Grazing Lawns in Terai Grasslands, Royal Bardia National Park, Nepal

Jhamak Bahadur Karki
Department of National Parks and Wildlife Conservation, Babar Mahal, P.O. Box 860, Kathmandu, Nepal

Yadavendardev V. Jhala
Wildlife Institute of India, Chandrabani, P.O. Box 18, Dehradun-248001, India

and

Param Pal Khanna
Wadia Institute of Himalayan Geology, Dehradun, India

ABSTRACT

We compared the community structure, nutritive quality, and aboveground biomass of grazing lawns (patches of shortgrass communities) to neighboring grasslands in the Terai of western Nepal. Grazing lawns differed from the adjacent grasslands in species composition and community structure. Species diversity and species richness were higher on grazing lawns (H = 1.60, S = 20.93) than the grasslands (H = 0.97, S = 8.97). Fencing that excluded grazers for 150 days made areas of grazing lawns indistinguishable from neighboring grasslands in terms of plant height and biomass. Growing shoots of forage from grazing lawns had higher digestibility, crude protein, and sodium than forage from the grasslands. Grazing lawns appear to be maintained by continuous grazing and are enriched by deposition of urine, dung, and by certain plant species not found in the adjacent grasslands.

SARANSHA

Key words: aboveground biomass; community structure; forage; hot spot; mega-herbivores; Nepal; nutritive quality; species composition.

Herbivores can have a pronounced effect on plant establishment, growth, plant form, reproductive success, and plant community diversity (Janzen 1969; Huffaker 1971; McNaughton 1976, 1979a, b; Edroma 1981; Louda 1983; McNaughton 1983; Hartnett et al. 1996). Continuous grazing by a large congregation of herbivores results in activation of tillers and selection for ecotypes of more prostrate growth form (Vesey-Fitzgerald 1969, 1973, 1974; McNaughton 1976, 1979a, b, 1988; McNaughton & Banyikwa 1995). Areas in east Af-

rica where ungulates maintain shortgrasses during periods of high utilization have been referred to as grazing lawns (McNaughton 1984). Forage from grazing lawns can have higher nutritive values and digestibility, and provide more available biomass to ungulates (Olubajo et al. 1974; McNaughton 1979b, 1984; McNaughton et al. 1982; Rhodes & Sharrow 1990).

We observed small areas of shortgrass/forb communities (~0.5 ha) interspersed within the phantas (local name for grasslands) of several hundred hectares in size in the Royal Bardia National Park, Nepal. We hypothesized that these shortgrass patches were grazing lawns, i.e., they were established and maintained through intensive utilization.

1 Received 23 November 1998; revision accepted 2 June 1999.
2 Corresponding author.
by ungulates, which included chital (Axis axis), swamp deer (Cervus duvauceli duvauceli), hog deer (Axis porcinus), rhinoceros (Rhinoceros unicornis), elephant (Elephas maximus), and barking deer (Muntiacus muntjac). We quantified: (a) plant community structure on grazing lawns and neighboring grasslands; (b) plant growth within enclosures on grazing lawns; and (c) nutritive quality of forage from grazing lawns and grasslands. In support of our hypothesis, we expected: (1) grazing lawns to have a different phylogenetic structure compared to grasslands. Individuals of the same forage species would take on a more prostrate, grazing-adapted form (ecotypes) when compared to neighboring grasslands. This would result in short canopy height with higher forage density per unit volume; (2) forage from grazing lawns would have higher nutritive content in comparison to forage from neighboring grasslands; and (3) exclusion of ungulate grazing would promote an increase in biomass and plant height on grazing lawns.

METHODS

Study area.—We studied grazing lawns within Imperata cylindrica (L.) Beauv. dominated grasslands in the Baghaura phanta (28°30.56'N, 81°15.15'E; 165 m elev.) of Royal Bardia National Park (968 km²) located in the southwestern Terai of Nepal. The study area was situated in the floodplain of Karnali River, which consists of coarse sand and fresh deposits of alluvial soil, silt, and gravel. The climate is subtropical. The influence of monsoon effects of the model were species (Imperata cylindrica, Saccharum spontaneum, Vetiveria zizanioides, Desmostachya bipinnata, dicot species, and others) and grazing history (grazing lawns, grazing-excluded grazing lawns, and grasslands).

Exclosures and sampling.—Six different grazing lawns were studied within Baghaura phanta. To prevent grazing by ungulates, 6- × 6-m areas within each grazing lawn were wire fenced to 2.5 m in height. Exclosures were established in early winter before the winter rains (December 1996). Quadrats (50 × 25 cm) were clipped at random within each grazing lawn and grassland prior to and after 150 days of fencing. During the second sampling phase, there were effectively three treatments: grazing lawns without fencing, grazing-excluded grazing lawns (within enclosures), and neighboring grasslands. Six quadrats were clipped within each grazing lawn and fenced area. Six quadrats from neighboring grasslands (a few meters away) were clipped to permit paired statistical analyses. Additional quadrats also were clipped at random from the neighboring grassland (for another study) and are used here for the analysis of species biomass. Species numbers, percent cover, average height of each species, number of clumps and culms, and fresh weight were measured in the field with an accuracy to 0.5 g using a spring balance. All samples were oven-dried to determine dry biomass.

All data were tested for normality and appropriately transformed when necessary prior to conducting further statistical analysis. Shannon-Wiener diversity indices and jackknife estimates of species richness were computed for each of the grazing lawns and grasslands. The bootstrap procedure (Krebs 1989) was used to generate 90 percent confidence intervals for the diversity indices. To test the hypothesis that grazing lawns differed in plant community structure from neighboring grasslands, a discriminant function was developed based on plant species biomass, plant species numbers, and average plant species height. For the discriminant analysis, all dicot plants were pooled except Oxalis species, because Oxalis was observed to be heavily utilized and was likely to contribute substantially to herbivore grazing. A two-way ANOVA was used to test for differences in biomass of different plant species on grazing lawns and grasslands. The main effects of the model were species (Imperata cylindrica, Saccharum spontaneum, Vetiveria zizanioides, Desmostachya bipinnata, dicot species, and others) and grazing history (grazing lawns, grazing-excluded grazing lawns, and grasslands).

Nutrient and soil analysis.—The proportional dry biomass contribution of all herbaceous species in each grazing lawn and associated grassland was computed. A composite plant sample was prepared by adding dry, ground young shoots of all individual plant species in proportion to their dry weight occurrence for each grazing lawn and neighboring grassland separately. Grass-blades and shoots of dominant species, such as I. cylindrica, S. spontaneum, and V. zizanioides, in the early growth phase were harvested by hand from grazing lawns and associated grasslands to simulate ungulate grazing. Crude protein (CP), acid detergent fiber (ADF), lignin, and acid-insoluble ash (AIA) were determined (Goering & Van Soest 1970) for the com-
FIGURE 1. Percent aboveground biomass (AGB, x ± SE) of species on grazing lawns and grasslands. Value above the bar is mean dry AGB g/m².

RESULTS

EFFECTS OF GRAZING LAWNS ON SPECIES COMPOSITION.—Imperata cylindrica, V. zizanioides (L.), and S. spontaneum (L.) dominated the grasslands and grazing lawns. Coarser grass species like V. zizanioides and S. spontaneum were more prevalent in the grasslands, while Imperata cylindrica was more common in the grazing lawns. Paired composite forage samples and dominant grass species from grazing lawn and grass communities were analyzed for major elements (Na, Ca, P, K, and Mg) and trace elements (Fe, Cu, Mn, and Zn) to determine any differences in nutrient and mineral content between grazing lawns and grasslands.

Two 20-cm soil core samples were collected from each grazing lawn and corresponding grassland. These soil samples were composited for each grazing lawn and grassland separately and analyzed for the same nine elements, pH, nitrogen, and particle size. All statistical analyses were done using SPSS computer software (Norusis 1990).
TABLE 1. Summary of results by two-way ANOVAs for biomass and nutrient content of forage samples from grazing lawns and neighboring grasslands. N = sample size.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Effects</th>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry biomass</td>
<td>432</td>
<td>Grazing history (G)</td>
<td>1</td>
<td>7.33</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Species (S)</td>
<td>5</td>
<td>18.1</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interaction (G × S)</td>
<td>5</td>
<td>5.37</td>
<td>0.001</td>
</tr>
<tr>
<td>Crude protein</td>
<td>46</td>
<td>Grazing history (G)</td>
<td>1</td>
<td>15.43</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Species (S)</td>
<td>3</td>
<td>14.46</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interaction (G × S)</td>
<td>3</td>
<td>0.473</td>
<td>0.7</td>
</tr>
<tr>
<td>ADF</td>
<td>45</td>
<td>Grazing history (G)</td>
<td>1</td>
<td>24.9</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Species (S)</td>
<td>3</td>
<td>5.89</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interaction (G × S)</td>
<td>3</td>
<td>1.933</td>
<td>0.141</td>
</tr>
<tr>
<td>Lignin</td>
<td>45</td>
<td>Grazing history (G)</td>
<td>1</td>
<td>6.314</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Species (S)</td>
<td>3</td>
<td>0.274</td>
<td>0.844</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interaction (G × S)</td>
<td>3</td>
<td>0.3</td>
<td>0.83</td>
</tr>
</tbody>
</table>

nioides and D. bipinnata occurred at low densities on grazing lawns. Dicots contributed > 11.1 percent of the biomass for grazing lawns compared to only 1.0 percent for grasslands (Fig. 1).

The bootstrap Shannon-Wiener diversity index for grazing lawns was 1.60 (90% ci: 1.26-1.97) while that of grasslands was 0.97 (90% ci: 0.66-1.25). The jackknife estimate of species richness for grazing lawns was 20.93 (90% ci: 16.52-25.34) while that of grasslands was 8.97 (90% ci: 7.33-10.61). Thus, grazing lawns had greater species richness and diversity compared to grasslands.

The quadrat samples from grasslands (N = 36) and grazing lawns (N = 72) were classified correctly at a 90 percent efficiency level (grassland, 97%; grazing lawn, 86%) by the discriminant function. Six plant community variables (dicot height and numbers, higher on grazing lawns; Saccharum narenga height, greater on grasslands; Fimbristyli sp. number, higher on grazing lawns; Oxalis corniculata number and height, greater on grazing lawns) contributed significantly (P < 0.0001) to the discriminant function. A two-way ANOVA on dry aboveground biomass with species and grazing lawn/grassland as main effects showed a significant interaction (Table 1), suggesting that certain species increased in biomass on grazing lawns while others decreased in biomass (Fig. 1). Thus, grazing lawns differed substantially in community structure from grasslands.

Effects of Fencing on Grazing Lawns.—The relation of aboveground biomass (g/m²) from grazing lawns, grasslands, and grazing-excluded areas of grazing lawns (exclosures) after 150 days of grazing free environment was as follows: Grassland (87.12a) > Fenced grazing lawn (62.96ab) > Grazing lawn (53.44b; ANOVA: F(2,105) = 6.2; different letters indicate a significant difference of the means using Tukey’s multiple range test at P < 0.05). The heights of all three dominant grass species within fenced portions of the grazing lawns were not significantly different from grasslands after 150 days of protection from grazing (Table 2).

Effects of Grazing Lawns on Forage Quality.—In general, growing tips of plants from grazing lawns had higher crude protein values, lower acid detergent fiber, and lower lignin than growing tips of plants from neighboring grasslands (Table 1; Fig.

TABLE 2. Comparison of heights (cm) for grass species after 150 days of ungulate-free growth on grazing lawns. A different letter after the mean indicates a difference in means using Tukey’s multiple range test at P ≤ 0.05.

<table>
<thead>
<tr>
<th>Species</th>
<th>Grazing lawn</th>
<th>Ungrazed grazing lawn</th>
<th>Grassland</th>
<th>df (N, D)</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperata cylindrica</td>
<td>23.5a</td>
<td>57.33b</td>
<td>66.5b</td>
<td>2, 15</td>
<td>6.13</td>
<td>0.011</td>
</tr>
<tr>
<td>Vetiveria zizanioides</td>
<td>14.67a</td>
<td>82.4b</td>
<td>88.75b</td>
<td>2, 9</td>
<td>60.17</td>
<td>0.001</td>
</tr>
<tr>
<td>Saccharum spontaneum</td>
<td>35.67a</td>
<td>97.5b</td>
<td>110.5b</td>
<td>2, 8</td>
<td>8.67</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Grazing Lawns in Terai Grasslands

2). Forage from grazing lawns did not differ significantly (at the adjusted P value 0.05/9 = 0.0055) in their mineral content compared to adjacent grasslands except for Na (which was higher on grazing lawns; two-way ANOVA; F = 7.3, P = 0.007; Table 3). Soils of grazing lawns and corresponding grasslands did not differ significantly in their mineral content, physical characteristics, pH, and moisture content.

DISCUSSION

SOILS.—Compared to grazing lawns described by McNaughton (1984) in the Serengeti ecosystem (large areas measured in km²), the shortgrass patches observed in the Bardia grasslands were much smaller in area (<0.5 ha). Therefore, the scale of comparison between grazing lawns and neighboring grasslands was at a micro level compared to grazing lawns of the Serengeti. Due to this micro-scale, one would expect the underlying edaphic soil characteristics of grazing lawns to be similar to that of grasslands. Soil characteristics did not differ statistically between grazing lawns and adjacent grasslands; however, soils of grazing lawns tended to have higher soluble N content (x̄ = 1.96%, SE = 0.26) and lower pH (x̄ = 8.2, SE = 0.07) in comparison to grassland soils (soluble N = 1.5%, SE = 0.1; pH = 8.47, SE = 0.17). Analyses of more soil samples possibly could result in significant differences between grazing lawn and grassland soils for these parameters. These differences probably would be attributable to higher rates of dung and urine deposition on grazing lawns relative to grasslands (Day & Detling 1990, Archer & Smoïns 1991).

COMMUNITY STRUCTURE AND SPECIES COMPOSITION.—Grazing reduces competition and promotes species richness and diversity within a community (Huffaker 1971, Edroma 1981, Green & Kauffman 1995, Noy-Méir 1995, Detling 1998). Grazing lawns had higher species richness and diversity in comparison to neighboring grasslands. Grasses growing on grazing lawns tended to have prostrate, grazing-adapted forms, forming a dense mat near the soil surface. The discriminant analysis function that correctly classified 90 percent of the quadrats to grazing lawns and grasslands, took into account species composition, biomass, number, and species height (attributes of plant community structure). Therefore, grazing lawns had a distinctly different plant community compared to grasslands, thus supporting our hypothesis.

FORAGE QUALITY AND QUANTITY.—New flush of vegetation growing on the grazing lawn had higher nutritive quality compared to new flush of grass-
land vegetation. All samples of grazing lawns had greater crude protein values and higher digestibility (lower fiber) than grassland samples. Mineral content of forage samples from grazing lawns (as well as grasslands) were well above the minimum requirements of ruminants, except for Na and were marginal for P, Ca, and Mg (Mcdowell 1985). Sodium especially was found in extremely low concentrations (Robbins 1983, Church 1984, Van Soest 1987). Thus, grazing lawns not only provided more digestible forage with higher crude protein (Rhodes & Sharrow 1990), but also provided higher concentrations of deficient minerals like Na. Oxalis spp. growing abundantly on grazing lawns had high concentrations of Na (≥400 ppm), Mg (≥3550 ppm), and P (≥2000 ppm). McNaughton (1984) had found that areas of higher animal concentration had higher contents of Mg, Na, and P.

While the aboveground biomass was greater for grasslands compared to grazing lawns, very little of this biomass would be palatable food for selectively feeding ungulates (Sinclair 1974); however, almost all of the aboveground growth on grazing lawns would be palatable to ungulates. The foraging efficiency (i.e., biomass intake and nutrient intake per bite) as well as the number of bites per unit time were likely to be higher on grazing lawns (Bailey et al. 1996; Bradbury et al. 1996). Grazing lawns thus provided highly nutritious forage in high density per unit volume in comparison to grasslands.

Dynamics of Grazing Lawns.—Our study suggests that grazing lawns differ considerably from neighboring grasslands in their physiognomic structure. We only can speculate as to how these differences come about within the small areas that encompass both grazing lawns and grasslands. Data from grazing-excluded areas of grazing lawns suggests that differences in plant height and biomass between grazing lawns and grasslands were a direct consequence of intensive grazing (Smart et al. 1985). It seems likely that tall grassland areas are initially opened up by fire, floods, and/or grazing by mega-herbivores (elephants and rhinos). Chital and swamp deer, both capable of selective foraging due to their medium-sized mouths, dominate the ungulate community of Bardia grasslands. These ungulates then maintain grazing lawns by intensive utilization. Due to reduction in competition from tallgrasses, grazing lawns provide an environment for the establishment and maintenance of a more diverse plant community (Noy-Meir 1995, Detling 1998). This community is in turn sustained, and made more productive, by deposition of ungulate urine and dung (Day & Detling 1990, McNaughton & Banyikwa 1995, Detling 1998). Overuse of grazing lawns would tend to increase unpalatable weeds and lower productivity (Dyer et al. 1991, 1993). Such grazing lawns would lead to disuse by ungulates and allow tallgrass species and ecotypes to recolonize (Allen et al. 1995). Thus, grazing lawns seem to be one state of a dynamic successional equilibrium for a different plant community initiated by effects of fire or mega-herbivore utilization, maintained by continuous grazing and enriched by animal manure.

The trends that emerge even with a limited sample size (six grazing lawns) are ecologically interesting, and merit a more detailed investigation. A long-term study with exclosures on 15 to 30 grazing lawns from different phantas would provide a better understanding on succession, the mechanism of nutrient and mineral enrichment, and equilibria of grazing lawn communities.

ACKNOWLEDGMENTS

We acknowledge the support of the Department of National Parks and Wildlife Conservation, Nepal, Wildlife Institute of India, Wadia Institute of Himalayan Geology, and C.R.C., Smithsonian Institution. Support and encouragement provided by T. M. Mailey and S. K. Mukherjee are acknowledged. Discussions with Prof. F. Banyikwa stimulated us to do this study. We thank C. P. Sharma and Rakesh Nautiyal for helping with laboratory analysis, P. K. Mukherjee for discussion on interpreting mineral analysis, and Sita Ram Dahal and other field assistants for their help during field data collection. We thank U. R. Sharma and two anonymous reviewers for comments on the manuscript, Plant Research Library, Department of Hydrology and Meteorology, and King Mahendra Trust for Nature Conservation, Kathmandu, are acknowledged for permitting us to use their facilities. We thank M. N. Sherpa, U. R. Bhuju, D. Amatya, and C. Sheerin for coordinating logistics and funds. Funding for this study was provided by WWF–Nepal, the Russell E. Train Scholarship for Nature Program, and the Wildlife Institute of India.

LITERATURE CITED

Grazing Lawns in Terai Grasslands

