Fit of data to Truncated Poisson Distribution

The following graphs illustrate the poorer fit of truncated Poisson means of 1.25 and 5.0 .

Trap-happy animals

"TRAP-HAPPY" ANIMALS AND THEIR IMPACT ON THE RESULTS..

Trap-happy animals are seen very much more often than other animals and violate a key markrecapture assumption that all animals have an approximately equalchance of being seen. In the case of rhino, such animals are really sighting-happy. However the term trap-happy is used as it is commonly used in the mark-recapture literature. The term was originally coined to refer to individual rodents that learned that live traps being used to catch and rele ase animals during a study contained food. A few individuals kept coming backfor more and were recaptured again and again- hence the term trap-happy! One can also have "trap-sfy" animals.

If trap-happy animals are ignored during an analys is they will act to bias population estimates downwards. This is because you will have more re-sightings than normal. This higher than usual re-sighting rate, results in RHINO predicting there are fewer animals out there that have not been seenduring the recording period than there actually are (hence biasing you estimate).

Best-fit truncated Poisson graph to observed sighting frequency data \ddagger RMS error graph.

$\mathcal{T W O}$ GRAPHS ARE ACCESSIBLE ONTHIS FORM..

This form has two tabs at the top (named "Truncated Poisson Distribution" and "Least Squares \mathcal{F} it ${ }^{\prime \prime}$).

The tab at the front represents the currently displayed graph. To view the other graph, simply click on the other tab. Ulsers can toggle Gackwards and forwards between the two graphs by clicking on the tabs. An example of the truncated Poissongraph is shown on the previous page.

Truncated Poisson distribution graph

TRUNCATED POISSON DISTRIBUTION GRAPH..

\mathcal{A} Poisson distribution is known to predict the expected frequencies for relatively rare events we ll.

We know how many of the sighted rhino have been seen once, twice, three times etc. during a survey period. However, we do not know fow many other ID animals are out there that we have not yet seenduring the study period. In fact, this is what in essence we are trying to use Mark. Recapture methods to estimate.

The fact that we don't know how many animals were not seen is why the observed rfino sighting frequency distribution is compared against a truncated Poisson distribution rather than a Poisson distribution. The truncated Poissondistribution probabilities for a given mean sighting frequency are obtained by initially calculating the Poisson probabilities of seeing a rhino different number of times (including not being seen-i.e. a sighting frequency of 0); then dropping the Poisson probability of not seeing a rfino, and then normalising the remaining Poisson probabilities (of sighting animals once or more are) by multiplying them by a constant so they sum to 1. In this way the sum of the percentage probabilities for both the observed sighting frequencies and the predicted sighting frequencies (derived from the truncated Poisson distribution) 6oth sum to 100%.

This graph shows the best fit truncated Poisson distribution (crimson line) superimposed onto the observed sighting frequency distribution of identifiable animals present throughout the whole data analysis period (6lue Gars).

The Gest-fit mean sighting number (which minimises
 Root $\mathcal{M e}$ an Square Error) is given in 6 fue in the top 6 ox on the right. The Gest-fit mean will initially be shown in 6lack as the default value in the lower cell. If you want to plot a truncated Poisson distribution with a different mean sighting frequency simply edit the black number in the lower box.

Least squares fit graph

The mean sighting frequency still refers to all animals, including those that have not been seen (i.e. had a zero sighting frequency during the reporting period).

If you change the number in this box, you need to make sure that before youclick the "Next >" Gutton to proceed, that the black number in the lower box has been updated and contains the mean sighting frequency you want used in the calculations. This value is used to determine how many sightings is enough to be treated as "trap-happy".

In most cases you will want to use the suggested default value shown in blue in the box above.

LEAST SQUARES FIT GRAPH..

If youclick on this tab a Root Me an Square (RMS) error graph is displayed covering a range of sighting frequencies up to 10 . Select this tab to see how the goodness of fit varies with mean sighting frequency. The best-fit mean sighting frequency is found where the RMS error is the lowest which in this example is 2.64.

If the graph shows a clear minimum, like the example opposite, you can have confidence that your sighting frequencies by and large fit the assumptions. Howe ver if there is a flatter plateau minimum you may want to analyse the data for a range of possible mean sigfting

Use of graphs to identify sampling problems

Looking at these two graphs may help you identify possible weaknesses in your monitoring programme.

If most of your sightings are largely of a few very trap-happy animals, then your sampling effort has probably been concentrated in too small an area and you need to make an effort to get better ground coverage before you can even think about getting a reasonable estimate of total population size.

If you have a very flat long plate au in the RMS error graph, and your best fit Poisson mean is high enough to predict there should only be a few animals seen once, yet your sighting frequency histogram shows there are many animals seen only once, it is likely that yoursampling effort differs markedly in different areas of your Park or Section. In the one areabeing well sampled animals may be being seen regularly, whereas in the other are a sampling effort may be so low that most animals are being seen only once. The poor truncated Poisson fit will be because in effect you have two different frequency distributions being superimposed uponeach other. In such cases you should probably plot on a map where the sightings of animals seen at different frequencies have occurred. You could also investigate whether you could analyse the high and low intensity sampling areas separately (provided your mean sighting frequency in the low intensity sampling area is >1.33. Alternatively you should try to increase sampling in the low intensity sampling are a and so obtain a more even sampling effort.

The ROMS error is calculated for the range of possible mean sighting frequencies up to a maximum of 10 . If your non trap-happy rfinos are being seen more frequently than this, then you probably fave seen all your ID rfino, and you won't need $\mathcal{R H I N} \mathcal{N} O$ to produce a population estimate.

For a given mean frequency, the RMS error is calculated as square root of the ave rage squared deviations between the probabilities for the observed sighting frequencies and the probabilities of expected sighting frequencies (Gased on the truncated Poissondistribution).

Identifying and dropping trap-happy animal sightings

Identifying and dropping trap-happy animal sightings.

One of the key mark-recapture assumptions is that all animals have an approximately equal chance of being seen. Animals that are seen very frequently compared to other animats are called "trap happy animals". In the case of rhinos such animals are really "sighting-happy", but the term trap-fappy fas been retained, as it is commonly used term in mark-recapture methodology.

Trap-happy animals are far more likely to be seen than other animals, and the refore violate the assumption of equal sightability. Trap-happy animals need to be identified and their sightings dropped from the data-set prior to mark-recapture analysis to avoid violating this assumption.

If trap-happy sightings are not identified and dropped prior to mark-recapture analysis, you will tend to underestimate numbers (bias results). This is because with large numbers of traphappy observations, you will have many more re-sightings, and hence fewer new (first) sightings than if all animals had an equalchance of being seen. As a result RHiNo will wrongly conclude that there are fewer animals out there that you have not seen yet. leading to an underestimate of true numbers.

Dropping trap-happy sightings prior to mark-recapture analysis is therefore a bias correction measure, which deals with a specific form of violation of the equal sightability assumption.

To continue click on the "Next >" button. You will then be taken to a form where you can identify trap-happy animals and can select to drop trap-happy sightings prior to markrecapture analysis.

Critical trap-happy sighting threshold

ESTIMATION OF TRAP-HAPPY SIGHTINGS THRESHOLD VALUE..

$\mathcal{R H I N O}$ uses the estimated mean sighting frequency (entered in the previous form) and the user specified critical trap-fappy cut off levelset on this form to suggest the maximum number of sightings you should consider normal (shown in 6 lue in the cell below). It is strongly recommended that you use the default 99% critical trap-fappy cut-off level. Howe ver, If you want to select one of the other two critical traphappy cut-off options click to select the radio-6utton next to the

value you wish to select. Maroon text at the right of the form recommends that you should treat any animals seen more than specified threshold frequency (in 6 (ue) as treated as traphappy. If you have used the default 99% criticaltrap-happy cut off level the chance of observing an animal more than the Glue threshold value by chance is less than 1%.

SELECTION OF TRAP-HAPPY SIGHTINGS THRESHOLD VALUE TO USE..

In the second box (the one with a blacknumber), you should enter the maximum number of sightings you are prepared to consider as normal. In most cases, you should use the default number RHINX suggests (which will be the same as the blue number in the box above).

Dropping trap-happy animals

DROPPING TRAP-HAPPY ANIMALS...

If you want to correct for trap-happy animals (recommended), clickon the 6utton that says "Drop-Trap-Happy
$\mathcal{A n i m a t s}$ "

$\mathcal{R H I N} \mathcal{N} O$ will treat animals seen more oftenthan the specified (6 (ack) threstiold value as trap-fiappy, and drop sightings of the se animals from
 the dataset prior to mark-recapture calculations. Two cells at the bottom right of the form will now indicated how many different trap-happy ID animals and the totalnumber of trap-happy ID sightings that will be dropped from the dataset prior to mark-recapture calculations. The animals dropped should also now be shown in red on the graph.

If selected the "Drop trap happy animals" is shown depressed in a light grey.

Dealing with Trap-happy animals

If you change your mind, and decide against dropping trap-happy animals, simply click on the "Drop trap-happy animals" button again. This button allows you to toggle between dropping traphappy animals and including them in your mark-recapture analysis.

When you are ready to proceed click the "Next>" 6 utton.

HOW RHINO DEALS WITH THE DROPPED TRAP-HAPPY ANIMALS..

After mark-recapture calculations have been completed, the number of dropped trap-happy animals is added back (to the number of non-trap-happy animals estimated by mark-recapture) to give a totalestimate of the number of ID independent animals. RHIN NO does this by shifting the markrecapture posterior probability distribution up by the number of trap-happy identifiable animals dropped, and then obtaining the statistics from this trap-happy adjusted graph. In the example on the previous page sightings of 10 trap-happy animals would be dropped and therefore after mark-recapture calculations have been completed the X axis of the $I \mathcal{D}$ independent posterior distribution would be shifted up by 10 .
$\mathcal{F A Q}-\mathcal{W} \mathcal{H} \mathcal{A} \mathcal{A B O} \mathcal{U T} \mathcal{T R A P} \mathcal{H A R P Y} \mathcal{C L E A \mathcal { N }} \mathfrak{A N} I \mathcal{M A} \mathcal{S}$?

Users commonly ask how RHINN deals with the possibility of trap-happy cle an animals. $\mathcal{B y}$ virtue of these animals being clean, we don't know the sighting frequencies for individual cle an animals and therefore we don't really know which clean animals are trap happy.
$\mathcal{R H I N}$ ㅇimply assumes that the proportion of clean trap-happy sightings that are of traphappy clean animals is the same as it is for ID animals.

Specifying prior probabilities

Identifiable and Clean Priors

RHINO - A BAYESIAN TECHNIQUE REQUIRING PRIORS...

$\mathcal{R H I N} N$ is a Bayesian Mark-Recapture technique. It starts off by requiring the user to define a set of "prior" probabilities of the ID independent population being a range of possible sizes. These probabilities are used to start off the analysis, and they are updated on the basis of the evidence (e.g.sighting/re-sighting dataset and specialcode information) resulting in the production of the final "posterior" probability distribution at the end of an analysis.

Population estimates and the Bayesian equivalent of confidence levels (called credible posterior intervals) are then derived from these final "posterior" distributions.

Before calculating the statistics, the final ID independent distribution is adjusted up by the number of trap-happy ID animals that were dropped from the dataset prior to mark-recapture calculations. Thus the final posterior ID inde pendent graph includes trap-happy inde pendent animals.

Bayesian methods use information (evidence) to update prior probabilities, and so produce posterior probabilities (the answer). If you have knowledge about a population you may be able to to supply quite "informative" priors. If not, you can supply what are called "uninformative" priors (which only specify the possible minimum and maximum ID population segment value, and allocate and equal prior probability of sighting to each value of X within the specified prior range.

UNLESS YOU HAVE A LIMITED NUMBER OF SIGHTINGS THERE IS NOT MUCH TO BE GAINED BY SPECIFYING VERY INFORMATIVE PRIORS IN RHINO...

Unlike some other Bayesian techniques, experience has shown that once you have sufficient sighting data, the priors supplied to $\mathcal{R H I} \mathcal{N} \mathcal{N}$ end up faving little or no influence on the final results (unless of course wrong minimum prior and maximum prior values fave been specified

Specifying prior probabilities

when it will be impossible for the answer to converge on the true population size).

Informative priors will be of most use where you have recently started a monitoring programme and have fewer sightings per animal. This will especially be the case if your average sighting frequency per animal is below 1.5. However, as soon as your average sighting number/animal increases to around 2, the results obtained in $\mathcal{R H I N} \mathcal{N}$, will be the same irrespective of whether informative or uninformative priors have been specified. For this reason, unless you have very limited data there is not much to be gained by supplying very informative priors.

It is important to realize that the priors you initially are asked to supply are for the "ID inde pendent" (identifiable adult/sub-adult) segment of the population only, and NOT for the whole population. This is because RHIN \mathcal{N} uses a Bayesian mark-recapture tecfnique to initially estimate only ID independent numbers. Numbers of clean independents and dependents (calves) are estimated separately by RHINX. For details of the calculations please refer to the tecfnical manual.

ACTUAL ID POPULATION SIZE MUST FALL WITHIN RANGE OF PRIORS SUPPLIED..

You MUST ensure that the maximum prior youspecify is greater than the actual number of ID independent rininos, and that the minimum prior specified is less than the actual number of $I \mathcal{D}$ independent rfinos. This is because, if the true population size falls outside the range of priors you have specified, RHIINO will never be able to correctly predict the true population size. If in doubt, it is figfly recommended you set the minimum prior at 1, and that you always set the maximum prior quite a bit above the maximum guesstimate of ID independent number to be on the safe side.

Specifying prior probabilities

If you specify a maximum prior lower than the actual ID inde pendent rino number, the population estimate will converge on the maximum prior value but no higher. RXHINO willwarn you if it detects this may be the case

If your ID inde pendent population estimate is almost the same as your maximum prior (which was the case in the example opposite) you should check to see if you may not have set the maximum prior too Low.

To try to avoid this problem, by default RHINNO sets the default maximum
prior at a minimum of a 100 or 50% more than the number of different ID independent animals in the dataset.

If you specify a minimum prior higher than the actual ID independent rfino number, the population estimate will converge on the minimum prior value but no lower. If your estimate is almost the same as your minimum prior, you should check to see if you might not have set the minimum prior too figh.

ID Independent Prior Options

ID INDEPENDENT PRIOR OPTIONS..

Click on one of the radio-buttons at the top of the form to select one of the three following options..

Please select how the independent priors will be specified. For most runs you are advised to use uninformative priors.
C. Uninformative
Informative
Previous Values
"Uninformative" priors;
"Informative priors"
"Pre vious values"

The first two options allow the user to specify new priors that can be saved for future use, The third option allows users to re-use a set of priors that were entered and saved earlier.

UNINFORMATIVE PRIORS...

If you select the "Uninformative" option, a dialog box will appe ar which will prompt you for the maximum ID prior value. You will probably will select "Uninformative" priors for most runs.

To try to ensure that there is a good chance that the maximum prior is bigger than the actual ID inde pendent popululation segment sise, the maximum possible ID inde pendent Prior will be set by default to the larger of 100 or 50% more than the number of $I \mathcal{D}$ independents in the datase t which in

Uninformative Priors
Population Size
For uninformative priors the minimum independent identifiable (ID) prior is set at 1 and the default weighting for independnet ID priors is set automatically by RHINO.

The actual independent ID population size must fall within the specified prior range, otherwise RHINO will not be able to produce an accurate unbiased estimate.

Uninformative priors

In RHIINO 2.0 the default minimum prior $60 x$ is disabled when specifying uninformative priors and by default RHINN 2 sets the minimum prior at 1 . RHINO 2.0 users now only fave to specify the maximum $I \mathcal{D}$ independent prior.

I ust make sure that the maximum prior is definitely bigger than the actual ID independent population size. The "default weighting" $60 x$ is also disabled when specifying uninformative priors. RHINN simply allocates an equal prior probability to every possible population size in the specified prior range.

If you want to maximize prior entropy and ensure that the final result is most influenced by your sightings data and not your priors youshould select to use "Ininformative" priors.
$\mathcal{A f t e r}$ you have specified the maximum uninformative prior value, click the " $O \mathcal{K}$ " 6 utton. $\mathcal{R H I N} \mathcal{N}$ then automatically generates and displays a graph of the specified uninformative prior distribution.

Informative priors

If you select a maximum uninformative prior of say 100, what you are doing is specifying that the ID independent poplation segment size is some where between from 1-100 at the start (before you analyse any data) but at the start there is an equalchance it could be any number in this range.

If you want to save these uninformative priors to use them again later, click on the "S ave priors" button in the top right of the form, and follow the instructions. However, it is so quick to enter uninformative priors there is little point in saving them.

INFORMATIVE PRIORS

You might select this option if youknow how many animals were put into a re-established population, and youknow that given rinino biology, the population cannot have got bigger than X rfinos, and is most probably somewhere between \mathcal{V} and Z. Thus, you are in the position where you have the knowle dge to specifying maximum and minimum priors, as well as variable starting probabilities of the population being different sizes. In this case you would select to use "Informative" priors.

If you select this option you will be asked to specify both minimum and maximum priors and you will also be asked to supply a default probability weighting value. This can be any number you want and can be an integer. This weighting value will be used as the default value to initially populate the prior weights table that will be displayed after youclick on the "Next>" 6 utton.

Informative Priors

Population Size

Please specify the minimum and maximum independent ID population sizes.
If you would like partial statistics to be calculated the minimum prior must be set to 1 .

The actual independent ID population size must fall within the specified prior range, otherwise RHINO will not be able to produce an accurate unbiased estimate.

Minimum possible independent ID population size:
Maximum possible independent ID population size:

Please specify a default weighting for your priors: 10

Informative priors

To change weights for any particular value of \mathcal{N} in the "Define weighted priors" form, simply type in the new weights.
\mathcal{N} ote how the informative prior distribution changes shape as you input the weights

When you have finished entering in all the weights clickon the "Next >" button and a normalised prior probability distribution will be produced (the weights having been scaled so that they sum to 1).

When you are ready press the "Finished" button on the normalized priors form.

To save informative priors for future use, click on the "S ave priors button" and follow instructions.

If you wish to display partial statistics later (calculated after each fifth of the data fias been analysed) in addition to the final posterior posterior ID independent probability distribution, you must set the minimum prior value to 1 .

Using previously saved priors Interpreting graphs

USING PREVIOUSLY SAVED PRIOR VALUES

If you select this option, a "Prior management" form will appear with a menu of the different saved priors.

INTERPRETING A PRIOR PROBABILITY GRAPH

\mathcal{A} "prior" probability distribution is the starting probability distribution used in a Baye sian analysis. These probabilities are updated and continually improved in response to the evidence (sightings data, special code information etc.) to produce a final "posterior" probability distribution from which the population estimates and Bayesian equivalent of confidence levels are derived.

Interpreting prior graphs

The interpretation of prior and posterior graphs is the same. The vertical \mathcal{Y} axis gives the probability that the population segment is each of the range of possible sizes (shown on the horizontal X axis). The key principle to grasp is that the bigger the \mathcal{Y} axis value, the greater the chance the corresponding value of X is the population size.

Uninformative priors are shown by a straight line -which in effect often means "we haven't a clue what the ID independent population size is, so we will start by specifying that every possible value of X (population size) from 1 up to the maximum prior has an equal chance of being the actual
 population size.

Informative priors can take a range of shapes, but some values of x will start with higher probabilities.

In both cases the minimum and maximum prior values (of X) represent the bounds within which we are specifying the true population size must lie.

PROCEEDING WITH ANALYSIS - SPECIFYING THE MINIMUM CLEAN PRIOR..

When you have selected your ID independent priors, and the normalized independent prior distribution is shown in the yellow window on the main priors form, you can now optionally enter the minimum clean prior using the box at the bottom of the page.

Specifying minimum clean prior

The default clean minimum value used by RHIN \mathcal{N} (s 1 (the "Not Known" radio-6utton will be selected).

Clean Priors

If known, please estimate the minimum size of the clean independent population. If you are in any doubt, whatsoever, it is strongly recommended that you select not known.

If you are happy to use the default clean prior of 1, click the "Next>" 6utton to proceed.

However if you have some knowle dge of the minimum clean prior, you can enter another number. $\mathcal{T h}$ is is a form of more informative clean prior. For example supposing that you saw 2 clean \mathcal{F} age rfino together Gefore driving seven kilometers and seeing another 3 clean rhino cows with different aged calves, and a cle an \mathcal{E} aged bull and 2 cle an \mathcal{F} aged bull (with different forn configurations). Thus youknow there must be at least \mathcal{E} cle an inde pendent animals in the population. By selecting the "Specify value" radio-6utton and specifying 8 as the minimum cle an independent prior, RHINO cannot estimate there are fewer clean animals than this minimum number you know are present in the population.

Clean Priors

If known, please estimate the minimum size of the clean independent population. If you are in any doubt, whatsoever, it is strongly recommended that you select not known.

One advantage of using Bayesian methods like RHINX is that you can use information you have to reduce the chance of getting daft answers (such as a lower confidence levels which are lower than the known minimum). Information on clean animals identifiable only to a key observer using more minor features (such as horn configurations, tiny ear nicks, small scars, photographs of eye and nose wrinkles etc.) can also be used in determining the minimum clean prior. Sightings of such animals are still treated as clean sightings by RHINO.

Click the "Next>" button to proceed

Specifying Priors - Changes in RHINO 2.0

CHANGES IN SPECIFYING PRIORS BETWEEN RHINO 1.21 and RHINO 2.0 ..

In $\mathcal{R H} \mathcal{H} \mathcal{N} O 2.0$, users no longer need to specify the minimum uninformative ID prior as this is automatically set at 1 .

In RHINO 2.0 users can no longer select the upper clean prior. RHIINO by default sets this at 20,000. The reason for this change, is that some users of RHINO 1.21 may fave biasing cle an estimation by setting upper clean priors which were likely (based on the data) to be well below the actual number of clean animals. Taking a simple example - Suppose the ratio of ID: Clean animals in a population is exactly 50:50, and the ID population estimate is 40 animals. It follows that one could expect there to be a similar number of clean animals (in this case around 40). However a user of RHINX 1.21 could chose to specify that the maximum clean independent number was only 10. If so then the maximum clean population size that RHINO can estimate will Ge 10 (in this case only about a quarter of the probable true clean population size). To eliminate the chance of this happening, users can no longer specify the upper clean prior.

However, on the Cle an inde pendent graph form later, users can specify a suggested maximum clean inde pendent number, and RHINO 2 will calculate the probability of the population Geing greater than this value given the evidence (data).

To avoid confusion deselect the shade CPI tick box to see the part of the

Clean Independent Population giventhe evidence (data)
distributon bigger than the specified guesstimate of the maximum number clean.

Management of Saved Priors

$\mathcal{M A N} \mathcal{A G E M E N T} O \mathcal{F} S \mathcal{A V E D} \mathcal{P R I O R S}$...

If you want to dele te any previously saved ID independent priors thengo back to the initial RHINO start-up screen and main menu. Click on the "Tools" icon in the main menu topic box,

Show Database

Click on the buttons to the right to either

Eag Priors Maragement.	
Saved Data Sets:	
Informative Priors	Add
Test new format Test Ramp	Edit
	Delete
	Close

" $\mathcal{A d d}$ ", "Edit", "Delete" or "Add" Priors".

When you have finished click on the "Close" button.

BAYESIAN MARK RECAPTURE

RHINO then will proceed to undertake the Bayesian mark recapture analysis.

Results of Bayesian mark-recapture

Results of Bayesian Mark-Recapture - Identifiable Indpendent Posterior Probability distribution and associated statistics.

Once RHINO has completed the Bayesian Mark-Recapture analysis of the non-trap-happy ID independent data, the resultant posterior probability distribution is shifted up by the number of trap-fappy ID animals dropped from the dataset prior to Mark-Recapture to obtain the final $I \mathcal{D}$ inde pendent posterior probability distribution. For details of the Bayesian mark-recapture calculations please refer to the technical manual. The form that is displayed presents the results of the analysis.

The blue graph shows the final posterior probability distribution for the $I \mathcal{D}$ independent segment of the population (dropped trap-happy animals having been added back in).

The light purple line

shows the prior distribution probabilities for the X axis range being graphed. You should rescale the graph (see below) if you want to see the whole prior probability distribution.

Final ID independent posterior distribution

ID INDEPENDENT POPULATION ESTIMATES ..

Population estimates (mean, mode and median) are calculated from the posterior probability distribution, and are shown in 6 lue a box at the top right of the form. The "mean" value is the average value of X for the distribution; the "median" represents the value of X which falls exactly in the middle of the distribution (50th percentile), and finally the "mode" represents the value of X with the greatest probability of occurrence.

CREDIBLE POSTERIOR INTERVALS (CPI)..

Credible posterior intervals (CPI) are the Baye sian equivale nt of confidence levels. These are also shown in blue in the box on the right of the form for the \% CPI level specified.

RHINO sets the
default CPI levelat 90% (with CPI values representing the numbers of rino at the 5 th and 95 th percentile in the distribution). To shade the CPI on the graph click the Shade CPI tick 6ox. The graph will looklike the one above in Access 97 and Access 2000. For some as yet unknown reason shading the $I \mathcal{D}$ inde pendent CPI intervals in $\mathcal{A c c e s s} 2003$ on an $X P$ machines also shades the prior probabilities.
$S \mathcal{H A D I N G}$ CPI "CONFIDENCE" $\mathcal{N E V E L S}$..

If you want to shade the are a of the graph covered by the selected CPI levels, click to check the shade CPI tick-box on the right of the form. By repeatedly clicking the tick box you can toggle between shading the CPI or not.

Changing the CPI "Confidence" level

setting different cpi "CONFIDENCE" LEVELS..

If different "confidence levels" are required (e.g. 95%), simply type in the level required in the CPI cell. The blue CPI levels shown below the CPI cell will change in response to the new CPI levelselected.

\mathcal{A} "posterior" probability distribution such as the one shown by the blue line in the graph on the previous page is the final probability distribution after processing all the evidence (data). The verticaly axis gives the probability that the population segment (in this case ID independents) is each of the range of possible sizes (shown on the X axis). The greater the probability on the \mathcal{Y} axis, the greater the chance the corresponding value of X is the population size.

Populationestimates (mean, mode and median) are calculated fromeach posterior distribution.

SELECTION OF WHICH MEASURE (MEAN, MEDIAN or MODE) TO USE TO ESTIMATE POPULATION SIZE

Each of the above measures (mean, median or mode) will give the bestestimate under different circumstances.

Abstract

RHINO 2.0 has improved upon RHINO 1.21's relatively crude "statistical advis or system" (which was based on limited simulation modeling). A simple expert system has been developed (based on the results of 65,000

Mean: 74.47 Median: 74 Mode: 73 The 'Median' is the best measure of central tendency. form advises users on which measure they should use in each case. $\mathcal{A d d i t i o n a l}$ statistical advice is inserted into the reports produced at the end of the run.

RHINO's Stats Advisor \& Rescaling graphs

The built in statistical advisor in RHINO also gives users an approximate ide a of possible biases in the ir estimate (documented in the RHINO run report). RHINO will also warn users when they are likely to not have enough data and that RHINO estimates will be unreliable. In such cases RHINO estimates should not be used until additional data have been collected.

In the next major version of RHINO (ver 3.0), it is hoped to include a much more sophisticated statistical advisor system based on Neural Network analysis of verylarge simulated data sets. The results of these simulations are also currently being used by the developer to develop some improved statistical advice rules, which in the interim can fopefully be incorporated in an updated RHINXO 2.1 version.
$\mathcal{R E S}$ CALING THEE GRAPH ..
$\mathcal{R H I N} \mathcal{N} 2.0$ now automatically scales the posterior graph to exclude unlikely values of x. \mathcal{H} owever the user can rescale any graph in RHINO by clicking the Rescale button. Tlsers simply select maximum and minimum values for the X axis, and a maximum value for the \mathcal{Y} axis. Click on the " $O \mathcal{K}$ " 6 utton and the graph will be re-drawn. You may want to rescale the graph if you want the X axis to cover the whole range of priors selected. Rescaling is also advisable if you have selected the Partial statistics option.

The finalgraph displayed on this form is the one used in the final $\mathcal{R H I N} \mathcal{N}$ run report

Partial Statistics

PARTIAL STATISTICS..

Click on the "Partial" button if you also want to display posterior distributions after eack fifth of the ID independent dataset has been analysed. This is primarily usefulin training as users

can see the effect of adding more data on the shape of the posterior distribution. In most cases the partial statistics graphs will becoming more precise as you analyse more data. The "Partial" button is disabled if the minimum prior is not set to 1. If you have selected the "Partial" option and want to return to the original graph simply
click the "Full" button. The example below shows how the answer converges towards an actual population size of 100 and precision increases as the amount of data analysed increases.

Clean Independent Graph

Clean Independent Graph

CLEAN INDEPENDENT POSTERIOR PROBABILITY GRAPH..

Once you click the next 6utton on the ID Independent segment results page, RHIINO proceeds to estimate the Clean Independent population size, and presents the results of the analysis in the form of a Cle an Inde pendent Posterior distribution.

The blue line shows the probabilities of the clean population segment being each of a range of X axis values. Population estimates (mean, mode and median) are again calculated from this distribution, as are the Bayesian equivalent of confidence levels (CPI) which can be shaded by checking the Shade CPI tick box. The CPI levelcan be changed by changing the number in the CPI box on the form. The graph can be rescaled by clicking the "rescale" button.

RHINO's 2.0 'simproved statistical advisor expert system advises the user on the probable best measure (mean, median, mode or none of these) to use. The yellow box in the top right of the form advises users on which measure they should use (the median in this above example).

Estimating clean independent number

In the next major version of RHINO (ver 3.0), it is hoped to include a much more sophisticated statistical advisor system based on Neural Network analysis of very large simulated data sets. The results of these simulations are also currently being used by the developer to develop some improved statistical advice rules, which in the interim can fopefully be incorporated in an updated $\mathcal{R H I N} \mathcal{N} O 2.1$ version.

CLEAN ESTIMATION METHODOLOGY..

\mathcal{A} key assumption $\mathcal{R H I N} \mathcal{N} O$ uses to estimate the cle an population size is that the sighting frequency levels for clean animals will be similar to those for ID animals. RHIINO uses the final $I \mathcal{D}$ independent posterior distribution to derive weighting factors which quantify the relationship between ID sample number and the ID population estimate. These weighting factors are used together with information about possible binomial sampling error to derive the final Cle an independent distribution. Correction factors are used in the calculations, if the clean number has changed during the reporting period due to deaths, marking exercises, removals etc. For full details of the methods used to estimate clean number please refer to the tecfnical manual.

FREQUENTLY ASKED QUESTION - WHAT ABOUT TRAP HAPPY CLEAN ANIMALS?

Users commonly ask fow RHINN deals with the possibility of trap-fappy cle an animals. By virtue of these animals being clean, we do not know the sighting frequencies for individual clean animals and therefore which cle an animals are trap happy. RHIN $\mathcal{N} O$ simply assumes that the proportion of clean trap-happy sightings in a given dataset is the same for clean animals as it is for ID animals. It does this by using weighting factors in the cle an population estimation calculations which are derived from the final $I \mathcal{D}$ inde pendent distribution (which includes traphappy animals). These weighting factors reflect the relationship betwe en sample number and population estimates based on the sightings of all ID animals (i.e. including trap happy animals). hese weighting factors in effect adjust the clean population estimate so that it is based on the assumption that a similar proportion of cle an animals are trap-happy as $I \mathcal{D}$ animals.

Probability of clean population being less than X

PROBABILITY OF THE CLEAN POPULATION BEING BIGGER THAT A SUPPLIED GUESSTIMATE..

In RHINO 2.0, users no longer have the option of specifying an upper clean independent prior. This removes the chance of users biasing the results (underestimating clean numbers) by supplying a maximum clean prior that the data strongly indicates is likely to be well below the likely cle an population size.

On this form, users still have the opportunity to enter their best guesstimate of the maximum clean number if they wish. Simply enter a number in the box and press the "Enter" Key on your keyboard.

RHINO then calculates the probability based on the evidence (i.e. data), that the cle an independent population is greater than the specified maximum guesstimate. Probabilities above the supplied maximum guesstimate are also shaded on the graph. To view this graph best you may want to "toggle-off" shading the CPI interval if you have this option selected. To clear this box and related graph and text click the "Clear" button.

Total Independent Graph

Total Independent Graph form

TOTAL INDEPENDENT (ID \& CLEAN) POSTERIOR DISTRIBUTION AND ASSOCIATED POPULATION ESTIMATE AND CPI VALUES

The next graph shows the total Independent segment posterior probability distribution. This is derived by combining the $I \mathcal{D}$ independent and cle an independent posterior distributions. The Glue line shows the probabilities of the totalindependent population size being each of a range of X axis values.

Population estimates (mean, mode and median) and the Baye sian equivalent of confidence levels (CPI values) are calculated from this distribution in the same way as in previous graphs. As with previous graphs, users can chose to re-scale the graphs, change CPI levels, and shade CPI Levels. In this case the Shade CPI tick box is not checked and so the 90% CPI levelfrom 93. 107 is not shaded. To shade the CPI you would simply check this tick 6ox. RHINN's statisitical advisor also advises on the Gest estimate to use (Median in this example) To proceed click the

Total Independent Estimates in a Multi-Area Analysis

In a multi-are a simulation the totalinde pendent population posterior distribution (shown below) is determined by combining the total ID independent and total Cle an inde pendent distributions. In a multi-are a simulation these two combined totaldistributions are also shown on this form. They are accessed by simply clicking on the tab names at the top.

At the end of a multi-area analys is the "Identifiable" tab displays the graph of the total combined ID independent population for all areas (. It is derived by combining the various individual are a $I \mathcal{D}$ independent cross Goundary movement bias corrected posterior distributions.

Document Title

At the end of a multi-are a analys is

In a multi-are a simulation the "<Back" button is disabled.

Dependent Graphs

After vie wing the total inde pendent distributionclickon the "Next>" button to bootstrap estimates of the number of dependents.

USE THE TABS TO ACCESS THE THREE DIFFERENT TABS ..

$\mathcal{B} y$ clicking on the tabs at the topleft of the graphs, one can view any of the three dependent graphs associated with this form. When you click on a tab that graph will come to the front and be displayed. In all three graphs (as with previous posterior probability graphs), the blue line shows the probabilities of the chosen population segment being each of a range of X axis values. Population estimates (mean, mode and median) and the Bayesian equivalent of confidence levels (CPI values) are calculated from these graphs in the same way as before. Once again $\mathcal{R H I N} \mathcal{N}$'s statatistic al provides advice on the best measure to use on each graph. As in previous graphs, users canchose to re-scale the graphs, change CPI levels, and shade CPI levels.

Document TitleTotal Dependents Graph

"TOTAL" DEPEN(DEN(IS GRAPH

The default graph initially shown by RHINNO shows the posterior probability distribution for all dependents of independents (this represents the total number of $\mathcal{A}-\mathcal{D}$ age calves in a rfino population). This graph is obtained by combining the posterior distributions for the other two graphs on this form (dependents of ID independents and dependents of clean independents).

The tab for this graph is labeled "Total". This graph will refer to the whole area in a single simulation or to a single are a in a multi-area simulation (if you are busy with the individual are a ana(yses).

COMBINED DEPENDENTS OF INDEPENDENTS GRAPH AT THE END OF A MULTI-AREA ANALYSIS.

The total dependent estimate (for all areas) produced at the end of multi-are a analysis is obtained by combining the combined $I \mathcal{D}$ dependent distribution for all areas, and the combine d clean dependent distribution for all areas.

Dependents of ID Graph

GRAPHS DURING AND NEAR THE END OF A MULTI-AREA ANALYSIS ...

If you are currently analyzing an individual are a in a multi-area analys is the graphs will refer to this are a only. However once you fiave finished analyzing all are as separately in a multi-area analysis, combined totaldependent grapfs will be generated for all areas combined.

DEPENDENTS OF ID INDEPENDENTS GRAPH

The second (middle) graph on the form with the tablabeled "identifiable" shows the posterior distribution of the number of dependents of $I \mathcal{D}$ independents (i.e. in rifino the terms the number of $\mathcal{A}-\mathcal{D}$ age calves of identifiable adu(ts). N.(.B. in this case "Identifiable" refers to the calves'mothers, rather than the calves themselves (which may
 or may not be identifiable).

DEPENDENTS OF CLEAN INDEPENDENTS GRAPH

The third (right) graph with the tablabeled "Clean" shows the posterior distribution of the number of dependents of $I \mathcal{D}$ independents (i.e. in rfino the terms the number of $\mathcal{A}-\mathcal{D}$ age calves of clean adults). N(B. in this case "Clean" refers to the calves'mothers rather than the calves themselves (which may or may not be clean). Note that recommended best
 measures are not the same for the above two graphs (median for $I \mathcal{D}$ de p and mode for clean dep.)

Total Population Estimate

$\mathcal{T} O P R O C E E D .$.

To proceedclick the " $\mathcal{N e x t > " b u t t o n . ~ T o ~ r e t u r n ~ t o ~ t h e ~ p r e v i o u s ~ f o r m ~ c l i c k t h e ~ " < B a c k " ~ b u t t o n . ~}$ In a multi-are a simulation the "<Back" button is disabled.

Total Population Estimate, Reporting and Closing run

$\mathcal{T} O \mathcal{T A L} \mathcal{P O} \mathcal{P U L A} I O \mathcal{N} \mathcal{E S}$ TMAATES ..

The next graph shows the posterior probability distribution for the whole population (or individual are a or all areas combined in a Multi-area analys is) and is obtained by combining the relevant total Independent and to tal Dependent posterior distributions.
$\mathcal{A s}$ with previous posterior
 probability graphs, the blue line shows the probabilities of the chosen population segment being each of a range of X axis values.

Population estimates (mean, mode and median) and the Baye sian equivalent of confidence le ve ls (CPI values) are calculated from these graphs in the same way as before. As in previous graphs, users canchose to re-scale the graphs, change CPI levels, and shade CPI levels.

Producing a RHINO analysis report

PRODUCING RHINO ANALYSIS RUN REPORTS..

Reporting has been significantly improved in RHINO 2.0. Sightings frequency/truncated Poisson fit and posterior probability graphs are now automatically inserted into the report which is in the form of a $\mathfrak{M S}$ Word document. To produce a report click the "Report >" button at the bottom of the overall population estimate form.

Due to limitations in the size of the report allowable in Access, the RHINO run report in RHINO 2.0 is produced using $\mathcal{M S} \mathcal{W}$ ord and $\mathcal{M S}$ Excel. Users therefore have to have Word and Excel loaded on their computers to generate the reports. The graphs for the report are produced using Excel and inserted into a Word document. The creation of the report may take a little time (especially if you have been doing a multi-are a analysis with six areas). For this reason RHINO asks you to confirm you want to produce a report. Ple ase be patient.

\mathcal{A} the end of simulations users can also select to create a simulation run report. The above example shows the first 3 pages from a RHINO simulation report.

During a multi-area analysis you will have the option of generating separate individual are a reports after you have analysed the data for each area. You should only select to do this if you want to distribute separate individual area reports, because the content of the individual area reports will be included in the final multi-are a report produced at the end of the analysis.

Saving simulated data

PROPOS ED IMPRO VEMENTS IN FUITURE

In the next major revision of $\operatorname{RHINO}(v e r s i o n 3.0)$ it is fioped to produce the reports using De fphi and so users will not have to have Word and Excel to produce reports.

ENDING THE RUN...

To end the run after completing a single or multi-area analysis (and cle an all the datatables used by RHINO) click the "Close" button at the Gottom right of the form. This also lets RHINO cle an and empty temporary tables used in the analyses.

$\mathcal{T O}$ PROCEED IN $\mathcal{A} \mathcal{M U L I}$ I $\mathcal{A R E A}$ S I MULATIO $\mathcal{N} \ldots$

If you are analyzing data at an individual are a le vel the graph will show the totalestimate for the current area being analysed. The area's name will appear in the form heading. When you are ready to proceed click the "스ext>" button.

Multi-area analysis

TOTAL COMBINED POPULATION GRAPH FOR ALL AREAS IN A MULTI-AREA SIMULATION. .

In a multi-area simulation the total population posterior distribution is also obtained by combining the total independent and total dependent distributions.

Thus in a multi-are a analysis total population estimates will be produced for each area separately as well as for all-areas combined at the Parklevel.

In a multi-are a simulation the "<Back" button is disabled.

If you have been running a multi-are a simulation, and have generated the totalcombined population estimate for all are as combined, you will have the option of saving your simulated data which you can then re-analyse at a later date. Simply click the box button at the bottom right of the table and followinstructions to save your simulated multi-area data.

Area abbreviations to be used in Multi-area cross tabulation table.

$\mathcal{D E F A U L T} \mathcal{A B B R E V I A T I O N S}$..

If you select to undertake a multi-are a analysis this form is used to show the default 6 character abbreviations $\mathcal{R H I N} \mathcal{N} O$ will use in tables to refer to different areas (unless you specify otherwise).

Multi-area Abbreviations

NEED TO ENSURE THAT ALL ABBREVIATIONS ARE UNIQUE ..

\mathcal{A} list will now appear showing the six character acronyms RHINO is proposing to use as area name column headings in a sightings summary table. By default RHINO selects the first 6 characters of each area name. If you want to use different abbreviations ple ase edit the abbreviations in the table. RHINO automatically checks to see that each abbreviation is unique, and if not will warn the user. To proceed with a multi-are a analysis simply click on the "Next >" button on the bottom of the form.

The list below, shows the areas you have selected, together with a four character abbreviation that will be used in subsequent reports.

If you wish, you may change the abbreviations, but please note that they must be unique and that they are limited to just six characters.

	Area Name	Abbreviation
	Makhamisa	Makham
	Manzibomvu	Manzib
	Masinda	Masind
	Mbhuzane	Mbhuza
	Nqumeni	Nqumen

EDITING ABBREVIATIONS ..

You can use this form to change any of the default abbreviations suggested by RHIN \mathcal{N} either to make them more recognizable or to ensure each abbreviation is unique. Simply click on the abbreviation you want to change and type in your newabbreviation.

TO CONTINUE, ,

When you are happy with the abbreviations (as shown on the form) click the "Next >6utton to continue".

Multi-area sightings summary table

Multi-Area sightings summary table, Allocation of $1 D$ animals to areas for analysis and Cross boundary correction factors.

CROSS TABULATION OF SIGHTINGS OF INDIVIDUAL ID ANIMALS BY AREA...

This table shows the results of a cross-tabulation of the number of sightings of each ID animal seen in each area. In the example below there are five areas.

Area Population Estimation										
Rhino Nahge	Analysis Area 1 Makham	Analysis Area 2 Manzib	Analysis Area 3 Masind	Analysis Area 4 Mbhuza	Analysis Area 5 Nqumen	Analysis Area 6	Area all Sightings allocated to...	Total sighting number/ animal	Sightings in allocated area	\triangle
Brs592	3		2	2			Makham	7	42.86\%	
W870	1			1			Makham	2	50.00\%	
Brs569	9		4				Makham	13	69.23\%	
W851	5			2			Makham	7	71.43\%	
Brs586	6			2			Makham	8	75.00\%	
C414	3		1				Makham	4	75.00\%	
Brs572	17		2	1			Makham	20	85.00\%	
Brs568	6		1				Makham	7	85.71\%	
W862	13			2			Makham	15	86.67\%	
Brs600	20			3			Makham	23	86.96\%	
Brs585	8			1			Makham	9	88.89\%	
Brs597	16			2			Makham	18	88.89\%	
Brs543	3						Makham	3	100.00\%	
Total:	277	181	291	642	176			1567		
Animals:	52	30	58	87	30					
After reallocation of cross boundary sightings for analysis purposes										
Total:	264	175	279	665	184			1567		
Animals:	33	26	47	70	28					
XbndryCF:	1.05	1.03	1.04	0.97	0.96				Print	\checkmark
Help	Yideo						< Back	Next	$>$ Canc	

Allocation of sightings to areas

\mathcal{A} "Print" Gutton has been attacked to the form so you can print out copies of this table to provide feedback to the people responsible for rhino monitoring in the different areas of a Park. This Gutton may not work on some mackines.

In the Multi-area simulation only two areas are defined. However when analysing data users can analyse up to 6 different areas in RHINO 2.0.

ALLOCATION OF SIGHTINGS OF ID ANIMALS TO A SINGLE AREA PRIOR TO ANALYSIS..

For analysis purposes (primarily to reduce bias caused by cross-boundary move ment of animals) RHINO allocates all the sightings of each animal to the area it was most often seen in. In the event of a tie, RHINO uses random numbers to decide which are a to allocate sightings to. As a result, if youre-run a Multi-area analysis, sightings of animals with tied maximum numbers of sightings in different areas may be allocated to different areas for analysis purposes. Thus the results of repeat analyses of the same dataset may differ slightly as a result.

The table also shows the percentage of the total sightings of each ID animal in the area all its sightings were allocated to, as well as specifying the areas to which all sightings of the different ID animals have been transferred to for analysis purposes.

SUMMARY OF PRE- AND POST-REALLOCATION SIGHTING NUMBERS...
\mathcal{A} the bottom of the table, the total number of ID animals and sightings both before and after sightings re-allocation are given.

Cross boundary movement correction factors

Note that the number of different animals seen in each area is usully higher before reallocation of sightings. This is because cross boundary animals are "seen"in more than area (and hence double counted) Gefore (but not after) re-allocation of sightings. If not corrected for, this can bias estimates upwards.

CALCULATION OF AREA CROSS BOUNDARY CORRECTION FACTORS (XbndryCF)...

Finally, the form gives cross-boundary correction factors (X6ndryCF) calculated as the number of sightings before re-allocation divided by the number of sightings after re-allocation. If an area ends up with more $I \mathcal{D}$ sightings after re-allocation than before, its XbndryCF will be <1. Similarly if ends up with fewer sightings the XbndryCF will be >1. If an area has exactly the same number of ID sightings before and after re-allocation the XbncryCF will be 1.

USE OF XbndryCF TO CORRECT ID AND CLEAN POSTERIOR DISTRIBUTIONS AND HENCE CORRECT ESTIMATES...

If proportionately more sightings have been allocated to an area, this may lead to an over. estimation of the number of $I \mathcal{D}$ animals in that area. Similarly, the allocation of fewer ID sightings to an area, will le ad to an underestimation of the number of $I \mathcal{D}$ animals in that area.
$I D$ population estimates can be corrected by multiplying estimates by the XbndryCF to get a corrected mean estimate. If there are more $I \mathcal{D}$ sightings in an are a after re-allocation than Gefore, the X6dryCF will act to reduce the ID population estimate. Conversly it will increase it if fewer sightings have been added to an area. The differences in un-corrected and XbndryCF corrected mean ID estimates for the different areas are then rounded to the nearest integer, and the ID posterior distributions for the different areas moved up or down by the se amounts to produce cross boundary bias corrected final posterior probability distributions from which corrected ID population estimates for the different areas can be obtained. By correcting for possible bias, these corrected area estimates are likely to more realistically estimate the average density of rfinos present in each area.

Cross boundary movement bias correction

If more ID sightings have been allocated to an area after re-allocation, this will increase the ratio of ID sightings to clean sightings. This in turn will le ad to an underestimation of clean numbers in the area. To correct for this the Clean independent mean is divided by the X6ndryCF toget a (slightly increased) corrected mean estimate.

The differences in un-corrected and corrected mean Cle an independent estimates are then rounded to the nearest integer and the Cle an posterior distributions are moved up or down by half this amount to produce cross boundary bias corrected final posterior probability distributions from which corrected Clean population estimates for the different areas can be obtained.

Conversely the XbndryCF will act to reduce cleanestimates if an area fas fewer ID sightings than before after reallocation.

Thus, if more ID sightings have Geen allocated to an area in a multi-area analysis, the derived XbndryCF for the are a will act to adjust the ID independent estimate downwards and the Cle an independent estimate upwards (to correct for any biases introduced by the re-allocation of cross-boundary sightings for analysis purposes). Similarly if fewer ID sightings have been allocated to an area in a multi-area analysis, the derived XbndryCF for the are a will act to adjust the ID independent estimate upwards and the Cle an independent estimate downwards.

Area to be analysed next in Multi-area analysis ...

areas in the multi-area analysis and area to be analysed next

The box at the top of the form shows the areas selected in a multi-area analysis and the ir abbreviations. A multi-area analysis proceeds by analysing the data for the first area in the list, then the second are, and so on. When data for the last area have been analysed, RHINO proceeds to combine the probability distributions from the different areas to produce total Parklevel population estimates.

Document Title

The next area to be analysed is highlighed on the form for your information. No user input is required here except to click the "Next>" key to proceed or the "<Back" Key to return to the previous form.

Text detailing how to use simulation options to be added....
Form 17 - Specifying Multi Area simulation
Form 18 - Specifying Multiple Simulation
Form 19 - Summary of pop size at the start and button to start multi simulations

Form 20-Multi-simulation results summary - ID independents

Form 21 - Multi-simulation results summary - Clean independents

Form 22 - Multi-simulation results summary - Total independents

Form 23 - Multi-simulation results summary -

Dependents of $1 D$ independents
Form 24 - Multi-simulation results summary Dependents of Clean independents

Form 25 - Multi-simulation results summary - Total dependents

Form 26 - Multi-simulation results summary - Total population including report generation, saving of results, and closing

Form 27 - Single run simulation - entering of basic specs

Form 28 - Single run simulation - entering of special codes and pope summary.

Form 29 - Single run simulation - summary form before and after special codes.

