
1101

S
pec

ial
Featu

r
e

Ecology, 86(5), 2005, pp. 1101–1113
q 2005 by the Ecological Society of America

IMPROVING INFERENCES IN POPULATION STUDIES OF RARE SPECIES
THAT ARE DETECTED IMPERFECTLY

DARRYL I. MACKENZIE,1,6 JAMES. D. NICHOLS,2 NICOLE SUTTON,3 KAE KAWANISHI,4

AND LARISSA L. BAILEY2,5

1Proteus Wildlife Research Consultants, P.O. Box 5193, Dunedin, New Zealand
2U.S. Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Road, Laurel, Maryland 20708-4017 USA

3Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand
4Department of Wildlife and National Parks Peninsular Malaysia, KM 10, Jalan Cheras, 56100, Kuala Lumpur, Malaysia

5U.S. Geological Survey, Cooperative Fish and Wildlife Research Unit, Department of Zoology,
North Carolina State University, Campus Box 7617, Raleigh, North Carolina 26795-7617 USA

Abstract. For the vast majority of cases, it is highly unlikely that all the individuals
of a population will be encountered during a study. Furthermore, it is unlikely that a constant
fraction of the population is encountered over times, locations, or species to be compared.
Hence, simple counts usually will not be good indices of population size. We recommend
that detection probabilities (the probability of including an individual in a count) be esti-
mated and incorporated into inference procedures. However, most techniques for estimating
detection probability require moderate sample sizes, which may not be achievable when
studying rare species. In order to improve the reliability of inferences from studies of rare
species, we suggest two general approaches that researchers may wish to consider that
incorporate the concept of imperfect detectability: (1) borrowing information about de-
tectability or the other quantities of interest from other times, places, or species; and (2)
using state variables other than abundance (e.g., species richness and occupancy). We
illustrate these suggestions with examples and discuss the relative benefits and drawbacks
of each approach.
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INTRODUCTION

Estimation of abundance and related quantities for
animal populations requires that investigators deal with
two important sources of variation in resulting count
data (Skalski and Robson 1992, Lancia et al. 1994,
Thompson et al. 1998, Yoccoz et al. 2001, Pollock et
al. 2002, Williams et al. 2002). The first source of
variation involves spatial sampling. Investigators are
frequently interested in inferences about areas so large
that they cannot survey or count animals over the entire
areas of interest. This problem requires that investi-
gators select a sample of smaller areas on which to
conduct survey efforts and that this selection be con-
ducted in a manner that permits inference about the
entire area of interest. That is, sample locations must
be selected such that counts on these areas can be used
to draw inferences about locations that do not appear
in the sample (i.e., by using a probabilistic sampling
scheme). This problem is not unique to the sampling
of animal and plant populations, and ecologists and
wildlife managers can use the various sampling designs
developed by statisticians in other contexts (e.g., Coch-
ran 1977, Thompson 1992).
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The second source of variation involves the issue of
detectability and the fact that even when efforts are
made to count animals on sample areas, it is extremely
unlikely that the investigator will count every animal
in any such area. Instead, the investigator obtains count
statistics that represent unknown fractions of animals
present in the sampled area. Count statistics, C, reflect
the number of animals observed, captured, heard, har-
vested or otherwise detected by one or more survey
methods used by animal ecologists. Count statistics are
best viewed as random variables with expectation equal
to the product of the true number of animals (N ) present
in the sample location and the detection probability ( p)
associated with the count:

E(C ) 5 pN. (1)

Inference about N requires inference about, or knowl-
edge of, p. For example, estimation of abundance is
accomplished by

C
N̂ 5 (2)

p̂

where p̂ is the estimated detection probability associ-
ated with the specific count statistic. We note that the
seemingly diverse abundance and density estimation
methods appearing in books such as Seber (1982) and
Williams et al. (2002) represent different ways of es-
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timating detection probability, but that the final step in
abundance estimation involves Eq. 2.

We note that in addition to abundance, estimation of
demographic rate parameters also requires consider-
ation of detection probability. For example, reproduc-
tive rate is often estimated using age ratios, repre-
senting relative abundances of young to adult or young
to adult females. If inferences about age ratios are based
on raw counts, neglecting detection probabilities, then
resulting ratios will reflect a confounded function of
true relative abundances and relative detection proba-
bilities (MacKenzie and Kendall 2002, Williams et al.
2002). Estimates of survival and movement probabil-
ities are typically based on marked individuals released
at one time and location and estimated to be alive at
some later time in the same or a different location. If
time- and location-specific detection probabilities are
not incorporated into estimation models, then biased
estimates of survival and movement can result (Wil-
liams et al. 2002).

Rarity will typically increase the difficulties in deal-
ing with both spatial sampling and detectability in the
estimation of abundance and related parameters. A spe-
cies may be considered ‘‘rare’’ either because it occurs
at very low densities across a broad range, or it could
be locally abundant but not widely distributed across
the landscape, with the consequence that the species
may only occupy a small fraction of spatial sampling
units (Gaston 1994). Rarity is also likely to be asso-
ciated with low probabilities of detecting individuals
even in sampling units that are occupied. When detec-
tion probabilities are known and not estimated then for
a fixed count C, (N̂) will be larger when p is smallv̂ar
(as (N̂) 5 (C )/p2; from Eq. 2). Furthermore, de-̂ ̂var var
tection probability is seldom known, and most methods
for estimating p use the count data themselves (e.g.,
Seber 1982, Williams et al. 2002). Small sample sizes
tend to produce large (p̂) and, hence large (N̂).̂ ̂var var
Thus, observation-based methods such as distance sam-
pling, multiple-observers, time at detection or temporal
removal, and marked subsamples, as well as capture-
based methods such as capture–recapture, catch-effort,
and change-in-ratio, all perform best with sample sizes
that frequently exceed those that can be obtained for
rare species (see Williams et al. 2002, and references
therein, for details of these various techniques).

There may also be other more practical impediments
to estimating abundance for rare species. In order to
obtain an accurate count of the number of unique in-
dividuals, it must be possible to identify individual
animals. Capture–recapture or resighting methods re-
quire that individuals detected during one sample pe-
riod can be recognized as such if they are detected in
a subsequent period. If animals can not be reliably
identified using natural colorations or patternings, then
some form of mark will need to be applied to the an-
imal, which may require animals to be captured and
handled. However many rare species are listed as a

protected or endangered and in some instances there
may be resistance (from a variety of quarters) to han-
dling and marking animals if there is the potential for
negative impact on the animals.

In this paper, we focus on the detectability issue and
consider approaches to obtaining reliable inferences
about animal populations and communities when deal-
ing with rare species and with detection probabilities
,1. We discuss two general approaches. First, we brief-
ly present our views on the concept of borrowing in-
formation about detectability and relevant state vari-
ables from other times, places, and classes of animals
(even species). The other approach involves consid-
eration of state variables other than abundance to char-
acterize status and changes in the population. We be-
lieve that both approaches hold promise for permitting
reasonable inferences about populations and commu-
nities of rare species.

BORROWING INFORMATION

In some situations, it may be appropriate to share or
borrow information about population parameters for
rare species from multiple data sources. The general
concept is that by combining the data, where appro-
priate, more precise estimates of the parameters may
be obtained. We describe two situations that are dis-
tinguished by the similarity of the data being combined.
In one situation, data of exactly the same type are ag-
gregated over times, locations, individuals, or species.
In the second situation, different kinds of data are com-
bined to yield inferences about a common parameter(s).

The first situation is exemplified by capture–recap-
ture modeling, where it has become common to con-
sider aggregation of capture history data over times,
places and individuals (e.g., Seber 1982, Lebreton et
al. 1992, Williams et al. 2002). The decision about the
appropriate level of aggregation is considered as a
problem in model selection, where the task is to select
a level that describes the data reasonably well, with the
smallest number of parameters and greatest degree of
aggregation (Burnham and Anderson 2002). The data
are considered jointly, and the model set includes gen-
eral models with separate parameters for different times
and locations, for example, and reduced parameter
models in which parameters are constrained to be equal
over times and/or locations. The competing models
thus represent different levels of aggregation and dif-
ferent degrees to which data are shared. We note that
there are other approaches to aggregation than the de-
scribed approach of equating model parameters (as-
suming homogeneity) over times, places, and individ-
uals. For example, modeling parameters as function of
covariates represents a form of aggregation in which a
common relationship (over times, places, individuals,
etc.) is assumed between a covariate and the parameter
of interest (for closed capture–recapture models, see
Pollock et al. [1984], Huggins [1989, 1991], Alho
[1990]). Another approach is to assume a distributional
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form for variation in a parameter of interest over in-
dividuals, for example, and then use a hierarchical
modeling approach to estimate parameters of that dis-
tribution for an aggregation of individuals (e.g., Dor-
azio and Royle 2003). Both covariate modeling and
hierarchical modeling assume some common form or
relationship for the variation in a parameter over in-
dividuals, or times, or places, and the task is then to
estimate the parameters that describe that form or re-
lationship. As for the case of equality constraints on
parameters, model selection approaches are needed to
ascertain the appropriateness of different distributions
or relationships linking the different data sets.

This general approach to sharing information is rel-
atively common and was used by Boyce et al. (2001)
to estimate the number of female grizzly bears (Ursus
arctos) with cubs-of-the-year in the Yellowstone eco-
system. Capture frequency data from 1986–1998 were
fit to truncated negative binomial distributions with
various assumptions about constancy of parameters
over time. Model selection results favored a model with
a heterogeneity in ‘‘sightability’’ parameter constant
over time, so that information across years was bor-
rowed to yield realistic, annual estimates of abundance.
Franklin et al. (2004) conducted capture–recapture
studies of California Spotted Owls (Strix occidentalis
occidentalis) at four sites in the Sierra Nevada moun-
tain range. They conducted a meta-analysis in which
they investigated the plausibility of additive location
1 time models for rate of population increase. The a
priori hypothesis was that the different sites might ex-
perience different average rates of population increase,
but that the sites were exposed to similar environmental
conditions and should thus exhibit parallel changes in
population size. Indeed, a model with additive location
1 time effects was appropriate for the data, leading to
the interesting biological inference about similar en-
vironmental effects and also permitting more precise
estimation of rate of population increase than was pos-
sible for any single location.

A form of aggregation that is not used very com-
monly by ecologists involves sharing information
across species. For example, Nichols et al. (2000) used
double-observer models to estimate detection proba-
bility and abundance from avian point count data. They
grouped species a priori based on hypothesized simi-
larity of detection probabilities. These models appeared
to work well and were used to estimate abundance for
relatively rare species for which data were inadequate
to compute species-specific estimates of detection
probability. M. W. Alldredge, K. H. Pollock, T. R. Si-
mons, and S. A. Shriner (unpublished manuscript) have
greatly expanded on this idea and have developed sets
of models for avian point count data that incorporate
various assumptions about similarity of species groups
identified a priori. They present a unified model se-
lection framework similar to that now used for aggre-
gating over time and space. We believe that this ap-

proach of borrowing information from species believed
to exhibit similarities in detection or population dy-
namics will prove to be very useful for rare species.

The second situation in which information is bor-
rowed uses different types of data within a modeling
framework that contains shared parameters. Dixon et
al. (2005) use such an approach to improve estimates
of capture efficiency of wasps by the insectivorous
pitcher plant, Darlingtonia californica. They had two
forms of available data, both of which contained some
information about the capture rate of wasps by the
pitcher plant. One data set permitted direct estimation
of capture efficiency, whereas the other permitted es-
timation of a function of capture efficiency and visi-
tation rate. Combination of the two data sets permitted
use of the information about capture efficiency encoded
in the second data set, and thus resulted in more precise
estimates. Other examples of this type of approach to
borrowing information include recent work on inte-
grating animal count data with capture-recapture data
(Besbeas et al. 2002, 2003). Information about survival
rate comes from the data on marked animals, whereas
information about population growth rate comes from
the count data. Population growth rate can also be com-
puted using survival and reproductive rates with a sim-
ple population projection model. Thus an integrated
estimation approach incorporating the two data types
with a population model permits estimation of repro-
ductive rate in addition to population growth and sur-
vival (Besbeas et al. 2002, 2003). We expect such ef-
forts to combine data from multiple sources to become
more common in the near future (see Schnute 1994,
Gallucci et al. 1996, Quinn and Deriso 1999, Elliott
and Little 2000, Millar and Meyer 2000, Trenkel et al.
2000, Grove et al. 2002, White and Lubow 2002).

STATE VARIABLES OTHER THAN ABUNDANCE

As indicated above, despite the large number of po-
tential methods for estimating detection probability of
individual animals, and hence their abundance and den-
sity, rarity will typically translate into small sample
sizes and imprecise estimates of relevant parameters.
One approach to sample size problems using existing
methods is to increase sampling effort. This approach
usually increases expenses but is sometimes feasible
nonetheless. As another approach, we suggest that, in
many cases, it may be appropriate to consider alter-
native state variables: (1) the number of species present
within the area (species richness; perhaps within some
taxonomic or other group of interest), or (2) the pro-
portion of the area occupied by a single species (oc-
cupancy). As with abundance, we believe that these are
relevant state variables that provide important infor-
mation about systems of ecological and conservation
interest. For example, species richness conveys infor-
mation about community structure and biodiversity,
while occupancy provides information about species
range, likelihood of extinction (e.g., Lande 1988),



S
pe

c
ia
l

Fe
at

u
r
e

1104 DARRYL I. MACKENZIE ET AL. Ecology, Vol. 86, No. 5

metapopulation dynamics (e.g., Hanski 1999), and
abundance. In addition, vital rates associated with dy-
namics of these state variables can be identified and
estimated. The sampling effort required to estimate
these two variables and their associated vital rates will
typically be smaller (often substantially so) than that
required to estimate abundance and rates of birth,
death, and movement. Below we expand upon these
concepts, provide a brief overview of potential ana-
lytical methods and give examples where these alter-
native state variables have been used in practice.

Species richness

Species richness (the number of species inhabiting
a predefined area) is a state variable representing an
alternative to abundance that may be useful in studies
of groups of rare species. This state variable is aimed
more at the community level than at a single species,
and is widely used in ecological investigations and in
conservation initiatives (e.g., Barbault and Hochberg
1992, Scott et al. 1993, Mangel et al. 1996, Boulinier
et al. 1998, 2001, Cam et al. 2002, Doherty et al.
2003a, b). As in most cases in animal sampling, it is
unlikely that all species at a sampling location will be
observed. Even if the investigator is simply interested
in relative species richness (e.g., computed as the ratio
of richness at points in time and/or space), it is unlikely
that raw species counts will be useful, as the fraction
of any species pool that is observed will likely vary
according to such factors as habitat and differences in
the local species composition. The problem is then how
to estimate species richness in the face of imperfect
detectability. Although the bulk of the work on this
topic has been relatively recent, the estimation of spe-
cies richness has been considered many times over the
last decade, including reviews by Bunge and Fitzpat-
rick (1993), Colwell and Coddington (1994), Nichols
and Conroy (1996), Williams et al. (2002), and new
synthetic contributions by Dorazio and Royle (2005)
and Mao and Colwell (2005). Therefore, here we sim-
ply provide a brief overview of the various sampling
situations that permit estimation of species richness,
with reference to key publications that can be sought
for further details of the particular methods. We also
note that the concept of estimating species richness
could be considered as a form of borrowing informa-
tion: inferences about rare and infrequently encoun-
tered species are made by borrowing information about
detectability from the other species in the community.

One sampling approach is where a single (or small
number) of locations are surveyed multiple times with-
in a relatively short time period. At each survey a list
is maintained of the species detected, hence at the con-
clusion of the sampling it is possible to construct a
‘‘capture history’’ for each species, denoting whether
the species was detected within each survey. The sam-
pling should be conducted over a reasonably short time
period to avoid any potential change in species com-

position, i.e., the community is assumed to be closed
to any species additions or deletions. A species is con-
sidered to be analogous to an individual in a single-
species, closed population capture–recapture study.
Based upon the detection histories of species detected
at least once, the number of species that were never
detected can be estimated, i.e., an estimate of the total
number of species at that location can be obtained.
There is a wide range of capture–recapture models that
could be used (e.g., Otis et al. 1978, Williams et al.
2002), although generally we would suggest that mod-
els permitting heterogeneous detection probabilities
will be needed because of the variation in abundances
and individual detection probabilities associated with
different species.

Another sampling approach involves geographic rep-
lication rather than temporal replication. An area of
interest is defined, and interest is focused on the com-
munity of species (perhaps of a certain taxon or func-
tional guild) associated with that area. Sample locations
are randomly selected from the area of interest, and the
investigator surveys each such location only once. A
capture history for each species can then be formed by
denoting whether the species was encountered at each
location, and species richness can be estimated as
above. The key difference between the two sampling
approaches is that one uses temporal replication of sur-
veys, while the other uses spatial replication. Naturally
this has some influence on how the results are inter-
preted, but the mechanics of the estimation procedure
are identical.

A third general design is one where the investigator
has both temporal and spatial replication. The usual
approach to estimation with such data involves two
steps. Species richness is estimated for each sampling
site using the temporal replication, and then means and
other summary statistics are computed for all sites
within strata of interest. However, a more integrated
approach is to consider prior distributions of individ-
uals and species over space and to estimate parameters
of this spatial distribution (see Dorazio and Royle
2005).

A final sampling design for richness estimation in-
volves the so-called empirical species abundance dis-
tribution. Sampling is conducted at a single location
during a single short time interval so there is neither
temporal nor geographic replication. However, the in-
vestigator now records the number of individuals for
each detected species. So the data used for estimation
are the so-called detection frequencies, fi, indicating
the number of species for which exactly one individual
was detected ( f1), exactly two individuals ( f2), etc.
These data can then be used with a limiting form of
the jackknife estimator developed by Burnham and Ov-
erton (1979), or other appropriate methods (e.g., Norris
and Pollock 1998, or see Bunge and Fitzpatrick 1993).

The previously cited reviews deal almost exclusively
with estimation of species richness, itself, and there



May 2005 1105STATISTICS OF RARITY

S
pec

ial
Featu

r
e

has been much less attention devoted to estimation of
the vital rates influencing this state variable. Initial ap-
proaches to estimate local species extinction probabil-
ity, number of local colonizing species, colonization
rate, and species turnover have been developed by
Nichols et al. (1998a, b; also see Williams et al. 2002).
These methods have been used to draw inferences about
community dynamics of forest birds exposed to forest
fragmentation (Boulinier 1998, 2001), avian commu-
nity dynamics at the edge and center of species ranges
(Doherty et al. 2003b), and the relationship between
avian community dynamics and sexual dichromatism
(Doherty et al. 2003a). These analyses are especially
relevant to the issue of rare species, as many of the
species included in these different analyses were char-
acterized by data that would have been inadequate for
single-species inferences.

Finally, we note that an interesting quantity in some
community studies is the fraction of the members of
some identified species pool that are present in a spe-
cific community or location of interest. This problem
was considered by Cam et al. (2000; also see Nichols
1998b, Chao et al. 2000). Here, we note that there are
similarities between this problem and the estimation of
the occupancy state variable discussed below, where
the intent is to estimate the fraction of sites at which
a species is present. By considering each species in the
pool (or each species on any a priori reference list) as
a ‘‘site,’’ the mechanics of the two problems are iden-
tical: the nondetection in the sampled community of a
species on the list does not imply that the species was
absent. Thus, we believe that some of the occupancy
estimation and modeling described below (e.g.,
MacKenzie et al. 2002, 2003, Royle and Nichols 2003)
may prove useful in community studies as well.

Occupancy

Occupancy has been used as an alternative state var-
iable to abundance for many inferential purposes rang-
ing from questions about habitat selection (e.g., Reu-
nanen et al. 2002, Scott et al. 2002, Bradford et al.
2003) to questions about population dynamics and dis-
tribution (e.g., Hames et al. 2001, Barbraud et al. 2003,
Martinez-Solano et al. 2003). Occupancy data are rec-
ognized to be especially useful for the study of rare
species, although the historical emphasis for such spe-
cies has been on use of occupancy as an index to abun-
dance, rather than on occupancy as a state variable of
interest in its own right (e.g., Diefenbach et al. 1994).
When occupancy is viewed as the state variable of in-
terest, focus shifts from ‘‘how many individuals of the
species are located at various locations across the land-
scape?’’ to ‘‘what fraction of the landscape does the
species inhabit?’’ For most species, the two questions
should be closely related, as occupancy is simply the
proportion of the landscape for which the local abun-
dance distribution for the species of interest is .0. For
territorial species, the number of individuals within an

area will frequently be directly proportional to the frac-
tion of the area occupied by the species. However, in
other situations changes in abundance do not always
result in a change in occupancy or species range (i.e.,
there is only a change in the density of the species).
In such instances, occupancy may not be a useful sur-
rogate state variable for abundance. However, we note
that for questions dealing with topics such as meta-
population ecology (e.g., Hanski 1999) or geographic
range (Brown 1995, Wikle 2003), occupancy is the
state variable of primary interest regardless of the re-
lationship between occupancy and abundance.

Occupancy is usually measured as the proportion of
the area of interest where the species is present during
the sampling. We use the term ‘‘area’’ in the sense of
a statistical population, namely a collection of all the
possible sampling units that we wish to make inference
about. The sampling units themselves may represent
naturally occurring discrete habitat patches (e.g., rem-
nant patches of forest, islands, or ponds), or arbitrarily
defined quadrats (henceforth we shall generically refer
to sampling units as sites). The intent is to then survey
a fraction of the total area (using an appropriate sta-
tistical method for selecting which sites to survey) and
determine the presence or absence of the species at
each site. However for most species, the investigator
can never confirm species absence. There will generally
be a non-negligible chance that the species was actually
present, but due to chance, was undetected by the sur-
vey techniques. This issue of imperfect detectability
(as in the case of abundance estimation) must be ac-
counted for if robust inferences about occupancy are
to be made. Comparisons of uncorrected, or naı̈ve, es-
timates of occupancy can be strongly influenced by
changes in species detectability, possibly leading to
incorrect inferences about changes in occupancy. An
observed difference between two naı̈ve occupancy es-
timates may be due to differences in our ability to detect
the species at the two times or places, rather than to a
true difference in occupancy. In fact, Moilanen (2002)
recently investigated the effect of various assumption
violations with respect to metapopulation incidence
functions (Hanski 1992, 1999) and found that changes
in species detectability were the greatest contributor of
bias to the estimated functions.

This issue of imperfect detectability has long been
recognized. In an effort to minimize the probability of
declaring the species falsely absent, many studies and
monitoring programs for rare species conduct repeated
surveys of sites over a reasonable timeframe, during
which no changes in the occupancy states of sties are
thought to occur. With this type of information (re-
peated surveys) it is possible to account for detection
probabilities and obtain corrected, or unbiased, esti-
mates of occupancy.

The development of analytical methods for estimat-
ing occupancy at a single point in time has been spo-
radic over the last 20 years (Geissler and Fuller 1987,
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Azuma et al. 1990), but more recently there have been
a number of similar methods published (MacKenzie et
al. 2002, Royle and Nichols 2003, Tyre et al. 2003,
Stauffer et al. 2004, Wintle et al. 2004). Here, we shall
briefly review the method presented by MacKenzie et
al. (2002), of which Stauffer et al. (2004), Tyre et al.
(2003) and Wintle et al. (2004) could be considered
special cases. Royle and Nichols (2003) have devel-
oped a useful extension that allows for heterogeneity
in detection probability between sites caused by dif-
ferences in local abundance.

Despite this interest in occupancy estimation, until
recently, few methods have been developed for esti-
mating changes in occupancy, and the vital rates (local
probabilities of extinction and colonization) that pro-
duce such changes, that explicitly account for imperfect
detectability. Often in metapopulation studies, changes
caused by local extinctions and colonizations of patch-
es by the target species are of primary interest (e.g.,
Hanski 1992, 1999). Only recently has any attempt
been made to allow for the possibility of false absences
(Moilanen 2002), with arguable success. As noted
above, Moilanen (2002) found that issues related to
species detectability were the major contributor to bias
in estimated incidence functions. Two recent papers
(Barbraud et al. 2003, MacKenzie et al. 2003) use sim-
ilar approaches to estimate local extinction and colo-
nization probabilities directly, whilst allowing for im-
perfect detection. Given that the data have been col-
lected from monitoring sites over several seasons or
years, and within each season sites are surveyed more
than once, probabilistic arguments are applied to form
a model likelihood that can be used to obtain parameter
estimates. The main difference between the two meth-
ods is that the approach of Barbraud et al. (2003) is
conditional upon the first occasion at which the target
species is detected at a site, whereas the approach of
MacKenzie et al. (2003) is unconditional, allowing the
proportion of sites occupied by the species each season
to be estimated.

A general sampling scheme

From the area of interest, U sites are selected to be
surveyed for the species using appropriate methods.
These sites are surveyed multiple times each season
for T seasons (e.g., years). In each survey, detections
are regarded as truth (the species is never falsely re-
corded as being present), but nondetections are rec-
ognized as arising from both (1) true absence and (2)
presence with nondetection (sometimes referred to as
false absences). Within a season, sites are closed to
changes in occupancy (i.e., sites are either always oc-
cupied or unoccupied by the species). This assumption
may be relaxed provided that any changes occur com-
pletely at random in which case ‘‘occupancy’’ should
be interpreted as ‘‘use.’’ Sites are repeatedly surveyed
(possibly an unequal number of times), with the species
either being detected or not detected. Between seasons,

changes in occupancy may occur which are referred to
as the processes of colonization and local extinction.

The sequence of detections and nondetections re-
corded at the sites form a detection history (Hi for site
i). For example Hi 5 101 000 represents data collected
over two seasons, each with three surveys per season.
In the first season, the species was detected in the first
and third survey, but undetected in the second. In the
second season, the species was never detected at the
site during the surveys. The basic procedure for build-
ing a model is to develop a verbal description of the
observed data, then translate that description into a
mathematical equation representing the probability of
observing the data using the defined model parameters.

A single season model

MacKenzie et al. (2002) define c as the probability
that a site is occupied by the species, and pj is the
probability of detecting the species (given presence)
during the jth independent survey of a site. To illustrate
model construction, consider the detection history
1001. A verbal description of this history would be that
the species is present (as it was detected at least once),
and it was then detected in the first and fourth surveys
of the site, but not in surveys two and three. Translating
this into a mathematical equation using the model pa-
rameters, the probability of observing this history
could be expressed as

Pr(H 5 1001) 5 cp (1 2 p )(1 2 p )p .i 1 2 3 4

A similar expression can be obtained for detection his-
tories from all sites at which the species is detected at
least once. However, for sites where the species was
never detected (e.g., Hi 5 0000), there are two pos-
sibilities that must be accounted for. The verbal de-
scription for this history would be, either the species
was present but went undetected in the surveys (which
has a probability of c (1 2 pi)), or the species was4Pj51

genuinely absent from the site (with probability (1 2
c)). As either reason for never detecting the species at
the site is possible, the probability of observing this
history is the sum of these two components, i.e.,

4

Pr(H 5 0000) 5 c (1 2 p ) 1 (1 2 c).Pi j
j51

Assuming that the detection histories for all sites are
independent, the likelihood function for an estimation
model takes the usual form:

U

L(c, p z H , . . . , H ) 5 Pr(H ).P1 U i
i51

Note that this requires both the probability of occu-
pancy and each detection probability to be constant
across all U sites. If this not the case, then the prob-
abilities are said to be heterogeneous. While it is not
possible to estimate site-specific occupancy probabil-
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ities, the probabilities may be modeled as a function
of measured covariates using the logistic equation

exp(X b)iu 5i 1 1 exp(X b)i

where ui is the probability of interest for site i, Xi is
the row vector of covariate information for site i and
b is the column vector of coefficients to be estimated.
In general, occupancy may be a function of site-specific
covariates that are constant throughout the season (e.g.,
habitat type), while detection probabilities may also be
a function of covariates that change through the season
(e.g., weather conditions).

However one potential source of heterogeneity that
cannot be easily accommodated directly by a covariate
is heterogeneity in detection probabilities caused by
differences in the species abundance between sites.
Royle and Nichols (2003) extend the above approach
by arguing that the species is not detected only if none
of the Ni individuals at site i are detected. This suggests
the probability of detection can be written as a function
of abundance, i.e., pij 5 1 2 , where ri is theNi(1 2 r )j
probability of detecting an individual of the species in
the jth survey. As the Ni are unknown, this approach
requires that a distribution for how Ni varies across
sites be specified. Estimation under this model permits
estimation of occupancy in the face of abundance-re-
lated heterogeneity.

An additional comment on the method for estimating
occupancy detailed by MacKenzie et al. (2002) is that
an equal number of surveys across all sites is not re-
quired. By having the ability to deal with ‘‘missing
observations,’’ MacKenzie et al. (2002) developed a
very flexible method that could be used to analyze data
from a number of different designs that could be used
in practice (e.g., repeatedly surveying only a subset of
all sites or surveying only until the species is first de-
tected). Finally, we note that recent work on single-
season occupancy modeling includes development of
a goodness-of-fit test for the above model (MacKenzie
and Bailey 2004) and an approach for modeling and
estimating possible dependencies in occupancy pat-
terns (and detection probabilities) of multiple species
(MacKenzie et al. 2004).

A multiple season model

MacKenzie et al. (2003) extended the single season
model of MacKenzie et al. (2002) to multiple seasons
by introducing two parameters that govern changes in
the occupancy state of sites over time. These param-
eters can be viewed as the vital rates associated with
occupancy dynamics. Let «t be the probability that a
site occupied in season t is unoccupied by the species
in season t 1 1 (local extinction), and gt be the prob-
ability that an unoccupied site in season t is occupied
by the species in season t 1 1 (colonization). Therefore,
a matrix of the probability of a site transitioning be-

tween occupancy states between seasons may be de-
fined as;

1 2 « «t t
f 5 ,t [ ]g 1 2 gt t

where rows of ft represent the occupancy state of the
site at t (state 1 5 occupied; state 2 5 unoccupied),
and columns represent the occupancy state at t 1 1.
For completeness, a row vector f0 may be defined as
f0 5 [c1 1 2 c1], where c1 is the probability the site
is occupied in the first season (t 5 1).

To incorporate detection probabilities into the model,
define a column vector pH,t that denotes the probability
of observing the portion of the detection history Hi

relevant to season t, conditional upon occupancy state.
For instance

p (1 2 p )pt,1 t,2 t,3p 5101,t [ ]0

3 
(1 2 p P t, j

j51 p 5000,t  
1 

where pt,j denotes the detection probability for visit j
in season t. Note that whenever the species is detected
at least once during a season, the second element of
pH,t will be zero because it is impossible to observe
such a history if the site is in the unoccupied state.
Similarly, the second element of p0,t will always be 1,
because the all zero history is the only observable out-
come if the site is unoccupied.

For any given detection history, the probability of
observing such an outcome can be expressed as, Pr(Hi)
5 f0 [D(pH,t) ft] pH,K, where D(pH,t) is a 2 3 2k21Pt51

diagonal matrix with the elements of pH,t along the main
diagonal (top left to bottom right), zero otherwise. For
example, consider again the detection history Hi 5
110 000 010. The probability of observing this would be

Pr(H 5 110 000 010)i

5 f D(p )f D(p )f p0 110,1 1 000,2 2 010,3

p p (1 2 p ) 01,1 1,2 1,35 [c 1 2 c ]1 1 [ ]0 0

3 
 (1 2 p ) 0P 2, j1 2 « «1 1  j513  [ ]g 1 2 g1 1 0 1 

1 2 « « (1 2 p )p (1 2 p )2 2 3,1 3,2 3,33 [ ][ ]g 1 2 g 02 2

5 c p p (1 2 p )1 1,1 1,2 1,3

3

3 (1 2 « ) (1 2 p )(1 2 « ) 1 « gP1 2, j 2 1 2[ ]j51

3 (1 2 p )p (1 2 p ).3,1 3,2 3,3
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The central term in brackets on the final line represents
the two possibilities for the species during the second
season when it was not detected. Either the species (1)
did not go locally extinct between seasons 1 and 2, was
undetected in the three surveys during the second sea-
son, and continued to occupy the site into season three
(with probability (1 2 «1) (1 2 p2,j) (1 2 «2)); or3P j51

(2) went locally extinct between seasons 1 and 2, and
recolonized the site between seasons 2 and 3 (with
probability «1g2).

Once the probability of observing each detection his-
tory has been established, the model likelihood can be
formed as usual, i.e.,

U

L(c , «, g, p z H , . . . , H ) 5 Pr(H ).P1 1 U i
i51

MacKenzie et al. (2003) describe how missing obser-
vations and covariate information can be included in
the model, and also how the model can be reparame-
terized to get seasonal estimates of occupancy or es-
timates of the rate in change of occupancy.

EXAMPLES

To illustrate how the above occupancy estimation
methods could be used in practice with respect to rare
species, we now consider data collected for the follow-
ing three species: (1) Mahoenui giant weta (Deinacrida
mahoenui) from New Zealand, (2) gaur (Bos frontalis)
from Malaysa, and (3) Blue-ridge salamander (Eurycea
wilderae) from the eastern United States. Each example
is used to demonstrate some aspects of the methods we
describe above: single-season occupancy estimation,
occupancy at multiple study areas with the concept of
borrowing information, and multiple-season occupancy
estimation. For brevity, only relatively simple analyses
are presented here, but note that more complex analyses
could be conducted to further investigate relationships
between occupancy (and related parameters) and co-
variates that have been collected in the field. All anal-
yses have been conducted using Program PRESENCE
(available online).7

Mahoenui giant weta

Weta are one of the more unique and specialized
groups of New Zealand insects. More than 70 endemic
species of weta survive in New Zealand today. Weta
are ancient species of the order Orthoptera (e.g., grass-
hoppers, crickets, and locusts) and remain almost un-
changed from their ancestors of 190 million years ago.
All weta are flightless and relatively large, and mem-
bers of a subgroup called the giant weta are among the
largest insects in the world. Most giant weta species
are now endangered, with populations having been dec-
imated by the introduction of mammalian predators.
Currently, most species only survive on predator-free
offshore islands or in protected reserves.

7 ^http://www.mbr-pwrc.usgs.gov/software&

The Mahoenui giant weta (Deinacrida mahoenui) is
endemic to the King Country on the North Island of
New Zealand. The main naturally occurring population
is restricted to a 240-ha block of reverting farmland at
Mahoenui (near the town of Te Kuiti), which is des-
ignated as a scientific reserve, with a second population
near Otangiwai 20 km to the east. The reserve is char-
acterized by steep-sided gullies and is largely covered
by dense gorse, Ulex europaeus, a perennial pest plant
with sharp spiny stems and bright yellow flowers that
can form dense thickets, originally introduced to New
Zealand as a hedging plant by the early European set-
tlers. The New Zealand Department of Conservation
(DOC) uses goats and cattle to maintain the gorse hab-
itat through browsing. Mahoenui giant weta use gorse
as protection from predators and also as a food source.

In order to monitor the population, in March 2004
DOC began a pilot study to assess the effectiveness of
using occupancy as the state variable of interest. While
ideally DOC would like to monitor abundance of the
species, the main impediments are (1) the weta only
occur at low densities, hence few individuals are likely
to be observed in any given survey; (2) they are not
individually identifiable by natural markings; and (3)
the weta are usually found in the brittle, dead foliage
of a gorse bush, hence attempts to capture and mark
them would likely destroy their apparently preferred
habitat. Thus the decision was made to try occupancy
rather than use unadjusted transect counts as had been
done previously.

Between 23 and 27 March 2004, 72 circular plots of
3 m radius where surveyed for the Mahoenui giant
weta. The plots were randomly positioned within the
more accessible regions of the reserve. This means
some caution must be used if the results are generalized
to the entire reserve, but restricting the sample frame
was determined to be reasonable given it was a pilot
study. Each plot was surveyed between three and five
times during the 5-d period. Three different surveyors
were used and the study was designed such that each
surveyor surveyed each site at least once. This allows
surveyor-specific detection probabilities to be estimat-
ed.

Weta were detected at 35 of the 72 plots (a naı̈ve
occupancy estimate of 0.49), however often weta were
only detected in one or two of the repeated surveys
clearly indicating that detection probabilities are ,1.
Conceivably, there may be a number of plots where
weta were indeed present but were simply never de-
tected during the surveys. Here we use the single-sea-
son occupancy model described above to estimate the
proportion of plots that may be occupied. We consider
four simple models. In each case occupancy probability
is assumed to be constant for all plots (denoted as c(·)),
and detection probability was either constant (p(·)), dif-
ferent on each day (p(t)), varied by surveyor (p(S)) or
varied by both day and surveyor (p(t 1 S)).
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TABLE 1. Summary of models fit to Mahoenui giant weta
example.

Model AIC DAIC ĉ SE( )ĉ

c(·)p(t 1 S) 258.55 0.00 0.64 0.09
c(·)p(t) 260.80 2.25 0.63 0.09
c(·)p(S) 263.36 4.81 0.62 0.09
c(·)p(·) 265.79 7.24 0.62 0.09

Notes: Models are ranked in terms of Akiake’s Information
Criterion (AIC). The relative difference in values (DAIC),
estimates of occupancy ( ), and its standard error (SE( )) areˆ ˆc c
also given.

TABLE 2. Summary of model selection procedure for the Malaysian gaur example.

Model DAIC w

(SE( ))ˆ ˆc c

Area 1 Area 2 Area 3

c(area)p(·) 0.00 0.62 0.79 0.66 0.13
(0.20) (0.21) (0.13)

c(area)p(average) 1.00 0.38 0.90 0.61 0.13
(0.29) (0.19) (0.13)

c(area)p(area) 1.28 0.86 0.60 1.00
(0.26) (0.18) (0.00)

Model-averaged 0.83 0.64 0.13
estimates (0.24) (0.20) (0.13)

Notes: Models are ranked in terms of Akiake’s Information Criterion (AIC). Presented here
are the relative difference in values (DAIC), AIC model weights (w), estimates of occupancy
( ), and its associated standard error (SE( ), in parentheses) for each of the three study areas.ˆ ˆc c
Model-averaged estimates are based upon the first two models only.

The four models are ranked for parsimony in terms
of Akiake’s Information Criterion (AIC; Burnham and
Anderson 2002), with the results summarized in Table
1. In this instance, regardless of the structure used to
model detection probability, estimates of occupancy
(and its associated standard error) are similar, approx-
imately 30% greater than the naı̈ve estimate. This result
is partially due to the design of the study so will not
always be the case. There is some evidence that the
surveyors differed in their ability to detect weta. If
surveyors always sampled the same sites, a form of
heterogeneity in detection probability would be intro-
duced, resulting in underestimates of occupancy if not
accounted for (Royle and Nichols 2003).

Malaysian gaur

The gaur (Bos frontalis) is a large (up to 1000 kg)
Asian bovid found in scattered areas of suitable habitat
(forests and associated grassy clearings) extending
from India and Nepal eastward to Indochina and the
Malaysian peninsula. The species is believed to have
declined dramatically over the past several decades. It
is classified as vulnerable by IUCN, as endangered by
the U.S. Department of Interior, and is listed on ap-
pendix 1 of CITES (Nowak and Paradiso 1983).

Kawanishi studied tigers (Panthera tigris) and po-
tential prey species in three extensive study areas with-
in Taman Negara National Park in Peninsular Malaysia
(Kawanishi and Sunquist 2004). A grid with nine 5 3
5 km cells was superimposed on each of the three study

areas for the purpose of estimating occupancy by gaur.
Each grid cell was sampled monthly for 5 mo using
camera traps and ground surveys for animal sign. Vir-
tually all travel was on foot, so the three areas were
sampled sequentially over the period 1999–2001.

Gaur were detected in six, five, and one of the grid
cells in each of the study areas, leading to naı̈ve oc-
cupancy estimates of 0.67, 0.55, and 0.11 respectively.
Applying a constant detection single-season occupancy
model to the data from each study area separately, we
obtain occupancy estimates of 0.86 and 0.60 for the
two areas with adequate data. Only one gaur was de-
tected at a single site in the third data set, leaving us
uncomfortable with attempting to estimate occupancy
separately for this area. In order to improve the esti-
mates of occupancy and obtain some inference about
the third study area, here we model the data from the
three study areas within a single framework by sharing
information about the probability of detecting gaur
among the areas. We consider two models for these
data: (1) detection probability is the same at all sites,
or (2) detection probability at the third area is the av-
erage (on the logistic scale) of the other two areas.
Note that a third model in which detection probabilities
are different at each site is equivalent to fitting the
occupancy model to each data set independently, which
is the model that does not permit reasonable inference
about the third area. For all models we wish to obtain
area specific estimates of occupancy.

Table 2 presents a summary of the model selection
procedure for each of these models. For the purpose of
determining model weights and model averaged esti-
mates of occupancy (Burnham and Anderson 2002),
the third model has not been considered due to the
concerns of estimator reliability. Note that the model
averaged estimates of occupancy for study areas 1 and
2 are reasonably similar to those obtained when each
data set is analyzed separately, however the estimate
for area 3 appears much more realistic.

Blue-ridge salamander

The Blue-ridge salamander (Eurycea wilderae) is
one of more than 75 salamander species found in the
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TABLE 3. Parameter estimates and summary of model selection procedure according to AIC for the Blue-ridge salamander
(Eurycea wilderae) example.

Model DAIC w 98ĉ 98ĝ 99ĝ 00ĝ 98«̂ 99«̂ 00«̂ p̂98 p̂99 p̂00 p̂01

c(98)g(·)«(·)p(yr) 0.00 0.68 0.87 0.16 0.16 0.16 0.22 0.22 0.22 0.52 0.41 0.28 0.28
c(98)g(·)«(yr)p(yr) 2.95 0.16 0.87 0.17 0.17 0.17 0.24 0.26 0.06 0.52 0.41 0.29 0.26
c(98)g(yr)«(·)p(yr) 3.75 0.10 0.85 0.32 0.16 0.13 0.22 0.22 0.22 0.54 0.41 0.28 0.28
c(98)g(yr)«(yr)p(yr) 6.70 0.02 0.84 0.33 0.17 0.14 0.24 0.25 0.06 0.54 0.41 0.29 0.26
c(98)g(·)«(·)p(·) 6.98 0.02 0.94 0.17 0.17 0.17 0.27 0.27 0.27 0.38 0.38 0.38 0.38
c(98)g(·)«(yr)p(·) 10.18 0.00 0.93 0.19 0.19 0.19 0.26 0.35 0.21 0.39 0.39 0.39 0.39
c(98)g(yr)«(·)p(·) 10.51 0.00 0.94 0.00 0.12 0.21 0.27 0.27 0.27 0.38 0.38 0.38 0.38
c(98)g(yr)«(yr)p(·) 13.59 0.00 0.94 0.00 0.13 0.23 0.25 0.36 0.21 0.39 0.39 0.39 0.39

Model averaged estimates 0.87 0.18 0.16 0.16 0.22 0.23 0.19 0.52 0.41 0.29 0.28
Standard errors 0.08 0.14 0.11 0.11 0.07 0.08 0.09 0.06 0.05 0.05 0.05

Naı̈ve estimates 0.76 0.44 0.21 0.27 0.28 0.44 0.29 1.00 1.00 1.00 1.00

Note: DAIC is the relative difference in AIC values from the top ranked model; w is the AIC model weight. Bold values
are referred to in the text. Subscripts in column heads represent years 1998–2001.

southeastern United States. E. wilderae has a dual life
phase, with a larvae period lasting 1–2 years in the
southern Appalachians (Bruce 1988). Usually consid-
ered a stream-side salamander, E. wilderae is believed
to undergo seasonal migration away from streams dur-
ing warmer months and can often be found far from
running water (Petranka 1998). Because E. wilderae
potentially uses both aquatic (stream) and terrestrial
habitats, it was proposed as a management indicator
species (MIS) for National Forests in North Carolina
(FY2002 Monitoring and Evaluation Report: National
Forests in North Carolina; available online).8 Recently,
many proposed amphibian and reptile species have
been removed from MIS lists by the Forests Service
because count-based statistics for these species show
high temporal and spatial variability, thus making in-
ferences about relationships between population and
habitat changes unreliable and difficult. E. wilderae
shares this characteristic and may be considered ‘‘rare’’
because it occurs at low densities in terrestrial habitats.
For example, in a capture–recapture study in Great
Smoky Mountains National Park (GSMNP), Bailey et
al. (2004a) sampled 15 3 15 m forest plots 14–16 times
each of three spring sampling seasons. E. wilderae was
detected on more plots than any other salamander spe-
cies (16 out of 20 plots), but the average number of
captured individuals per sampling occasion was less
than 1. Abundance estimates are impossible for E. wild-
erae without borrowing information from other spe-
cies, times or locations (see Bailey et al. 2004a). Al-
ternatively, occupancy has been proposed as a more
appropriate state variable for large-scale salamander
monitoring programs in the southeastern United States
(Bailey et al. 2004b).

We used the multiple season model presented above
to estimate occupancy dynamics (vital rates) for E.
wilderae populations found within a single watershed
within GSMNP. In 1998, Hyde and Simons (2001) ini-

8 ^http://www.cs.unca.edu/nfsnc/me2002/fy2002 me
report.pdf&

tiated a salamander study within the Roaring Fork Wa-
tershed (Mt. LeConte USGS Quadrangle) and Bailey
et al. (2004b) continued to sample a subset of 39 sites
for a total of four years (1998–2001); only these 39 sites
are used in this analysis. Each sample site was sampled
with both a natural cover transect (50 m long 3 3 m
wide) and a parallel coverboard transect consisting of
five stations placed 10 m apart (see Hyde and Simons
[2001] for details). Sites were located near trails and
spaced approximately 250 m apart, beginning at a ran-
dom point at least 250 m from each trail head. Sites
were sampled once per month in 1998 (June–August),
then once every two weeks from early April to late June
for the remaining three years of the study. Relative abun-
dance information was collected on all salamander spe-
cies, but we use only detection/nondetection information
for E. wilderae in this analysis.

We used MacKenzie et al.’s (2003) initial parame-
terization to estimate initial occupancy (1998), vital
rates (colonization and extinction), and detection prob-
abilities. A number of covariates were measured at each
site (e.g., elevation and stream proximity) but here we
only consider a suite of simple models where vital rates
and detection probabilities are year specific or constant
across time. We expected yearly differences in all mul-
ti-season parameters as rainfall levels varied consid-
erably among years, with total April–June precipitation
declining over the last three years of the study. Again
for brevity, we assume the probability of detecting E.
wilderae in a single survey of a site was constant within
each year.

Table 3 presents the parameter estimates and sum-
mary of the model selection procedure for the eight
simple models considered. Note that the models with
constant detection probability among years (which is
an implicit assumption when comparing naı̈ve counts)
constitute ,3% of the total AIC model weights. That
is, from this analysis there is very strong support for
the hypothesis that detection probabilities vary over
time suggesting reliable conclusions about the popu-
lation can only be made if these detection probabilities
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differences are explicitly accounted for. Considering
the model averaged estimates, the proportion of sites
occupied by E. wilderae in 1998 was 0.87, the prob-
ability of a site being colonized between years is ø0.16,
and the probability of E. wilderae going local-extinct
from a site was ø0.20. By using the fact that sites
occupied in the next year are a combination of occupied
sites this year where the species did not go locally
extinct, and unoccupied sites that the species colonizes
(i.e., ct11 5 ct (1 2 «t) 1 (1 2 ct)gt), we can determine
the proportion of sites occupied in years 1999–2001.
Using the model averaged parameters estimates we ob-
tain the values 0.70, 0.59, and 0.54 respectively, sug-
gesting a downward trend in occupancy over this time
frame for E. wilderae that is consistent with our a priori
expectations based on seasonal rainfall records. It is
worth noting that estimated vital rates are lower than
naı̈ve estimates, suggesting that some of the apparent
turnover is likely the result of nondetection rather than
true colonization and extinction events.

DISCUSSION

It is particularly unfortunate that rare species are
simultaneously the species for which strong inferences
about state variables and vital rates are most needed
and the species for which such information is most
difficult to obtain. These dual concerns provide a for-
midable challenge to conservation biologists and wild-
life biologists to obtain useful information on which
to base management decisions in the face of substantial
sampling difficulties. We are pleased at recent efforts
to meet this challenge, including this Special Feature
and the new edited volume by W. L. Thompson (2004).

We began this paper with a brief summary of sta-
tistical principles important in estimating abundance
and related parameters of animal populations. The re-
sponse of many biologists and managers to the poor
sample sizes achieved in studies of rare species is to
abandon these principles and simply base inference on
raw count statistics. We do not believe that this re-
sponse is satisfactory, so we discussed two general ap-
proaches to inference that we hope might be useful for
rare species.

The borrowing of information is nothing new and
indeed underlies all inferential statistics. Our sugges-
tion is simply to extend the basic idea beyond the units
of aggregation typically used in statistics (e.g., indi-
viduals, replicate locations) to possibly disparate times
and locations, to different data sources, and even to
different species. In the case of rare species, such ag-
gregation may permit reasonable inference in situations
where it would not be possible with more typical dis-
aggregated treatments.

The use of state variables other than abundance is
also not new. In particular, other investigators have
used occupancy as a state variable of interest for rare
species. However, until the last year or so, these past
uses have ignored the issue of detection probability.

We described a framework for drawing inferences
about occupancy, changes in occupancy, and the vital
rates responsible for such changes using models that
properly incorporate detection probability. As illus-
trated by our examples, we believe that these methods
hold great promise for use in studies of rare species.

In summary, we recognize that rare species present
problems to biologists and managers who wish to study
their populations. However, we do not believe that the
appropriate response to such problems is to abandon
reasonable inference methods. Instead, we recommend
consideration of the methods provided in this Special
Feature. In particular, we recommend consideration of
borrowing information and using state variables such
as occupancy as means of dealing with detection prob-
ability when studying rare species.
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