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Abstract .  In this paper the Bayesian approach for nonlinear multivariate 
calibration will be illustrated. This goal will be achieved by applying the Gibbs 
sampler to the rhinoceros data given by Clarke (1992, Biometrics, 48(4), 1081- 
1094). It will be shown that the point estimates obtained from the profile 
likelihoods and those calculated from the marginal posterior densities using 
improper priors will in most cases be similar. 
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1. Introduction 

The traditional calibration problem is concerned with estimating the unknown 
value of an explanatory variable x corresponding to an observed value of a response 
variable Y that is assumed to be functionally related to x. Since Krutchkoff's paper 
appeared in Technometrics (1967), a great deal has been written on the calibration 
problem, see for example, Hunter and Lamboy (1981), Scheff@ (1973) and Williams 
(1969). Brown (1982) gives a broad review of the linear multivariate calibration 
problem and outlines both Bayesian and non-Bayesian solutions. Oman and Wax 
(1984) consider an application of linear multivariate calibration in estimating fetal 
age, given two measurements, femur length and biparietal diameter on human 
babies. They comment on the nonlinear response model as being very difficult to 
analyse. 

This paper is concerned with obtaining an estimate for an unknown value x 
corresponding to an observed Y, where Y and x are related through a nonlinear 
function. A Bayesian approach will be used to make inferences about the unknown 
x. The example that will be used is one from Clarke (1992). In this problem a 
sample of rhinoceros of known ages xi, i = 1 , . . .  ,n  have measurements made on 
the anterior (Yai) and posterior horn (Yp~). This data are to be used in future 
to predict a new fixed but  unknown age x0 (denoted by ~) corresponding to the 
observed Y0 = [ya0 ypo]'. 
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The model proposed by Clarke (1992) is the classic multi-response model, 
(Bates and Watts (1988), Chapter 4) where the response functions are nonlinear 
in the unknown parameters. Clarke augmented the original data set with the 
additional measurements Ya0 and yp0 and a guessed age for ~0 of an extra animal 
whose age is needed. By varying values of (0 he generated varying values of the 
maximum likelihood, conditional on ~0, and these define the profile likelihood. This 
profile likelihood can be used and interpreted in a number of ways, all basically 
intended to illustrate the reliability of the age estimate. 

As mentioned by Clarke "The step of associating the profile likelihood with 
classical confidence limits for the true value ~0 is difficult and only approximate 
solutions are available. To that extent this paper should not be regarded as propos- 
ing a definitive answer". Smith and Corbett (1987) pointed out that the profile 
likelihood often fails to tend to zero as {o ~ +oc so it cannot strictly be renormal- 
ized and treated as a posterior density. It therefore seems obvious that emphasis 
should be placed on Bayesian estimation of the model parameters. 

Technical difficulties arising in the calculation of the marginal posterior densi- 
ties needed for Bayesian inference have long served as an impediment to the wider 
application of the Bayesian framework to real data. The reason for this is that the 
integration operation plays a fundamental role in Bayesian statistics. In the last 
few years there have been a number of advances in numerical integration and an- 
alytic approximation techniques for such calculations but implementation of these 
approaches typically requires sophisticated numerical or analytic approximation 
expertise and possibly specialist software. 

Recently due to work of Gelfand and Smith (1991), Gelfand et al. (1990), 
Carlin et al. (1992) and Gelfand et al. (1992), the Gibbs sampler has been shown 
as a useful tool for applied Bayesian inference in a broad variety of statistical 
problems. The Gibbs sampler is implicit in the work of Hastings (1970) and made 
popular in the image processing context by Geman and Geman (1984). The Gibbs 
sampler is an adaptive Monte Carlo integration technique. The typical objective 
of the sampler is to collect a sufficiently large enough number of parameter real- 
izations from conditional posterior densities in order to obtain accurate estimates 
of the marginal posterior densities. The principal requirement of the sampler is 
that all conditional densities must be available in the sense that random variates 
can be generated from them. 

In what follows a Bayesian procedure for nonlinear multivariate calibration 
will be illustrated. This goal will be achieved by applying the Gibbs sampler to 
the rhinoceros data given in Clarke (1992). As will be seen the point estimates ob- 
tained from the profile likelihoods and those calculated from the marginal posterior 
densities using improper priors will in most cases be similar. 

Using a similar notation to that of Clarke, the assumed model for the n-sample 
calibrating data can be written as 

(1.1) 

where Yji denote the value of the variate j ,  j = a or p on animal i, i = 1 , . . . ,  n 
of age xi. f j  are nonlinear functions which may or may not differ for various j ,  
Oj are unknown parameters of dimension m, some of which may be common for 
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various j ,  and the random errors eji are normally distributed with zero means, 
independent for different i but having covariance matrix ~ of dimension 2 x 2, 
when i is common. 

The observation of the prediction experiment is assumed to follow the same 
assumptions as those of the calibration experiment. In particular 

(1.2) = + Ej0, 
where Cjo are independently distributed from ~ji. 

The marginal posterior distribution of ~ cannot be derived in closed form 
so the Gibbs sampler will be used. Missing values in the response variables are 
treated as unknown parameters and the Gibbs sampler again provides a natural 
framework for obtaining approximations of the unconditional posterior densities. 

2. A Bayesian solution 

For the rhinoceros data the model proposed by Clarke (1992), is 

Y~i = 01 + 020~' + eai, 
(2.1) 

Yp~ = 01 + 040~' + ~pi, i = 1 , . . . ,  n 

where Y = log~ (horn length) and x = age in year. 
The least square analysis used by Clarke (1992) showed that  there is no benefit 

to be gained by fitting separate asymptotes to the two curves and consequently 
the model was reduced to five parameters. In the analysis of experimental data 
we assume that the n experimental design variables xi, i = 1 , . . . ,  n are fixed and 
known, so we can form the n × 2 observation matrix Y with the (j, i) th element 
Yji. Model (2.1) for the calibration problem can thus be written as 

(2.2) Yr = 191 + FO0 + ¢r 

where Yr is a (2n × 1) column vector obtained from stacking the rows of the response 
matrix Y into one column. Fo is a (2n × 2) matrix of functions, nonlinear in 03 
and 05 and 0(2 × 1) = [02 04]'. Furthermore 1 is a (2n × 1) column vector of ones 
and er(2n × 1) ~ N(0, I~ ® E). 

Also the prediction model (2.1) can be written as 

(2.3) y~ = i'01 + ffF~ + e~o 

where i(2 × 1) is a column vector of ones and F~(2 × 2) is a matrix nonlinear in 
03, 05 and ~. Furthermore Co(2 × 1) ~ N(0, ~).  

As mentioned in the last paragraph of Section 1 we would like to make infer- 
ences about ~ without deleting partially observed data. Assume that the missing 
values are in the last two rows 

Y =  

of Y, i.e. 

I'] 
, 

LyLJ 

where ~r = 

Yal 
Ya2 

Ya,n-2 

F 0 =  For 
F0L 

ypl ] 

Yp,n-2 I: ] and Fo = " " 

02,~-~ 
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Also let the last two rows of Y be denoted by 

= [ y o , n - 1  v 

where y L Y~,n-1, Y~,~ denote the missing values and 

o ' ' [oj o] 
F~ = 0~ and ~ = [ Ypo J " 

In the Bayesian t reatment  of the problem priors must be speeified for the unknown 
parameters 01, 02, 03, 04, 05, ~, and ~. 

According to Mitchell (1967) and Ye and Berger (1991) flat priors can be used 
for 01, 02 and 04 but  proper uniform distributions for 0a and 05 i.e. 0 _< 0~ _< 
1 and 0 _< 05 _< 1 might cause problems and can result in improper posterior 
distributions. Both these parameters should therefore lie in the open interval 
(0, 1). 

For this problem, 01 is positive and measures the maximum anterior and pos- 
terior horn length. The parameters 02 and 04 are negative, -02 and -04 being the 
maximum possible increases in anterior and posterior horn lengths respectively 
for a unit (year) increase in time, while 0 < 03 < 1 and 0 < ~ < 1 measure the 
influence of age on horn length. Note that  "horn length" here refers to the natural 
logarithm of the measurable horn lengths. 

Consulting zoologists at the University of the Orange Free State and the 
Kruger National Park as well as the curator of the Bloemfontein zoo, estimates of 
~3 and 04 ranged from 0,4 to 0,95 with median 0,8 which means that  in practice 
0 3 and ~5 will not be equal to 1 and definitely never 0. 

Although it was possible for Ye and Berger (1991) to derive the reference prior 
for the exponential regression model Y = 01 + 020~ + ~ for the group ordering 
{03, ~1,02, a11} reasonably easy and to show that  it was only dependent on 03 and 
a11, the reference prior for the group ordering {~, 03, 03, 01,02, 04, E}, in the case 
of model (2.1) is very complicated and for all practical purposes impossible to 
obtain. 

However by comparing the posterior density of 03 based on the reference prior 
for the model Y = ~1 + 020~ + ~ to the corresponding posterior using a prior 
uniformly distributed on the interval [a, b] where a = 0.05 > 0 and b = 0.095 < 1 
it was observed that  the two posteriors are for all practical purposes indentical. 
The same correspondence was observed for the parameter 05. 

In this paper we will therefore use as joint prior 

(2.4) p(~, 03, 05, 01,02, 04, E) 9(E-(P+I)/2p(~) 

where 

- c o  _< 01 _< oc, - c o  _< 02 <_ co, - c o  _< 04 _< co, 

0.05 _< 03 _< 0.95 and 0.05 < 03 _< 0.95. 
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Also the parameters 91, ~2, 9a, occur as linear parameters in model (2.1) which 
is a further indication that flat priors can be used on them. 

Define 

(2.5) 0 = [91, 92, 93, 94, 95]' and 0 = [92, 94]'. 

The joint density function of Y, Yo, YL, YV, 0, ~ and ~. is therefore given by 

(2.6) f (  Y, Yo, YL, YV, 0, ~, ~]) 

IZJ-(~+P+2)/2 

• exp - ~ ( ~  - l o l  - ~'o0)'(x,~-2 ® r , ) - ~ ( ~  - lo~ - ~'~0) 

1 ~ 
~(~o - i'o1 - ¢ F ~ ) ~ - 1 ( ~ ;  - i'01 - 0 ' F 0 '  

1 ~ ~(~ - i'o1 - 0 ' F ~ ) S - I ( y ~  - i'0~ - O ' F ~ ) '  

1 ¢ _ 

/ 
~(~v i %  - gF~v)~-~(~b  - i %  - CF~v)~p(~). 

) 

The marginal posterior distribution f(~ [ ~z, y0, YL(1), YV(1)) cannot be obtained 
analytically and because of the many unknowns very difficult to calculate numer- 
ically. To implement the Gibbs sampler we need the full conditionals given by 

E-I  I Y ,  Yo, YL, Uv,O,~~ W ( R - I , n  + 1) (2.7) 

where 

R = ( i ~  - M ) ' ( i "  - M )  + (y~ - i %  - ¢ P 0 ' ( u ~  - i %  - ¢ F ¢ )  

+ (V'L - i %  - CFeL)'(Y'L - i %  -- C F 0 ~ )  

+ (y~. - i'01 - f f F o v ) f ( y ~ ,  - i'91 - f f F a v )  

and 
I 01 -]- 020~ 1 01 -[- 04{~ 1 ] 

0 0 x~-: 01 + e4o~ ~-2 J 01-[- 23 

By choosing a normal prior ~ -~ N(#o, a~), the full conditional for ~ is given by 

(2.8) I ( ~  I i~, ~o, ~L, 0, r .)  

~ exp - ~ [ ( ~ ;  - i'ol - 0 ' F 0 r ~ - l ( y ;  - i'01 - O'FO' 

+ (~ - ~o)~/Oo ~] }- 

The full conditionals for 01 through 05 are given by 

(2.9) 0 ] 01,03, 05 Y, ~0, YL, ~h~V, ~, ~ ~ N(/@, ~]a) 
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where 

and 

--1 ! + F ,  Lr, (~L -- i 'el)'  + F,  v r , - l ( ~  - i'Ol)'] 

~# = [.~l'(In_ 2 (~ ~"~0' P q- F~]pa-IF~ + F,L~']-IF~L + F $ v ~ V ~ - l F ; v ]  - 

(2.10) 

where 

and 

O~ [ 0,03,05, Y, Yo, YL, YV,{ ,  IB ~ N(f~o~,gr~) 

+ i ' ~ - * ( y L  -- CFSL) + i ' ~ - '  (~V -- ~'Fsv)] 

a~, = [1'(I~_2 ® ~ ) - 1 1  + 3 i , ~ - 1 i ] - 1 .  

(2.11) 

(2.12) 

f(03 ] 0,01,05, Y , ~ ,  yL, ~ , ~ ,  ~.) 

oxp{ ® 
+ (y~ - i %  - ¢ F O r , - l ( y ~  - i %  - e F t ) '  

+ (~'L -- i %  -- CFOL)r,-I(~'L -- i ' <  -- ~FoL)' 

+ ( ~  -- i %  -- C F o v ) r , - i ( ~ b  - i %  - CFov) ' }  I ,  

f(05 I 0,01,e3, Y, yo, yL, YT,~, r~) 

e x p { - ~ { ( ~ r  - 101  - ~ ' ~ ) ' ( I n - 2  (~ ~ ' ~ * ) - l ( y r  - 101 - F ~ )  O( 
% 

+ ( ~  - i %  - ¢ F e ) r , - l ( ~  - i'ol - e F t ) '  

+ (y~ - i '01 - ¢FoL)E-~(y'L -- i'01 - gF, , , ) '  

+ (yb  - i'01 - ¢ F e v ) r , - l ( ~ ( ~  - i'01 - C F o v ) ' } ~ .  

% 

J 

The  condit ional  densi ty for the missing value YL(2) is 

(2.13) 

where 

YL(2) [ Y,  Y0, YL(1), YV, 0, ~, ]E ~ N(E(yL(2)), Var(yL(2))) 

E(YL(2)) ---- ~L(2) -{- 0 r 2 1 a l l  1 (YL(1) - -  ~ L ( 1 ) )  

and 
Var(yn(2)) = a22 - -  0"210"1110"12, 

(see for example Anderson  (1984)). 
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Also for the missing value YV(2) it follows that 

(2.14) Yv(2) I Y ,  Yo, Yvo), YL, 0, 4, ~ "~ N(E(yv(2)),  Var(Yv(2))) 

where 

and 

E(yv(2)) = #v(2) + a~lal-)(Yv(1) - #v(1)), 

Var(yy(2)) = a22 - o"21o"11 l a 1 2 ,  

rlE-oo xn-1] # a V  ~ O1 "-r 2 3 

I'$V ---- I.[~pV J 01 d - 0 4 0 5  "~-~ ' 

~ L  : l ]~pL j O1 -l- 040~ '~ 

La~l a22 

The conditional distributions of 4, 03 and 05, are however not in closed form, hence 
we only have the kernels of these densities. Random numbers can still be generated 
by using the weighted Bootstrap method which is discussed in Smith and Gelfand 
(1992) and Stephens and Smith (1992). Simulation from the Wishart distribution 
is easily done by using the algorithm of Odell and Feiveson (1966). 

The Gibbs-sampler can now easily be implemented. The iterative process 

starts by using arbitrary starting values ]E (°), ~(0), 4(0) ' ~ (0) y(0) to calculate ~(2),  v(2) 
the first iteration using (2.7) to (2.14). After k iterations in which the conditional 
densities were updated at each iteration the Gibbs-sampler has generated the 

values ]E (k) 0(k), ~(k) ~ (k) ~ (k) , , ~L(2), uY(2)" The process is repeated m times. 

The convergence of the algorithm is discussed in Gelfand and Smith (1991). 
The problem in this paper was done with k = 30 and m = 1000. 

In a further study which is not included in this paper, we also compared the 
marginal posterior distributions for k = 40 and 50 as well as for an alternative 
Markov Chain Monte Carlo (MCMC) procedure in which after a long run (i.e. k 
sufficiently large) successive albeit correlated values of the random variable of inter- 
est was used to describe the unknown marginal distribution. As "burn-in-period" 
we used k = 500 iterations. The densities obtained, indicated that convergence 
had been achieved in all the cases which means that k = 30 and m = 1000 are 
appropriate for our problem. 

It is less expensive to use successive values in the Gibbs sampling procedure. 
Gelman and Rubin (1992), however, warned "that particularly during the first 
tentative examination of a new problem, it can be argued that  monitoring the 
evolutionary behaviour of several runs of the chain starting from a wide range of 
interval values is necessary". It is for this reason that we have decided to stick to 
the "traditional" procedure. 
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3. Example 

The anterior and posterior horn lengths were recorded on ten rhinoceros of 
known age and only the anterior horn length for another two animals. The mea- 
sured data as well as their natural logarithms, are recorded in Table 1. These data 
will then be used to predict the age of animals by measuring their horn lengths. 
It can be seen from the data that  the length of the anterior horn does not increase 
very much after about 14 years of age. This is due to the natural wear on that 
horn during browsing. The posterior horn on the other hand, is protected from 
wear and increases steadily in length. 

Table 1. Rhinoceros horn lengths. 

Anterior log e (Ant. horn) Posterior log e (Post. Horn) 

Age Horn - m m  Ya Horn - m m  Yp 

2 195 5.27 70 4.25 

4 248 5.51 95 4.55 

33 536 6.28 missing missing 

5 380 5.94 160 5.08 

4 265 5.58 97 4.57 

30 534 6.28 missing missing 

4 262 5.57 98 4.58 

3.5 225 5.42 80 4.38 

10 530 6.27 200 5.30 

16 532 6.28 303 5.71 

27 425 6.05 405 6.00 

12 600 6.40 310 5.74 

In our first example prediction for age of rhinoceros is based on a young 
animal with anterior horn length = 424 mm and posterior horn length = 172 mm, 
i.e. Y0 = [6.05 5.15]' = [log e (anterior horn) log e (posterior horn)]'. We will first 
consider a uniform prior on ~ and then proper priors on ~. A uniform prior on 
can be used provided the number of response variables are equal or greater than 
two (Brown (1982)). The estimated marginal posterior densities of the unknown 
parameters can easily be obtained by using Gibbs sampling. For lack of space the 
estimated posterior densities will not be displayed but are illustrated in du Plessis 
and van der Merwe (1994). 

From the posterior density of ~ (age of distribution of young animal) it is 
observed that the mean = 8.32 years and the mode = 7.8 years. The 90% and 95% 
credibility intervals are 5.47-11.66 and 4.96-12.89 years respectively. Inspection 
of Table 2 (Clarke (1992), p. 1087) shows that for the young animal the estimated 
age is 7.9 years while the 90% and 95% confidence intervals are 5.4-11.3 and 4.9- 
12.3 years respectively. Comparing the results of the Bayes procedure with that 
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Table 2. Posterior estimates of the unknown parameters. 

Estimate 

Maximum Hornlength 528 mm 

Increase in Anterior Hornlength per year 6.4 mm 

Increase in Posterior Hornlength per year 12.18 mm 

Influence of Age on Anterior Hornlength 0.78 

Influence of Age on Posterior Hornlength 0.92 

of the profile likelihood, it can be concluded that  the estimated ages for the two 
procedures are more or less equal but the Bayes intervals seem to be somewhat 
wider than those obtained from the profile likelihoods. Bayesian estimates of 
the other parameter values can also be obtained. The posterior modes of the 
parameters 01 through to 0~ are 6.27, -1.86,  0.78, -2 .50 and 0.92 respectively 
which are almost identical to those given by Clarke, i.e. 6.29, -1.89,  0.77, -2 .50 
and 0.91 respectively. As in the case of ~ the credibility intervals (using the 
full Bayesian approach) are somewhat wider than  those obtained from the profile 
likelihoods. The posterior standard deviations of 01 through to 05 are 0.0857, 
0.4040, 0.0570, 0.2077 and 0.017 while those calculated by Clarke are 0.067, 0.378, 
0.051, 0.164 and 0.011 respectively. 

As mentioned 81 measures the maximum horn length; -82 and -84 being the 
maximum possible increases in horn lengths while 81 and 83 measure the influence 
of age on horn length. Note that  "horn length" here refers to the natural logarithm 
of the measurable horn lengths. Therefore in Table 2 the actual estimates are given. 

The Gibbs sampler also automatically provides "predictive" densities of the 
missing horn lengths for the rhinoceros 30 and 33 years of age. For purposes of 
condensation these densities are not included here but the estimated horn lengths 
were 422 and 431 millimeter respectively. 

For illustrative purposes we provide a Bayesian analysis based on two different 
prior specifications (~ ~ N(0, 100) and ~ ~ N(10, 36)) for the age of the young 
animal. The priors for the other parameters are again taken to be constant. A 
comparison between these posterior densities and the posterior density of ~ using 
the uniform prior show that  the normal priors provide some information about 
~. The corresponding posteriors are more peaked with the result that  the 95% 
credibility intervals 4.82-11.48 years and 5.28-12.56 years are somewhat shorter. 
The modes of the two posteriors are 7.56 years and 7.92 years respectively. As 
could be expected the first prior (~ ~ N(0,100)) shifted the posterior somewhat 
to the left while the second prior moved it to the right. 

In our second example various prior specifications are compared for the age 
distribution of the old animal with anterior horn length = 528.48 m m  and posterior 
horn length = 365.04 mm. The priors that  will be used are ~ o¢ constant, ~ 
N(0, 1000), ~ ~ N(0,100), ~ ~ N(16, 100) and ~ ~ N(16, 36). 

The posterior density for ~ c< constant has got a very long tail to the right. 
We could not normalize the distribution so that  no credibility intervals could be 
calculated from it. The mode of the curve is however 19.0 years which is more or 
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less the same as the estimated 19.2 years given by Clarke. For the second prior 
(~ ~ N(0, 1000)) the posterior mode is also 18.8 while the 95% credibility interval 
is 11.40-40.40 years. The corresponding 95% interval calculated from the profile 
likelihood is 12.8-31.7. The Bayes interval is again somewhat wider. The posterior 
modes for the remaining cases ~ ,-~ N(0, 100), ~ ~ N(16, 100) and ~ ~ N(t6,  36) 
are 16.4, 18.4 and 17.9 years respectively while the 95% credibility intervals are 
10.62-24.11, 11.60-28.41 and 12.37-25.20 years respectively. For these three cases 
the 95% credibility intervals are somewhat shorter than the corresponding inter- 
vals given by Clarke. A comparison of the modes of the posterior densities and 
the lengths of the credibility intervals show that the priors provide substantial 
information about ~ for the old animal. For further details see du Plessis and van 
der Merwe (1994). 

To accommodate the possibility of outlying rhinos the assumption of Gaussian 
errors will be relaxed in the direction of the Student-t family. Consider the series 
of independent errors ei I Z,  A~ ~ N(0, )~i]E), (i = 1 , . . . ,  n). By placing a prior 
on ~ enables a wide variety of model error densities f(e~ I E) to emerge as scale 
mixtures of normal distributions (Andrews and Mallows (1974), Carlin and Polson 
(1991) and Wakefield et al. (1994)). 

f(e~ I E )=  /p (e i  I :E,)~i)p()~i)dA~ (i = 1 , . . . , n ) .  

For this example it is assumed that vA~ -1 ~ X~ so that ei I Z ~ t~(0, ]E), a 
multivariate Student-t-distribution with mean 0, covariance matrix ]E and degrees 
of freedom p. As in Wakefield et al. (1994) we will take v equal to 2. 

The conditional posterior density of )~i will now be an Inverse Gamma density 
and the remaining hierarchical structure is defined exactly as in Section 2 except 
that Ai, (i = 1 , . . . ,  n) will occur in the expressions of the conditional densities 
defined in equations (2.7)-(2.14). 

As mentioned one of the principal aims of this illustration is the detection 
of outlying rhinos by using the Student-t-model. According to Wakefield et al. 
(1994) the scale parameter ~-1 or lOgl0()~ -1) is a good global indicator of outliers. 
The prior expectation of logl0(),~ -1) is 0, so that a loglo()~-l)-value substantially 
below zero indicates that the i-th rhinoceros is likely to be an outlier. Interval 
estimates of logl0(,X~ 1) are easily constructed. These interval estimates can be 
thought of as describing the marginal posterior distributions of the logl0(A(1). In 
Table 3 E{logl0(A;-1)} against the rhinoceros number i with the 95% posterior 
density intervals axe given. Since none of the lOgl0(,k~ -1) parameter values are 
substantially below zero it can be concluded that there are no outlying rhinoceros. 

For the Student-t model it was observed that  the mean of the posterior den- 
sity of ~ (age of young animal) is 9.37 years and the mode = 8.22 years while 
the 90% and 95% credibility intervals are 5.60-16.38 years and 4.87-20.60 years 
respectively. 

A comparison of this density with the posterior density of ~ assuming Gaussian 
errors and a uniform prior on ~ shows that the central values axe more or less the 
same but the credibility intervals are somewhat wider for the Student-t model. 
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E{log10(A~-l)} against case number i with the  95% credibility interval. 

Case Number  i E{logl0(A~l)}  95%Credibi l i ty  Interval 

1 1.1002 -0.2245 - 4.2812 

2 0.6097 -0.9116 - 2.1193 

3 1.1650 -0.0180 - 4.3252 

4 0.3986 -0.8465 - 2.1654 

5 0.4329 -0.7886 - 2.6482 

6 0.5523 -0.6418 - 2.6961 

7 0.9471 -0.2963 - 3.8344 

8 0.5577 -0.7014 - 2.5776 

9 1.0632 -0.2261 - 4.0227 

10 0.9949 -0.0594 - 3.8232 

11 0.5663 -0.6863 - 3.0241 

12 0.5715 -0.9517 - 3.0387 

13 0.6415 -0.7914 - 2.8559 

27 

Table 4. Posterior est imates of ~, the  age (years) of the two rhinoceros. 

Mode 95% Credibility Interval 

Young Animal - Uniform Prior 7.8 

Young Animal - N(0, 100) Prior 7.56 

Young Animal - N(10,36) Prior 7.92 

Young Animal - Uniform Prior 

Student- t  Model 8.22 

Old Animal - Uniform Prior 19.0 

Old Animal - N(0, 1000) Prior 18.8 

Old Animal - N(16, 36) Prior 17.9 

Old Animal - N(0, 100) Prior 16.4 

Old Animal - N(16, 100) Prior 18.4 

4.96 - 12.89 

4.82 - 11.48 

5.28 - 12.56 

4.87 - 20.60 

11.40 - 40.40 

12.37 - 25.20 

10.62 - 24.11 

11.60 - 28.41 

I n  T a b l e  4 p o s t e r i o r  e s t i m a t e s  o f  t h e  a g e  d i s t r i b u t i o n s  o f  t h e  t w o  r h i n o c e r o s  

a r e  g i v e n .  F o r  f u r t h e r  d e t a i l s  a b o u t  t h e  p o s t e r i o r  d e n s i t i e s  s ee  d u  P l e s s i s  a n d  v a n  

d e r  M e r w e  (1994) .  

A c k n o w l e d g e m e n t s  

T h e  a u t h o r s  w i s h  t o  e x p r e s s  t h e i r  g r a t i t u d e  t o  t h e  r e f e r e e s  a n d  e d i t o r  fo r  t h e i r  

h e l p f u l  c o m m e n t s  in  r e v i s i n g  t h e  p a p e r .  
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