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INTRODUCTION

Many facets of wildlife research demand the recog-
nition of individual animals. Recognition of individuals
has traditionally relied upon natural features of the
species in question to aid human and, more recently,
computer recognition abilities, e.g. coat patterns, such
as tiger stripes (Karanth 1995, Karanth & Nichols 1998)
and cheetah spots (Kelly 2001) and other idiosyncratic
characteristics such as lion (Pennycuick & Rudnai
1970) and leopard (Miththapala et al. 1989) muzzle
vibrissae spots, wrinkle patterns on rhinoceros snouts
(Goddard 1966, Mukinya 1973), shape of whale flukes
(Katona et al. 1979), and spots on certain sharks
(Arzoumanian et al. 2005, van Tienhoven et al. 2007).

In the absence of such identifying features, or due to
doubts regarding their reliability, biologists have
resorted to artificial markings such as bands and radio
transmitters. In recent years, more attention has
been given to possible effects of ‘tagging’ animals
(Murray & Fuller 2000) and a general impetus to avoid
costs to an animal associated with tagging and hand-
ling. Research on black rhino Diceros bicornis sug-
gested an association between routine immobilisation
for invasive monitoring methods (i.e. radio-collaring)
and compromise of female fertility (Alibhai et al. 2001,
Alibhai & Jewell 2002) and also highlighted the unac-
ceptably high failure rate of radio collars on black rhi-
noceros, as well as associated problems (Alibhai &
Jewell 2001). Moorhouse & MacDonald (2005) pro-
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vided a brief literature review regarding the possible
adverse effects of radio collaring which indicated that
concern about such effects is not unwarranted. Murray
& Fuller (2000, p. 43) asserted of natural markings
‘…where the use of this technique meets study
requirements, it is more desirable than artificial
marking’.

Natural markings are, therefore, an attractive option
when available, as they require no handling of individ-
uals; however, subjectivity of pattern recognition is a
potential problem (see Pennycuick & Rudnai 1970 for
an estimate of reliability of their pattern recognition
technique). Moreover, unlike radio/GPS tagged indi-
viduals, the pattern-recognition method requires visual
sighting and resighting of animals, which may be ex-
tremely difficult and fleeting for populations occurring
at low density (either naturally or because endangered)
and/or inhabiting terrain which makes locating and ob-
serving individuals difficult, or because the study ani-
mals are reclusive by nature or in response to human
interference. Additionally, both tagging and the use of
natural markings may impose nontrivial demands on
research and/or management budgets.

For species which inhabit a landscape in which indi-
viduals regularly produce clear footprints and whose
foot is of sufficient complexity to create a footprint with
individual characteristics, tracks may serve as an alter-
native for natural marks, having the additional benefit
that locating tracks is generally easier than locating
individuals themselves. While this approach poses
challenges, we think it offers considerable promise and
is therefore very worthwhile to pursue for appropriate
species and habitats.

Traditional trackers of many indigenous cultures are
renowned for their ability not only to follow a track (an
unbroken series of footprints) but also read information
from it. If tracks are to become a useful scientific tool, the
information must be extracted in an objective and re-
peatable fashion. Strangely, tracks have received rela-
tively little attention from scientists (but see Stander et al.
1997). In Jewell et al. (2001), we briefly reviewed early
attempts to identify Asian rhinoceroses from their foot-
prints. While offering promise, these attempts tended to
involve substantial subjectivity, were restricted by tech-
nological limitations on the methods for converting a
footprint into data, and were rarely objectively tested.

Similar problems have been encountered when
using tracks in tiger censuses, although some effort has
been made to address these issues; see Sharma et al.
(2005) for a recent review and a method that attempts
to address the critique of Karanth et al. (2003). Some
other attempts to introduce objective identification
techniques for felids have been reported in the litera-
ture (e.g. Riordan 1998, Grigione et al. 1999) but were
tested only in artificial circumstances. Similarly, L. Van

Bommel et al. (unpubl. data) successfully discrimi-
nated between captive lions using their footprints.
Herzog et al. (2007) report a finger-printing approach
for identifying individual fishers Martes pennanti from
footprints made on track plates.

In Jewell et al. (2001), we described a method for iden-
tifying individual black rhino from their tracks using an
objective procedure which yielded high reliability in
tests. In the light of further experience, we have substan-
tially refined this method, using a customised script JMP
rather than SAS software, and employing modified sta-
tistical procedures described below. We now call it the
Footprint Identification Technique (FIT). The method
consists of 2 stages: (1) the capture of footprints and con-
version into a geometric profile that serves as the data;
(2) analyses to which the data are submitted for the pur-
pose of classification. Digital cameras and computer soft-
ware have made the first stage far more tractable than in
early attempts. Such technology was already utilized in
Jewell et al. (2001), and subsequent refinements to
Stage 1 (ongoing) focus on automating digital-image
processing. Most of the changes reported here for the
white rhino Ceratotherium simum concern the analyses
of Stage 2. The conceptual differences between FIT and
Sharma et al. (2005) occur mostly in the analyses per-
formed, but also in that FIT uses only the more objective
digital images of footprints, rather than tracings.

We believe FIT may be effective for a variety of spe-
cies in a range of habitats and is thus a valuable tool for
estimating population abundance, monitoring endan-
gered populations, and for ecological and behavioural
studies.

STUDY POPULATION

White rhino population status

The Southern sub-species of the white rhino Cera-
totherium simum simum is the least endangered of the
rhinoceros subspecies (classified as Near-Threatened
on the IUCN’s Red List of Threatened Species, down-
listed to CITES Appendix 2 from Appendix 1 in 1994),
with a total estimated wild population as of 31 Decem-
ber 2005 of 14 550 (Emslie et al. 2007, see also Amin et
al. 2006). The population declined at the end of the
19th century to very low numbers, though exactly  how
low is subject to debate (Owen-Smith 1988,  Emslie &
Brooks 2002, Rookmaker 2002). The protection and
management of this species depends on effective cen-
susing and monitoring. At the end of 2005, Namibia
had the third largest population of white rhino after the
Republic of South Africa and Zimbabwe, with an esti-
mated population of 293 individuals (Emslie et al.
2007).

206



Alibhai et al.: Rhino footprint identification technique

Study area and white rhino population

In order to implement FIT and validate the resulting
algorithm, a test population was required. The Namib-
ian Ministry of Environment and Tourism suggested
the Otjiwa Game Ranch in Namibia, a fenced area of
approximately 100 km2 in central Namibia. Mean
annual rainfall was around 500 mm. Substantial areas
of sandy substrate in open terrain and game trails
through acacia woodland, combined with determined
effort, made footprint collection feasible. The domi-
nant vegetation was acacia.

The current white rhino population
at Otjiwa was re-introduced during the
early 1970s (Joubert 1996) and num-
bered 26 in 1999. Further individuals
were added to the population in 2002
and 2003, bringing the total number of
identified animals to 40 for the testing
of FIT. Monitoring the population over
this extended period of time, using a
combination of visual identification
techniques independently of FIT, pro-
vided reliable data on individual iden-
tifications, which were kept updated as
animals were imported, or born into
the population, or were exported or
removed by death or poaching. Moni-
toring was undertaken mainly by a
small anti-poaching unit (APU) with
the assistance of visiting students and
research teams. Otjiwa provided a
good test population, as individual
rhino were known, the site was fenced
and the substrate was suitable.

Footprint collection

Definition of footprint terms

In a dataset of footprint images, col-
lected from a given population over a
fixed period of time, each footprint is
part of a ‘track’ (an uninterrupted path-
way made by 1 animal), and all the
footprints available for each animal at
the end of the study form a collection of
such tracks constituting the ‘set’ for that
animal. The total collection of sets
available for all the animals in the study
forms the ‘library’. In the literature,
footprints are also referred to as
‘spoor’, ‘pug-marks’ or ‘pugs’. Table 1
shows gender, known age, numbers of

footprints and numbers of original and modified tracks
(see subsection ‘FIT for Censusing: The Canonical Pair-
wise Comparison Technique (CPCT)’) for the 40 rhino.

Collection of footprints at the study site

As in Jewell et al. (2001), many factors were found to
influence footprint quality. Only fresh and undistorted
left hind footprints showing good detail were used in
the study (left hind or right hind can be equally used;

207

Rhino Sex Age No. of No. of No. of
ID (yr) footprints original tracks modified tracks

(track size) (track size)

01 F 00.25 10 2 (4–6) 1 (8)
02 F 00.25 36 5 (6–10) 5 (6–8)
03 F 00.50 13 2 (6–7) 2 (6–7)
04 F 01.95 21 2 (8–9) 2 (8)
05 F 02.00 16 2 (5–11) 2 (8)
06 F 02.25 19 2 (8–11) 2 (8)
07 F 02.50 19 2 (9–10) 2 (8)
08 F 02.65 47 6 (3–9) 6 (7–8)
09 F 03.75 30 4 (7–8) 4 (7–8)
10 F 06.00 58 7 (8) 7 (8)
11 F 06.40 44 6 (4–8) 5 (8)
12 F 06.60 70 9 (7–8) 9 (7–8)
13 F 07.50 21 3 (7) 3 (7)
14 F 08.50 32 4 (7–9) 4 (8)
15 F 10.00+ 21 2 (9–12) 2 (8)
16 F 10.00+ 41 5 (6–9) 5 (6–8)
17 F 10.00+ 22 4 (5–6) 3 (7–8)
18 F 10.00+ 27 3 (8–10) 3 (8)
19 F 10.00+ 49 5 (9–11) 5 (8)
20 F 10.00+ 42 5 (6–11) 5 (7–8)
21 M 00.25 16 3 (5–6) 2 (8)
22 M 00.33 31 4 (7–11) 4 (7–8)
23 M 00.33 11 2 (4–7) 1 (8)
24 M 00.85 15 2 (7–8) 2 (7–8)
25 M 00.95 10 1 (10) 1 (8)
26 M 01.25 37 5 (3–9) 5 (6–8)
27 M 01.33 11 2 (3–8) 1 (8)
28 M 01.60 16 2 (8) 2 (8)
29 M 02.20 37 5 (5–8) 4 (7–8)
30 M 02.75 39 5 (6–8) 5 (6–8)
31 M 04.40 29 4 (6–9) 4 (7–8)
32 M 04.50 42 5 (7–9) 5 (7–8)
33 M 05.50 40 5 (6–9) 5 (6–8)
34 M 06.00 31 4 (6–9) 4 (6–8)
35 M 06.00 37 4 (9–10) 4 (8)
36 M 07.50 47 5 (8–10) 5 (8)
37 M 08.00 14 2 (6–8) 2 (6–8)
38 M 08.50 35 4 (8–9) 4 (8)
39 M 10.00+ 27 3 (8–10) 3 (8)
40 M 10.00+ 108 12 (6–12) 12 (6–8)

Total
40 20M/20F 1276 159 (3–12) 152 (6–8)

Table 1. Ceratotherium simum. Sex, age, number of footprint images, number of
original tracks and number of modified tracks for each of the 40 white rhinos in 

the study; track size: footprints per track
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we use left hind as a standard, and hind rather than
front because for many species, hind feet usually over-
step the front feet when the individual is walking). The
location of every track photographed was recorded
with GPS. We further avoided the risk of collecting a
footprint more than once by obliterating each after
photography, and, by aging prints accurately, collect-
ing only those which were fresh.

During the study periods 1999, 2002 and 2003, each
animal was tracked, and digital images of its footprints
were collected. Particular care was taken in situations
where several rhino were found together to ensure
that footprints were collected from the target animal
only, typically achieved by backtracking (using only
uninterrupted tracks) from a point at which the animal
had been seen to place its foot.

Fresh footprints were also collected from the area
immediately around waterholes and tracked until the
rhino was located. We assumed that before the rainy
season each rhino would have to visit a waterhole at
least every other day (see Owen-Smith 1988) and that
if all waterholes could be covered on a regular basis,
footprints from each rhino would be collected. Initially
each of the 28 waterholes was inspected at least once
every 3 d, to ascertain rhino usage. The ratio of num-
ber of visits to number of fresh footprints found was
then calculated, and waterholes subsequently inspec-
ted according to rhino usage.

Additionally, all roads, including boundary roads,
were mapped and each driven at least once a week
and again, fresh footprints were either identified as
known or tracked to the animal.

Population library

Since each animal had been unambiguously identi-
fied, regular tracking and observation provided dis-
tinctive tracks from 40 ind. The resulting library con-
sisted of 1276 footprints and 159 original tracks from 40
white rhino (Table 1). For any one individual, only
tracks for a single survey period, usually lasting 3 mo,
were used. Table 1 shows the composition of the popu-
lation. For the black rhino, data from previous studies
in Zimbabwe (Jewell et al. 2001) were used.

FIT METHODOLOGY

Determining the measurements to be taken from the
footprint; creating a geometric profile

The white rhino (Order: Perissodactyla) has 3 toes on
each foot. The distal (third) phalanx of each digit is
enclosed in a horny hoof. The plantar cushion helps

support the distal metatarsals and digits where they
make ground contact. Fig. 1a shows the sole of a white
rhino foot. The impression made by the foot can reveal
clear outlines of the outside edge of each hoof, and also
the outline of the hind part, or heel, of the plantar
cushion.

Details of the photographic technique and pre-
processing of the footprint prior to statistical analyses
were predominantly the same as those in Jewell et al.
(2001). The main difference in the current approach
was that we employed JMP Statistical Discovery Soft-
ware (SAS) not only for all statistical procedures but for
the majority of the preprocessing of the footprint prior
to statistical analysis, as explained below.

Each implementation of FIT to a new species
requires the choice of a set of natural landmarks deter-
mined by the structure of the footprint. Once the foot-
print image is taken it is imported into Adobe Photo-
shop software where it is photo-optimised, image
orientation standardised by rotation, and the landmark
points manually placed using cross-hair guidelines to
minimise bias. The landmark points are selected on the
basis of foot anatomy to include those points which are
clearly definable and repeatable across many foot-
prints. After placing these landmark points, a set of
derived landmarks, geometrically constructed from the
set of natural landmarks, is then defined. The derived
points are positioned by JMP script into which their
geometrical constructions have been entered (see
Fig. 1b). The full set of points is designed to allow all
measurements that one anticipates might prove useful
in discriminating between footprints. Table 2 provides
the descriptions of the landmark and derived points
and Table 3 lists the 113 measurements (distances and
angles) generated in JMP. The resulting set of mea-
surements constitutes the geometric profile of the foot-
print image, and provides the data upon which all FIT
analyses are performed.

Determining which measurements best discriminate;
variable selection

The geometric profile typically contains many mea-
surements (>100 in the application of FIT to African
rhino), and the first step in FIT analysis must be the
reduction of the total number of measurements to the
set (referred to as the FIT algorithm) which provides
good discrimination, whether between individuals or
species. For this purpose, a library of footprints from
known individuals is required. The measurements for
each footprint in the given library are labelled by in -
dividual identity, and these data are entered into the
discriminant analysis (DA) module of ‘JMP from SAS
software’, with the stepwise option checked. The for-
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ward stepwise procedure is then employed to select
those measurements which will produce an effective
classification for FIT analyses.

Note that no hypothesis is framed or statistical test
performed here, only a selection of measurements. The
deficiencies of stepwise variable selection in the con-
struction of explanatory causal models are well known
(Whitaker 1997). As we are not constructing an
explanatory model, we adopt this procedure here as a
simple objective routine to select variables. We make
no assumption that this approach selects the subset of
variables with the greatest discriminatory power, only
that it selects a subset which, in the validation tests,
results in a high degree of discrimination in the FIT
analyses.

Using the measurements to discriminate; 
FIT analyses

There are 2 extreme cases which FIT analyses
address with regard to classification of individual
tracks within the species: (1) individuals are unknown
and have to be identified on the basis of collected
tracks, and (2) individuals are known and a new obser-

vation (track) is to be assigned to one of the known
individuals. For convenience, we will refer to the first
scenario as population ‘censusing’ (i.e. estimating the
abundance of an unknown population, Caughley &
Sinclair 1994) and to the second as ’monitoring’.

Population monitoring invites the application of DA.
Classificatory DA (e.g. Johnson & Wichern 1998) pro-
vides a classification scheme which is optimal with
regard to minimising probability of misclassification.
Posing theoretical probability distributions for the geo-
metric profile of the footprints of each individual in a
population seems unrealistic, however, as does, per-
haps, the assumption that they are likely to be nor-
mally distributed with the same covariance matrix (the
typical assumption required to extract a tractable and
explicit discriminant score for classification). In prac-
tice, given a library of footprints belonging to known
individuals, one could submit a new observation to a
classificatory DA scheme. For example, JMP assigns a
new observation to the group whose mean it is closest
to in Mahalanobis distance, assuming the groups have
the same covariance matrix; this classification scheme
is known to coincide with the optimal classification
scheme of classificatory DA when the groups are
also normally distributed (assuming also equal prior
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Fig. 1. Ceratotherium simum. (a) White rhino left hind foot,
showing the plantar cushion and 3 toes. (b) White rhino left
hind footprint showing landmark points (s) and derived points
(j) with their respective numbers. The distance between the 2 

points marked on the vertical scale is 20 cm
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probabilities of group membership and equal costs of
misclassification, and setting aside the fact that in
practice sample estimates of group means and covari-
ances must be employed). We reported the results of
such an exercise in Jewell et al. (2001) for the black
rhino of that study (and repeated the exercise with the
current dataset with similar results) but have decided
not to include this approach to monitoring as part of
FIT for individual classification.

Rather than view classification of footprints as an
issue of trying to force data to fit theoretical ideals
(which, if feasible, would have the attraction of allow-
ing actual inference of group membership), we see the
problem of footprint identification more as one of ‘pat-
tern recognition’, i.e. contriving algorithms which,
using training data, are trained to match that data to
their known identities. The resulting algorithms must
then be validated on test data.

The algorithms in FIT are all based on the canonical
variates of Fisher’s approach to DA (see Mardia et al.
1979). The canonical variates require no distributional

assumptions to derive and are the linear combinations
of the observed variables that best separate group
means. They are, therefore, natural candidates for the
ingredients of the FIT algorithms. One must, however,
assume common group covariances in order to inter-
pret their statistical properties; in particular, to deduce
that Euclidean distance (upon which classification in
canonical space is based) is equivalent to Mahalanobis
distance in the original data space. If the groups are
further assumed to be normally distributed, classifica-
tion in canonical space is equivalent to standard classi-
ficatory DA (see Williams 1982). Without the assump-
tion of common covariance, we cannot infer that
canonical space does not distort Mahalanobis distance
in data space; even if this assumption were granted,
without normality, classification in canonical space
may be suboptimal; moreover, if one does not exploit
all available canonical variates, use of these for statisti-
cal classification is certainly less than optimal. In line
with the argument of the previous paragraph, rather
than making dubious statistical arguments, we simply
appeal to Fisher’s argument that the canonical variates
are useful for separating group means and seek to for-
mulate algorithms in terms of those that work success-
fully on test data.

For discriminating between species, however, as
there are only 2 ‘groups’ there is only a single canoni-
cal variate and in this case we do resort to linear DA
(LDA). In this case, the differences between individu-
als are expected to average out and it is not perhaps
unreasonable to suppose that the data from the 2 spe-
cies of rhino will conform to the assumptions of LDA.

Because an isolated footprint might too readily con-
stitute an outlier, we use only individual tracks and
amalgams/splitting of tracks in all cases.

FIT for censusing; the Canonical Pairwise Comparison
Technique (CPCT)

In this case, the study population is unknown. Mea-
surement selection must be carried out using a test pop-
ulation. The test population may be a captive population
or a wild population from another study site. In the cen-
sus scenario, footprints (as tracks) are collected from an
unknown population to form a library of footprints in
tracks without set structure. The objective is to assign the
correct set structure to the library. Note that this problem
is not addressed by DA. The FIT algorithm is again
based, however, on canonical variates. The idea is to
make pairwise comparisons of tracks and decide
whether or not they belong to the same individual.

For each pair of tracks, one forms the 2 groups con-
sisting of the footprints in each of these tracks and,
additionally, a third group, the Reference Centroid
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Point no. Definition of position on left hind foot

Landmark point positions
1 Highest point of front toe
3 Most lateral point of front toe
5 Most medial point of front toe
7 Highest point of lateral toe
9 Highest point of medial toe
10 Most lateral point of lateral toe
11 Most medial point of lateral toe
13 Most medial point of medial toe (nearest

midline of foot)
14 Most lateral point of medial toe (furthest

from midline of foot)
19 Lowest point of lateral toe
21 Lowest point of medial toe
23 Lowest point of heel
24 Point where perpendicular to L7-9

dropped from point 1 intersects heel

Derived point positions
2 Intersection (EL5,3) with (EL19,7)
4 Intersection (L1,24) with (L3,5)
6 Intersection (EL3,5) with (EL21-9)
8 Intersection (L1-24) with  (L7-9)
12 Intersection (L1-24) with (L11-13)
15 Intersection (L7-19) with (10-14)
16 Intersection (L1-24) with (L10-14)
17 Intersection (L9-21) with (L10-14)
18 Intersection (L7-21) with (L9-19)
20 Intersection (L1-24) with (L19-21)
25 Extension of (L1-24) to create 25, where

(L23-25) parallel to (L7-9)
22 Intersection (EL7-19) with (EL25-23)
26 Intersection (EL9-21) with (EL23-25)

Table 2. Definitions of landmark point positions placed on
white rhino left hind footprint images. L: line; EL: extension
of a line; e.g. L1-2: line connecting point nos. 1 and 2 (points 

as in Fig. 1b)
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Value (RCV), consisting of all footprints in the library
other than those belonging to the 2 tracks being tested
(a library of tracks must be collected prior to analysis).
The CPCT, already presented in Jewell et al. (2001),
consists in computing the 2 canonical variates for these

3 groups (note that the 2 tracks alone would
provide only a single canonical variate) and
inspecting the corresponding plot in canoni-
cal space of group means and 95% confi-
dence regions. If the confidence regions of
the 2 test tracks overlap, the tracks are said
to be related. The library of tracks is parti-
tioned into sets as follows: a set consists of a
track, all the tracks related to it, all the tracks
related to those tracks, and so on. In mathe-
matical terms, this relatedness notion is
taken to be an equivalence relation and the
sets are the equivalence classes.

If each pair of tracks could be regarded as
samples from multivariate normal distribu-
tions with common covariances, Hotelling’s
T 2-test could be used to determine whether 2
tracks were significantly different. As with
the Canonical Ellipse Reduction Technique
(CERT), however, in the absence of distribu-
tional assumptions, we have formulated a cri-
terion for deciding whether 2 tracks are to be
regarded as belonging to the same individual
by the non statistical but unambiguous de-
vice of whether their 95% confidence regions
overlap or not in a certain canonical space.

We tested the accuracy of CPCT for the
white rhino population in 2 ways. Firstly, we
extracted from the total footprint library the
first pair of test tracks to be compared. The
rest of the tracks in the library were used for
algorithm development (by measurement se-
lection) and combined to produce the RCV.
Track sizes of 6 to 8 footprints were produced
by arbitrary reduction or concatenation and
are defined as modified tracks. The reasons
for carrying out this procedure are described
in Jewell et al. (2001) and we also deal with
this in the ‘Results’ and ‘Discussion’. Each
time a comparison of 2 tracks was made us-
ing CPCT, a new algorithm consisting of 12
measurements selected using the forward
stepwise feature was developed from the re-
mainder of the library. Hence, each pairwise
comparison resulted in the presence of 3 el-
lipses, 2 for the test tracks and one for the
RCV. Classification accuracy was deter-
mined by the presence or absence of overlap
of the 95% confidence interval ellipses for
the 2 test tracks only. This tested both the

‘self’ tracks (tracks known to belong to the same ani-
mal, in which case an ellipse overlap was the correct
classification) and the ‘non-self’ tracks (tracks known to
belong to different individuals, in which case a lack of
overlap of ellipses was the correct classification).
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M1–47 Definition M48–77 Definition CM78–113 Definition

M1 L2-7 M48 A7,1,8 CM78 M1-4
M2 L7-15 M49 A8,1,9 CM79 M2-3
M3 L15-19 M50 A7,2,3 CM80 M5-6
M4 L19-22 M51 A8,3,4 CM81 M5-7
M5 L1-4 M52 A4,5,8 CM82 M5-8
M6 L4-8 M53 A5,6,9 CM83 M5-9
M7 L8-16 M54 A7,4,8 CM84 M5-10
M8 L16-20 M55 A8,4,9 CM85 M6-7
M9 L20-24 M56 A8,7,4 CM86 M6-8
M10 L24-25 M57 A4,9,8 CM87 M6-9
M11 L6-9 M58 A18,7,8 CM88 M6-10
M12 L9-17 M59 A18,9,8 CM89 M9-10
M13 L17-21 M60 A15,7,18 CM90 M11-14
M14 L21-26 M61 A18,9,17 CM91 M12-13
M15 L2-3 M62 A16,15,7 CM92 M15-16
M16 L3-4 M63 A16,17,9 CM93 M15-18
M17 L4-5 M64 A13,12,8 CM94 M16-17
M18 L5-6 M65 A19,18,21 CM95 M17-18
M19 L7-8 M66 A15,19,18 CM96 M19-20
M20 L8-9 M67 A18,19,20 CM97 M22-23
M21 L10-11 M68 A17,21,18 CM98 M25-28
M22 L11-12 M69 A18,21,20 CM99 M26-27
M23 L12-13 M70 A25,19,20 CM100 M29-30
M24 L13-14 M71 A23,19,25 CM101 M31-33
M25 L10-15 M72 A22,19,23 CM102 M32-33
M26 L15-16 M73 A23,21,20 CM103 M38-39
M27 L16-17 M74 A25,21,23 CM104 M40-41
M28 L17-14 M75 A26,21,25 CM105 M48-49
M29 L19-20 M76 A23,22,19 CM106 M54-55
M30 L20-21 M77 A25,26,21 CM107 M56+58+60
M31 L22-23 CM108 M58-60
M32 L23-25 CM109 M59-61
M33 L25-26 CM110 M66-67
M34 L7-1 CM111 M68-69
M35 L1-9 CM112 M70-71
M36 L7-4 CM113 M73-75
M37 L4-9
M38 L7-18
M39 L18-21
M40 L19-18
M41 L18-9
M42 L3-8
M43 L8-5
M44 L19-25
M45 L25-21
M46 L19-23
M47 L23-21

Table 3. Definitions of 113 measurements from each left hind footprint im-
age of white rhino generated in JMP using landmark and derived points
as reference. Measurements M1–47 show length (e.g. L2-7: length from
point 2 to 7), measurements M48–77 the angle (e.g. A7, 1,8: angle formed
between intersection L7-1 and L8-1), and combined measurements
CM78–113 the combined lengths and angles (e.g. M1-4 is measurements

1 to 4 inclusive). For points see Fig. 1b
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A second test was performed by arbitrarily allocating
50% of each set of tracks into algorithm and RCV con-
struction. The remainder of the modified tracks were
tested using the procedure described above. This test
procedure resulted in 64 tracks from 35 ind. However,
in this case, the 12 measurements selected and the
RCV were derived from the data attributed to the algo-
rithm and remained the same for all pairwise compar-
isons (see Table 4).

For the above procedures, the choice of 12 measure-
ments was determined by testing between 6 and 15 mea-
surements, all selected by the stepwise feature on the
data to establish which number gave the most accurate
track classification in pairwise interactions. Including
more measurements increased separation of ellipses be-
tween tracks of the same individual, while reducing the
number of measurements increased the likelihood of
overlap between tracks from different individuals.

FIT for monitoring; CERT

In a monitoring context, one has a reference
library of tracks from a known population of
individuals. Using this library, measurements
are selected as described in ‘Determining
which measurements best discriminate; vari-
able selection’. Monitoring involves collecting
new tracks from the known population and
assigning them to one of the known identities.

The algorithm for assigning identity to a new
track is provided by a new method developed
since Jewell et al. (2001): CERT. Each known
individual is represented by a set of footprints
(consisting of all its tracks in the library) and
the unknown track is tested against these. JMP
computes the first 2 canonical variates for
these data and produces the corresponding 2-
dimensional (canonical-space) plot of group
means and 95% confidence ellipses. (Note that
the number of canonical variates available is
well known to be at most min(p,g–1), where p
is the number of variables involved in the
analysis and g the number of groups; in CERT
more than 2 canonical variates would be avail-
able but we restrict to 2 because the canonical
plot available in JMP was, until version 7.0,
restricted to 2 dimensions.) All groups whose
confidence ellipses do not overlap with the
unknown track are set aside and the JMP pro-
cedure repeated. If this routine ultimately
results in a plot of the unknown track overlap-
ping exactly 1 group, that group’s identity is
assigned to the track. Otherwise the track
remains unclassified.

Once again we tested the efficacy of FIT using 2
models. In the first model, each of the 159 original
tracks from the 40 ind. was considered as the test track
with the remainder of the library employed for variable
selection, so that a new set of variables was selected for
each test. We tested the entire library for the relation-
ship between the number of variables used and the
percentage of footprints correctly classified by CERT.
Fig. 2 shows an accuracy of 85% obtained with
approximately 15 measurements, this accuracy reach-
ing 92% with 30 variables. We used 30 variables since
the analysis could be carried out in JMP just as expedi-
ently. In the second model, we arbitrarily allocated
50% of the footprints from each set to algorithm con-
struction and the rest of the footprints (as tracks) were
used for testing. This had the effect of reducing the
number of test tracks because there were no self-tracks
to compare against, since these had been assigned to

212

Sequence of Individual identification Species identification
measurements measurements measurements
selected stepwise used for CERT

01 CM98 M34
02 M3 M67
03 M65 M24
04 M34 CM94
05 CM97 M2
06 M2 M28
07 M40 M25
08 M38 M63
09 CM106 M49
10 M63 M53
11 M15 M41
12 M24 M76
13 CM94 CM91
14 CM90 M22
15 CM99 M59
16 CM91 CM79
17 CM100 CM98
18 M39 M64
19 M21 M18
20 M53 CM87
21 M58 M58
22 M25 M62
23 M6 M66
24 CM108 M7
25 M68 M13
26 M77 M65
27 M67 M37
28 M62 M54
29 M42 CM97
30 M51 M74

Table 4. Number of measurements selected stepwise (measurement 01
selected first) used in the analyses for individual identification (first 12
measurements for CPCT and all 30 for CERT) and species identifica-
tion (30 measurements). For all analyses, models based on 50% of the
data used for model construction and 50% for testing. For explanation 

of measurements see Table 3
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the algorithm. Nonetheless, there were still 69 test
tracks available, ranging in size from 3 to 11 footprints.
For this model, the 30 measurements selected stepwise
remained the same for all the test tracks (see Table 4).

FIT for species discrimination between the white and
black rhino, using discriminant analysis

Using the original tracks (Table 1) we compared
tracks from white rhino from the Otjiwa population (40
ind., 1276 footprints, 159 tracks) and black rhino from
a population in the Sinamatella Intensive Protection
Zone, Hwange National Park, Zimbabwe (18 individu-
als, 360 footprints, 59 tracks). In the first test model, a
track was selected as test track, excluded from the
dataset, and the remaining data subjected to linear dis-
criminant analysis with species as the ‘x’ category and
using 30 variables selected stepwise in JMP. JMP then
gave the species classification prediction for this test
track. This entire routine was repeated for each avail-
able track as test track, each time excluding the test
track in question from the data used to select the vari-
ables. A track was deemed to have been classified cor-
rectly when a majority of the footprints in that track
had the correct prediction. If there was a tie then the
track was considered unclassified. In the second
model, 50% of the footprints from each individual
were assigned to algorithm construction and the rest of
the footprints were tested as individual tracks.

To establish the number of variables to use, we once
again tested the classification accuracy of individual

footprints using LDA and found 30 variables gave over
90% accuracy. We used 30 variables using the step-
wise procedure in JMP for both models. Table 4 shows
the 30 measurements used for the second model (50%
algorithm/50% testing) in which the measurements
were the same for all test tracks.

RESULTS

The geometric profile

The similarity between black and white rhino foot-
prints indicated that the 13 natural landmark points for
white rhino are the homologues of those for black
rhino. Thus, the 13 derived landmark points were con-
structed exactly as for the black rhino (see Fig. 1b); and
the total number of variables generated (113) was the
same as that for the black rhino (Jewell et al. 2001).

FIT for censusing; CPCT

To test the accuracy of FIT for censusing, the CPCT
was employed to assign identities to tracks, and these
assignments were then compared to the known identi-
ties. Thus, as described in ‘FIT methodology; FIT for
censusing’, paired tracks in the database were sequen-
tially excluded from algorithm development for vari-
able selection and tested for classification, resulting in
11 329 pairwise interactions.  A total of 104 interactions
gave false classification, resulting in an accuracy of
99.1%. Based on these interactions, we then grouped
the tracks according to the matches to derive the pre-
dicted number of rhinos, which was 42, giving a census
accuracy of 95%.

Using a different test, in which only 50% of foot-
prints from each set were removed for algorithm devel-
opment prior to testing (with the rest used as test
tracks) and with 35 rhinos represented in test tracks,
we had 64 test tracks with 2080 interactions, of which
15 were misclassified, giving an accuracy of 99.3%.
The predicted census estimate in this case was 32 ind.,
resulting in a census accuracy of 91%.

As we found in Jewell et al. (2001) for black rhino,
the accuracy of CPCT depended upon track size. Each
of the original tracks was tested to see which other
tracks it matched using the CPCT (see ‘FIT methodol-
ogy; FIT for censusing’), thereby determining the set
structure of the library.

Fig. 3 shows the level of accuracy achieved in identi-
fying the original tracks, using 12 variables, as a func-
tion of the number of footprints per track. For track
sizes of 6 to 8 footprints the accuracy of censusing was
95% or better. The best accuracy was obtained with
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track size of 7 footprints. Not surprisingly, with short
tracks, the confidence-level ellipses were larger, lead-
ing to more overlaps (which would result in an under-
estimate of population size in a real censusing situa-
tion), while for longer tracks the confidence-level
ellipses were smaller, leading to fewer overlaps (which
would result in an overestimate of population size in a
real censusing situation), resulting in a reduction in
accuracy in either case. Hence, the choice of track size
used in this analysis is critical. Fig. 4 shows the distrib-
ution frequency of track sizes. There were 93 original
tracks in the 6 to 8 footprints per track categories.
However, to further increase the number of tracks
which could be used in the analysis, we split or con-
catenated the rest of the tracks to give a total of 152
modified tracks.

FIT for monitoring; CERT

Unlike CPCT, CERT is less sensitive to track size and
the number of variables used in the analysis. The 159
original tracks, which varied in length from 3 to 12
footprints, were tested in turn as described in ‘FIT
methodology; FIT for monitoring’. using 30 variables
(using the forward stepwise procedure in JMP). Five
were misclassified and one unclassified (tied) giving
an accuracy of 97%. Applying the second model, in
which 50% of the footprints from each individual were
assigned to the algorithm, of the 69 test tracks avail-
able, 3 were misclassified and 2 unclassified giving an
accuracy of 93%. Fig. 5 shows an example of the pro-
cedure used for CERT. Using 30 variables selected
using the forward stepwise feature, canonical analysis

produces a plot with centroids and 95% confidence
interval ellipses for each of the known 40 ind. and the
‘unknown’ or test track. Fig. 5a shows the outcome of
the first step with the test track ellipse shown overlap-
ping with a number of ellipses (only a section of the
plot with the test track shown here). The groups whose
ellipses do not overlap with the test ellipse are then
eliminated and the procedure repeated using the same
30 variables (Fig. 5b). In the final stage, the ellipse fur-
thest from the test ellipse is eliminated until the test
ellipse overlaps with one other ellipse only (Fig. 5c).

FIT for species identification

For species discrimination, we used a dataset of 1636
footprints with 218 tracks, of which 59 were from black
and 159 from white rhino. To test this data for track
classification, we used linear LDA with 30 variables
selected using the forward stepwise technique. Each
track in turn was excluded in a jackknife procedure.
The predicted classification for the original tracks
resulted in 1 misclassified and 3 unclassified tracks
(99.5% accuracy). We further tested the robustness of
the discrimination by excluding all the rest of the
tracks for the same animal as the test track during the
analysis. In this case 4 tracks were misclassified and 4
unclassified (98.2% accuracy). Using the second model
with a 50-50 split for the algorithm vs. test footprints, of
the 118 test tracks available, one was misclassified
(99.5% accuracy). For all models the resulting classifi-
cation accuracy was >98%, suggesting that FIT
appeared to be highly accurate in discriminating white
rhino from black rhino from their footprints.
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DISCUSSION

Development, utility and practical application of FIT

The ability to identify individual animals from wild
populations using a cost-effective, non-invasive and
accurate method would be of considerable value to
population censusing and monitoring programmes
(see Sharma et al. 2005). We have attempted to demon-
strate the adaptability of FIT by extending and refining
a previous application for black rhino (Jewell et al.
2001). We have demonstrated its implementation for
white rhino and tested the accuracy of that implemen-
tation.

The FIT results for the white rhino showed that foot-
print identification for either censusing or monitoring
could be achieved with a very high degree of accuracy.
In the census scenario, both independent test models

gave high levels of accuracy with regard to the classi-
fication of pairwise matches of tracks. As a result, the
predicted census estimates were close to the actual fig-
ures. However, this method is sensitive to the number
of measurements used in the analysis and the number
of footprints per track, and it appears that this is spe-
cies-specific. Also, in order  to use this method it is nec-
essary to build the algorithm (i.e. the actual measure-
ments and the number) from known individuals of the
study species. The more individuals available for algo-
rithm construction the better, but the trials carried out
with the black and white rhinos and 2 species of tapir
(S. K. Alibhai & Z. C. Jewell unpubl. data) and the Ben-
gal tiger (S. K. Alibhai & Z. C. Jewell unpubl. data)
suggest that 15 to 20 ind. would be sufficient (cf.
Sharma et al. 2005, who recommend a minimum of 5 to
8 ind. for the Bengal tiger). To determine the number of
footprints required for each individual for the initial
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algorithm construction, our data, once again, suggest
that a figure of 15 to 20 would be sufficient. For exam-
ple, for the present study we arbitrarily varied the
number of footprints per individual from a minimum of
5 to 35+, and tested the accuracy with which each indi-
vidual footprint was classified correctly using LDA.
Fig. 6 shows that the asymptote was reached at 20 foot-
prints. We believe that this approach, i.e. using the
matchability of tracks has great potential for identify-
ing individuals of endangered species. This was sup-
ported by L. Van Bommel et al. (unpubl. data) working
with the African lion Panthera leo. Using 20 footprints
from each of 30 captive animals, they compared the
efficacy of 2 different methods in the census scenario.
They used the one-class classification approach (Tax
2001) and the canonical centroid plot method (CPCT in
this study) reported by Jewell et al. (2001). They found
that the canonical method gave more accurate results.
Interestingly, they found that the optimal number of
variables for the canonical plot was 11. Furthermore,
L. Van Bommel et al. (unpubl. data) reported that
because of the pairwise approach, the canonical plot
method was also not sensitive to the size of population
under study. We found the optimal track size to be 6
to 8 footprints, compared with L. Van Bommel et
al. (unpubl. data), who suggest 8 to 10 for the African
lion, and Sharma et. al (2005), who found that 4 to
12 pugmarks per track gave accuracies of between 90
and 100%.

For monitoring, a new multivariate statistical dis-
criminator, CERT, also gave very high classification
accuracies of assigning the test tracks correctly. Once
again, this was tested using 2 independent models.
The reason for developing this technique was that our
data on black rhino (Jewell et al. 2001) had shown that

using LDA, which provided a classification based on
correct/incorrect match for individual footprint, we
had many unclassified tracks (i.e. equal numbers of
footprints in the test track being assigned to 2 or more
individuals). Using CERT ensured that the number of
ties was reduced (only a single tie for 1 model and 2
ties for the other model in the present study).

One of the criticisms levelled at the use of footprints
for censusing/monitoring populations is that the study/
test populations have tended to be small, therefore not
representative of populations/subpopulations in the
wild. The present study population of 40, with 159
tracks and 1276 footprints, is relatively large and thus
provides a much more robust test for the use of foot-
prints in individual animal identification. Interestingly,
Sharma et al. (2005), who had 19 tigers and 23 pug-
mark-sets (tracks) in their study, make the point that
the actual number of tracks which would need to be
compared in any one session during a tiger census in a
particular area would be 10 to 35, even in the high
tiger density areas. Whilst this may be true for tigers,
our data for 2 species of rhino and 2 species of tapir to
date suggest that many more tracks are likely to be
encountered depending, of course, on the size and dis-
tribution of the population.

We believe that FIT can be used very effectively for
censusing and monitoring populations of endangered
species. In their thorough review, Karanth et al.
(2003) present very cogent and convincing arguments
to explain why the ‘pugmark’ method has failed to
reliably census the tiger population in India. While
they consider this to be due to a paradigm failure, we
suggest that this has been partly due to the lack of
objectivity in the ‘pugmark’ method used for genera-
tions in Indian tiger censusing, and also the use of
incorrect sampling methods. We believe that foot-
prints do contain very useful information which, if
extracted objectively, can be used to identify individ-
uals accurately, and that efforts should be directed
towards changing the method of using ‘pugmarks’
rather than dismissing their validity altogether. Our
data show that it is possible to get reliable figures for
absolute abundance for certain species in certain
locales using FIT, and that this method can be
adapted to each unique situation. For example, to
obtain a census figure for the black rhino population
of the Namutoni region of Etosha National Park in
Namibia, we designed the sampling of the footprint
collection based on the fact that there were only a
limited number of water holes and the fact that the
animals had to drink at least once every 24 to 48 h
from one of these (see Owen-Smith 1988). By sam-
pling the water holes on several occasions we
ensured the collection of footprints from all the indi-
viduals in that area (Alibhai & Jewell 1997).
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Like all censusing and monitoring techniques FIT
has strengths and limitations. 

The strengths are clear; it is cost effective, particu-
larly compared with those techniques which require
expensive equipment and/or veterinary input; it
utilises the expertise of local trackers, who are often
employed as scouts or in anti-poaching patrols in local
conservation efforts; it is arguably less subjective than
other commonly used monitoring techniques which
rely on one form or other of subjective visual appraisal;
it is not restricted in range by costly apparatus or tem-
poral concerns, and is thus potentially able to provide a
more realistic coverage of home-range than standard
(non-GPS) telemetry methods or camera-trapping,
and, as importantly as all the above, it is non-invasive
to the species under investigation.

There are also practical limitations of FIT. The first is
the temporary impact of rain (or on occasion, high wind)
on the collection of usable footprints. Heavy rain gener-
ally led to delays in new footprint collection of 2 to 3 d.
With showers or lighter rain, it was often possible to find
footprints the next day. Another limitation is that foot-
prints change over time. Obviously subadult animal foot-
prints grow, but our preliminary data suggest that even
adult rhino footprints change over time. For this reason
FIT used for monitoring (but obviously not censusing) is
best undertaken as an ongoing routine, not punctuated
by long breaks. The third limitation in implementation is,
of course, the necessity for a suitable substrate and target
species with a footprint of sufficient complexity; FIT is
not suitable for all species and all environments, al-
though we are currently investigating the use of FIT in
more challenging substrates, such as snow and mud.

Because it requires minimal equipment, and because
images can often be collected as part of general moni-
toring duties (e.g. anti-poaching), FIT may be an ideal
monitoring tool as a first-line enquiry, or as a cost-
effective and objective additional tool in a monitoring
armoury (the adoption of several different techniques
being increasingly employed in conservation monitor-
ing), and reflecting the gains inherent in a combina-
tion-approach.

Future development of FIT

We are adapting FIT for other endangered species. A
provisional algorithm for the Bengal tiger has been
developed from captive animals giving a high degree
of accuracy in identifying at the individual, sex and lat-
erality levels. We have developed algorithms for the
lowland and Baird’s tapirs, which also provide high
accuracy of identification at the individual and species
level, and are currently undertaking trials of FIT with
other species, substrates and monitoring techniques.
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