were below normal for horses.
Animals from Matusadona and the Midlands region displayed Fe concentrations
within ranges previously reported for captive animals only [Jones, 1979; Paglia and
Dennis, 1999]. The only significant differences between regions included Zn and Fe
concentrations (Table 1).

When comparing the average circulating mineral levels of free-ranging black
rhinos to normal horse ranges (Table 2), a close overlap of ranges can be observed
for most minerals. Circulating Ca levels were distinctively higher in the black rhinos,
however, and Se levels were lower. Manganese and Mo are not typically requested
on clinical serum samples so normal ranges were extracted from the literature.

Circulating mineral concentrations for captive black rhinoceros (41 year of
age) are given in Table 3. Captive rhinos displayed lower Mg (Po0.001, n¼ 57), Mn
(Po0.001, n¼ 40), and Zn (U-test: P¼ 0.026, n¼ 57) concentrations compared to
free-ranging animals (data from Table 1, combined from the various locations). The
high mean Zn level in captive black rhinos shown in Table 3 was caused by very high
levels in three animals from one facility. If these animals were excluded from the
comparison, the mean level diminishes to 1.2370.66 mg/ml, data distribution
becomes normal, and free-ranging animals had significantly higher serum Zn levels
(P¼ 0.035, n¼ 54). Captive rhinos displayed significantly higher levels of Pi

(P¼ 0.015, n¼ 56), Cu (Po0.001, n¼ 57), Mo (P¼ 0.003, n¼ 37), and Se
(Po0.001, n¼ 57). The difference in serum Fe levels between free-ranging and
captive animals was not significant (P¼ 0.074, n¼ 57). Iron levels for captive black
rhinos were within the range reported in the literature, but the mean Fe
concentration in free-ranging black rhinos in this study was higher than reported
previously. Molybdenum levels in captive animals were considerably higher than
normal ranges for domestic horses.

There were no significant differences in circulating mineral levels between the
sexes.

Circulating mineral concentrations from neonatal (o10 days of age) captive
black rhinos are also given in Table 3. Molybdenum was considered higher than
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expected compared to normal values for equids. There were no significant differences
between circulating mineral levels in newborn and adult animals, and there were no
significant correlations of serum/plasma mineral concentrations with age of captive
animals except for K, where the correlation was due to two individual outlying
values.

Sumatran rhinoceros (Dicerorhinus sumatrensis).

Serum/plasma mineral concentrations obtained from captive Sumatran rhinos
are presented in Table 4. Average Ca, Mg, K, Cu, and Fe values were above normal
equid ranges, whereas Na was low.

Indian rhinoceros (Rhinoceros unicornis).

Captive Indian rhino serum/plasma mineral concentrations are also listed in
Table 4. The average Zn level was higher than the normal horse range. Although Mo
was also above normal horse range, Se was marginally lower.

White rhinoceros (Ceratotherium simum).

Table 5 displays Ca and Na concentrations in captive animals that are above
the range otherwise reported in the literature for this species; Ca (P¼ 0.043, n¼ 8)
and K (P¼ 0.050, n¼ 8) concentrations were also significantly higher than those in
free-ranging rhinos in our study. Fe values did not differ significantly between free-
ranging and captive animals (P¼ 0.795, n¼ 8) and were intermediate to those
reported by others [Jones, 1979; Smith et al., 1995; Paglia and Dennis, 1999].
Insignificant results might, however, also be due to the low power of the test with 6–8
animals only. Compared to horse normals, free-ranging white rhinos had
particularly low Na values and high Mo levels.

Interspecies Comparisons

Compared to free-ranging black rhinos, free-ranging white rhinos had
significantly higher circulating levels of Se (Po0.001, n¼ 32) and Mo (P¼ 0.028,
n¼ 30), and significantly lower levels of Na (Po0.001, n¼ 32), K (P¼ 0.010, n¼ 32),
Mg (P¼ 0.040, n¼ 32), Ca (P¼ 0.015, n¼ 32), and Mn (P¼ 0.026, n¼ 32).
Captive black rhinos had significantly higher levels of Fe (P¼ 0.034), K (P¼ 0.001),
and Se (P¼ 0.046) than captive Indian rhinos, and lower levels of Mg (Po0.001)
than Sumatran rhinos.

Liver Samples (Captive Rhinoceros Samples Only)

Mineral concentrations in liver samples from rhinos 41 year of age are shown
in Table 6, compared to equid normals. Calcium was generally high, and especially
so in the black rhino samples. In general, Na was on the low end of the normal horse
range. Average Fe levels of all four rhino species exceeded the normal horse range.
Although Cu levels were within the horse range for black and Sumatran rhinos,
Indian and white rhinos had extremely high liver Cu concentrations. Liver Se
concentrations exceeded the normal horse range in both the black and the white
rhinos. Other minerals were within expected normals for horses. Data for arsenic,
cadmium, aluminium, lead, nickel, chromium, vanadium, and tin did not differ from
normal horse levels and are not shown in the table.
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Livers from neonates (o10 days of age) or stillborns are also found in Table 6.
Samples from these young contained significantly lower Fe (P¼ 0.003, n¼ 25), Mo
(P¼ 0.004, n¼ 25), and cadmium (Po0.001, n¼ 22; [data not shown]), and
significantly higher Cu (U-test: P¼ 0.001, n¼ 25) concentrations compared to adult
animals. There were no significant differences between neonates and adults in the
Indian rhino, which might, however, be due partially to small sample size (4–6
animals).

There were no significant differences in liver mineral concentrations between
the sexes in black rhinos. There were significant correlations between age and hepatic
K (P¼ 0.039, n¼ 19), Mg (Po0.001, n¼ 20), Co (P¼ 0.038, n¼ 20), Fe (0.012,
n¼ 20), and Mo (P¼ 0.005, n¼ 20) in black rhinos (Figs. 1,2).

Black rhinos (420 years of age) had significantly higher hepatic levels of Fe
and Mo than white (P¼ 0.005 and P¼ 0.029) or Indian (P¼ 0.006 and P¼ 0.035)
rhinos, respectively. No other significant differences between any species could be
detected. The hepatic Fe value for the other browsing species, the Sumatran rhino,
was of the same scope as the black rhino value but could not be compared
statistically due to low n.

DISCUSSION

By necessity, a survey of this scope depends on samples taken by a multitude of
individuals, and therefore a consistent quality of the material submitted cannot be
guaranteed. Ideally, in such a study the degree of hemolysis of plasma/serum samples
should be monitored by analyzing the hemoglobin content of the sample. In this
study, hemolysis was only assessed visually, and a total of six samples were
considered ‘hemolytic.’ The liver samples were from necropsied animals that had
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Fig. 1. Iron levels in livers of captive black rhinos (Diceros bicornis) correlated with age.
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died due to a variety of causes, and the mineral concentrations measured might
therefore not represent ‘normal’ values of healthy animals. Ideally, liver mineral
concentrations should be determined on a dry matter basis to minimize differences
due to water losses during frozen storage, and histopathological assessment should
accompany mineral determination. Direct correlation of liver and serum/plasma
values could not be made because samples from the same individuals were
unavailable. Literature data used for comparative purposes may have been analyzed
differently from the current data set and differences may be an artifact of method of
analysis. The data determined in the course of this study must be interpreted with
caution for all these reasons.

Calcium and Phosphorus

Calcium levels in livers were generally high. Although white rhino samples were
just on the upper range of horse standard values, black rhinos had particularly high
liver Ca concentrations. A potentially pathological significance of this finding is
unknown. A dietary cause, however, can be suspected: rhinos, like equids, tapirs and
elephants [Schryver et al., 1983], and lagomorphs [Cheeke and Amberg, 1973],
probably do not regulate Ca uptake in the gut as man and other animals do, but
absorb it in great quantities, excreting any unnecessary surplus via the kidneys.
Differences in dietary Ca should be reflected in differences of circulating Ca levels.
Free-ranging black rhinos, for example, have significantly higher circulating Ca
levels than free-ranging white rhinos, probably because black rhino natural forage
(browse) generally contains higher concentrations of Ca than white rhino natural
forage (grass) [Robbins, 1993; Dierenfeld et al., 1995]. Black rhinos are traditionally
fed larger amounts of Ca-rich alfalfa hay, in contrast to white and Indian rhinos,
who traditionally receive grass hay in many institutions. The permanent high dietary
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Fig. 2. Molybdenum levels in livers of captive black rhinos (Diceros bicornis) correlated with
age.
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Ca supply via alfalfa might lead, over time, to higher Ca deposits in liver tissue.
Kiefer et al. [2003] demonstrated higher Ca concentrations in a hay fed to white
rhinos in a European zoo compared to Ca concentrations in natural South African
forage. This discrepancy could explain the generally higher circulating Ca in captive
compared to free-ranging white rhinos. Additionally, captive animals are likely to
receive, in addition to the minerals supplied via forage, special mineral
supplementation products. With respect to potential calcinosis and Ca urolithiasis
the efforts necessary to clean Ca-rich urine deposits from walls and floors of rhino
enclosures, the Ca supplementation regime in captivity should be re-evaluated.

Hypophosphatemia has been observed in black rhinos during hemolytic crises
[Kock and Garnier, 1993; Paglia, 1994]. Our data, however, do not suggest that
captive rhinos of any species are generally Pi marginal or deficient, which implies that
the problems are not of a general, dietary origin. In contrast to Kock et al. [1990] we
did not find a correlation with Pi and age, nor with Ca and Pi and sex.

Sodium, Potassium, and Chloride

It has been noted earlier [Van Heerden et al., 1994] that rhinos had low serum
levels of Na and Cl; for Na, this finding is supported by our data. Sodium was
reported to be in limited to marginal supply in browse consumed by black
[Ghebremeskel et al., 1991; Dierenfeld et al., 1995] and Sumatran rhinos [Dierenfeld
et al., 1994], and Na is generally a limiting factor for many wild herbivores [Robbins,
1993]. The relatively low Na (and concurrently Cl) values displayed by rhinos might
be an adaptation to a habitat where this mineral is limited. Potassium is usually
abundant in any forage material [Robbins, 1993]. The correlation with age suggests
that it is accumulated in the liver over time. There is no reason, however, to suspect
that this is potentially problematic.

Magnesium

Magnesium concentrations in the liver were high in all rhino species and
exceeded the normal horse range for Sumatran rhinos. There was a correlation of
liver Mg levels and age suggesting an accumulation of Mg over time. Magnesium
was reported to be in marginal supply in black rhino browse species [Dierenfeld et
al., 1995]. For captive animals, Mg supply seems adequate to high. As no
pathological observations have been reported that could be related to an oversupply
of Mg this is unlikely to warrant special attention.

Cobalt

Although Co was not measured in the serum/plasma, its content in liver tissue
was within the horse normal range, with the browsing rhino species attaining the
higher levels. In black rhinos, higher Co levels were found in older animals, and the
correlation with age was significant. Cobalt and Fe share a common intestinal
mucosal transport pathway, and have been shown to function as antagonists at the
absorptive level [Smith, 1987]. Iron deposition in the liver also increases with age in
captive rhinos [Paglia and Dennis, 1999]; one might expect the high Co to interfere
with Fe absorption. In idiopathic hemochromatosis in humans, however, Co
absorption was increased in parallel to Fe absorption, and in patients with Fe
overload, Co absorption was not reduced in contrast to Fe absorption [Valberg et
al., 1969]. This suggests that the Fe overload in rhinos is not simply a consequence of
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high dietary Fe levels, or one might have expected reduced Co absorption [Smith,
1987]. In contrast to ruminants, Co deficiency has not been demonstrated in horses
[Smith, 1987]. From our limited data, the dietary supply seems adequate for
rhinoceros species.

Copper

In our sample, serum/plasma Cu levels in captive rhinos (both black and white)
were higher than values for free-ranging animals. Serum/plasma Cu values were
above the horse normal range, and this was a common trend for all four rhino
species. The species differed significantly in their liver Cu content. Although the
browsing species had average liver Cu values within the horse normal range, the
Indian and the white rhino had values several magnitudes higher. In contrast, when
Jones [1979] compared Cu contents of liver tissue, he found no difference between
one black and four white rhinos. Howard [1964] gave an average Cu liver content for
six free-ranging black rhinos in Kenya of 28.7 mg/g dry matter (SD¼ 3.5; range¼
20–43). Assuming a liver dry matter content of 25–30%, this would translate into 7–
9.5 mg/g wet weight (WW) (range¼ 5–14). This is within the upper normal range for
horses and compares well to our average and range for captive rhinos of 6 and 3–17
mg/g WW, respectively. It should be noted, however, that in our sample, six black
rhinos had liver Cu levels of 3 mg/g WW, which is below the level of 3.5 Puls [1994]
gives as the threshold below which a deficiency might be suspected.

The first striking discrepancy in our findings is the fact that the these enormous
differences in liver Cu content are not reflected in serum/plasma Cu content. Samples
did not originate from the same individuals. Whereas there is a good correlation
between Cu levels in serum and liver in ruminants, i.e., Cu status can be assessed
sufficiently accurately by serum Cu [Vermunt and West, 1994], there is no reliable
correlation between the two variables in equines [Smith et al., 1975; Cymbaluk and
Christensen, 1986; Suttle et al., 1996]. This could mean that serum/plasma Cu is not
a reliable indicator of Cu status in rhinos.

Copper deficiency is a cause for excessive liver Fe storage in most animals
[Brewer, 1987]. High liver Cu levels have been found in human hemochromatosis
[Davis and Mertz, 1987], and Cu toxicosis leads to a hemolytic crisis in many animals
[Brewer, 1987]. This means that one would expect either significantly high or low
liver Cu levels in those species that do have problems associated with Fe and
hemolysis (e.g., black rhinos). There were no significant correlations between Fe and
Cu levels in serum or in liver in this study.

The fact that it is the grazing species, those who do not have Fe problems, that
have liver Cu levels deviating from the normal range, is therefore a surprising
finding. There are species differences in the susceptibility to Cu toxicosis, with equids
being highly resistant [Smith et al., 1975; Brewer, 1987]. There are no reports of
clinical signs associated with Cu toxicosis in captive white and Indian rhinos. In one
study, the natural diet of free-ranging white rhinos contained 4–6 mg Cu/kg DM
only [Kiefer et al., 2003] (horse recommendation 10 mg/kg DM [National Research
Council, 1989]). If one assumes that these animals had to adapt to diets of low Cu
content, a particular storage of this mineral could be expected and explain the high
liver Cu values determined in this study.

In black rhinos, although the average Cu liver content was within the normal
horse range, six animals were deficient according to horse standards. It was shown
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that the diet consumed by Sumatran rhinos in a North American facility, consisting
of pellets, hay, produce, and browse, was low in Cu (6.9–8.3 mg/kg DM) compared
to horse dietary requirement recommendations (10 mg/kg DM) [National Research
Council, 1989], although potential contributions from an available trace mineralized
salt block were not incorporated into the diet analysis [Dierenfeld et al., 2000].
Similarly, another diet reported for black rhinos [Spala and Hradecky, 1993]
contained a marginal 7.3–9.3 mg Cu/kg DM (pellets, oats, hay). Therefore, a
marginal dietary Cu supply in individual browsing rhinos cannot be excluded.

The influence of a potential Cu deficiency in the occurrence of encephaloma-
lacia in newborn black rhinos has been speculated upon [Paglia et al., 2001]. In
horses, however, clinical signs of degenerative myeloencephalopathy were not
correlated with either low plasma or liver Cu concentrations [Mayhew et al., 1978;
Dill et al., 1989]. In our sample, newborns had higher liver Cu contents than older
animals, in accordance with data from other species [Davis and Mertz, 1987], but the
high variation precluded statistical significance. The high Fe load of captive black
rhinos, and the ensuing oxidative stress [Paglia and Dennis, 1999], might necessitate
higher rates of Cu metabolism as Cu is an important part of several antioxidant
enzyme systems [Johnson and Fischer, 1992]. In rats, Cu deficiency increases the
susceptibility of tissues to Fe-induced lipid peroxidation [Rayssiguier et al., 1993],
and Cu deficiency is correlated with an increase in red blood cell lipid peroxidation
and a reduction in erythrocyte survival [Jain and Williams, 1988]. The occurrence of
several disease complexes in black rhinos that are potentially linked to oxidative
stress due to the high Fe load [Paglia and Dennis, 1999] might indicate a special
requirement for Cu in these animals, not as an evolutionarily developed peculiarity,
but as a consequence of Fe overload in captivity. Feeding a marginal Cu diet to rats
significantly attenuated phagocytic cell activity in vitro, while altering, only
marginally, the concentrations of serum and hepatic Cu [Babu and Failla,
1990a,b]. The experimental design showed a decrease in the antifungal capacity of
the immune system. Fungal pneumonia has been repeatedly observed in black rhinos
[Weber and Miller, 1996]. These findings should not lead to the conclusion that black
rhinos should receive special Cu supplementation until our findings have been
confirmed and the Cu metabolism of rhinos is investigated in detail. Specifically, the
Cu status of living individuals should be assessed in a survey that not only measures
plasma Cu, a weak predictor of Cu status, but ceruloplasmin and erythrocyte
superoxide dismutase before and after parenteral Cu supplementation [Danks, 1981],
as well as other interacting minerals such as Mo and Sulfur. Such assays were
conducted for the evaluation of Cu status in koalas (Phascolarctos cinereus) [Thomas
et al., 1986], as well as other interacting minerals such as Mo and sulfur.

Iron

Our results confirm the importance of high Fe loads in captive black rhinos
with their probable consequence of excessive oxidative stress [Paglia and Dennis,
1999; Paglia et al., 2001]. Differences in serum Fe between free and captive animals
were not as distinct in our sample as cited previously [Paglia and Dennis, 1999], and
the high values reported for captive animals [Smith et al., 1995] were not reached in
our data set. In contrast, some free-ranging animals displayed relatively high serum
Fe values, indicating that Fe levels vary according to habitat. When reviewing the
literature, the low Fe values from Hamilton [1999] are surprising and warrant
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explanation. Paglia and Dennis [1999] found average values for free-ranging (Table 2)
and boma (1.4470.44 mg/ml, n¼ 6 ) animals that were lower than values found in
free-ranging animals in this study. These results underline the findings from Table 1
(e.g., circulating Fe levels are likely to vary with region and possibly with age in free-
living animals). Paglia and Dennis found that levels in animals imported recently
(2.4371.03, n¼ 9) only slightly exceeded those of free-ranging animals found in our
study. Although possible influences of gender and genetic predisposition to Fe
storage problems were speculated upon [Paglia et al., 2001], we did not find a signifi-
cant difference of serum Fe load and liver Fe load between the sexes in black rhinos.
Clinical signs of Fe storage have been shown to increase with age in captivity [Paglia
and Dennis, 1999] and the data confirmed this. Newborn black rhinos had lower Fe
levels in serum/plasma and liver than older specimens. Liver Fe increased signi-
ficantly with age; similar to another study [Smith et al., 1995]. There was, however,
no significant increase in circulating Fe levels with age. It has been stated repeatedly
that for a proper assessment of Fe status, serum ferritin, and transferrin saturation
indices should be used rather than only serum Fe [Paglia and Dennis, 1999].

The serum/plasma and the liver data show particularly high Fe levels in the
browsing rhino species, and lower Fe levels in the Indian and white rhino. These
results are in accord with observations [Paglia and Dennis, 1999] that reported
circulating Fe levels of 2.22 (70.65, n¼ 3) for Sumatran rhinos, and support the
notion that it is the dietary specialization of the browsing animals that leads to the
Fe storage problem in captivity. Further evidence in another browsing species guild,
the tapirs (Tapirus spp.) add weight to this hypothesis [Paglia et al., 2000], and it has
been proposed that Fe overload is common to monogastric, browsing species in
general [Clauss et al., 2002].

Manganese

Only free-ranging black rhinos displayed serum/plasma Mn concentrations
that would be considered within an expected normal range for equids (low 7.8 mg/L
to a mean of 15.9 mg/L [Cieśla, 2002]). Variation of Mn serum/plasma values was
generally very high, even in free-ranging black rhino. Liver concentrations were also
low in captive black and white rhinos and showed very large variation. This could
suggest an inconsistent and, at least for certain individuals, a marginal to deficient
supply of this mineral. Deficiency of Mn can result in depressed reproductive
function (defective ovulation, testicular degeneration, stillbirths, or early death),
depressed oxidative enzyme (SOD) activities, and defects in carbohydrate and lipid
metabolism, the latter leading to increased lipid peroxidation in cell membranes
[Hurley and Keen, 1987]. None of these effects have been investigated in detail in any
rhino species.

Molybdenum

The Mo values for captive black and white rhinos, as well as free-ranging
whites, were within a reported normal range for equids [Stainer and Blackmore,
1983] whereas free-ranging blacks, newborns, and Indian rhinos were variable but
low. This suggests habitat/dietary influences may have more impact than species per
se. Molybdenosis is associated with low Cu availability and Cu deficiency in
ruminants [Mills and Davis, 1987], and has been suspected to be the cause of clinical
Cu deficiency in horses [Walsh and O’Moore, 1953]. There are large species
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differences in the tolerance to high dietary Mo levels, with horses being very tolerant
[Mills and Davis, 1987]. Oral doses of Mo did not influence Cu serum or plasma
levels in horses [Cymbaluk et al., 1981; Strickland et al., 1987], but as stated above,
serum/plasma Cu values are not the most reliable measure of Cu status. It was
demonstrated that plasma Mo levels in horses responded to dietary changes, there
was no correlation between plasma Cu and Mo levels (nor was there in our data set),
and dietary Mo reduced Cu availability [Cymbaluk et al., 1981]. Although there is
little evidence of overtly excess Mo from the rhino serum/plasma data, dietary Mo
content might, given the increased oxidative stress in captivity, contribute to the
probability of Cu deficiency. Mo has been reported to accumulate in the equine liver
[Moore, 1958], and in rabbits, high dietary Mo induced increased concentrations of
liver Fe compared to a control group [Titame et al., 1997]. Newborn rhinos did not
have high Mo liver contents, but in black rhinos, liver Mo concentrations increased
significantly with age, indicating an accumulation process. Dietary levels of Mo
should be measured with respect to Cu concentrations, and potential mineral
interactions taken into account in determination of nutrient status.

Selenium

Native browses eaten by black rhinos in at least one location [Ghebremeskel et
al., 1991], as well as those consumed by Sumatran rhinos [Dierenfeld et al., 1994],
have been shown to be low in Se content. Although lower Se values in food of
captive black rhinos as compared to forage from the wild were found in one study
[Ghebremeskel et al., 1991], diets consumed by captive Sumatran rhinos were not
low [Dierenfeld et al., 2000], and our physiological data do not suggest a deficiency.
Rather, Se levels were surprisingly high in the livers of both black and white rhinos.
We conclude that Se levels in feeds offered to both black and white rhinos may be
high relative to dietary requirements, with resulting tissue accumulation. ‘‘Toxic’’
doses of Se lead to equine serum levels of 280 mg/l and higher [Witte et al., 1993].
These reported toxic ranges were higher than the averages observed in our data, but
two rhinos had excessive levels by these criteria. Other authors [Detlef et al., 1995]
report selenosis in horses where the serum levels range between 199–365 mg/L. In this
case, most of the captive rhinos would fall in the lower end of the suspected toxicosis
range. Puls [1994] considers values 350–1,000 mg/L as elevated. Regional differences
in feeds and mineral interactions need to be taken into account in assessing status.

Many areas in North America have soils that are known to contain high levels
of Se [Trelease and Beath, 1949], and forages grown on those soils can accumulate
this mineral. Thus, alfalfa as a passive Se accumulator has repeatedly been reported
to be high in Se [Trelease and Beath, 1949; Mayland et al., 1989; Witte et al., 1993].
Mineral assay of forages and other ingredients consumed is recommended when
evaluating diets. A more moderate supply of this mineral, with respect to the high
circulating and hepatic concentrations measured in this study, might be appropriate.

Excessive levels of dietary Se have been shown to trigger hair problems,
lameness, and hoof sloughing [Witte et al., 1993], but no effect on fertility was seen in
horses. In pronghorn antelope (Antilocapra americana), in the absence of overt
disease, high Se tissue levels were correlated with a decreased primary antibody
response to an egg-albumin challenge [Raisbeck et al., 1996], and it was concluded
that chronic selenosis leads to a subclinical immune impairment. Interactions
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between dietary Se and Cu have been identified in horses [Stowe, 1980], with the
potential for Se toxicosis increasing with decreasing dietary Cu.

Zinc

Although lower Zn values were found in food of captive black rhinos as
compared to forage from the wild [Ghebremeskel et al., 1991], and marginal Zn
levels in wild rhino forage compared to horse requirements [Dierenfeld et al., 1995;
Kiefer et al., 2003], data does not suggest a deficiency, in the wild or in captivity. The
lowest Zn serum concentration in our sample of captive black rhinos was still twice
as high as the low level reported by Ghebemeskel et al. [1991]. In horses, animals fed
in stables had higher Zn levels in serum than animals at pasture [Stubley et al., 1983].
In our sample serum/plasma Zn levels were comparable between free and captive
animals and, except for the high levels found in captive Indian rhino, within the
normal horse range. Similarly, liver Zn concentrations were within the normal horse
range.

Dietary Iron and the Chelator/Tannin Theory

Captive browsing rhinos display signs of Fe overload, which is suspected to be
of dietary origin. Several nutrients such as Cu [Storey and Greger, 1987], Zn, P
[Morris, 1987], and Co [Smith, 1987], have been shown to be reduced in availability
in high Fe diets, and generally do not seem limiting in our sample in any rhino
species (with the possible exception of Cu only). This suggests that although Fe
overload in rhinos may very well be linked with diets, it is probably not caused solely
by a relative excess of Fe in captive diets. Our data suggest that the relative
proportions of minerals in captive diets are adequate, their absolute amounts
notwithstanding, with the possible exception of Cu. Other factors must be
responsible for the Fe overload in the browsing species. It has been hypothesized
repeatedly that captive browsing animals, the browsing rhinos included, can suffer
from Fe overload due to a relative ‘‘lack of tannins’’ in captive diets [Spelman et al.,
1989; Paglia and Dennis, 1999]. This theory is based on the observation that tannins/
polyphenols reduced Fe availability in numerous studies [Disler et al., 1975; Gillooly
et al., 1983; Jansman et al., 1993]. The effect of dietary tannin supplements and of
low-Fe diets on browsing rhinos should be investigated.

CONCLUSIONS

This study presents a comprehensive body of reference data for the mineral
evaluation in rhinoceros species. The assumption that horse requirements can be
used for comparative purposes was confirmed, although rhinos have lower
circulating Na and seem to have higher circulating Ca concentrations compared to
horses. Captive rhinos, but not free-ranging, also display relatively high circulating
Se levels. Captive specimens of the browsing rhino species display increased Fe levels
both in serum and liver tissue. A comparative evaluation of mineral data suggests
that although this Fe overload might be of dietary origin, an unduly high dietary Fe
provision can be ruled out as the causative factor. At the same time, captive
specimens of this group seem to be prone to a low Cu status that warrants further
investigation, particularly with respect to known mineral interactions in other species
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(Mo, Se). Differences in tannin content between captive diets and native forages
could contribute to the high Fe/low Cu phenomenon.
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