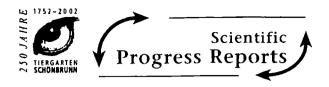
resolved by the more traditional means of morphology and behavioural studies. Microsatellite DNA consists of repeated units of short sequences and these hypervariable repeat loci are used extensively to quantify variation in populations. This study measures genetic variation and population structure in 107 black rhinoceros from three different populations or evolutionary lineages: 47 D. b. minor, 19 D. b. michaeli and 51 D. b. bicornis. Levels of heterozygosity, allelic diversity and genetic differentiation among populations were quantified using eight polymorphic microsatellite markers. There were high levels of genetic diversity in all three evolutionary lineages. Heterozygosity values ranged from 0.411 in D. b. minor to 0.718 in D. b. michaeli. Significant differentiation was detected among all pairwise comparisons done with an average Rst of 0.226. These results are discussed in the light of conservation management of fragmented black rhinoceros populations that are currently under threat from both increasing habitat destruction and poaching.

Pathological Iron Overloads Acquired in Captivity by Browsing (but not by Naturally Grazing) Rhinoceroses


Donald E. Paglia, Ellen S. Dierenfeld* & I-Hsien Tsu, Hematology Research Laboratory, Department of Pathology & Laboratory Medicine, School of Medicine. University of California Los Angeles, USA, and *The Wildlife Conservation Society, Bronx, New York, USA. (dpaglia@mednet.ucla.edu, dpaglia@mcn.org)

African black rhinoceroses (Dicerosbicornis) in captivity are affected by a number of disorders of high morbidity and mortality, including acute episodic hemolytic anemia. Hemosiderosis, the deposition of iron pigments in multiple organs, has been the most consistent necropsy finding in this population and has most commonly been interpreted as evidence of previous hemolytic events. Direct participation in necropsies of black rhinoceroses dying in captivity, and review of histopathology of previous necropsies, revealed magnitudes and patterns of tissue iron deposition that were incompatible with hemolytic disease alone, but instead were indicative of a true iron overload syndrome that progressed in severity with time in captivity. This interpretation was supported by quantitative analyses of necropsy tissues and serum iron analytes, including sera from four of the five extant species of rhinoceroses and from both captive and free-ranging black and white (Ceratotherium simum) rhinoceroses. Significant, often extreme, elevations in serum and tissue iron and ferritin concentrations and transferrrin saturations were observed in captive adult black rhinoceroses compared to all control groups. Similar elevations were observed in the few Sumatran (Dicerorhinus sumatrnesis) rhinoceroses available for study, but not in the two species of natural grazers (African white and Asian greater one-horned [Rhinocerosnuicornis]). These findings suggest that iron homeostasis in browsing rhinoceroses may be dependent on natural iron chelators, such as tannins, phytate, mimosine, etc., that may not be included as components of formulated captive diets. Excessive iron stores may contribute directly and/or indirectly to several of the other serious disorders threatening this species in captivity, such as susceptibility to infections in general, to tuberculous and exotic fungal pneumonias specifically, and to acute and chronic anemia, toxic hepatopathies, and stress intolerance.

Successful Electroejaculation and Other Semen Procurement Methods from four Species of Rhinoceros (Ceratotherium simum, Diceros bicornis, Rhinoceros unicornus, Dicerorhinus sumatrensis) 47

N.E. Schaffer, DVM, MS.; Tom P. Mechan, DVM; R.S. Jeyendram, DVM., PH.D.; SOS Rhino, 680 N. Lakeshore Dr. #807, Chicago, IL 60611, USA (nan@sosrhino.org); Brookfield Zoo, Brookfield, IL 60513, USA; Andrology Laboratory Services, 680 N. Lakeshore Dr., Chicago, IL 60611, USA

Several semen procurement techniques, including penile massage, rectal massage, artificial vagina, and rectal probe electroejaculation were applied to four rhinoceros species. Penile massage, rectal massage, and artificial vaginas were applied to cognizant animals; rectal probe electroejaculation was applied to anesthetized animals. In some instances, multiple procedures were applied to individual animals. Success of these procedures was based on whether or not sperm was acquired. Penile massage was the direct manual massage of the penis. Rectal massage was manual manipulation of the accessory glands through the rectal wall. Artificial vaginas were applied to the erect penis during penile massage. Rectal probe electroejaculation utilized an ultrasound probe incorporated into a custom engineered electrical probe, designed by the authors. These procurement techniques were applied to a total of 21 animals. Penile massage was successful for all 5 black, all 5 white, 2 of 4 Greater One-horned Asian and 3 of 5 Sumatran rhinoceroses. However, only two animals, one black and one Indian, became trained to reliably produce samples with sperm. Rectal massage facilitated other methods, but was unsuccessful when used alone on 2 black, 1 white, 2 Greater One-horned Asian and 2 Sumatran rhinoceroses. An artificial vagina was applied to 2 black, 1 white, 2 Greater One-horned Asian and 1 Sumatran rhinoceroses, but was effective in only the black rhino that had been successfully trained for penile massage. Rectal probe electroejaculation was applied successfully to 2 black, 2 white and 1 Greater One-horned Asian. Seminal fluid was successfully collected in all 12 attempts to electroejaculate these 5 animals. Sperm was not present, however, in the fluids of one attempt in the Greater One-horned Asian. Rectal probe electroejaculation proved the most repeatable and reliable technique in producing seminal fluid with sperm.

Harald M. Schwammer Thomas J. Foose Michael Fouraker Deborah Olson

Recent Research on Elephants and Rhinos

Abstracts of the International Elephant and Rhino Research Symposium, Vienna, June 7-11, 2001