SadC Regional Programme FOR RHINO CONSERVATION

RHINO 2.0

Bayesian Mark Recapture Population Estimation Report: Single Simulation Run

Richard Emslie

PUBLICATION CREDITS:

Title:	RHINO 2.0 Population Estimation Software: Bayesian Mark Recapture Population Estimation Report - Single Simulation Run
Authors:	Richard Emslie
Date:	April 2004
Special acknowledgements:	

This report is an output from a task of the SADC Regional Programme for Rhino Conservation

ABOUT the SADC Regional Programme for Rhino Conservation:

The Programme is funded by the Italian Ministry of Foreign Affairs, Directorate General for Development Cooperation (Project AID 5064).

The Programme is contracted to CESVI and implemented through a regional consortium which comprises:

- The Secretariat of the Southern Africa Development Community (SADC)
- IUCN-ROSA (The World Conservation Union - Regional Office for Southern Africa)
- The IUCN African Rhino Specialist Group
- WWF-SARPO - (World Wide Fund for Nature - Southern Africa Regional Programme Office)
- CESVI (Cooperazione e Sviluppo)

The Programme goal is to contribute to maintain viable and well distributed metapopulations of Southern African rhino taxa as flagship species for biodiversity conservation within the SADC region.

The Programme objective is to implement a pragmatic regional rhino strategy within the SADC region following the acquisition of sound information on, firstly, the constraints and opportunities for rhino conservation within each range state and secondly, the constraints and opportunities for rhino metapopulation management at the regional level.

DISCLAIMER

The information, opinions and materials presented herewith do not necessarily reflect the official views of any of the organisations involved, including the Italian Ministry of Foreign Affairs, SADC, CESVI, IUCN-ROSA, WWF-SARPO, AfRSG or governments of SADC member countries.

CONTACT DETAILS FOR THE PROGRAMME:

Dr. Rob Brett
SADC Regional Rhino Programme Coordinator
IUCN-ROSA
6 Lanark Road Belgravia PO Box 745 Harare, Zimbabwe
Tel: 263-4-728266 Fax: 263-4-720738
Email: robb@iucnrosa.org.zw
CESVI Zimbabwe Office
9 Northwood Rise, Mt Pleasant, Harare, Zimbabwe
TEL/ FAX: 263-4-882243, 884492, 850898
EMAIL: cesvi@africaonline.co.zw

SADC Secretariat
Directorate of Food, Agriculture and Natural Resources P O Box 0095 Gaborone Botswana

Ministero degli Affari Esteri
Direzione Generale per la Cooperazione allo Sviluppo, Unità Tecnica Centrale
Viale Contarini (angolo Viale Farnesina)
00194 ROMA ITALY

RHINO 2.0

Bayesian Mark Recapture Population Estimation Report Single Simulation Run

Simulation Date: 22 March 2004

Simulated Population

Population before Special Events

ID independent animals with 0 dependent
ID independent animals with 1 dependent
ID independent animals with 2 dependents
Clean independent animals with 0 dependent
Clean independent animals with 1 dependent
Clean independent animals with 2 dependents

Number of Animals	
Non TH (Normal)	Trap-Happy (TH)
25	0
20	0
0	0
10	0
5	0
0	0

Giving population of 45 ID independents (45 normal +0 trap-happy) with 20 dependents and 15 Clean independents (15 normal +0 trap-happy) with 5 dependents and a total independent population of 60 and a total dependent population of 25 and overall population of 85 .

Prior to the insertion of special events a total of 90 non TH sightings were simulated (average sighting number per animal of 1.50) with each TH happy animal "seen" on average 0.00 times more than usual (mean of 0.00 times each) giving an additional 0 TH observations.

As sightings have been simulated of TH ID Independent animals RHINO has simulated an additional 0 TH clean independent animals with 0 dependent sightings based on the assumption that the same proportion of sightings of clean animals will also be of TH animals. Of the 10 clean independent animals with 0 dependents it is estimated that approximately 0 are TH animals. This gives a total number of observations of 90 .

Special Events inserted in the middle of the simulated dataset

Change from dependent to independent: 0
Clean independent (one dependent) introductions: 0
Clean independent (one dependent) marked: 0
Clean independent (zero dependents) deaths: 0
Clean independent (zero dependents) introductions: 0
Clean independent (zero dependents) marked: 0
ID independent (one dependent) introductions: 0
ID independent (one dependent) removals: 0
ID independent (zero dependents) deaths: 0
ID independent (zero dependents) introductions: 0
ID independent (zero dependents) removals: 0

Population after Special Events

As a result of the special events the population has changed to:
45 ID independents.
15 Clean independents.
Total independent population of60.
20 ID dependents.
5 Clean dependents.
Total dependent population of 25 .
Overall population of 85 .
A further 90 non TH sightings were simulated (average sighting number per animal of 1.50) with each TH happy animal "seen" on average 0.00 times more than usual (mean of 0.00 times each) giving an additional 0 TH observations. This gives a total number of post special event observations of 90 and a grand total of 180 .

Sampled Sightings

Total Number of Sightings: 180
Number of sightings of ID Independent animals: 134
Number of sightings of ID Independent animals with one dependent: 67
Number of sightings of ID Independent animals with two dependents: 0
Number of sightings of Clean Independent animals: 46
Number of sightings of Clean Independent animals with one dependent: 11
Number of sightings of Clean Independent animals with two dependents: 0

Frequency Distribution of Sightings

Figure: Frequency distribution of sightings of ID independent animals that were present throughout the sighting period. The fitted truncated Poisson distribution (mean 2.83 [LS Fit]) is also shown.

The critical trap-happy cut-off level was set at the 99% level.
0 trap-happy animals were excluded prior to the analysis
0 observations of trap-happy animals were dropped from the analysis

Identifiable Independent Population Estimate

Figure: Probability distribution of total ID independent population (i.e. adjusted to include 0 trap happy animals dropped from mark-recapture calculations). Mode: 45 , Mean: 45.55 (recommended), Median: 45, 90% CPI: 43 to 48
Prior probabilities (i.e. probabilities at the start of mark-recapture analysis) are shown with the diamond shaped marker. These were calculated from user defined uninformative priors with minimum number: l and maximum number: 100

Minimum number of different ID individuals at start of run $=43$
Minimum number of different ID individuals at end of run $=43$

Summary statistics

Mode $=45 \quad$ Median $=45 \quad$ Mean $=45.55$
90% Posterior Credible Interval $=43$ to 48
Skewness $=4.48 \quad$ Peakedness $=.05$
The estimated observation number/animal $=2.98$

Suggested measure of use

The MEAN should be used in this case as on average it is likely to be relatively unbiased (1% positive bias at sighting frequency of 2.67 and a 0.6% negative bias with a sighting frequency of 5.00).; whereas on average the median and mode will probably be slightly negatively biased.

Based on simulation modelling, with an average sighting frequency of $2.67-3.33$, and a population where half the animals are identifiable, 90% of the time mean estimates could be expected to vary around the true population size by as much as -9% to -7% below and +7 to $+2 \%$ above the true population size.

On average, with a sighting frequency $2.67-3.33$ per animal, you will have seen about 93% to 96% of the animals in the population. Once sighting frequencies have risen to 5.0 then you will have seen almost all the animals in the population (99%).

Suggestions to improve your estimate

To get a more precise population estimate you must increase your sample size by either analysing your data over a longer time period, or by collecting more data. In both cases you will then increase the mean observation number/animal. Ideally you want to aim to get $2+$ sightings per animal.

You can also increase the precision of your overall population estimates in future by marking more animals.

Clean Independent Population Estimate

Figure: Probability distribution of clean independent population. Mode: 15, Mean: 15.58, Median: 15, X_Clean CPI\% CPI: 12 to 19.

User defined known minimum clean independent population size: Not Known

Summary statistics

Mode $=15 \quad$ Median $=15 \quad$ Mean $=15.58$
X_Clean CPI\% Posterior Credible Interval $=12$ to 19
Skewness $=1.58 \quad$ Peakedness $=.03$

Suggested measure of use

The 'Median' is the best measure of central tendency.

Independent Population Estimate

Figure: Probability distribution of total independent population (ID + clean). Mode: 61, Mean: 61.13, Median: 60, 90 \% CPI: 56 to 66

Summary statistics

Mode $=61 \quad$ Median $=60 \quad$ Mean $=61.13$
X_Ind CPI\% Posterior Credible Interval $=56$ to 66
Skewness $=1.65 \quad$ Peakedness $=.01$

Suggested measure of use

The 'Median' is the best measure of central tendency.

ID Dependent Population Estimate

Figure: Probability distribution of ID dependent population. Mode: 20, Mean: 21.88, Median: 21, 90 \% CPI: 20 to 26.

Summary statistics

Mode $=20 \quad$ Median $=21 \quad$ Mean $=21.88$
90% Posterior Credible Interval $=20$ to 26
Skewness $=4.50 \quad$ Peakedness $=.07$

Suggested measure of use

The 'Median' is the best measure of central tendency.

Clean Dependent Population Estimate

Figure: Probability distribution of ID dependent population. Mode: 3, Mean: 3.71, Median: 3, 90 \% CPI: 1 to 6.

Summary statistics

Mode $=3 \quad$ Median $=3 \quad$ Mean $=3.71$
90% Posterior Credible Interval $=1$ to 6.
Skewness $=1.30 \quad$ Peakedness $=.06$

Suggested measure of use

The 'Mode' is the best measure of central tendency.

Dependent Population Estimate

Figure: Probability distribution of dependent total population. Mode: 24, Mean: 25.59, Median: 25, 90 \% CPI: 22 to 30.

Summary statistics

Minimum number of dependents of identifiable independents: 20
Minimum number of dependents of clean independents: 1
Mode $=24 \quad$ Median $=25 \quad$ Mean $=25.59$
90% Posterior Credible Interval = 22 to 30
Skewness $=1.37 \quad$ Peakedness $=.02$

Suggested measure of use

The 'Median' is the best measure of central tendency.

Total Population Estimate

Figure: Probability distribution of total population Mode: 86, Mean: 86.72 (recommended), Median: 86, 90 \% CPI: 80 to 93.

Summary statistics

Mode $=86 \quad$ Median $=86 \quad$ Mean $=86.72$
90% Posterior Credible Interval $=80$ to 93
Skewness $=1.47 \quad$ Peakedness $=.01$

Suggested measure of use

The 'Median' is the best measure of central tendency.

